binutils-gdb/gdb/m32r-tdep.c
Andrew Cagney 9e815ec299 2003-10-31 Andrew Cagney <cagney@redhat.com>
* avr-tdep.c (avr_frame_this_id): Do not call
	deprecated_inside_entry_file.
	* m68hc11-tdep.c (m68hc11_frame_this_id): Ditto.
	* m32r-tdep.c (m32r_frame_this_id): Ditto.
	* d10v-tdep.c (d10v_frame_this_id): Ditto.
	* arm-tdep.c (arm_prologue_this_id): Ditto.
	* alpha-tdep.c (alpha_heuristic_frame_this_id): Ditto.
2003-10-31 23:47:17 +00:00

983 lines
26 KiB
C

/* Target-dependent code for Renesas M32R, for GDB.
Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "trad-frame.h"
#include "dis-asm.h"
#include "gdb_assert.h"
struct gdbarch_tdep
{
/* gdbarch target dependent data here. Currently unused for M32R. */
};
/* m32r register names. */
enum
{
R0_REGNUM = 0,
R3_REGNUM = 3,
M32R_FP_REGNUM = 13,
LR_REGNUM = 14,
M32R_SP_REGNUM = 15,
PSW_REGNUM = 16,
M32R_PC_REGNUM = 21,
/* m32r calling convention. */
ARG1_REGNUM = R0_REGNUM,
ARGN_REGNUM = R3_REGNUM,
RET1_REGNUM = R0_REGNUM,
};
/* Local functions */
extern void _initialize_m32r_tdep (void);
static CORE_ADDR
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Align to the size of an instruction (so that they can safely be
pushed onto the stack. */
return sp & ~3;
}
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
and TYPE is the type (which is known to be struct, union or array).
The m32r returns anything less than 8 bytes in size in
registers. */
static int
m32r_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_LENGTH (type) > 8);
}
/* BREAKPOINT */
#define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
#define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
#define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
#define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
static int
m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
{
int val;
unsigned char *bp;
int bplen;
bplen = (addr & 3) ? 2 : 4;
/* Save the memory contents. */
val = target_read_memory (addr, contents_cache, bplen);
if (val != 0)
return val; /* return error */
/* Determine appropriate breakpoint contents and size for this address. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (((addr & 3) == 0)
&& ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
{
static unsigned char insn[] = M32R_BE_BREAKPOINT32;
bp = insn;
bplen = sizeof (insn);
}
else
{
static unsigned char insn[] = M32R_BE_BREAKPOINT16;
bp = insn;
bplen = sizeof (insn);
}
}
else
{ /* little-endian */
if (((addr & 3) == 0)
&& ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
{
static unsigned char insn[] = M32R_LE_BREAKPOINT32;
bp = insn;
bplen = sizeof (insn);
}
else
{
static unsigned char insn[] = M32R_LE_BREAKPOINT16;
bp = insn;
bplen = sizeof (insn);
}
}
/* Write the breakpoint. */
val = target_write_memory (addr, (char *) bp, bplen);
return val;
}
static int
m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
{
int val;
int bplen;
/* Determine appropriate breakpoint contents and size for this address. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (((addr & 3) == 0)
&& ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
{
static unsigned char insn[] = M32R_BE_BREAKPOINT32;
bplen = sizeof (insn);
}
else
{
static unsigned char insn[] = M32R_BE_BREAKPOINT16;
bplen = sizeof (insn);
}
}
else
{
/* little-endian */
if (((addr & 3) == 0)
&& ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
{
static unsigned char insn[] = M32R_BE_BREAKPOINT32;
bplen = sizeof (insn);
}
else
{
static unsigned char insn[] = M32R_BE_BREAKPOINT16;
bplen = sizeof (insn);
}
}
/* Write contents. */
val = target_write_memory (addr, contents_cache, bplen);
return val;
}
static const unsigned char *
m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
unsigned char *bp;
/* Determine appropriate breakpoint. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if ((*pcptr & 3) == 0)
{
static unsigned char insn[] = M32R_BE_BREAKPOINT32;
bp = insn;
*lenptr = sizeof (insn);
}
else
{
static unsigned char insn[] = M32R_BE_BREAKPOINT16;
bp = insn;
*lenptr = sizeof (insn);
}
}
else
{
if ((*pcptr & 3) == 0)
{
static unsigned char insn[] = M32R_LE_BREAKPOINT32;
bp = insn;
*lenptr = sizeof (insn);
}
else
{
static unsigned char insn[] = M32R_LE_BREAKPOINT16;
bp = insn;
*lenptr = sizeof (insn);
}
}
return bp;
}
char *m32r_register_names[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
"psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
"evb"
};
static int
m32r_num_regs (void)
{
return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0]));
}
static const char *
m32r_register_name (int reg_nr)
{
if (reg_nr < 0)
return NULL;
if (reg_nr >= m32r_num_regs ())
return NULL;
return m32r_register_names[reg_nr];
}
/* Return the GDB type object for the "standard" data type
of data in register N. */
static struct type *
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr == M32R_PC_REGNUM)
return builtin_type_void_func_ptr;
else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
return builtin_type_void_data_ptr;
else
return builtin_type_int32;
}
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format.
Things always get returned in RET1_REGNUM, RET2_REGNUM. */
static void
m32r_store_return_value (struct type *type, struct regcache *regcache,
const void *valbuf)
{
CORE_ADDR regval;
int len = TYPE_LENGTH (type);
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
if (len > 4)
{
regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
}
}
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
static CORE_ADDR
m32r_extract_struct_value_address (struct regcache *regcache)
{
ULONGEST addr;
regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
return addr;
}
/* This is required by skip_prologue. The results of decoding a prologue
should be cached because this thrashing is getting nuts. */
static void
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
CORE_ADDR *pl_endptr)
{
unsigned long framesize;
int insn;
int op1;
int maybe_one_more = 0;
CORE_ADDR after_prologue = 0;
CORE_ADDR after_stack_adjust = 0;
CORE_ADDR current_pc;
framesize = 0;
after_prologue = 0;
for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
{
insn = read_memory_unsigned_integer (current_pc, 2);
/* If this is a 32 bit instruction, we dont want to examine its
immediate data as though it were an instruction */
if (current_pc & 0x02)
{
/* Clear the parallel execution bit from 16 bit instruction */
if (maybe_one_more)
{
/* The last instruction was a branch, usually terminates
the series, but if this is a parallel instruction,
it may be a stack framing instruction */
if (!(insn & 0x8000))
{
/* nope, we are really done */
break;
}
}
/* decode this instruction further */
insn &= 0x7fff;
}
else
{
if (maybe_one_more)
break; /* This isnt the one more */
if (insn & 0x8000)
{
if (current_pc == scan_limit)
scan_limit += 2; /* extend the search */
current_pc += 2; /* skip the immediate data */
if (insn == 0x8faf) /* add3 sp, sp, xxxx */
/* add 16 bit sign-extended offset */
{
framesize +=
-((short) read_memory_unsigned_integer (current_pc, 2));
}
else
{
if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
&& read_memory_unsigned_integer (current_pc + 2,
2) == 0x0f24)
/* subtract 24 bit sign-extended negative-offset */
{
insn = read_memory_unsigned_integer (current_pc - 2, 4);
if (insn & 0x00800000) /* sign extend */
insn |= 0xff000000; /* negative */
else
insn &= 0x00ffffff; /* positive */
framesize += insn;
}
}
after_prologue = current_pc;
continue;
}
}
op1 = insn & 0xf000; /* isolate just the first nibble */
if ((insn & 0xf0ff) == 0x207f)
{ /* st reg, @-sp */
int regno;
framesize += 4;
regno = ((insn >> 8) & 0xf);
after_prologue = 0;
continue;
}
if ((insn >> 8) == 0x4f) /* addi sp, xx */
/* add 8 bit sign-extended offset */
{
int stack_adjust = (char) (insn & 0xff);
/* there are probably two of these stack adjustments:
1) A negative one in the prologue, and
2) A positive one in the epilogue.
We are only interested in the first one. */
if (stack_adjust < 0)
{
framesize -= stack_adjust;
after_prologue = 0;
/* A frameless function may have no "mv fp, sp".
In that case, this is the end of the prologue. */
after_stack_adjust = current_pc + 2;
}
continue;
}
if (insn == 0x1d8f)
{ /* mv fp, sp */
after_prologue = current_pc + 2;
break; /* end of stack adjustments */
}
/* Nop looks like a branch, continue explicitly */
if (insn == 0x7000)
{
after_prologue = current_pc + 2;
continue; /* nop occurs between pushes */
}
/* End of prolog if any of these are branch instructions */
if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
{
after_prologue = current_pc;
maybe_one_more = 1;
continue;
}
/* Some of the branch instructions are mixed with other types */
if (op1 == 0x1000)
{
int subop = insn & 0x0ff0;
if ((subop == 0x0ec0) || (subop == 0x0fc0))
{
after_prologue = current_pc;
maybe_one_more = 1;
continue; /* jmp , jl */
}
}
}
if (current_pc >= scan_limit)
{
if (pl_endptr)
{
if (after_stack_adjust != 0)
/* We did not find a "mv fp,sp", but we DID find
a stack_adjust. Is it safe to use that as the
end of the prologue? I just don't know. */
{
*pl_endptr = after_stack_adjust;
}
else
/* We reached the end of the loop without finding the end
of the prologue. No way to win -- we should report failure.
The way we do that is to return the original start_pc.
GDB will set a breakpoint at the start of the function (etc.) */
*pl_endptr = start_pc;
}
return;
}
if (after_prologue == 0)
after_prologue = current_pc;
if (pl_endptr)
*pl_endptr = after_prologue;
} /* decode_prologue */
/* Function: skip_prologue
Find end of function prologue */
#define DEFAULT_SEARCH_LIMIT 44
CORE_ADDR
m32r_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end;
struct symtab_and_line sal;
/* See what the symbol table says */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
sal = find_pc_line (func_addr, 0);
if (sal.line != 0 && sal.end <= func_end)
{
func_end = sal.end;
}
else
/* Either there's no line info, or the line after the prologue is after
the end of the function. In this case, there probably isn't a
prologue. */
{
func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
}
}
else
func_end = pc + DEFAULT_SEARCH_LIMIT;
decode_prologue (pc, func_end, &sal.end);
return sal.end;
}
struct m32r_unwind_cache
{
/* The previous frame's inner most stack address. Used as this
frame ID's stack_addr. */
CORE_ADDR prev_sp;
/* The frame's base, optionally used by the high-level debug info. */
CORE_ADDR base;
int size;
/* How far the SP and r13 (FP) have been offset from the start of
the stack frame (as defined by the previous frame's stack
pointer). */
LONGEST sp_offset;
LONGEST r13_offset;
int uses_frame;
/* Table indicating the location of each and every register. */
struct trad_frame_saved_reg *saved_regs;
};
/* Put here the code to store, into fi->saved_regs, the addresses of
the saved registers of frame described by FRAME_INFO. This
includes special registers such as pc and fp saved in special ways
in the stack frame. sp is even more special: the address we return
for it IS the sp for the next frame. */
static struct m32r_unwind_cache *
m32r_frame_unwind_cache (struct frame_info *next_frame,
void **this_prologue_cache)
{
CORE_ADDR pc;
ULONGEST prev_sp;
ULONGEST this_base;
unsigned long op;
int i;
struct m32r_unwind_cache *info;
if ((*this_prologue_cache))
return (*this_prologue_cache);
info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
(*this_prologue_cache) = info;
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
info->size = 0;
info->sp_offset = 0;
info->uses_frame = 0;
for (pc = frame_func_unwind (next_frame);
pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
{
if ((pc & 2) == 0)
{
op = get_frame_memory_unsigned (next_frame, pc, 4);
if ((op & 0x80000000) == 0x80000000)
{
/* 32-bit instruction */
if ((op & 0xffff0000) == 0x8faf0000)
{
/* add3 sp,sp,xxxx */
short n = op & 0xffff;
info->sp_offset += n;
}
else if (((op >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
&& get_frame_memory_unsigned (next_frame, pc + 4,
2) == 0x0f24)
{
unsigned long n = op & 0xffffff;
info->sp_offset += n;
pc += 2;
}
else
break;
pc += 2;
continue;
}
}
/* 16-bit instructions */
op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
if ((op & 0xf0ff) == 0x207f)
{
/* st rn, @-sp */
int regno = ((op >> 8) & 0xf);
info->sp_offset -= 4;
info->saved_regs[regno].addr = info->sp_offset;
}
else if ((op & 0xff00) == 0x4f00)
{
/* addi sp, xx */
int n = (char) (op & 0xff);
info->sp_offset += n;
}
else if (op == 0x1d8f)
{
/* mv fp, sp */
info->uses_frame = 1;
info->r13_offset = info->sp_offset;
}
else if (op == 0x7000)
/* nop */
continue;
else
break;
}
info->size = -info->sp_offset;
/* Compute the previous frame's stack pointer (which is also the
frame's ID's stack address), and this frame's base pointer. */
if (info->uses_frame)
{
/* The SP was moved to the FP. This indicates that a new frame
was created. Get THIS frame's FP value by unwinding it from
the next frame. */
this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
/* The FP points at the last saved register. Adjust the FP back
to before the first saved register giving the SP. */
prev_sp = this_base + info->size;
}
else
{
/* Assume that the FP is this frame's SP but with that pushed
stack space added back. */
this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
prev_sp = this_base + info->size;
}
/* Convert that SP/BASE into real addresses. */
info->prev_sp = prev_sp;
info->base = this_base;
/* Adjust all the saved registers so that they contain addresses and
not offsets. */
for (i = 0; i < NUM_REGS - 1; i++)
if (trad_frame_addr_p (info->saved_regs, i))
info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
/* The call instruction moves the caller's PC in the callee's LR.
Since this is an unwind, do the reverse. Copy the location of LR
into PC (the address / regnum) so that a request for PC will be
converted into a request for the LR. */
info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
/* The previous frame's SP needed to be computed. Save the computed
value. */
trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
return info;
}
static CORE_ADDR
m32r_read_pc (ptid_t ptid)
{
ptid_t save_ptid;
ULONGEST pc;
save_ptid = inferior_ptid;
inferior_ptid = ptid;
regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
inferior_ptid = save_ptid;
return pc;
}
static void
m32r_write_pc (CORE_ADDR val, ptid_t ptid)
{
ptid_t save_ptid;
save_ptid = inferior_ptid;
inferior_ptid = ptid;
write_register (M32R_PC_REGNUM, val);
inferior_ptid = save_ptid;
}
static CORE_ADDR
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
}
static CORE_ADDR
m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
struct value **args, CORE_ADDR sp, int struct_return,
CORE_ADDR struct_addr)
{
int stack_offset, stack_alloc;
int argreg = ARG1_REGNUM;
int argnum;
struct type *type;
enum type_code typecode;
CORE_ADDR regval;
char *val;
char valbuf[MAX_REGISTER_SIZE];
int len;
int odd_sized_struct;
/* first force sp to a 4-byte alignment */
sp = sp & ~3;
/* Set the return address. For the m32r, the return breakpoint is
always at BP_ADDR. */
regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
/* If STRUCT_RETURN is true, then the struct return address (in
STRUCT_ADDR) will consume the first argument-passing register.
Both adjust the register count and store that value. */
if (struct_return)
{
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
argreg++;
}
/* Now make sure there's space on the stack */
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
sp -= stack_alloc; /* make room on stack for args */
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
{
type = VALUE_TYPE (args[argnum]);
typecode = TYPE_CODE (type);
len = TYPE_LENGTH (type);
memset (valbuf, 0, sizeof (valbuf));
/* Passes structures that do not fit in 2 registers by reference. */
if (len > 8
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
{
store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
typecode = TYPE_CODE_PTR;
len = 4;
val = valbuf;
}
else if (len < 4)
{
/* value gets right-justified in the register or stack word */
memcpy (valbuf + (register_size (gdbarch, argreg) - len),
(char *) VALUE_CONTENTS (args[argnum]), len);
val = valbuf;
}
else
val = (char *) VALUE_CONTENTS (args[argnum]);
while (len > 0)
{
if (argreg > ARGN_REGNUM)
{
/* must go on the stack */
write_memory (sp + stack_offset, val, 4);
stack_offset += 4;
}
else if (argreg <= ARGN_REGNUM)
{
/* there's room in a register */
regval =
extract_unsigned_integer (val,
register_size (gdbarch, argreg));
regcache_cooked_write_unsigned (regcache, argreg++, regval);
}
/* Store the value 4 bytes at a time. This means that things
larger than 4 bytes may go partly in registers and partly
on the stack. */
len -= register_size (gdbarch, argreg);
val += register_size (gdbarch, argreg);
}
}
/* Finally, update the SP register. */
regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
return sp;
}
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
static void
m32r_extract_return_value (struct type *type, struct regcache *regcache,
void *dst)
{
bfd_byte *valbuf = dst;
int len = TYPE_LENGTH (type);
ULONGEST tmp;
/* By using store_unsigned_integer we avoid having to do
anything special for small big-endian values. */
regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
/* Ignore return values more than 8 bytes in size because the m32r
returns anything more than 8 bytes in the stack. */
if (len > 4)
{
regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
store_unsigned_integer (valbuf + len - 4, 4, tmp);
}
}
static CORE_ADDR
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
}
/* Given a GDB frame, determine the address of the calling function's
frame. This will be used to create a new GDB frame struct. */
static void
m32r_frame_this_id (struct frame_info *next_frame,
void **this_prologue_cache, struct frame_id *this_id)
{
struct m32r_unwind_cache *info
= m32r_frame_unwind_cache (next_frame, this_prologue_cache);
CORE_ADDR base;
CORE_ADDR func;
struct minimal_symbol *msym_stack;
struct frame_id id;
/* The FUNC is easy. */
func = frame_func_unwind (next_frame);
/* Check if the stack is empty. */
msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
return;
/* Hopefully the prologue analysis either correctly determined the
frame's base (which is the SP from the previous frame), or set
that base to "NULL". */
base = info->prev_sp;
if (base == 0)
return;
id = frame_id_build (base, func);
/* Check that we're not going round in circles with the same frame
ID (but avoid applying the test to sentinel frames which do go
round in circles). Can't use frame_id_eq() as that doesn't yet
compare the frame's PC value. */
if (frame_relative_level (next_frame) >= 0
&& get_frame_type (next_frame) != DUMMY_FRAME
&& frame_id_eq (get_frame_id (next_frame), id))
return;
(*this_id) = id;
}
static void
m32r_frame_prev_register (struct frame_info *next_frame,
void **this_prologue_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *bufferp)
{
struct m32r_unwind_cache *info
= m32r_frame_unwind_cache (next_frame, this_prologue_cache);
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, bufferp);
}
static const struct frame_unwind m32r_frame_unwind = {
NORMAL_FRAME,
m32r_frame_this_id,
m32r_frame_prev_register
};
static const struct frame_unwind *
m32r_frame_sniffer (struct frame_info *next_frame)
{
return &m32r_frame_unwind;
}
static CORE_ADDR
m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
struct m32r_unwind_cache *info
= m32r_frame_unwind_cache (next_frame, this_cache);
return info->base;
}
static const struct frame_base m32r_frame_base = {
&m32r_frame_unwind,
m32r_frame_base_address,
m32r_frame_base_address,
m32r_frame_base_address
};
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
dummy frame. The frame ID's base needs to match the TOS value
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
breakpoint. */
static struct frame_id
m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
frame_pc_unwind (next_frame));
}
static gdbarch_init_ftype m32r_gdbarch_init;
static struct gdbarch *
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
/* If there is already a candidate, use it. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
/* Allocate space for the new architecture. */
tdep = XMALLOC (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
set_gdbarch_read_pc (gdbarch, m32r_read_pc);
set_gdbarch_write_pc (gdbarch, m32r_write_pc);
set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
set_gdbarch_num_regs (gdbarch, m32r_num_regs ());
set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
set_gdbarch_register_name (gdbarch, m32r_register_name);
set_gdbarch_register_type (gdbarch, m32r_register_type);
set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value);
set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
set_gdbarch_store_return_value (gdbarch, m32r_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch,
m32r_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention);
set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_decr_pc_after_break (gdbarch, 0);
set_gdbarch_function_start_offset (gdbarch, 0);
set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
set_gdbarch_memory_insert_breakpoint (gdbarch,
m32r_memory_insert_breakpoint);
set_gdbarch_memory_remove_breakpoint (gdbarch,
m32r_memory_remove_breakpoint);
set_gdbarch_frame_args_skip (gdbarch, 0);
set_gdbarch_frameless_function_invocation (gdbarch,
frameless_look_for_prologue);
set_gdbarch_frame_align (gdbarch, m32r_frame_align);
frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
frame_base_set_default (gdbarch, &m32r_frame_base);
/* Methods for saving / extracting a dummy frame's ID. The ID's
stack address must match the SP value returned by
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
/* Return the unwound PC value. */
set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
set_gdbarch_print_insn (gdbarch, print_insn_m32r);
return gdbarch;
}
void
_initialize_m32r_tdep (void)
{
register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
}