4258 lines
136 KiB
C
4258 lines
136 KiB
C
/* AVR-specific support for 32-bit ELF
|
||
Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||
Contributed by Denis Chertykov <denisc@overta.ru>
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/avr.h"
|
||
#include "elf32-avr.h"
|
||
#include "bfd_stdint.h"
|
||
|
||
/* Enable debugging printout at stdout with this variable. */
|
||
static bfd_boolean debug_relax = FALSE;
|
||
|
||
/* Enable debugging printout at stdout with this variable. */
|
||
static bfd_boolean debug_stubs = FALSE;
|
||
|
||
static bfd_reloc_status_type
|
||
bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
|
||
asection *, bfd *, char **);
|
||
|
||
/* Hash table initialization and handling. Code is taken from the hppa port
|
||
and adapted to the needs of AVR. */
|
||
|
||
/* We use two hash tables to hold information for linking avr objects.
|
||
|
||
The first is the elf32_avr_link_hash_table which is derived from the
|
||
stanard ELF linker hash table. We use this as a place to attach the other
|
||
hash table and some static information.
|
||
|
||
The second is the stub hash table which is derived from the base BFD
|
||
hash table. The stub hash table holds the information on the linker
|
||
stubs. */
|
||
|
||
struct elf32_avr_stub_hash_entry
|
||
{
|
||
/* Base hash table entry structure. */
|
||
struct bfd_hash_entry bh_root;
|
||
|
||
/* Offset within stub_sec of the beginning of this stub. */
|
||
bfd_vma stub_offset;
|
||
|
||
/* Given the symbol's value and its section we can determine its final
|
||
value when building the stubs (so the stub knows where to jump). */
|
||
bfd_vma target_value;
|
||
|
||
/* This way we could mark stubs to be no longer necessary. */
|
||
bfd_boolean is_actually_needed;
|
||
};
|
||
|
||
struct elf32_avr_link_hash_table
|
||
{
|
||
/* The main hash table. */
|
||
struct elf_link_hash_table etab;
|
||
|
||
/* The stub hash table. */
|
||
struct bfd_hash_table bstab;
|
||
|
||
bfd_boolean no_stubs;
|
||
|
||
/* Linker stub bfd. */
|
||
bfd *stub_bfd;
|
||
|
||
/* The stub section. */
|
||
asection *stub_sec;
|
||
|
||
/* Usually 0, unless we are generating code for a bootloader. Will
|
||
be initialized by elf32_avr_size_stubs to the vma offset of the
|
||
output section associated with the stub section. */
|
||
bfd_vma vector_base;
|
||
|
||
/* Assorted information used by elf32_avr_size_stubs. */
|
||
unsigned int bfd_count;
|
||
unsigned int top_index;
|
||
asection ** input_list;
|
||
Elf_Internal_Sym ** all_local_syms;
|
||
|
||
/* Tables for mapping vma beyond the 128k boundary to the address of the
|
||
corresponding stub. (AMT)
|
||
"amt_max_entry_cnt" reflects the number of entries that memory is allocated
|
||
for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
|
||
"amt_entry_cnt" informs how many of these entries actually contain
|
||
useful data. */
|
||
unsigned int amt_entry_cnt;
|
||
unsigned int amt_max_entry_cnt;
|
||
bfd_vma * amt_stub_offsets;
|
||
bfd_vma * amt_destination_addr;
|
||
};
|
||
|
||
/* Various hash macros and functions. */
|
||
#define avr_link_hash_table(p) \
|
||
/* PR 3874: Check that we have an AVR style hash table before using it. */\
|
||
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
||
== AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
|
||
|
||
#define avr_stub_hash_entry(ent) \
|
||
((struct elf32_avr_stub_hash_entry *)(ent))
|
||
|
||
#define avr_stub_hash_lookup(table, string, create, copy) \
|
||
((struct elf32_avr_stub_hash_entry *) \
|
||
bfd_hash_lookup ((table), (string), (create), (copy)))
|
||
|
||
static reloc_howto_type elf_avr_howto_table[] =
|
||
{
|
||
HOWTO (R_AVR_NONE, /* type */
|
||
0, /* rightshift */
|
||
3, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_NONE", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_AVR_32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A 7 bit PC relative relocation. */
|
||
HOWTO (R_AVR_7_PCREL, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
7, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
3, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_7_PCREL", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* A 13 bit PC relative relocation. */
|
||
HOWTO (R_AVR_13_PCREL, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
13, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_13_PCREL", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xfff, /* src_mask */
|
||
0xfff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* A 16 bit absolute relocation. */
|
||
HOWTO (R_AVR_16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A 16 bit absolute relocation for command address
|
||
Will be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_16_PM, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_16_PM", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 16 bit address.
|
||
For LDI command. */
|
||
HOWTO (R_AVR_LO8_LDI, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LO8_LDI", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A high 8 bit absolute relocation of 16 bit address.
|
||
For LDI command. */
|
||
HOWTO (R_AVR_HI8_LDI, /* type */
|
||
8, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HI8_LDI", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A high 6 bit absolute relocation of 22 bit address.
|
||
For LDI command. As well second most significant 8 bit value of
|
||
a 32 bit link-time constant. */
|
||
HOWTO (R_AVR_HH8_LDI, /* type */
|
||
16, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HH8_LDI", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A negative low 8 bit absolute relocation of 16 bit address.
|
||
For LDI command. */
|
||
HOWTO (R_AVR_LO8_LDI_NEG, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LO8_LDI_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A negative high 8 bit absolute relocation of 16 bit address.
|
||
For LDI command. */
|
||
HOWTO (R_AVR_HI8_LDI_NEG, /* type */
|
||
8, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HI8_LDI_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A negative high 6 bit absolute relocation of 22 bit address.
|
||
For LDI command. */
|
||
HOWTO (R_AVR_HH8_LDI_NEG, /* type */
|
||
16, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HH8_LDI_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will not be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_LO8_LDI_PM, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LO8_LDI_PM", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will not be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_HI8_LDI_PM, /* type */
|
||
9, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HI8_LDI_PM", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will not be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_HH8_LDI_PM, /* type */
|
||
17, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HH8_LDI_PM", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will not be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LO8_LDI_PM_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will not be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
|
||
9, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HI8_LDI_PM_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will not be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
|
||
17, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HH8_LDI_PM_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* Relocation for CALL command in ATmega. */
|
||
HOWTO (R_AVR_CALL, /* type */
|
||
1, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
23, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_CALL", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A 16 bit absolute relocation of 16 bit address.
|
||
For LDI command. */
|
||
HOWTO (R_AVR_LDI, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LDI", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A 6 bit absolute relocation of 6 bit offset.
|
||
For ldd/sdd command. */
|
||
HOWTO (R_AVR_6, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
6, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_6", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A 6 bit absolute relocation of 6 bit offset.
|
||
For sbiw/adiw command. */
|
||
HOWTO (R_AVR_6_ADIW, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
6, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_6_ADIW", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* Most significant 8 bit value of a 32 bit link-time constant. */
|
||
HOWTO (R_AVR_MS8_LDI, /* type */
|
||
24, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_MS8_LDI", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* Negative most significant 8 bit value of a 32 bit link-time constant. */
|
||
HOWTO (R_AVR_MS8_LDI_NEG, /* type */
|
||
24, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_MS8_LDI_NEG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_LO8_LDI_GS, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LO8_LDI_GS", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* A low 8 bit absolute relocation of 24 bit program memory address.
|
||
For LDI command. Will be changed when linker stubs are needed. */
|
||
HOWTO (R_AVR_HI8_LDI_GS, /* type */
|
||
9, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_HI8_LDI_GS", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* 8 bit offset. */
|
||
HOWTO (R_AVR_8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0x000000ff, /* src_mask */
|
||
0x000000ff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* lo8-part to use in .byte lo8(sym). */
|
||
HOWTO (R_AVR_8_LO8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_8_LO8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* hi8-part to use in .byte hi8(sym). */
|
||
HOWTO (R_AVR_8_HI8, /* type */
|
||
8, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_8_HI8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* hlo8-part to use in .byte hlo8(sym). */
|
||
HOWTO (R_AVR_8_HLO8, /* type */
|
||
16, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_8_HLO8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
HOWTO (R_AVR_DIFF8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_avr_diff_reloc, /* special_function */
|
||
"R_AVR_DIFF8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
HOWTO (R_AVR_DIFF16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_avr_diff_reloc,/* special_function */
|
||
"R_AVR_DIFF16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
HOWTO (R_AVR_DIFF32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_avr_diff_reloc,/* special_function */
|
||
"R_AVR_DIFF32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
/* 7 bit immediate for LDS/STS in Tiny core. */
|
||
HOWTO (R_AVR_LDS_STS_16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
7, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_LDS_STS_16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_AVR_PORT6, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
6, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_PORT6", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
HOWTO (R_AVR_PORT5, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
5, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_PORT5", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A 32 bit PC relative relocation. */
|
||
HOWTO (R_AVR_32_PCREL, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_AVR_32_PCREL", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
};
|
||
|
||
/* Map BFD reloc types to AVR ELF reloc types. */
|
||
|
||
struct avr_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
unsigned int elf_reloc_val;
|
||
};
|
||
|
||
static const struct avr_reloc_map avr_reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_AVR_NONE },
|
||
{ BFD_RELOC_32, R_AVR_32 },
|
||
{ BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
|
||
{ BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
|
||
{ BFD_RELOC_16, R_AVR_16 },
|
||
{ BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
|
||
{ BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
|
||
{ BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
|
||
{ BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
|
||
{ BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
|
||
{ BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
|
||
{ BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
|
||
{ BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
|
||
{ BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
|
||
{ BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
|
||
{ BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
|
||
{ BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
|
||
{ BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
|
||
{ BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
|
||
{ BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
|
||
{ BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
|
||
{ BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
|
||
{ BFD_RELOC_AVR_CALL, R_AVR_CALL },
|
||
{ BFD_RELOC_AVR_LDI, R_AVR_LDI },
|
||
{ BFD_RELOC_AVR_6, R_AVR_6 },
|
||
{ BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
|
||
{ BFD_RELOC_8, R_AVR_8 },
|
||
{ BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
|
||
{ BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
|
||
{ BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
|
||
{ BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
|
||
{ BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
|
||
{ BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
|
||
{ BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
|
||
{ BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
|
||
{ BFD_RELOC_AVR_PORT5, R_AVR_PORT5},
|
||
{ BFD_RELOC_32_PCREL, R_AVR_32_PCREL}
|
||
};
|
||
|
||
/* Meant to be filled one day with the wrap around address for the
|
||
specific device. I.e. should get the value 0x4000 for 16k devices,
|
||
0x8000 for 32k devices and so on.
|
||
|
||
We initialize it here with a value of 0x1000000 resulting in
|
||
that we will never suggest a wrap-around jump during relaxation.
|
||
The logic of the source code later on assumes that in
|
||
avr_pc_wrap_around one single bit is set. */
|
||
static bfd_vma avr_pc_wrap_around = 0x10000000;
|
||
|
||
/* If this variable holds a value different from zero, the linker relaxation
|
||
machine will try to optimize call/ret sequences by a single jump
|
||
instruction. This option could be switched off by a linker switch. */
|
||
static int avr_replace_call_ret_sequences = 1;
|
||
|
||
|
||
/* Per-section relaxation related information for avr. */
|
||
|
||
struct avr_relax_info
|
||
{
|
||
/* Track the avr property records that apply to this section. */
|
||
|
||
struct
|
||
{
|
||
/* Number of records in the list. */
|
||
unsigned count;
|
||
|
||
/* How many records worth of space have we allocated. */
|
||
unsigned allocated;
|
||
|
||
/* The records, only COUNT records are initialised. */
|
||
struct avr_property_record *items;
|
||
} records;
|
||
};
|
||
|
||
/* Per section data, specialised for avr. */
|
||
|
||
struct elf_avr_section_data
|
||
{
|
||
/* The standard data must appear first. */
|
||
struct bfd_elf_section_data elf;
|
||
|
||
/* Relaxation related information. */
|
||
struct avr_relax_info relax_info;
|
||
};
|
||
|
||
/* Possibly initialise avr specific data for new section SEC from ABFD. */
|
||
|
||
static bfd_boolean
|
||
elf_avr_new_section_hook (bfd *abfd, asection *sec)
|
||
{
|
||
if (!sec->used_by_bfd)
|
||
{
|
||
struct elf_avr_section_data *sdata;
|
||
bfd_size_type amt = sizeof (*sdata);
|
||
|
||
sdata = bfd_zalloc (abfd, amt);
|
||
if (sdata == NULL)
|
||
return FALSE;
|
||
sec->used_by_bfd = sdata;
|
||
}
|
||
|
||
return _bfd_elf_new_section_hook (abfd, sec);
|
||
}
|
||
|
||
/* Return a pointer to the relaxation information for SEC. */
|
||
|
||
static struct avr_relax_info *
|
||
get_avr_relax_info (asection *sec)
|
||
{
|
||
struct elf_avr_section_data *section_data;
|
||
|
||
/* No info available if no section or if it is an output section. */
|
||
if (!sec || sec == sec->output_section)
|
||
return NULL;
|
||
|
||
section_data = (struct elf_avr_section_data *) elf_section_data (sec);
|
||
return §ion_data->relax_info;
|
||
}
|
||
|
||
/* Initialise the per section relaxation information for SEC. */
|
||
|
||
static void
|
||
init_avr_relax_info (asection *sec)
|
||
{
|
||
struct avr_relax_info *relax_info = get_avr_relax_info (sec);
|
||
|
||
relax_info->records.count = 0;
|
||
relax_info->records.allocated = 0;
|
||
relax_info->records.items = NULL;
|
||
}
|
||
|
||
/* Initialize an entry in the stub hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table,
|
||
sizeof (struct elf32_avr_stub_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = bfd_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf32_avr_stub_hash_entry *hsh;
|
||
|
||
/* Initialize the local fields. */
|
||
hsh = avr_stub_hash_entry (entry);
|
||
hsh->stub_offset = 0;
|
||
hsh->target_value = 0;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* This function is just a straight passthrough to the real
|
||
function in linker.c. Its prupose is so that its address
|
||
can be compared inside the avr_link_hash_table macro. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
|
||
struct bfd_hash_table * table,
|
||
const char * string)
|
||
{
|
||
return _bfd_elf_link_hash_newfunc (entry, table, string);
|
||
}
|
||
|
||
/* Free the derived linker hash table. */
|
||
|
||
static void
|
||
elf32_avr_link_hash_table_free (bfd *obfd)
|
||
{
|
||
struct elf32_avr_link_hash_table *htab
|
||
= (struct elf32_avr_link_hash_table *) obfd->link.hash;
|
||
|
||
/* Free the address mapping table. */
|
||
if (htab->amt_stub_offsets != NULL)
|
||
free (htab->amt_stub_offsets);
|
||
if (htab->amt_destination_addr != NULL)
|
||
free (htab->amt_destination_addr);
|
||
|
||
bfd_hash_table_free (&htab->bstab);
|
||
_bfd_elf_link_hash_table_free (obfd);
|
||
}
|
||
|
||
/* Create the derived linker hash table. The AVR ELF port uses the derived
|
||
hash table to keep information specific to the AVR ELF linker (without
|
||
using static variables). */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf32_avr_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf32_avr_link_hash_table *htab;
|
||
bfd_size_type amt = sizeof (*htab);
|
||
|
||
htab = bfd_zmalloc (amt);
|
||
if (htab == NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
|
||
elf32_avr_link_hash_newfunc,
|
||
sizeof (struct elf_link_hash_entry),
|
||
AVR_ELF_DATA))
|
||
{
|
||
free (htab);
|
||
return NULL;
|
||
}
|
||
|
||
/* Init the stub hash table too. */
|
||
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
|
||
sizeof (struct elf32_avr_stub_hash_entry)))
|
||
{
|
||
_bfd_elf_link_hash_table_free (abfd);
|
||
return NULL;
|
||
}
|
||
htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
|
||
|
||
return &htab->etab.root;
|
||
}
|
||
|
||
/* Calculates the effective distance of a pc relative jump/call. */
|
||
|
||
static int
|
||
avr_relative_distance_considering_wrap_around (unsigned int distance)
|
||
{
|
||
unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
|
||
int dist_with_wrap_around = distance & wrap_around_mask;
|
||
|
||
if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
|
||
dist_with_wrap_around -= avr_pc_wrap_around;
|
||
|
||
return dist_with_wrap_around;
|
||
}
|
||
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0;
|
||
i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
|
||
i++)
|
||
if (avr_reloc_map[i].bfd_reloc_val == code)
|
||
return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0;
|
||
i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
|
||
i++)
|
||
if (elf_avr_howto_table[i].name != NULL
|
||
&& strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
|
||
return &elf_avr_howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Set the howto pointer for an AVR ELF reloc. */
|
||
|
||
static void
|
||
avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *cache_ptr,
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (dst->r_info);
|
||
if (r_type >= (unsigned int) R_AVR_max)
|
||
{
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("%B: invalid AVR reloc number: %d"), abfd, r_type);
|
||
r_type = 0;
|
||
}
|
||
cache_ptr->howto = &elf_avr_howto_table[r_type];
|
||
}
|
||
|
||
static bfd_boolean
|
||
avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
|
||
{
|
||
return (relocation >= 0x020000);
|
||
}
|
||
|
||
/* Returns the address of the corresponding stub if there is one.
|
||
Returns otherwise an address above 0x020000. This function
|
||
could also be used, if there is no knowledge on the section where
|
||
the destination is found. */
|
||
|
||
static bfd_vma
|
||
avr_get_stub_addr (bfd_vma srel,
|
||
struct elf32_avr_link_hash_table *htab)
|
||
{
|
||
unsigned int sindex;
|
||
bfd_vma stub_sec_addr =
|
||
(htab->stub_sec->output_section->vma +
|
||
htab->stub_sec->output_offset);
|
||
|
||
for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
|
||
if (htab->amt_destination_addr[sindex] == srel)
|
||
return htab->amt_stub_offsets[sindex] + stub_sec_addr;
|
||
|
||
/* Return an address that could not be reached by 16 bit relocs. */
|
||
return 0x020000;
|
||
}
|
||
|
||
/* Perform a diff relocation. Nothing to do, as the difference value is already
|
||
written into the section's contents. */
|
||
|
||
static bfd_reloc_status_type
|
||
bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *reloc_entry ATTRIBUTE_UNUSED,
|
||
asymbol *symbol ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED,
|
||
asection *input_section ATTRIBUTE_UNUSED,
|
||
bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
/* Perform a single relocation. By default we use the standard BFD
|
||
routines, but a few relocs, we have to do them ourselves. */
|
||
|
||
static bfd_reloc_status_type
|
||
avr_final_link_relocate (reloc_howto_type * howto,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
bfd_byte * contents,
|
||
Elf_Internal_Rela * rel,
|
||
bfd_vma relocation,
|
||
struct elf32_avr_link_hash_table * htab)
|
||
{
|
||
bfd_reloc_status_type r = bfd_reloc_ok;
|
||
bfd_vma x;
|
||
bfd_signed_vma srel;
|
||
bfd_signed_vma reloc_addr;
|
||
bfd_boolean use_stubs = FALSE;
|
||
/* Usually is 0, unless we are generating code for a bootloader. */
|
||
bfd_signed_vma base_addr = htab->vector_base;
|
||
|
||
/* Absolute addr of the reloc in the final excecutable. */
|
||
reloc_addr = rel->r_offset + input_section->output_section->vma
|
||
+ input_section->output_offset;
|
||
|
||
switch (howto->type)
|
||
{
|
||
case R_AVR_7_PCREL:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation;
|
||
srel += rel->r_addend;
|
||
srel -= rel->r_offset;
|
||
srel -= 2; /* Branch instructions add 2 to the PC... */
|
||
srel -= (input_section->output_section->vma +
|
||
input_section->output_offset);
|
||
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
|
||
return bfd_reloc_overflow;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_13_PCREL:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation;
|
||
srel += rel->r_addend;
|
||
srel -= rel->r_offset;
|
||
srel -= 2; /* Branch instructions add 2 to the PC... */
|
||
srel -= (input_section->output_section->vma +
|
||
input_section->output_offset);
|
||
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
|
||
srel = avr_relative_distance_considering_wrap_around (srel);
|
||
|
||
/* AVR addresses commands as words. */
|
||
srel >>= 1;
|
||
|
||
/* Check for overflow. */
|
||
if (srel < -2048 || srel > 2047)
|
||
{
|
||
/* Relative distance is too large. */
|
||
|
||
/* Always apply WRAPAROUND for avr2, avr25, and avr4. */
|
||
switch (bfd_get_mach (input_bfd))
|
||
{
|
||
case bfd_mach_avr2:
|
||
case bfd_mach_avr25:
|
||
case bfd_mach_avr4:
|
||
break;
|
||
|
||
default:
|
||
return bfd_reloc_overflow;
|
||
}
|
||
}
|
||
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf000) | (srel & 0xfff);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_LO8_LDI:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_LDI:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if (((srel > 0) && (srel & 0xffff) > 255)
|
||
|| ((srel < 0) && ((-srel) & 0xffff) > 128))
|
||
/* Remove offset for data/eeprom section. */
|
||
return bfd_reloc_overflow;
|
||
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_6:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if (((srel & 0xffff) > 63) || (srel < 0))
|
||
/* Remove offset for data/eeprom section. */
|
||
return bfd_reloc_overflow;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
|
||
| ((srel & (1 << 5)) << 8));
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_6_ADIW:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if (((srel & 0xffff) > 63) || (srel < 0))
|
||
/* Remove offset for data/eeprom section. */
|
||
return bfd_reloc_overflow;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HI8_LDI:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = (srel >> 8) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HH8_LDI:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = (srel >> 16) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_MS8_LDI:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = (srel >> 24) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_LO8_LDI_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HI8_LDI_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
srel = (srel >> 8) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HH8_LDI_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
srel = (srel >> 16) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_MS8_LDI_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
srel = (srel >> 24) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_LO8_LDI_GS:
|
||
use_stubs = (!htab->no_stubs);
|
||
/* Fall through. */
|
||
case R_AVR_LO8_LDI_PM:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
|
||
if (use_stubs
|
||
&& avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
||
{
|
||
bfd_vma old_srel = srel;
|
||
|
||
/* We need to use the address of the stub instead. */
|
||
srel = avr_get_stub_addr (srel, htab);
|
||
if (debug_stubs)
|
||
printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
|
||
"reloc at address 0x%x.\n",
|
||
(unsigned int) srel,
|
||
(unsigned int) old_srel,
|
||
(unsigned int) reloc_addr);
|
||
|
||
if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
||
return bfd_reloc_outofrange;
|
||
}
|
||
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HI8_LDI_GS:
|
||
use_stubs = (!htab->no_stubs);
|
||
/* Fall through. */
|
||
case R_AVR_HI8_LDI_PM:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
|
||
if (use_stubs
|
||
&& avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
||
{
|
||
bfd_vma old_srel = srel;
|
||
|
||
/* We need to use the address of the stub instead. */
|
||
srel = avr_get_stub_addr (srel, htab);
|
||
if (debug_stubs)
|
||
printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
|
||
"reloc at address 0x%x.\n",
|
||
(unsigned int) srel,
|
||
(unsigned int) old_srel,
|
||
(unsigned int) reloc_addr);
|
||
|
||
if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
||
return bfd_reloc_outofrange;
|
||
}
|
||
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
srel = (srel >> 8) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HH8_LDI_PM:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
srel = (srel >> 16) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_LO8_LDI_PM_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HI8_LDI_PM_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
srel = (srel >> 8) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_HH8_LDI_PM_NEG:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
srel = -srel;
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
srel = (srel >> 16) & 0xff;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_CALL:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
|
||
break;
|
||
|
||
case R_AVR_16_PM:
|
||
use_stubs = (!htab->no_stubs);
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
|
||
if (use_stubs
|
||
&& avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
||
{
|
||
bfd_vma old_srel = srel;
|
||
|
||
/* We need to use the address of the stub instead. */
|
||
srel = avr_get_stub_addr (srel,htab);
|
||
if (debug_stubs)
|
||
printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
|
||
"reloc at address 0x%x.\n",
|
||
(unsigned int) srel,
|
||
(unsigned int) old_srel,
|
||
(unsigned int) reloc_addr);
|
||
|
||
if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
|
||
return bfd_reloc_outofrange;
|
||
}
|
||
|
||
if (srel & 1)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel >> 1;
|
||
bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
|
||
break;
|
||
|
||
case R_AVR_DIFF8:
|
||
case R_AVR_DIFF16:
|
||
case R_AVR_DIFF32:
|
||
/* Nothing to do here, as contents already contains the diff value. */
|
||
r = bfd_reloc_ok;
|
||
break;
|
||
|
||
case R_AVR_LDS_STS_16:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
|
||
return bfd_reloc_outofrange;
|
||
srel = srel & 0x7f;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_PORT6:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if ((srel & 0xffff) > 0x3f)
|
||
return bfd_reloc_outofrange;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
case R_AVR_PORT5:
|
||
contents += rel->r_offset;
|
||
srel = (bfd_signed_vma) relocation + rel->r_addend;
|
||
if ((srel & 0xffff) > 0x1f)
|
||
return bfd_reloc_outofrange;
|
||
x = bfd_get_16 (input_bfd, contents);
|
||
x = (x & 0xff07) | ((srel & 0x1f) << 3);
|
||
bfd_put_16 (input_bfd, x, contents);
|
||
break;
|
||
|
||
default:
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset,
|
||
relocation, rel->r_addend);
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Relocate an AVR ELF section. */
|
||
|
||
static bfd_boolean
|
||
elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
Elf_Internal_Rela * rel;
|
||
Elf_Internal_Rela * relend;
|
||
struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
|
||
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
relend = relocs + input_section->reloc_count;
|
||
|
||
for (rel = relocs; rel < relend; rel ++)
|
||
{
|
||
reloc_howto_type * howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym * sym;
|
||
asection * sec;
|
||
struct elf_link_hash_entry * h;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
const char * name;
|
||
int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
howto = elf_avr_howto_table + r_type;
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections [r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
|
||
name = bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
||
name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean unresolved_reloc, warned, ignored;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, warned, ignored);
|
||
|
||
name = h->root.root.string;
|
||
}
|
||
|
||
if (sec != NULL && discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, 1, relend, howto, 0, contents);
|
||
|
||
if (bfd_link_relocatable (info))
|
||
continue;
|
||
|
||
r = avr_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel, relocation, htab);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char * msg = (const char *) NULL;
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
(*info->callbacks->reloc_overflow)
|
||
(info, (h ? &h->root : NULL), name, howto->name,
|
||
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
(*info->callbacks->undefined_symbol)
|
||
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _("internal error: out of range error");
|
||
break;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("internal error: unsupported relocation error");
|
||
break;
|
||
|
||
case bfd_reloc_dangerous:
|
||
msg = _("internal error: dangerous relocation");
|
||
break;
|
||
|
||
default:
|
||
msg = _("internal error: unknown error");
|
||
break;
|
||
}
|
||
|
||
if (msg)
|
||
(*info->callbacks->warning) (info, msg, name, input_bfd,
|
||
input_section, rel->r_offset);
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* The final processing done just before writing out a AVR ELF object
|
||
file. This gets the AVR architecture right based on the machine
|
||
number. */
|
||
|
||
static void
|
||
bfd_elf_avr_final_write_processing (bfd *abfd,
|
||
bfd_boolean linker ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned long val;
|
||
|
||
switch (bfd_get_mach (abfd))
|
||
{
|
||
default:
|
||
case bfd_mach_avr2:
|
||
val = E_AVR_MACH_AVR2;
|
||
break;
|
||
|
||
case bfd_mach_avr1:
|
||
val = E_AVR_MACH_AVR1;
|
||
break;
|
||
|
||
case bfd_mach_avr25:
|
||
val = E_AVR_MACH_AVR25;
|
||
break;
|
||
|
||
case bfd_mach_avr3:
|
||
val = E_AVR_MACH_AVR3;
|
||
break;
|
||
|
||
case bfd_mach_avr31:
|
||
val = E_AVR_MACH_AVR31;
|
||
break;
|
||
|
||
case bfd_mach_avr35:
|
||
val = E_AVR_MACH_AVR35;
|
||
break;
|
||
|
||
case bfd_mach_avr4:
|
||
val = E_AVR_MACH_AVR4;
|
||
break;
|
||
|
||
case bfd_mach_avr5:
|
||
val = E_AVR_MACH_AVR5;
|
||
break;
|
||
|
||
case bfd_mach_avr51:
|
||
val = E_AVR_MACH_AVR51;
|
||
break;
|
||
|
||
case bfd_mach_avr6:
|
||
val = E_AVR_MACH_AVR6;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega1:
|
||
val = E_AVR_MACH_XMEGA1;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega2:
|
||
val = E_AVR_MACH_XMEGA2;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega3:
|
||
val = E_AVR_MACH_XMEGA3;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega4:
|
||
val = E_AVR_MACH_XMEGA4;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega5:
|
||
val = E_AVR_MACH_XMEGA5;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega6:
|
||
val = E_AVR_MACH_XMEGA6;
|
||
break;
|
||
|
||
case bfd_mach_avrxmega7:
|
||
val = E_AVR_MACH_XMEGA7;
|
||
break;
|
||
|
||
case bfd_mach_avrtiny:
|
||
val = E_AVR_MACH_AVRTINY;
|
||
break;
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_machine = EM_AVR;
|
||
elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
|
||
elf_elfheader (abfd)->e_flags |= val;
|
||
}
|
||
|
||
/* Set the right machine number. */
|
||
|
||
static bfd_boolean
|
||
elf32_avr_object_p (bfd *abfd)
|
||
{
|
||
unsigned int e_set = bfd_mach_avr2;
|
||
|
||
if (elf_elfheader (abfd)->e_machine == EM_AVR
|
||
|| elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
|
||
{
|
||
int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
|
||
|
||
switch (e_mach)
|
||
{
|
||
default:
|
||
case E_AVR_MACH_AVR2:
|
||
e_set = bfd_mach_avr2;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR1:
|
||
e_set = bfd_mach_avr1;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR25:
|
||
e_set = bfd_mach_avr25;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR3:
|
||
e_set = bfd_mach_avr3;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR31:
|
||
e_set = bfd_mach_avr31;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR35:
|
||
e_set = bfd_mach_avr35;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR4:
|
||
e_set = bfd_mach_avr4;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR5:
|
||
e_set = bfd_mach_avr5;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR51:
|
||
e_set = bfd_mach_avr51;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVR6:
|
||
e_set = bfd_mach_avr6;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA1:
|
||
e_set = bfd_mach_avrxmega1;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA2:
|
||
e_set = bfd_mach_avrxmega2;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA3:
|
||
e_set = bfd_mach_avrxmega3;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA4:
|
||
e_set = bfd_mach_avrxmega4;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA5:
|
||
e_set = bfd_mach_avrxmega5;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA6:
|
||
e_set = bfd_mach_avrxmega6;
|
||
break;
|
||
|
||
case E_AVR_MACH_XMEGA7:
|
||
e_set = bfd_mach_avrxmega7;
|
||
break;
|
||
|
||
case E_AVR_MACH_AVRTINY:
|
||
e_set = bfd_mach_avrtiny;
|
||
break;
|
||
}
|
||
}
|
||
return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
|
||
e_set);
|
||
}
|
||
|
||
/* Returns whether the relocation type passed is a diff reloc. */
|
||
|
||
static bfd_boolean
|
||
elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
|
||
{
|
||
return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
|
||
||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
|
||
|| ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
|
||
}
|
||
|
||
/* Reduce the diff value written in the section by count if the shrinked
|
||
insn address happens to fall between the two symbols for which this
|
||
diff reloc was emitted. */
|
||
|
||
static void
|
||
elf32_avr_adjust_diff_reloc_value (bfd *abfd,
|
||
struct bfd_section *isec,
|
||
Elf_Internal_Rela *irel,
|
||
bfd_vma symval,
|
||
bfd_vma shrinked_insn_address,
|
||
int count)
|
||
{
|
||
unsigned char *reloc_contents = NULL;
|
||
unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
|
||
if (isec_contents == NULL)
|
||
{
|
||
if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
|
||
return;
|
||
|
||
elf_section_data (isec)->this_hdr.contents = isec_contents;
|
||
}
|
||
|
||
reloc_contents = isec_contents + irel->r_offset;
|
||
|
||
/* Read value written in object file. */
|
||
bfd_signed_vma x = 0;
|
||
switch (ELF32_R_TYPE (irel->r_info))
|
||
{
|
||
case R_AVR_DIFF8:
|
||
{
|
||
x = bfd_get_signed_8 (abfd, reloc_contents);
|
||
break;
|
||
}
|
||
case R_AVR_DIFF16:
|
||
{
|
||
x = bfd_get_signed_16 (abfd, reloc_contents);
|
||
break;
|
||
}
|
||
case R_AVR_DIFF32:
|
||
{
|
||
x = bfd_get_signed_32 (abfd, reloc_contents);
|
||
break;
|
||
}
|
||
default:
|
||
{
|
||
BFD_FAIL();
|
||
}
|
||
}
|
||
|
||
/* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
|
||
into the object file at the reloc offset. sym2's logical value is
|
||
symval (<start_of_section>) + reloc addend. Compute the start and end
|
||
addresses and check if the shrinked insn falls between sym1 and sym2. */
|
||
|
||
bfd_vma sym2_address = symval + irel->r_addend;
|
||
bfd_vma sym1_address = sym2_address - x;
|
||
|
||
/* Don't assume sym2 is bigger than sym1 - the difference
|
||
could be negative. Compute start and end addresses, and
|
||
use those to see if they span shrinked_insn_address. */
|
||
|
||
bfd_vma start_address = sym1_address < sym2_address
|
||
? sym1_address : sym2_address;
|
||
bfd_vma end_address = sym1_address > sym2_address
|
||
? sym1_address : sym2_address;
|
||
|
||
|
||
if (shrinked_insn_address >= start_address
|
||
&& shrinked_insn_address < end_address)
|
||
{
|
||
/* Reduce the diff value by count bytes and write it back into section
|
||
contents. */
|
||
bfd_signed_vma new_diff = x < 0 ? x + count : x - count;
|
||
|
||
if (sym2_address > shrinked_insn_address)
|
||
irel->r_addend -= count;
|
||
|
||
switch (ELF32_R_TYPE (irel->r_info))
|
||
{
|
||
case R_AVR_DIFF8:
|
||
{
|
||
bfd_put_signed_8 (abfd, new_diff, reloc_contents);
|
||
break;
|
||
}
|
||
case R_AVR_DIFF16:
|
||
{
|
||
bfd_put_signed_16 (abfd, new_diff & 0xFFFF, reloc_contents);
|
||
break;
|
||
}
|
||
case R_AVR_DIFF32:
|
||
{
|
||
bfd_put_signed_32 (abfd, new_diff & 0xFFFFFFFF, reloc_contents);
|
||
break;
|
||
}
|
||
default:
|
||
{
|
||
BFD_FAIL();
|
||
}
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
static void
|
||
elf32_avr_adjust_reloc_if_spans_insn (bfd *abfd,
|
||
asection *isec,
|
||
Elf_Internal_Rela *irel, bfd_vma symval,
|
||
bfd_vma shrinked_insn_address,
|
||
bfd_vma shrink_boundary,
|
||
int count)
|
||
{
|
||
|
||
if (elf32_avr_is_diff_reloc (irel))
|
||
{
|
||
elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
|
||
symval,
|
||
shrinked_insn_address,
|
||
count);
|
||
}
|
||
else
|
||
{
|
||
bfd_vma reloc_value = symval + irel->r_addend;
|
||
bfd_boolean addend_within_shrink_boundary =
|
||
(reloc_value <= shrink_boundary);
|
||
|
||
bfd_boolean reloc_spans_insn =
|
||
(symval <= shrinked_insn_address
|
||
&& reloc_value > shrinked_insn_address
|
||
&& addend_within_shrink_boundary);
|
||
|
||
if (! reloc_spans_insn)
|
||
return;
|
||
|
||
irel->r_addend -= count;
|
||
|
||
if (debug_relax)
|
||
printf ("Relocation's addend needed to be fixed \n");
|
||
}
|
||
}
|
||
|
||
static bfd_boolean
|
||
avr_should_move_sym (symvalue symval,
|
||
bfd_vma start,
|
||
bfd_vma end,
|
||
bfd_boolean did_pad)
|
||
{
|
||
bfd_boolean sym_within_boundary =
|
||
did_pad ? symval < end : symval <= end;
|
||
return (symval > start && sym_within_boundary);
|
||
}
|
||
|
||
static bfd_boolean
|
||
avr_should_reduce_sym_size (symvalue symval,
|
||
symvalue symend,
|
||
bfd_vma start,
|
||
bfd_vma end,
|
||
bfd_boolean did_pad)
|
||
{
|
||
bfd_boolean sym_end_within_boundary =
|
||
did_pad ? symend < end : symend <= end;
|
||
return (symval <= start && symend > start && sym_end_within_boundary);
|
||
}
|
||
|
||
static bfd_boolean
|
||
avr_should_increase_sym_size (symvalue symval,
|
||
symvalue symend,
|
||
bfd_vma start,
|
||
bfd_vma end,
|
||
bfd_boolean did_pad)
|
||
{
|
||
return avr_should_move_sym (symval, start, end, did_pad)
|
||
&& symend >= end && did_pad;
|
||
}
|
||
|
||
/* Delete some bytes from a section while changing the size of an instruction.
|
||
The parameter "addr" denotes the section-relative offset pointing just
|
||
behind the shrinked instruction. "addr+count" point at the first
|
||
byte just behind the original unshrinked instruction. If delete_shrinks_insn
|
||
is FALSE, we are deleting redundant padding bytes from relax_info prop
|
||
record handling. In that case, addr is section-relative offset of start
|
||
of padding, and count is the number of padding bytes to delete. */
|
||
|
||
static bfd_boolean
|
||
elf32_avr_relax_delete_bytes (bfd *abfd,
|
||
asection *sec,
|
||
bfd_vma addr,
|
||
int count,
|
||
bfd_boolean delete_shrinks_insn)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
unsigned int sec_shndx;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
Elf_Internal_Sym *isym;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
bfd_vma toaddr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
unsigned int symcount;
|
||
struct avr_relax_info *relax_info;
|
||
struct avr_property_record *prop_record = NULL;
|
||
bfd_boolean did_shrink = FALSE;
|
||
bfd_boolean did_pad = FALSE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
relax_info = get_avr_relax_info (sec);
|
||
|
||
toaddr = sec->size;
|
||
|
||
if (relax_info->records.count > 0)
|
||
{
|
||
/* There should be no property record within the range of deleted
|
||
bytes, however, there might be a property record for ADDR, this is
|
||
how we handle alignment directives.
|
||
Find the next (if any) property record after the deleted bytes. */
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < relax_info->records.count; ++i)
|
||
{
|
||
bfd_vma offset = relax_info->records.items [i].offset;
|
||
|
||
BFD_ASSERT (offset <= addr || offset >= (addr + count));
|
||
if (offset >= (addr + count))
|
||
{
|
||
prop_record = &relax_info->records.items [i];
|
||
toaddr = offset;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
irel = elf_section_data (sec)->relocs;
|
||
irelend = irel + sec->reloc_count;
|
||
|
||
/* Actually delete the bytes. */
|
||
if (toaddr - addr - count > 0)
|
||
{
|
||
memmove (contents + addr, contents + addr + count,
|
||
(size_t) (toaddr - addr - count));
|
||
did_shrink = TRUE;
|
||
}
|
||
if (prop_record == NULL)
|
||
{
|
||
sec->size -= count;
|
||
did_shrink = TRUE;
|
||
}
|
||
else
|
||
{
|
||
/* Use the property record to fill in the bytes we've opened up. */
|
||
int fill = 0;
|
||
switch (prop_record->type)
|
||
{
|
||
case RECORD_ORG_AND_FILL:
|
||
fill = prop_record->data.org.fill;
|
||
/* Fall through. */
|
||
case RECORD_ORG:
|
||
break;
|
||
case RECORD_ALIGN_AND_FILL:
|
||
fill = prop_record->data.align.fill;
|
||
/* Fall through. */
|
||
case RECORD_ALIGN:
|
||
prop_record->data.align.preceding_deleted += count;
|
||
break;
|
||
};
|
||
/* If toaddr == (addr + count), then we didn't delete anything, yet
|
||
we fill count bytes backwards from toaddr. This is still ok - we
|
||
end up overwriting the bytes we would have deleted. We just need
|
||
to remember we didn't delete anything i.e. don't set did_shrink,
|
||
so that we don't corrupt reloc offsets or symbol values.*/
|
||
memset (contents + toaddr - count, fill, count);
|
||
did_pad = TRUE;
|
||
}
|
||
|
||
if (!did_shrink)
|
||
return TRUE;
|
||
|
||
/* Adjust all the reloc addresses. */
|
||
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma old_reloc_address;
|
||
|
||
old_reloc_address = (sec->output_section->vma
|
||
+ sec->output_offset + irel->r_offset);
|
||
|
||
/* Get the new reloc address. */
|
||
if ((irel->r_offset > addr
|
||
&& irel->r_offset < toaddr))
|
||
{
|
||
if (debug_relax)
|
||
printf ("Relocation at address 0x%x needs to be moved.\n"
|
||
"Old section offset: 0x%x, New section offset: 0x%x \n",
|
||
(unsigned int) old_reloc_address,
|
||
(unsigned int) irel->r_offset,
|
||
(unsigned int) ((irel->r_offset) - count));
|
||
|
||
irel->r_offset -= count;
|
||
}
|
||
|
||
}
|
||
|
||
/* The reloc's own addresses are now ok. However, we need to readjust
|
||
the reloc's addend, i.e. the reloc's value if two conditions are met:
|
||
1.) the reloc is relative to a symbol in this section that
|
||
is located in front of the shrinked instruction
|
||
2.) symbol plus addend end up behind the shrinked instruction.
|
||
|
||
The most common case where this happens are relocs relative to
|
||
the section-start symbol.
|
||
|
||
This step needs to be done for all of the sections of the bfd. */
|
||
|
||
{
|
||
struct bfd_section *isec;
|
||
|
||
for (isec = abfd->sections; isec; isec = isec->next)
|
||
{
|
||
bfd_vma symval;
|
||
bfd_vma shrinked_insn_address;
|
||
|
||
if (isec->reloc_count == 0)
|
||
continue;
|
||
|
||
shrinked_insn_address = (sec->output_section->vma
|
||
+ sec->output_offset + addr);
|
||
if (delete_shrinks_insn)
|
||
shrinked_insn_address -= count;
|
||
|
||
irel = elf_section_data (isec)->relocs;
|
||
/* PR 12161: Read in the relocs for this section if necessary. */
|
||
if (irel == NULL)
|
||
irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
|
||
|
||
for (irelend = irel + isec->reloc_count;
|
||
irel < irelend;
|
||
irel++)
|
||
{
|
||
/* Read this BFD's local symbols if we haven't done
|
||
so already. */
|
||
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
asection *sym_sec;
|
||
|
||
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
||
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
symval = isym->st_value;
|
||
/* If the reloc is absolute, it will not have
|
||
a symbol or section associated with it. */
|
||
if (sym_sec == sec)
|
||
{
|
||
/* If there is an alignment boundary, we only need to
|
||
adjust addends that end up below the boundary. */
|
||
bfd_vma shrink_boundary = (toaddr
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
|
||
symval += sym_sec->output_section->vma
|
||
+ sym_sec->output_offset;
|
||
|
||
if (debug_relax)
|
||
printf ("Checking if the relocation's "
|
||
"addend needs corrections.\n"
|
||
"Address of anchor symbol: 0x%x \n"
|
||
"Address of relocation target: 0x%x \n"
|
||
"Address of relaxed insn: 0x%x \n",
|
||
(unsigned int) symval,
|
||
(unsigned int) (symval + irel->r_addend),
|
||
(unsigned int) shrinked_insn_address);
|
||
|
||
elf32_avr_adjust_reloc_if_spans_insn (abfd, isec, irel,
|
||
symval,
|
||
shrinked_insn_address,
|
||
shrink_boundary,
|
||
count);
|
||
}
|
||
/* else...Reference symbol is absolute. No adjustment needed. */
|
||
}
|
||
/* else...Reference symbol is extern. No need for adjusting
|
||
the addend. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
/* Fix PR 9841, there may be no local symbols. */
|
||
if (isym != NULL)
|
||
{
|
||
Elf_Internal_Sym *isymend;
|
||
|
||
isymend = isym + symtab_hdr->sh_info;
|
||
for (; isym < isymend; isym++)
|
||
{
|
||
if (isym->st_shndx == sec_shndx)
|
||
{
|
||
symvalue symval = isym->st_value;
|
||
symvalue symend = symval + isym->st_size;
|
||
if (avr_should_reduce_sym_size (symval, symend,
|
||
addr, toaddr, did_pad))
|
||
{
|
||
/* If this assert fires then we have a symbol that ends
|
||
part way through an instruction. Does that make
|
||
sense? */
|
||
BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
|
||
isym->st_size -= count;
|
||
}
|
||
else if (avr_should_increase_sym_size (symval, symend,
|
||
addr, toaddr, did_pad))
|
||
isym->st_size += count;
|
||
|
||
if (avr_should_move_sym (symval, addr, toaddr, did_pad))
|
||
isym->st_value -= count;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec)
|
||
{
|
||
symvalue symval = sym_hash->root.u.def.value;
|
||
symvalue symend = symval + sym_hash->size;
|
||
|
||
if (avr_should_reduce_sym_size (symval, symend,
|
||
addr, toaddr, did_pad))
|
||
{
|
||
/* If this assert fires then we have a symbol that ends
|
||
part way through an instruction. Does that make
|
||
sense? */
|
||
BFD_ASSERT (symend >= addr + count);
|
||
sym_hash->size -= count;
|
||
}
|
||
else if (avr_should_increase_sym_size (symval, symend,
|
||
addr, toaddr, did_pad))
|
||
sym_hash->size += count;
|
||
|
||
if (avr_should_move_sym (symval, addr, toaddr, did_pad))
|
||
sym_hash->root.u.def.value -= count;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static Elf_Internal_Sym *
|
||
retrieve_local_syms (bfd *input_bfd)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf;
|
||
size_t locsymcount;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
locsymcount = symtab_hdr->sh_info;
|
||
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL && locsymcount != 0)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
|
||
NULL, NULL, NULL);
|
||
|
||
/* Save the symbols for this input file so they won't be read again. */
|
||
if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
return isymbuf;
|
||
}
|
||
|
||
/* Get the input section for a given symbol index.
|
||
If the symbol is:
|
||
. a section symbol, return the section;
|
||
. a common symbol, return the common section;
|
||
. an undefined symbol, return the undefined section;
|
||
. an indirect symbol, follow the links;
|
||
. an absolute value, return the absolute section. */
|
||
|
||
static asection *
|
||
get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
asection *target_sec = NULL;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isymbuf;
|
||
unsigned int section_index;
|
||
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
section_index = isymbuf[r_symndx].st_shndx;
|
||
|
||
if (section_index == SHN_UNDEF)
|
||
target_sec = bfd_und_section_ptr;
|
||
else if (section_index == SHN_ABS)
|
||
target_sec = bfd_abs_section_ptr;
|
||
else if (section_index == SHN_COMMON)
|
||
target_sec = bfd_com_section_ptr;
|
||
else
|
||
target_sec = bfd_section_from_elf_index (abfd, section_index);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
||
struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
switch (h->root.type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
target_sec = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
target_sec = bfd_com_section_ptr;
|
||
break;
|
||
case bfd_link_hash_undefined:
|
||
case bfd_link_hash_undefweak:
|
||
target_sec = bfd_und_section_ptr;
|
||
break;
|
||
default: /* New indirect warning. */
|
||
target_sec = bfd_und_section_ptr;
|
||
break;
|
||
}
|
||
}
|
||
return target_sec;
|
||
}
|
||
|
||
/* Get the section-relative offset for a symbol number. */
|
||
|
||
static bfd_vma
|
||
get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
bfd_vma offset = 0;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isymbuf;
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
offset = isymbuf[r_symndx].st_value;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
||
struct elf_link_hash_entry *h =
|
||
elf_sym_hashes (abfd)[indx];
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
offset = h->root.u.def.value;
|
||
}
|
||
return offset;
|
||
}
|
||
|
||
/* Iterate over the property records in R_LIST, and copy each record into
|
||
the list of records within the relaxation information for the section to
|
||
which the record applies. */
|
||
|
||
static void
|
||
avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < r_list->record_count; ++i)
|
||
{
|
||
struct avr_relax_info *relax_info;
|
||
|
||
relax_info = get_avr_relax_info (r_list->records [i].section);
|
||
BFD_ASSERT (relax_info != NULL);
|
||
|
||
if (relax_info->records.count
|
||
== relax_info->records.allocated)
|
||
{
|
||
/* Allocate more space. */
|
||
bfd_size_type size;
|
||
|
||
relax_info->records.allocated += 10;
|
||
size = (sizeof (struct avr_property_record)
|
||
* relax_info->records.allocated);
|
||
relax_info->records.items
|
||
= bfd_realloc (relax_info->records.items, size);
|
||
}
|
||
|
||
memcpy (&relax_info->records.items [relax_info->records.count],
|
||
&r_list->records [i],
|
||
sizeof (struct avr_property_record));
|
||
relax_info->records.count++;
|
||
}
|
||
}
|
||
|
||
/* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
|
||
ordering callback from QSORT. */
|
||
|
||
static int
|
||
avr_property_record_compare (const void *ap, const void *bp)
|
||
{
|
||
const struct avr_property_record *a
|
||
= (struct avr_property_record *) ap;
|
||
const struct avr_property_record *b
|
||
= (struct avr_property_record *) bp;
|
||
|
||
if (a->offset != b->offset)
|
||
return (a->offset - b->offset);
|
||
|
||
if (a->section != b->section)
|
||
return (bfd_get_section_vma (a->section->owner, a->section)
|
||
- bfd_get_section_vma (b->section->owner, b->section));
|
||
|
||
return (a->type - b->type);
|
||
}
|
||
|
||
/* Load all of the avr property sections from all of the bfd objects
|
||
referenced from LINK_INFO. All of the records within each property
|
||
section are assigned to the STRUCT AVR_RELAX_INFO within the section
|
||
specific data of the appropriate section. */
|
||
|
||
static void
|
||
avr_load_all_property_sections (struct bfd_link_info *link_info)
|
||
{
|
||
bfd *abfd;
|
||
asection *sec;
|
||
|
||
/* Initialize the per-section relaxation info. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
init_avr_relax_info (sec);
|
||
}
|
||
|
||
/* Load the descriptor tables from .avr.prop sections. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
{
|
||
struct avr_property_record_list *r_list;
|
||
|
||
r_list = avr_elf32_load_property_records (abfd);
|
||
if (r_list != NULL)
|
||
avr_elf32_assign_records_to_sections (r_list);
|
||
|
||
free (r_list);
|
||
}
|
||
|
||
/* Now, for every section, ensure that the descriptor list in the
|
||
relaxation data is sorted by ascending offset within the section. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
struct avr_relax_info *relax_info = get_avr_relax_info (sec);
|
||
if (relax_info && relax_info->records.count > 0)
|
||
{
|
||
unsigned int i;
|
||
|
||
qsort (relax_info->records.items,
|
||
relax_info->records.count,
|
||
sizeof (struct avr_property_record),
|
||
avr_property_record_compare);
|
||
|
||
/* For debug purposes, list all the descriptors. */
|
||
for (i = 0; i < relax_info->records.count; ++i)
|
||
{
|
||
switch (relax_info->records.items [i].type)
|
||
{
|
||
case RECORD_ORG:
|
||
break;
|
||
case RECORD_ORG_AND_FILL:
|
||
break;
|
||
case RECORD_ALIGN:
|
||
break;
|
||
case RECORD_ALIGN_AND_FILL:
|
||
break;
|
||
};
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function handles relaxing for the avr.
|
||
Many important relaxing opportunities within functions are already
|
||
realized by the compiler itself.
|
||
Here we try to replace call (4 bytes) -> rcall (2 bytes)
|
||
and jump -> rjmp (safes also 2 bytes).
|
||
As well we now optimize seqences of
|
||
- call/rcall function
|
||
- ret
|
||
to yield
|
||
- jmp/rjmp function
|
||
- ret
|
||
. In case that within a sequence
|
||
- jmp/rjmp label
|
||
- ret
|
||
the ret could no longer be reached it is optimized away. In order
|
||
to check if the ret is no longer needed, it is checked that the ret's address
|
||
is not the target of a branch or jump within the same section, it is checked
|
||
that there is no skip instruction before the jmp/rjmp and that there
|
||
is no local or global label place at the address of the ret.
|
||
|
||
We refrain from relaxing within sections ".vectors" and
|
||
".jumptables" in order to maintain the position of the instructions.
|
||
There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
|
||
if possible. (In future one could possibly use the space of the nop
|
||
for the first instruction of the irq service function.
|
||
|
||
The .jumptables sections is meant to be used for a future tablejump variant
|
||
for the devices with 3-byte program counter where the table itself
|
||
contains 4-byte jump instructions whose relative offset must not
|
||
be changed. */
|
||
|
||
static bfd_boolean
|
||
elf32_avr_relax_section (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *contents = NULL;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
struct elf32_avr_link_hash_table *htab;
|
||
static bfd_boolean relaxation_initialised = FALSE;
|
||
|
||
if (!relaxation_initialised)
|
||
{
|
||
relaxation_initialised = TRUE;
|
||
|
||
/* Load entries from the .avr.prop sections. */
|
||
avr_load_all_property_sections (link_info);
|
||
}
|
||
|
||
/* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
|
||
relaxing. Such shrinking can cause issues for the sections such
|
||
as .vectors and .jumptables. Instead the unused bytes should be
|
||
filled with nop instructions. */
|
||
bfd_boolean shrinkable = TRUE;
|
||
|
||
if (!strcmp (sec->name,".vectors")
|
||
|| !strcmp (sec->name,".jumptables"))
|
||
shrinkable = FALSE;
|
||
|
||
if (bfd_link_relocatable (link_info))
|
||
(*link_info->callbacks->einfo)
|
||
(_("%P%F: --relax and -r may not be used together\n"));
|
||
|
||
htab = avr_link_hash_table (link_info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
if ((!htab->no_stubs) && (sec == htab->stub_sec))
|
||
{
|
||
/* We are just relaxing the stub section.
|
||
Let's calculate the size needed again. */
|
||
bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
|
||
|
||
if (debug_relax)
|
||
printf ("Relaxing the stub section. Size prior to this pass: %i\n",
|
||
(int) last_estimated_stub_section_size);
|
||
|
||
elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
|
||
link_info, FALSE);
|
||
|
||
/* Check if the number of trampolines changed. */
|
||
if (last_estimated_stub_section_size != htab->stub_sec->size)
|
||
*again = TRUE;
|
||
|
||
if (debug_relax)
|
||
printf ("Size of stub section after this pass: %i\n",
|
||
(int) htab->stub_sec->size);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* We don't have to do anything for a relocatable link, if
|
||
this section does not have relocs, or if this is not a
|
||
code section. */
|
||
if (bfd_link_relocatable (link_info)
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0)
|
||
return TRUE;
|
||
|
||
/* Check if the object file to relax uses internal symbols so that we
|
||
could fix up the relocations. */
|
||
if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, NULL, NULL, link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
/* Walk through the relocs looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma symval;
|
||
|
||
if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
|
||
&& ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
|
||
&& ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
|
||
continue;
|
||
|
||
/* Get the section contents if we haven't done so already. */
|
||
if (contents == NULL)
|
||
{
|
||
/* Get cached copy if it exists. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Read this BFD's local symbols if we haven't done so already. */
|
||
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
asection *sym_sec;
|
||
|
||
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
||
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
symval = isym->st_value;
|
||
/* If the reloc is absolute, it will not have
|
||
a symbol or section associated with it. */
|
||
if (sym_sec)
|
||
symval += sym_sec->output_section->vma
|
||
+ sym_sec->output_offset;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it--it will be caught by the
|
||
regular reloc processing. */
|
||
continue;
|
||
|
||
symval = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
|
||
/* For simplicity of coding, we are going to modify the section
|
||
contents, the section relocs, and the BFD symbol table. We
|
||
must tell the rest of the code not to free up this
|
||
information. It would be possible to instead create a table
|
||
of changes which have to be made, as is done in coff-mips.c;
|
||
that would be more work, but would require less memory when
|
||
the linker is run. */
|
||
switch (ELF32_R_TYPE (irel->r_info))
|
||
{
|
||
/* Try to turn a 22-bit absolute call/jump into an 13-bit
|
||
pc-relative rcall/rjmp. */
|
||
case R_AVR_CALL:
|
||
{
|
||
bfd_vma value = symval + irel->r_addend;
|
||
bfd_vma dot, gap;
|
||
int distance_short_enough = 0;
|
||
|
||
/* Get the address of this instruction. */
|
||
dot = (sec->output_section->vma
|
||
+ sec->output_offset + irel->r_offset);
|
||
|
||
/* Compute the distance from this insn to the branch target. */
|
||
gap = value - dot;
|
||
|
||
/* Check if the gap falls in the range that can be accommodated
|
||
in 13bits signed (It is 12bits when encoded, as we deal with
|
||
word addressing). */
|
||
if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
|
||
distance_short_enough = 1;
|
||
/* If shrinkable, then we can check for a range of distance which
|
||
is two bytes farther on both the directions because the call
|
||
or jump target will be closer by two bytes after the
|
||
relaxation. */
|
||
else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
|
||
distance_short_enough = 1;
|
||
|
||
/* Here we handle the wrap-around case. E.g. for a 16k device
|
||
we could use a rjmp to jump from address 0x100 to 0x3d00!
|
||
In order to make this work properly, we need to fill the
|
||
vaiable avr_pc_wrap_around with the appropriate value.
|
||
I.e. 0x4000 for a 16k device. */
|
||
{
|
||
/* Shrinking the code size makes the gaps larger in the
|
||
case of wrap-arounds. So we use a heuristical safety
|
||
margin to avoid that during relax the distance gets
|
||
again too large for the short jumps. Let's assume
|
||
a typical code-size reduction due to relax for a
|
||
16k device of 600 bytes. So let's use twice the
|
||
typical value as safety margin. */
|
||
int rgap;
|
||
int safety_margin;
|
||
|
||
int assumed_shrink = 600;
|
||
if (avr_pc_wrap_around > 0x4000)
|
||
assumed_shrink = 900;
|
||
|
||
safety_margin = 2 * assumed_shrink;
|
||
|
||
rgap = avr_relative_distance_considering_wrap_around (gap);
|
||
|
||
if (rgap >= (-4092 + safety_margin)
|
||
&& rgap <= (4094 - safety_margin))
|
||
distance_short_enough = 1;
|
||
}
|
||
|
||
if (distance_short_enough)
|
||
{
|
||
unsigned char code_msb;
|
||
unsigned char code_lsb;
|
||
|
||
if (debug_relax)
|
||
printf ("shrinking jump/call instruction at address 0x%x"
|
||
" in section %s\n\n",
|
||
(int) dot, sec->name);
|
||
|
||
/* Note that we've changed the relocs, section contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Get the instruction code for relaxing. */
|
||
code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
|
||
code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
||
|
||
/* Mask out the relocation bits. */
|
||
code_msb &= 0x94;
|
||
code_lsb &= 0x0E;
|
||
if (code_msb == 0x94 && code_lsb == 0x0E)
|
||
{
|
||
/* we are changing call -> rcall . */
|
||
bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
|
||
bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
|
||
}
|
||
else if (code_msb == 0x94 && code_lsb == 0x0C)
|
||
{
|
||
/* we are changeing jump -> rjmp. */
|
||
bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
|
||
bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_AVR_13_PCREL);
|
||
|
||
/* We should not modify the ordering if 'shrinkable' is
|
||
FALSE. */
|
||
if (!shrinkable)
|
||
{
|
||
/* Let's insert a nop. */
|
||
bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
|
||
bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
|
||
}
|
||
else
|
||
{
|
||
/* Delete two bytes of data. */
|
||
if (!elf32_avr_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2,
|
||
TRUE))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
}
|
||
/* Fall through. */
|
||
|
||
default:
|
||
{
|
||
unsigned char code_msb;
|
||
unsigned char code_lsb;
|
||
bfd_vma dot;
|
||
|
||
code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
||
code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
|
||
|
||
/* Get the address of this instruction. */
|
||
dot = (sec->output_section->vma
|
||
+ sec->output_offset + irel->r_offset);
|
||
|
||
/* Here we look for rcall/ret or call/ret sequences that could be
|
||
safely replaced by rjmp/ret or jmp/ret. */
|
||
if (((code_msb & 0xf0) == 0xd0)
|
||
&& avr_replace_call_ret_sequences)
|
||
{
|
||
/* This insn is a rcall. */
|
||
unsigned char next_insn_msb = 0;
|
||
unsigned char next_insn_lsb = 0;
|
||
|
||
if (irel->r_offset + 3 < sec->size)
|
||
{
|
||
next_insn_msb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset + 3);
|
||
next_insn_lsb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset + 2);
|
||
}
|
||
|
||
if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
|
||
{
|
||
/* The next insn is a ret. We now convert the rcall insn
|
||
into a rjmp instruction. */
|
||
code_msb &= 0xef;
|
||
bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
|
||
if (debug_relax)
|
||
printf ("converted rcall/ret sequence at address 0x%x"
|
||
" into rjmp/ret sequence. Section is %s\n\n",
|
||
(int) dot, sec->name);
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
else if ((0x94 == (code_msb & 0xfe))
|
||
&& (0x0e == (code_lsb & 0x0e))
|
||
&& avr_replace_call_ret_sequences)
|
||
{
|
||
/* This insn is a call. */
|
||
unsigned char next_insn_msb = 0;
|
||
unsigned char next_insn_lsb = 0;
|
||
|
||
if (irel->r_offset + 5 < sec->size)
|
||
{
|
||
next_insn_msb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset + 5);
|
||
next_insn_lsb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset + 4);
|
||
}
|
||
|
||
if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
|
||
{
|
||
/* The next insn is a ret. We now convert the call insn
|
||
into a jmp instruction. */
|
||
|
||
code_lsb &= 0xfd;
|
||
bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
|
||
if (debug_relax)
|
||
printf ("converted call/ret sequence at address 0x%x"
|
||
" into jmp/ret sequence. Section is %s\n\n",
|
||
(int) dot, sec->name);
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
else if ((0xc0 == (code_msb & 0xf0))
|
||
|| ((0x94 == (code_msb & 0xfe))
|
||
&& (0x0c == (code_lsb & 0x0e))))
|
||
{
|
||
/* This insn is a rjmp or a jmp. */
|
||
unsigned char next_insn_msb = 0;
|
||
unsigned char next_insn_lsb = 0;
|
||
int insn_size;
|
||
|
||
if (0xc0 == (code_msb & 0xf0))
|
||
insn_size = 2; /* rjmp insn */
|
||
else
|
||
insn_size = 4; /* jmp insn */
|
||
|
||
if (irel->r_offset + insn_size + 1 < sec->size)
|
||
{
|
||
next_insn_msb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset
|
||
+ insn_size + 1);
|
||
next_insn_lsb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset
|
||
+ insn_size);
|
||
}
|
||
|
||
if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
|
||
{
|
||
/* The next insn is a ret. We possibly could delete
|
||
this ret. First we need to check for preceding
|
||
sbis/sbic/sbrs or cpse "skip" instructions. */
|
||
|
||
int there_is_preceding_non_skip_insn = 1;
|
||
bfd_vma address_of_ret;
|
||
|
||
address_of_ret = dot + insn_size;
|
||
|
||
if (debug_relax && (insn_size == 2))
|
||
printf ("found rjmp / ret sequence at address 0x%x\n",
|
||
(int) dot);
|
||
if (debug_relax && (insn_size == 4))
|
||
printf ("found jmp / ret sequence at address 0x%x\n",
|
||
(int) dot);
|
||
|
||
/* We have to make sure that there is a preceding insn. */
|
||
if (irel->r_offset >= 2)
|
||
{
|
||
unsigned char preceding_msb;
|
||
unsigned char preceding_lsb;
|
||
|
||
preceding_msb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
preceding_lsb =
|
||
bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
||
|
||
/* sbic. */
|
||
if (0x99 == preceding_msb)
|
||
there_is_preceding_non_skip_insn = 0;
|
||
|
||
/* sbis. */
|
||
if (0x9b == preceding_msb)
|
||
there_is_preceding_non_skip_insn = 0;
|
||
|
||
/* sbrc */
|
||
if ((0xfc == (preceding_msb & 0xfe)
|
||
&& (0x00 == (preceding_lsb & 0x08))))
|
||
there_is_preceding_non_skip_insn = 0;
|
||
|
||
/* sbrs */
|
||
if ((0xfe == (preceding_msb & 0xfe)
|
||
&& (0x00 == (preceding_lsb & 0x08))))
|
||
there_is_preceding_non_skip_insn = 0;
|
||
|
||
/* cpse */
|
||
if (0x10 == (preceding_msb & 0xfc))
|
||
there_is_preceding_non_skip_insn = 0;
|
||
|
||
if (there_is_preceding_non_skip_insn == 0)
|
||
if (debug_relax)
|
||
printf ("preceding skip insn prevents deletion of"
|
||
" ret insn at Addy 0x%x in section %s\n",
|
||
(int) dot + 2, sec->name);
|
||
}
|
||
else
|
||
{
|
||
/* There is no previous instruction. */
|
||
there_is_preceding_non_skip_insn = 0;
|
||
}
|
||
|
||
if (there_is_preceding_non_skip_insn)
|
||
{
|
||
/* We now only have to make sure that there is no
|
||
local label defined at the address of the ret
|
||
instruction and that there is no local relocation
|
||
in this section pointing to the ret. */
|
||
|
||
int deleting_ret_is_safe = 1;
|
||
unsigned int section_offset_of_ret_insn =
|
||
irel->r_offset + insn_size;
|
||
Elf_Internal_Sym *isym, *isymend;
|
||
unsigned int sec_shndx;
|
||
struct bfd_section *isec;
|
||
|
||
sec_shndx =
|
||
_bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
/* Check for local symbols. */
|
||
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
isymend = isym + symtab_hdr->sh_info;
|
||
/* PR 6019: There may not be any local symbols. */
|
||
for (; isym != NULL && isym < isymend; isym++)
|
||
{
|
||
if (isym->st_value == section_offset_of_ret_insn
|
||
&& isym->st_shndx == sec_shndx)
|
||
{
|
||
deleting_ret_is_safe = 0;
|
||
if (debug_relax)
|
||
printf ("local label prevents deletion of ret "
|
||
"insn at address 0x%x\n",
|
||
(int) dot + insn_size);
|
||
}
|
||
}
|
||
|
||
/* Now check for global symbols. */
|
||
{
|
||
int symcount;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
|
||
symcount = (symtab_hdr->sh_size
|
||
/ sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash =
|
||
*sym_hashes;
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type ==
|
||
bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec
|
||
&& sym_hash->root.u.def.value == section_offset_of_ret_insn)
|
||
{
|
||
deleting_ret_is_safe = 0;
|
||
if (debug_relax)
|
||
printf ("global label prevents deletion of "
|
||
"ret insn at address 0x%x\n",
|
||
(int) dot + insn_size);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now we check for relocations pointing to ret. */
|
||
for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
|
||
{
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
|
||
rel = elf_section_data (isec)->relocs;
|
||
if (rel == NULL)
|
||
rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
|
||
|
||
relend = rel + isec->reloc_count;
|
||
|
||
for (; rel && rel < relend; rel++)
|
||
{
|
||
bfd_vma reloc_target = 0;
|
||
|
||
/* Read this BFD's local symbols if we haven't
|
||
done so already. */
|
||
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *)
|
||
symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms
|
||
(abfd,
|
||
symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
break;
|
||
}
|
||
|
||
/* Get the value of the symbol referred to
|
||
by the reloc. */
|
||
if (ELF32_R_SYM (rel->r_info)
|
||
< symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
asection *sym_sec;
|
||
|
||
isym = isymbuf
|
||
+ ELF32_R_SYM (rel->r_info);
|
||
sym_sec = bfd_section_from_elf_index
|
||
(abfd, isym->st_shndx);
|
||
symval = isym->st_value;
|
||
|
||
/* If the reloc is absolute, it will not
|
||
have a symbol or section associated
|
||
with it. */
|
||
|
||
if (sym_sec)
|
||
{
|
||
symval +=
|
||
sym_sec->output_section->vma
|
||
+ sym_sec->output_offset;
|
||
reloc_target = symval + rel->r_addend;
|
||
}
|
||
else
|
||
{
|
||
reloc_target = symval + rel->r_addend;
|
||
/* Reference symbol is absolute. */
|
||
}
|
||
}
|
||
/* else ... reference symbol is extern. */
|
||
|
||
if (address_of_ret == reloc_target)
|
||
{
|
||
deleting_ret_is_safe = 0;
|
||
if (debug_relax)
|
||
printf ("ret from "
|
||
"rjmp/jmp ret sequence at address"
|
||
" 0x%x could not be deleted. ret"
|
||
" is target of a relocation.\n",
|
||
(int) address_of_ret);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (deleting_ret_is_safe)
|
||
{
|
||
if (debug_relax)
|
||
printf ("unreachable ret instruction "
|
||
"at address 0x%x deleted.\n",
|
||
(int) dot + insn_size);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!elf32_avr_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + insn_size, 2,
|
||
TRUE))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax
|
||
again. Note that this is not required, and it
|
||
may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!*again)
|
||
{
|
||
/* Look through all the property records in this section to see if
|
||
there's any alignment records that can be moved. */
|
||
struct avr_relax_info *relax_info;
|
||
|
||
relax_info = get_avr_relax_info (sec);
|
||
if (relax_info->records.count > 0)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < relax_info->records.count; ++i)
|
||
{
|
||
switch (relax_info->records.items [i].type)
|
||
{
|
||
case RECORD_ORG:
|
||
case RECORD_ORG_AND_FILL:
|
||
break;
|
||
case RECORD_ALIGN:
|
||
case RECORD_ALIGN_AND_FILL:
|
||
{
|
||
struct avr_property_record *record;
|
||
unsigned long bytes_to_align;
|
||
int count = 0;
|
||
|
||
/* Look for alignment directives that have had enough
|
||
bytes deleted before them, such that the directive
|
||
can be moved backwards and still maintain the
|
||
required alignment. */
|
||
record = &relax_info->records.items [i];
|
||
bytes_to_align
|
||
= (unsigned long) (1 << record->data.align.bytes);
|
||
while (record->data.align.preceding_deleted >=
|
||
bytes_to_align)
|
||
{
|
||
record->data.align.preceding_deleted
|
||
-= bytes_to_align;
|
||
count += bytes_to_align;
|
||
}
|
||
|
||
if (count > 0)
|
||
{
|
||
bfd_vma addr = record->offset;
|
||
|
||
/* We can delete COUNT bytes and this alignment
|
||
directive will still be correctly aligned.
|
||
First move the alignment directive, then delete
|
||
the bytes. */
|
||
record->offset -= count;
|
||
elf32_avr_relax_delete_bytes (abfd, sec,
|
||
addr - count,
|
||
count, FALSE);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
free (contents);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* This is a version of bfd_generic_get_relocated_section_contents
|
||
which uses elf32_avr_relocate_section.
|
||
|
||
For avr it's essentially a cut and paste taken from the H8300 port.
|
||
The author of the relaxation support patch for avr had absolutely no
|
||
clue what is happening here but found out that this part of the code
|
||
seems to be important. */
|
||
|
||
static bfd_byte *
|
||
elf32_avr_get_relocated_section_contents (bfd *output_bfd,
|
||
struct bfd_link_info *link_info,
|
||
struct bfd_link_order *link_order,
|
||
bfd_byte *data,
|
||
bfd_boolean relocatable,
|
||
asymbol **symbols)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *input_section = link_order->u.indirect.section;
|
||
bfd *input_bfd = input_section->owner;
|
||
asection **sections = NULL;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
|
||
/* We only need to handle the case of relaxing, or of having a
|
||
particular set of section contents, specially. */
|
||
if (relocatable
|
||
|| elf_section_data (input_section)->this_hdr.contents == NULL)
|
||
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
||
link_order, data,
|
||
relocatable,
|
||
symbols);
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
|
||
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
|
||
(size_t) input_section->size);
|
||
|
||
if ((input_section->flags & SEC_RELOC) != 0
|
||
&& input_section->reloc_count > 0)
|
||
{
|
||
asection **secpp;
|
||
Elf_Internal_Sym *isym, *isymend;
|
||
bfd_size_type amt;
|
||
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(input_bfd, input_section, NULL, NULL, FALSE));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
if (symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
amt = symtab_hdr->sh_info;
|
||
amt *= sizeof (asection *);
|
||
sections = bfd_malloc (amt);
|
||
if (sections == NULL && amt != 0)
|
||
goto error_return;
|
||
|
||
isymend = isymbuf + symtab_hdr->sh_info;
|
||
for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
|
||
{
|
||
asection *isec;
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
isec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
isec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
isec = bfd_com_section_ptr;
|
||
else
|
||
isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
|
||
|
||
*secpp = isec;
|
||
}
|
||
|
||
if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
|
||
input_section, data, internal_relocs,
|
||
isymbuf, sections))
|
||
goto error_return;
|
||
|
||
if (sections != NULL)
|
||
free (sections);
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (elf_section_data (input_section)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
}
|
||
|
||
return data;
|
||
|
||
error_return:
|
||
if (sections != NULL)
|
||
free (sections);
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (input_section)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Determines the hash entry name for a particular reloc. It consists of
|
||
the identifier of the symbol section and the added reloc addend and
|
||
symbol offset relative to the section the symbol is attached to. */
|
||
|
||
static char *
|
||
avr_stub_name (const asection *symbol_section,
|
||
const bfd_vma symbol_offset,
|
||
const Elf_Internal_Rela *rela)
|
||
{
|
||
char *stub_name;
|
||
bfd_size_type len;
|
||
|
||
len = 8 + 1 + 8 + 1 + 1;
|
||
stub_name = bfd_malloc (len);
|
||
|
||
sprintf (stub_name, "%08x+%08x",
|
||
symbol_section->id & 0xffffffff,
|
||
(unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
|
||
|
||
return stub_name;
|
||
}
|
||
|
||
|
||
/* Add a new stub entry to the stub hash. Not all fields of the new
|
||
stub entry are initialised. */
|
||
|
||
static struct elf32_avr_stub_hash_entry *
|
||
avr_add_stub (const char *stub_name,
|
||
struct elf32_avr_link_hash_table *htab)
|
||
{
|
||
struct elf32_avr_stub_hash_entry *hsh;
|
||
|
||
/* Enter this entry into the linker stub hash table. */
|
||
hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
|
||
|
||
if (hsh == NULL)
|
||
{
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("cannot create stub entry %s"), stub_name);
|
||
return NULL;
|
||
}
|
||
|
||
hsh->stub_offset = 0;
|
||
return hsh;
|
||
}
|
||
|
||
/* We assume that there is already space allocated for the stub section
|
||
contents and that before building the stubs the section size is
|
||
initialized to 0. We assume that within the stub hash table entry,
|
||
the absolute position of the jmp target has been written in the
|
||
target_value field. We write here the offset of the generated jmp insn
|
||
relative to the trampoline section start to the stub_offset entry in
|
||
the stub hash table entry. */
|
||
|
||
static bfd_boolean
|
||
avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
||
{
|
||
struct elf32_avr_stub_hash_entry *hsh;
|
||
struct bfd_link_info *info;
|
||
struct elf32_avr_link_hash_table *htab;
|
||
bfd *stub_bfd;
|
||
bfd_byte *loc;
|
||
bfd_vma target;
|
||
bfd_vma starget;
|
||
|
||
/* Basic opcode */
|
||
bfd_vma jmp_insn = 0x0000940c;
|
||
|
||
/* Massage our args to the form they really have. */
|
||
hsh = avr_stub_hash_entry (bh);
|
||
|
||
if (!hsh->is_actually_needed)
|
||
return TRUE;
|
||
|
||
info = (struct bfd_link_info *) in_arg;
|
||
|
||
htab = avr_link_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
target = hsh->target_value;
|
||
|
||
/* Make a note of the offset within the stubs for this entry. */
|
||
hsh->stub_offset = htab->stub_sec->size;
|
||
loc = htab->stub_sec->contents + hsh->stub_offset;
|
||
|
||
stub_bfd = htab->stub_sec->owner;
|
||
|
||
if (debug_stubs)
|
||
printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
|
||
(unsigned int) target,
|
||
(unsigned int) hsh->stub_offset);
|
||
|
||
/* We now have to add the information on the jump target to the bare
|
||
opcode bits already set in jmp_insn. */
|
||
|
||
/* Check for the alignment of the address. */
|
||
if (target & 1)
|
||
return FALSE;
|
||
|
||
starget = target >> 1;
|
||
jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
|
||
bfd_put_16 (stub_bfd, jmp_insn, loc);
|
||
bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
|
||
|
||
htab->stub_sec->size += 4;
|
||
|
||
/* Now add the entries in the address mapping table if there is still
|
||
space left. */
|
||
{
|
||
unsigned int nr;
|
||
|
||
nr = htab->amt_entry_cnt + 1;
|
||
if (nr <= htab->amt_max_entry_cnt)
|
||
{
|
||
htab->amt_entry_cnt = nr;
|
||
|
||
htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
|
||
htab->amt_destination_addr[nr - 1] = target;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
|
||
void *in_arg ATTRIBUTE_UNUSED)
|
||
{
|
||
struct elf32_avr_stub_hash_entry *hsh;
|
||
|
||
hsh = avr_stub_hash_entry (bh);
|
||
hsh->is_actually_needed = FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
||
{
|
||
struct elf32_avr_stub_hash_entry *hsh;
|
||
struct elf32_avr_link_hash_table *htab;
|
||
int size;
|
||
|
||
/* Massage our args to the form they really have. */
|
||
hsh = avr_stub_hash_entry (bh);
|
||
htab = in_arg;
|
||
|
||
if (hsh->is_actually_needed)
|
||
size = 4;
|
||
else
|
||
size = 0;
|
||
|
||
htab->stub_sec->size += size;
|
||
return TRUE;
|
||
}
|
||
|
||
void
|
||
elf32_avr_setup_params (struct bfd_link_info *info,
|
||
bfd *avr_stub_bfd,
|
||
asection *avr_stub_section,
|
||
bfd_boolean no_stubs,
|
||
bfd_boolean deb_stubs,
|
||
bfd_boolean deb_relax,
|
||
bfd_vma pc_wrap_around,
|
||
bfd_boolean call_ret_replacement)
|
||
{
|
||
struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
|
||
|
||
if (htab == NULL)
|
||
return;
|
||
htab->stub_sec = avr_stub_section;
|
||
htab->stub_bfd = avr_stub_bfd;
|
||
htab->no_stubs = no_stubs;
|
||
|
||
debug_relax = deb_relax;
|
||
debug_stubs = deb_stubs;
|
||
avr_pc_wrap_around = pc_wrap_around;
|
||
avr_replace_call_ret_sequences = call_ret_replacement;
|
||
}
|
||
|
||
|
||
/* Set up various things so that we can make a list of input sections
|
||
for each output section included in the link. Returns -1 on error,
|
||
0 when no stubs will be needed, and 1 on success. It also sets
|
||
information on the stubs bfd and the stub section in the info
|
||
struct. */
|
||
|
||
int
|
||
elf32_avr_setup_section_lists (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
bfd *input_bfd;
|
||
unsigned int bfd_count;
|
||
unsigned int top_id, top_index;
|
||
asection *section;
|
||
asection **input_list, **list;
|
||
bfd_size_type amt;
|
||
struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
|
||
|
||
if (htab == NULL || htab->no_stubs)
|
||
return 0;
|
||
|
||
/* Count the number of input BFDs and find the top input section id. */
|
||
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link.next)
|
||
{
|
||
bfd_count += 1;
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
if (top_id < section->id)
|
||
top_id = section->id;
|
||
}
|
||
|
||
htab->bfd_count = bfd_count;
|
||
|
||
/* We can't use output_bfd->section_count here to find the top output
|
||
section index as some sections may have been removed, and
|
||
strip_excluded_output_sections doesn't renumber the indices. */
|
||
for (section = output_bfd->sections, top_index = 0;
|
||
section != NULL;
|
||
section = section->next)
|
||
if (top_index < section->index)
|
||
top_index = section->index;
|
||
|
||
htab->top_index = top_index;
|
||
amt = sizeof (asection *) * (top_index + 1);
|
||
input_list = bfd_malloc (amt);
|
||
htab->input_list = input_list;
|
||
if (input_list == NULL)
|
||
return -1;
|
||
|
||
/* For sections we aren't interested in, mark their entries with a
|
||
value we can check later. */
|
||
list = input_list + top_index;
|
||
do
|
||
*list = bfd_abs_section_ptr;
|
||
while (list-- != input_list);
|
||
|
||
for (section = output_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
if ((section->flags & SEC_CODE) != 0)
|
||
input_list[section->index] = NULL;
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Read in all local syms for all input bfds, and create hash entries
|
||
for export stubs if we are building a multi-subspace shared lib.
|
||
Returns -1 on error, 0 otherwise. */
|
||
|
||
static int
|
||
get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
|
||
{
|
||
unsigned int bfd_indx;
|
||
Elf_Internal_Sym *local_syms, **all_local_syms;
|
||
struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
|
||
bfd_size_type amt;
|
||
|
||
if (htab == NULL)
|
||
return -1;
|
||
|
||
/* We want to read in symbol extension records only once. To do this
|
||
we need to read in the local symbols in parallel and save them for
|
||
later use; so hold pointers to the local symbols in an array. */
|
||
amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
||
all_local_syms = bfd_zmalloc (amt);
|
||
htab->all_local_syms = all_local_syms;
|
||
if (all_local_syms == NULL)
|
||
return -1;
|
||
|
||
/* Walk over all the input BFDs, swapping in local symbols.
|
||
If we are creating a shared library, create hash entries for the
|
||
export stubs. */
|
||
for (bfd_indx = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link.next, bfd_indx++)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
|
||
/* We'll need the symbol table in a second. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info == 0)
|
||
continue;
|
||
|
||
/* We need an array of the local symbols attached to the input bfd. */
|
||
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (local_syms == NULL)
|
||
{
|
||
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
/* Cache them for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) local_syms;
|
||
}
|
||
if (local_syms == NULL)
|
||
return -1;
|
||
|
||
all_local_syms[bfd_indx] = local_syms;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
|
||
|
||
bfd_boolean
|
||
elf32_avr_size_stubs (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean is_prealloc_run)
|
||
{
|
||
struct elf32_avr_link_hash_table *htab;
|
||
int stub_changed = 0;
|
||
|
||
htab = avr_link_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* At this point we initialize htab->vector_base
|
||
To the start of the text output section. */
|
||
htab->vector_base = htab->stub_sec->output_section->vma;
|
||
|
||
if (get_local_syms (info->input_bfds, info))
|
||
{
|
||
if (htab->all_local_syms)
|
||
goto error_ret_free_local;
|
||
return FALSE;
|
||
}
|
||
|
||
if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
|
||
{
|
||
struct elf32_avr_stub_hash_entry *test;
|
||
|
||
test = avr_add_stub ("Hugo",htab);
|
||
test->target_value = 0x123456;
|
||
test->stub_offset = 13;
|
||
|
||
test = avr_add_stub ("Hugo2",htab);
|
||
test->target_value = 0x84210;
|
||
test->stub_offset = 14;
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
bfd *input_bfd;
|
||
unsigned int bfd_indx;
|
||
|
||
/* We will have to re-generate the stub hash table each time anything
|
||
in memory has changed. */
|
||
|
||
bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
|
||
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link.next, bfd_indx++)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *section;
|
||
Elf_Internal_Sym *local_syms;
|
||
|
||
/* We'll need the symbol table in a second. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info == 0)
|
||
continue;
|
||
|
||
local_syms = htab->all_local_syms[bfd_indx];
|
||
|
||
/* Walk over each section attached to the input bfd. */
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
||
|
||
/* If there aren't any relocs, then there's nothing more
|
||
to do. */
|
||
if ((section->flags & SEC_RELOC) == 0
|
||
|| section->reloc_count == 0)
|
||
continue;
|
||
|
||
/* If this section is a link-once section that will be
|
||
discarded, then don't create any stubs. */
|
||
if (section->output_section == NULL
|
||
|| section->output_section->owner != output_bfd)
|
||
continue;
|
||
|
||
/* Get the relocs. */
|
||
internal_relocs
|
||
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
|
||
info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_ret_free_local;
|
||
|
||
/* Now examine each relocation. */
|
||
irela = internal_relocs;
|
||
irelaend = irela + section->reloc_count;
|
||
for (; irela < irelaend; irela++)
|
||
{
|
||
unsigned int r_type, r_indx;
|
||
struct elf32_avr_stub_hash_entry *hsh;
|
||
asection *sym_sec;
|
||
bfd_vma sym_value;
|
||
bfd_vma destination;
|
||
struct elf_link_hash_entry *hh;
|
||
char *stub_name;
|
||
|
||
r_type = ELF32_R_TYPE (irela->r_info);
|
||
r_indx = ELF32_R_SYM (irela->r_info);
|
||
|
||
/* Only look for 16 bit GS relocs. No other reloc will need a
|
||
stub. */
|
||
if (!((r_type == R_AVR_16_PM)
|
||
|| (r_type == R_AVR_LO8_LDI_GS)
|
||
|| (r_type == R_AVR_HI8_LDI_GS)))
|
||
continue;
|
||
|
||
/* Now determine the call target, its name, value,
|
||
section. */
|
||
sym_sec = NULL;
|
||
sym_value = 0;
|
||
destination = 0;
|
||
hh = NULL;
|
||
if (r_indx < symtab_hdr->sh_info)
|
||
{
|
||
/* It's a local symbol. */
|
||
Elf_Internal_Sym *sym;
|
||
Elf_Internal_Shdr *hdr;
|
||
unsigned int shndx;
|
||
|
||
sym = local_syms + r_indx;
|
||
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
||
sym_value = sym->st_value;
|
||
shndx = sym->st_shndx;
|
||
if (shndx < elf_numsections (input_bfd))
|
||
{
|
||
hdr = elf_elfsections (input_bfd)[shndx];
|
||
sym_sec = hdr->bfd_section;
|
||
destination = (sym_value + irela->r_addend
|
||
+ sym_sec->output_offset
|
||
+ sym_sec->output_section->vma);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* It's an external symbol. */
|
||
int e_indx;
|
||
|
||
e_indx = r_indx - symtab_hdr->sh_info;
|
||
hh = elf_sym_hashes (input_bfd)[e_indx];
|
||
|
||
while (hh->root.type == bfd_link_hash_indirect
|
||
|| hh->root.type == bfd_link_hash_warning)
|
||
hh = (struct elf_link_hash_entry *)
|
||
(hh->root.u.i.link);
|
||
|
||
if (hh->root.type == bfd_link_hash_defined
|
||
|| hh->root.type == bfd_link_hash_defweak)
|
||
{
|
||
sym_sec = hh->root.u.def.section;
|
||
sym_value = hh->root.u.def.value;
|
||
if (sym_sec->output_section != NULL)
|
||
destination = (sym_value + irela->r_addend
|
||
+ sym_sec->output_offset
|
||
+ sym_sec->output_section->vma);
|
||
}
|
||
else if (hh->root.type == bfd_link_hash_undefweak)
|
||
{
|
||
if (! bfd_link_pic (info))
|
||
continue;
|
||
}
|
||
else if (hh->root.type == bfd_link_hash_undefined)
|
||
{
|
||
if (! (info->unresolved_syms_in_objects == RM_IGNORE
|
||
&& (ELF_ST_VISIBILITY (hh->other)
|
||
== STV_DEFAULT)))
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
|
||
error_ret_free_internal:
|
||
if (elf_section_data (section)->relocs == NULL)
|
||
free (internal_relocs);
|
||
goto error_ret_free_local;
|
||
}
|
||
}
|
||
|
||
if (! avr_stub_is_required_for_16_bit_reloc
|
||
(destination - htab->vector_base))
|
||
{
|
||
if (!is_prealloc_run)
|
||
/* We are having a reloc that does't need a stub. */
|
||
continue;
|
||
|
||
/* We don't right now know if a stub will be needed.
|
||
Let's rather be on the safe side. */
|
||
}
|
||
|
||
/* Get the name of this stub. */
|
||
stub_name = avr_stub_name (sym_sec, sym_value, irela);
|
||
|
||
if (!stub_name)
|
||
goto error_ret_free_internal;
|
||
|
||
|
||
hsh = avr_stub_hash_lookup (&htab->bstab,
|
||
stub_name,
|
||
FALSE, FALSE);
|
||
if (hsh != NULL)
|
||
{
|
||
/* The proper stub has already been created. Mark it
|
||
to be used and write the possibly changed destination
|
||
value. */
|
||
hsh->is_actually_needed = TRUE;
|
||
hsh->target_value = destination;
|
||
free (stub_name);
|
||
continue;
|
||
}
|
||
|
||
hsh = avr_add_stub (stub_name, htab);
|
||
if (hsh == NULL)
|
||
{
|
||
free (stub_name);
|
||
goto error_ret_free_internal;
|
||
}
|
||
|
||
hsh->is_actually_needed = TRUE;
|
||
hsh->target_value = destination;
|
||
|
||
if (debug_stubs)
|
||
printf ("Adding stub with destination 0x%x to the"
|
||
" hash table.\n", (unsigned int) destination);
|
||
if (debug_stubs)
|
||
printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
|
||
|
||
stub_changed = TRUE;
|
||
}
|
||
|
||
/* We're done with the internal relocs, free them. */
|
||
if (elf_section_data (section)->relocs == NULL)
|
||
free (internal_relocs);
|
||
}
|
||
}
|
||
|
||
/* Re-Calculate the number of needed stubs. */
|
||
htab->stub_sec->size = 0;
|
||
bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
|
||
|
||
if (!stub_changed)
|
||
break;
|
||
|
||
stub_changed = FALSE;
|
||
}
|
||
|
||
free (htab->all_local_syms);
|
||
return TRUE;
|
||
|
||
error_ret_free_local:
|
||
free (htab->all_local_syms);
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Build all the stubs associated with the current output file. The
|
||
stubs are kept in a hash table attached to the main linker hash
|
||
table. We also set up the .plt entries for statically linked PIC
|
||
functions here. This function is called via hppaelf_finish in the
|
||
linker. */
|
||
|
||
bfd_boolean
|
||
elf32_avr_build_stubs (struct bfd_link_info *info)
|
||
{
|
||
asection *stub_sec;
|
||
struct bfd_hash_table *table;
|
||
struct elf32_avr_link_hash_table *htab;
|
||
bfd_size_type total_size = 0;
|
||
|
||
htab = avr_link_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* In case that there were several stub sections: */
|
||
for (stub_sec = htab->stub_bfd->sections;
|
||
stub_sec != NULL;
|
||
stub_sec = stub_sec->next)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
/* Allocate memory to hold the linker stubs. */
|
||
size = stub_sec->size;
|
||
total_size += size;
|
||
|
||
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
||
if (stub_sec->contents == NULL && size != 0)
|
||
return FALSE;
|
||
stub_sec->size = 0;
|
||
}
|
||
|
||
/* Allocate memory for the adress mapping table. */
|
||
htab->amt_entry_cnt = 0;
|
||
htab->amt_max_entry_cnt = total_size / 4;
|
||
htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
|
||
* htab->amt_max_entry_cnt);
|
||
htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
|
||
* htab->amt_max_entry_cnt );
|
||
|
||
if (debug_stubs)
|
||
printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
|
||
|
||
/* Build the stubs as directed by the stub hash table. */
|
||
table = &htab->bstab;
|
||
bfd_hash_traverse (table, avr_build_one_stub, info);
|
||
|
||
if (debug_stubs)
|
||
printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Callback used by QSORT to order relocations AP and BP. */
|
||
|
||
static int
|
||
internal_reloc_compare (const void *ap, const void *bp)
|
||
{
|
||
const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
|
||
const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
|
||
|
||
if (a->r_offset != b->r_offset)
|
||
return (a->r_offset - b->r_offset);
|
||
|
||
/* We don't need to sort on these criteria for correctness,
|
||
but enforcing a more strict ordering prevents unstable qsort
|
||
from behaving differently with different implementations.
|
||
Without the code below we get correct but different results
|
||
on Solaris 2.7 and 2.8. We would like to always produce the
|
||
same results no matter the host. */
|
||
|
||
if (a->r_info != b->r_info)
|
||
return (a->r_info - b->r_info);
|
||
|
||
return (a->r_addend - b->r_addend);
|
||
}
|
||
|
||
/* Return true if ADDRESS is within the vma range of SECTION from ABFD. */
|
||
|
||
static bfd_boolean
|
||
avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
|
||
{
|
||
bfd_vma vma;
|
||
bfd_size_type size;
|
||
|
||
vma = bfd_get_section_vma (abfd, section);
|
||
if (address < vma)
|
||
return FALSE;
|
||
|
||
size = section->size;
|
||
if (address >= vma + size)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */
|
||
|
||
struct avr_find_section_data
|
||
{
|
||
/* The address we're looking for. */
|
||
bfd_vma address;
|
||
|
||
/* The section we've found. */
|
||
asection *section;
|
||
};
|
||
|
||
/* Helper function to locate the section holding a certain virtual memory
|
||
address. This is called via bfd_map_over_sections. The DATA is an
|
||
instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
|
||
has been set to the address to search for, and the section field has
|
||
been set to NULL. If SECTION from ABFD contains ADDRESS then the
|
||
section field in DATA will be set to SECTION. As an optimisation, if
|
||
the section field is already non-null then this function does not
|
||
perform any checks, and just returns. */
|
||
|
||
static void
|
||
avr_find_section_for_address (bfd *abfd,
|
||
asection *section, void *data)
|
||
{
|
||
struct avr_find_section_data *fs_data
|
||
= (struct avr_find_section_data *) data;
|
||
|
||
/* Return if already found. */
|
||
if (fs_data->section != NULL)
|
||
return;
|
||
|
||
/* If this section isn't part of the addressable code content, skip it. */
|
||
if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
|
||
&& (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
|
||
return;
|
||
|
||
if (avr_is_section_for_address (abfd, section, fs_data->address))
|
||
fs_data->section = section;
|
||
}
|
||
|
||
/* Load all of the property records from SEC, a section from ABFD. Return
|
||
a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The
|
||
memory for the returned structure, and all of the records pointed too by
|
||
the structure are allocated with a single call to malloc, so, only the
|
||
pointer returned needs to be free'd. */
|
||
|
||
static struct avr_property_record_list *
|
||
avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
|
||
{
|
||
char *contents = NULL, *ptr;
|
||
bfd_size_type size, mem_size;
|
||
bfd_byte version, flags;
|
||
uint16_t record_count, i;
|
||
struct avr_property_record_list *r_list = NULL;
|
||
Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
|
||
struct avr_find_section_data fs_data;
|
||
|
||
fs_data.section = NULL;
|
||
|
||
size = bfd_get_section_size (sec);
|
||
contents = bfd_malloc (size);
|
||
bfd_get_section_contents (abfd, sec, contents, 0, size);
|
||
ptr = contents;
|
||
|
||
/* Load the relocations for the '.avr.prop' section if there are any, and
|
||
sort them. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, NULL, NULL, FALSE));
|
||
if (internal_relocs)
|
||
qsort (internal_relocs, sec->reloc_count,
|
||
sizeof (Elf_Internal_Rela), internal_reloc_compare);
|
||
|
||
/* There is a header at the start of the property record section SEC, the
|
||
format of this header is:
|
||
uint8_t : version number
|
||
uint8_t : flags
|
||
uint16_t : record counter
|
||
*/
|
||
|
||
/* Check we have at least got a headers worth of bytes. */
|
||
if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
|
||
goto load_failed;
|
||
|
||
version = *((bfd_byte *) ptr);
|
||
ptr++;
|
||
flags = *((bfd_byte *) ptr);
|
||
ptr++;
|
||
record_count = *((uint16_t *) ptr);
|
||
ptr+=2;
|
||
BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
|
||
|
||
/* Now allocate space for the list structure, and all of the list
|
||
elements in a single block. */
|
||
mem_size = sizeof (struct avr_property_record_list)
|
||
+ sizeof (struct avr_property_record) * record_count;
|
||
r_list = bfd_malloc (mem_size);
|
||
if (r_list == NULL)
|
||
goto load_failed;
|
||
|
||
r_list->version = version;
|
||
r_list->flags = flags;
|
||
r_list->section = sec;
|
||
r_list->record_count = record_count;
|
||
r_list->records = (struct avr_property_record *) (&r_list [1]);
|
||
size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
|
||
|
||
/* Check that we understand the version number. There is only one
|
||
version number right now, anything else is an error. */
|
||
if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
|
||
goto load_failed;
|
||
|
||
rel = internal_relocs;
|
||
rel_end = rel + sec->reloc_count;
|
||
for (i = 0; i < record_count; ++i)
|
||
{
|
||
bfd_vma address;
|
||
|
||
/* Each entry is a 32-bit address, followed by a single byte type.
|
||
After that is the type specific data. We must take care to
|
||
ensure that we don't read beyond the end of the section data. */
|
||
if (size < 5)
|
||
goto load_failed;
|
||
|
||
r_list->records [i].section = NULL;
|
||
r_list->records [i].offset = 0;
|
||
|
||
if (rel)
|
||
{
|
||
/* The offset of the address within the .avr.prop section. */
|
||
size_t offset = ptr - contents;
|
||
|
||
while (rel < rel_end && rel->r_offset < offset)
|
||
++rel;
|
||
|
||
if (rel == rel_end)
|
||
rel = NULL;
|
||
else if (rel->r_offset == offset)
|
||
{
|
||
/* Find section and section offset. */
|
||
unsigned long r_symndx;
|
||
|
||
asection * rel_sec;
|
||
bfd_vma sec_offset;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
|
||
sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
|
||
+ rel->r_addend;
|
||
|
||
r_list->records [i].section = rel_sec;
|
||
r_list->records [i].offset = sec_offset;
|
||
}
|
||
}
|
||
|
||
address = *((uint32_t *) ptr);
|
||
ptr += 4;
|
||
size -= 4;
|
||
|
||
if (r_list->records [i].section == NULL)
|
||
{
|
||
/* Try to find section and offset from address. */
|
||
if (fs_data.section != NULL
|
||
&& !avr_is_section_for_address (abfd, fs_data.section,
|
||
address))
|
||
fs_data.section = NULL;
|
||
|
||
if (fs_data.section == NULL)
|
||
{
|
||
fs_data.address = address;
|
||
bfd_map_over_sections (abfd, avr_find_section_for_address,
|
||
&fs_data);
|
||
}
|
||
|
||
if (fs_data.section == NULL)
|
||
{
|
||
fprintf (stderr, "Failed to find matching section.\n");
|
||
goto load_failed;
|
||
}
|
||
|
||
r_list->records [i].section = fs_data.section;
|
||
r_list->records [i].offset
|
||
= address - bfd_get_section_vma (abfd, fs_data.section);
|
||
}
|
||
|
||
r_list->records [i].type = *((bfd_byte *) ptr);
|
||
ptr += 1;
|
||
size -= 1;
|
||
|
||
switch (r_list->records [i].type)
|
||
{
|
||
case RECORD_ORG:
|
||
/* Nothing else to load. */
|
||
break;
|
||
case RECORD_ORG_AND_FILL:
|
||
/* Just a 4-byte fill to load. */
|
||
if (size < 4)
|
||
goto load_failed;
|
||
r_list->records [i].data.org.fill = *((uint32_t *) ptr);
|
||
ptr += 4;
|
||
size -= 4;
|
||
break;
|
||
case RECORD_ALIGN:
|
||
/* Just a 4-byte alignment to load. */
|
||
if (size < 4)
|
||
goto load_failed;
|
||
r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
|
||
ptr += 4;
|
||
size -= 4;
|
||
/* Just initialise PRECEDING_DELETED field, this field is
|
||
used during linker relaxation. */
|
||
r_list->records [i].data.align.preceding_deleted = 0;
|
||
break;
|
||
case RECORD_ALIGN_AND_FILL:
|
||
/* A 4-byte alignment, and a 4-byte fill to load. */
|
||
if (size < 8)
|
||
goto load_failed;
|
||
r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
|
||
ptr += 4;
|
||
r_list->records [i].data.align.fill = *((uint32_t *) ptr);
|
||
ptr += 4;
|
||
size -= 8;
|
||
/* Just initialise PRECEDING_DELETED field, this field is
|
||
used during linker relaxation. */
|
||
r_list->records [i].data.align.preceding_deleted = 0;
|
||
break;
|
||
default:
|
||
goto load_failed;
|
||
}
|
||
}
|
||
|
||
free (contents);
|
||
if (elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
return r_list;
|
||
|
||
load_failed:
|
||
if (elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
free (contents);
|
||
free (r_list);
|
||
return NULL;
|
||
}
|
||
|
||
/* Load all of the property records from ABFD. See
|
||
AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */
|
||
|
||
struct avr_property_record_list *
|
||
avr_elf32_load_property_records (bfd *abfd)
|
||
{
|
||
asection *sec;
|
||
|
||
/* Find the '.avr.prop' section and load the contents into memory. */
|
||
sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
|
||
if (sec == NULL)
|
||
return NULL;
|
||
return avr_elf32_load_records_from_section (abfd, sec);
|
||
}
|
||
|
||
const char *
|
||
avr_elf32_property_record_name (struct avr_property_record *rec)
|
||
{
|
||
const char *str;
|
||
|
||
switch (rec->type)
|
||
{
|
||
case RECORD_ORG:
|
||
str = "ORG";
|
||
break;
|
||
case RECORD_ORG_AND_FILL:
|
||
str = "ORG+FILL";
|
||
break;
|
||
case RECORD_ALIGN:
|
||
str = "ALIGN";
|
||
break;
|
||
case RECORD_ALIGN_AND_FILL:
|
||
str = "ALIGN+FILL";
|
||
break;
|
||
default:
|
||
str = "unknown";
|
||
}
|
||
|
||
return str;
|
||
}
|
||
|
||
|
||
#define ELF_ARCH bfd_arch_avr
|
||
#define ELF_TARGET_ID AVR_ELF_DATA
|
||
#define ELF_MACHINE_CODE EM_AVR
|
||
#define ELF_MACHINE_ALT1 EM_AVR_OLD
|
||
#define ELF_MAXPAGESIZE 1
|
||
|
||
#define TARGET_LITTLE_SYM avr_elf32_vec
|
||
#define TARGET_LITTLE_NAME "elf32-avr"
|
||
|
||
#define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
|
||
|
||
#define elf_info_to_howto avr_info_to_howto_rela
|
||
#define elf_info_to_howto_rel NULL
|
||
#define elf_backend_relocate_section elf32_avr_relocate_section
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_rela_normal 1
|
||
#define elf_backend_final_write_processing \
|
||
bfd_elf_avr_final_write_processing
|
||
#define elf_backend_object_p elf32_avr_object_p
|
||
|
||
#define bfd_elf32_bfd_relax_section elf32_avr_relax_section
|
||
#define bfd_elf32_bfd_get_relocated_section_contents \
|
||
elf32_avr_get_relocated_section_contents
|
||
#define bfd_elf32_new_section_hook elf_avr_new_section_hook
|
||
|
||
#include "elf32-target.h"
|