6207416c57
(ppc_linux_vmx_regset_sections): New structure. (ppc_linux_fp_regset_sections): New structure. (ppc_linux_init_abi): Select core-file regset based on target features.
1178 lines
38 KiB
C
1178 lines
38 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "regcache.h"
|
|
#include "value.h"
|
|
#include "osabi.h"
|
|
#include "regset.h"
|
|
#include "solib-svr4.h"
|
|
#include "ppc-tdep.h"
|
|
#include "ppc-linux-tdep.h"
|
|
#include "trad-frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "tramp-frame.h"
|
|
|
|
#include "features/rs6000/powerpc-32l.c"
|
|
#include "features/rs6000/powerpc-altivec32l.c"
|
|
#include "features/rs6000/powerpc-vsx32l.c"
|
|
#include "features/rs6000/powerpc-64l.c"
|
|
#include "features/rs6000/powerpc-altivec64l.c"
|
|
#include "features/rs6000/powerpc-vsx64l.c"
|
|
#include "features/rs6000/powerpc-e500l.c"
|
|
|
|
|
|
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
|
|
in much the same fashion as memory_remove_breakpoint in mem-break.c,
|
|
but is careful not to write back the previous contents if the code
|
|
in question has changed in between inserting the breakpoint and
|
|
removing it.
|
|
|
|
Here is the problem that we're trying to solve...
|
|
|
|
Once upon a time, before introducing this function to remove
|
|
breakpoints from the inferior, setting a breakpoint on a shared
|
|
library function prior to running the program would not work
|
|
properly. In order to understand the problem, it is first
|
|
necessary to understand a little bit about dynamic linking on
|
|
this platform.
|
|
|
|
A call to a shared library function is accomplished via a bl
|
|
(branch-and-link) instruction whose branch target is an entry
|
|
in the procedure linkage table (PLT). The PLT in the object
|
|
file is uninitialized. To gdb, prior to running the program, the
|
|
entries in the PLT are all zeros.
|
|
|
|
Once the program starts running, the shared libraries are loaded
|
|
and the procedure linkage table is initialized, but the entries in
|
|
the table are not (necessarily) resolved. Once a function is
|
|
actually called, the code in the PLT is hit and the function is
|
|
resolved. In order to better illustrate this, an example is in
|
|
order; the following example is from the gdb testsuite.
|
|
|
|
We start the program shmain.
|
|
|
|
[kev@arroyo testsuite]$ ../gdb gdb.base/shmain
|
|
[...]
|
|
|
|
We place two breakpoints, one on shr1 and the other on main.
|
|
|
|
(gdb) b shr1
|
|
Breakpoint 1 at 0x100409d4
|
|
(gdb) b main
|
|
Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
|
|
|
|
Examine the instruction (and the immediatly following instruction)
|
|
upon which the breakpoint was placed. Note that the PLT entry
|
|
for shr1 contains zeros.
|
|
|
|
(gdb) x/2i 0x100409d4
|
|
0x100409d4 <shr1>: .long 0x0
|
|
0x100409d8 <shr1+4>: .long 0x0
|
|
|
|
Now run 'til main.
|
|
|
|
(gdb) r
|
|
Starting program: gdb.base/shmain
|
|
Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
|
|
|
|
Breakpoint 2, main ()
|
|
at gdb.base/shmain.c:44
|
|
44 g = 1;
|
|
|
|
Examine the PLT again. Note that the loading of the shared
|
|
library has initialized the PLT to code which loads a constant
|
|
(which I think is an index into the GOT) into r11 and then
|
|
branchs a short distance to the code which actually does the
|
|
resolving.
|
|
|
|
(gdb) x/2i 0x100409d4
|
|
0x100409d4 <shr1>: li r11,4
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
|
(gdb) c
|
|
Continuing.
|
|
|
|
Breakpoint 1, shr1 (x=1)
|
|
at gdb.base/shr1.c:19
|
|
19 l = 1;
|
|
|
|
Now we've hit the breakpoint at shr1. (The breakpoint was
|
|
reset from the PLT entry to the actual shr1 function after the
|
|
shared library was loaded.) Note that the PLT entry has been
|
|
resolved to contain a branch that takes us directly to shr1.
|
|
(The real one, not the PLT entry.)
|
|
|
|
(gdb) x/2i 0x100409d4
|
|
0x100409d4 <shr1>: b 0xffaf76c <shr1>
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
|
|
|
The thing to note here is that the PLT entry for shr1 has been
|
|
changed twice.
|
|
|
|
Now the problem should be obvious. GDB places a breakpoint (a
|
|
trap instruction) on the zero value of the PLT entry for shr1.
|
|
Later on, after the shared library had been loaded and the PLT
|
|
initialized, GDB gets a signal indicating this fact and attempts
|
|
(as it always does when it stops) to remove all the breakpoints.
|
|
|
|
The breakpoint removal was causing the former contents (a zero
|
|
word) to be written back to the now initialized PLT entry thus
|
|
destroying a portion of the initialization that had occurred only a
|
|
short time ago. When execution continued, the zero word would be
|
|
executed as an instruction an an illegal instruction trap was
|
|
generated instead. (0 is not a legal instruction.)
|
|
|
|
The fix for this problem was fairly straightforward. The function
|
|
memory_remove_breakpoint from mem-break.c was copied to this file,
|
|
modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
|
|
In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
|
|
function.
|
|
|
|
The differences between ppc_linux_memory_remove_breakpoint () and
|
|
memory_remove_breakpoint () are minor. All that the former does
|
|
that the latter does not is check to make sure that the breakpoint
|
|
location actually contains a breakpoint (trap instruction) prior
|
|
to attempting to write back the old contents. If it does contain
|
|
a trap instruction, we allow the old contents to be written back.
|
|
Otherwise, we silently do nothing.
|
|
|
|
The big question is whether memory_remove_breakpoint () should be
|
|
changed to have the same functionality. The downside is that more
|
|
traffic is generated for remote targets since we'll have an extra
|
|
fetch of a memory word each time a breakpoint is removed.
|
|
|
|
For the time being, we'll leave this self-modifying-code-friendly
|
|
version in ppc-linux-tdep.c, but it ought to be migrated somewhere
|
|
else in the event that some other platform has similar needs with
|
|
regard to removing breakpoints in some potentially self modifying
|
|
code. */
|
|
int
|
|
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
|
const unsigned char *bp;
|
|
int val;
|
|
int bplen;
|
|
gdb_byte old_contents[BREAKPOINT_MAX];
|
|
struct cleanup *cleanup;
|
|
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
|
bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
|
|
if (bp == NULL)
|
|
error (_("Software breakpoints not implemented for this target."));
|
|
|
|
/* Make sure we see the memory breakpoints. */
|
|
cleanup = make_show_memory_breakpoints_cleanup (1);
|
|
val = target_read_memory (addr, old_contents, bplen);
|
|
|
|
/* If our breakpoint is no longer at the address, this means that the
|
|
program modified the code on us, so it is wrong to put back the
|
|
old value */
|
|
if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
|
|
val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
|
|
|
|
do_cleanups (cleanup);
|
|
return val;
|
|
}
|
|
|
|
/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
|
|
than the 32 bit SYSV R4 ABI structure return convention - all
|
|
structures, no matter their size, are put in memory. Vectors,
|
|
which were added later, do get returned in a register though. */
|
|
|
|
static enum return_value_convention
|
|
ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION)
|
|
&& !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
|
|
&& TYPE_VECTOR (valtype)))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else
|
|
return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
|
|
readbuf, writebuf);
|
|
}
|
|
|
|
/* Macros for matching instructions. Note that, since all the
|
|
operands are masked off before they're or-ed into the instruction,
|
|
you can use -1 to make masks. */
|
|
|
|
#define insn_d(opcd, rts, ra, d) \
|
|
((((opcd) & 0x3f) << 26) \
|
|
| (((rts) & 0x1f) << 21) \
|
|
| (((ra) & 0x1f) << 16) \
|
|
| ((d) & 0xffff))
|
|
|
|
#define insn_ds(opcd, rts, ra, d, xo) \
|
|
((((opcd) & 0x3f) << 26) \
|
|
| (((rts) & 0x1f) << 21) \
|
|
| (((ra) & 0x1f) << 16) \
|
|
| ((d) & 0xfffc) \
|
|
| ((xo) & 0x3))
|
|
|
|
#define insn_xfx(opcd, rts, spr, xo) \
|
|
((((opcd) & 0x3f) << 26) \
|
|
| (((rts) & 0x1f) << 21) \
|
|
| (((spr) & 0x1f) << 16) \
|
|
| (((spr) & 0x3e0) << 6) \
|
|
| (((xo) & 0x3ff) << 1))
|
|
|
|
/* Read a PPC instruction from memory. PPC instructions are always
|
|
big-endian, no matter what endianness the program is running in, so
|
|
we can't use read_memory_integer or one of its friends here. */
|
|
static unsigned int
|
|
read_insn (CORE_ADDR pc)
|
|
{
|
|
unsigned char buf[4];
|
|
|
|
read_memory (pc, buf, 4);
|
|
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
|
|
}
|
|
|
|
|
|
/* An instruction to match. */
|
|
struct insn_pattern
|
|
{
|
|
unsigned int mask; /* mask the insn with this... */
|
|
unsigned int data; /* ...and see if it matches this. */
|
|
int optional; /* If non-zero, this insn may be absent. */
|
|
};
|
|
|
|
/* Return non-zero if the instructions at PC match the series
|
|
described in PATTERN, or zero otherwise. PATTERN is an array of
|
|
'struct insn_pattern' objects, terminated by an entry whose mask is
|
|
zero.
|
|
|
|
When the match is successful, fill INSN[i] with what PATTERN[i]
|
|
matched. If PATTERN[i] is optional, and the instruction wasn't
|
|
present, set INSN[i] to 0 (which is not a valid PPC instruction).
|
|
INSN should have as many elements as PATTERN. Note that, if
|
|
PATTERN contains optional instructions which aren't present in
|
|
memory, then INSN will have holes, so INSN[i] isn't necessarily the
|
|
i'th instruction in memory. */
|
|
static int
|
|
insns_match_pattern (CORE_ADDR pc,
|
|
struct insn_pattern *pattern,
|
|
unsigned int *insn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; pattern[i].mask; i++)
|
|
{
|
|
insn[i] = read_insn (pc);
|
|
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
|
pc += 4;
|
|
else if (pattern[i].optional)
|
|
insn[i] = 0;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Return the 'd' field of the d-form instruction INSN, properly
|
|
sign-extended. */
|
|
static CORE_ADDR
|
|
insn_d_field (unsigned int insn)
|
|
{
|
|
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
|
|
}
|
|
|
|
|
|
/* Return the 'ds' field of the ds-form instruction INSN, with the two
|
|
zero bits concatenated at the right, and properly
|
|
sign-extended. */
|
|
static CORE_ADDR
|
|
insn_ds_field (unsigned int insn)
|
|
{
|
|
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
|
|
}
|
|
|
|
|
|
/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
|
|
descriptor, return the descriptor's entry point. */
|
|
static CORE_ADDR
|
|
ppc64_desc_entry_point (CORE_ADDR desc)
|
|
{
|
|
/* The first word of the descriptor is the entry point. */
|
|
return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
|
|
}
|
|
|
|
|
|
/* Pattern for the standard linkage function. These are built by
|
|
build_plt_stub in elf64-ppc.c, whose GLINK argument is always
|
|
zero. */
|
|
static struct insn_pattern ppc64_standard_linkage1[] =
|
|
{
|
|
/* addis r12, r2, <any> */
|
|
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
|
|
|
|
/* std r2, 40(r1) */
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
|
|
|
/* ld r11, <any>(r12) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
|
|
|
/* addis r12, r12, 1 <optional> */
|
|
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
|
|
|
|
/* ld r2, <any>(r12) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
|
|
|
|
/* addis r12, r12, 1 <optional> */
|
|
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
|
|
|
|
/* mtctr r11 */
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
|
|
|
|
/* ld r11, <any>(r12) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
|
|
|
/* bctr */
|
|
{ -1, 0x4e800420, 0 },
|
|
|
|
{ 0, 0, 0 }
|
|
};
|
|
#define PPC64_STANDARD_LINKAGE1_LEN \
|
|
(sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
|
|
|
|
static struct insn_pattern ppc64_standard_linkage2[] =
|
|
{
|
|
/* addis r12, r2, <any> */
|
|
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
|
|
|
|
/* std r2, 40(r1) */
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
|
|
|
/* ld r11, <any>(r12) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
|
|
|
/* addi r12, r12, <any> <optional> */
|
|
{ insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
|
|
|
|
/* mtctr r11 */
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
|
|
|
|
/* ld r2, <any>(r12) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
|
|
|
|
/* ld r11, <any>(r12) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
|
|
|
/* bctr */
|
|
{ -1, 0x4e800420, 0 },
|
|
|
|
{ 0, 0, 0 }
|
|
};
|
|
#define PPC64_STANDARD_LINKAGE2_LEN \
|
|
(sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
|
|
|
|
static struct insn_pattern ppc64_standard_linkage3[] =
|
|
{
|
|
/* std r2, 40(r1) */
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
|
|
|
/* ld r11, <any>(r2) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
|
|
|
|
/* addi r2, r2, <any> <optional> */
|
|
{ insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
|
|
|
|
/* mtctr r11 */
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
|
|
|
|
/* ld r11, <any>(r2) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
|
|
|
|
/* ld r2, <any>(r2) */
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
|
|
|
|
/* bctr */
|
|
{ -1, 0x4e800420, 0 },
|
|
|
|
{ 0, 0, 0 }
|
|
};
|
|
#define PPC64_STANDARD_LINKAGE3_LEN \
|
|
(sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
|
|
|
|
|
|
/* When the dynamic linker is doing lazy symbol resolution, the first
|
|
call to a function in another object will go like this:
|
|
|
|
- The user's function calls the linkage function:
|
|
|
|
100007c4: 4b ff fc d5 bl 10000498
|
|
100007c8: e8 41 00 28 ld r2,40(r1)
|
|
|
|
- The linkage function loads the entry point (and other stuff) from
|
|
the function descriptor in the PLT, and jumps to it:
|
|
|
|
10000498: 3d 82 00 00 addis r12,r2,0
|
|
1000049c: f8 41 00 28 std r2,40(r1)
|
|
100004a0: e9 6c 80 98 ld r11,-32616(r12)
|
|
100004a4: e8 4c 80 a0 ld r2,-32608(r12)
|
|
100004a8: 7d 69 03 a6 mtctr r11
|
|
100004ac: e9 6c 80 a8 ld r11,-32600(r12)
|
|
100004b0: 4e 80 04 20 bctr
|
|
|
|
- But since this is the first time that PLT entry has been used, it
|
|
sends control to its glink entry. That loads the number of the
|
|
PLT entry and jumps to the common glink0 code:
|
|
|
|
10000c98: 38 00 00 00 li r0,0
|
|
10000c9c: 4b ff ff dc b 10000c78
|
|
|
|
- The common glink0 code then transfers control to the dynamic
|
|
linker's fixup code:
|
|
|
|
10000c78: e8 41 00 28 ld r2,40(r1)
|
|
10000c7c: 3d 82 00 00 addis r12,r2,0
|
|
10000c80: e9 6c 80 80 ld r11,-32640(r12)
|
|
10000c84: e8 4c 80 88 ld r2,-32632(r12)
|
|
10000c88: 7d 69 03 a6 mtctr r11
|
|
10000c8c: e9 6c 80 90 ld r11,-32624(r12)
|
|
10000c90: 4e 80 04 20 bctr
|
|
|
|
Eventually, this code will figure out how to skip all of this,
|
|
including the dynamic linker. At the moment, we just get through
|
|
the linkage function. */
|
|
|
|
/* If the current thread is about to execute a series of instructions
|
|
at PC matching the ppc64_standard_linkage pattern, and INSN is the result
|
|
from that pattern match, return the code address to which the
|
|
standard linkage function will send them. (This doesn't deal with
|
|
dynamic linker lazy symbol resolution stubs.) */
|
|
static CORE_ADDR
|
|
ppc64_standard_linkage1_target (struct frame_info *frame,
|
|
CORE_ADDR pc, unsigned int *insn)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
|
|
|
/* The address of the function descriptor this linkage function
|
|
references. */
|
|
CORE_ADDR desc
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
|
tdep->ppc_gp0_regnum + 2)
|
|
+ (insn_d_field (insn[0]) << 16)
|
|
+ insn_ds_field (insn[2]));
|
|
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
|
return ppc64_desc_entry_point (desc);
|
|
}
|
|
|
|
static struct core_regset_section ppc_linux_vsx_regset_sections[] =
|
|
{
|
|
{ ".reg", 268 },
|
|
{ ".reg2", 264 },
|
|
{ ".reg-ppc-vmx", 544 },
|
|
{ ".reg-ppc-vsx", 256 },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section ppc_linux_vmx_regset_sections[] =
|
|
{
|
|
{ ".reg", 268 },
|
|
{ ".reg2", 264 },
|
|
{ ".reg-ppc-vmx", 544 },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section ppc_linux_fp_regset_sections[] =
|
|
{
|
|
{ ".reg", 268 },
|
|
{ ".reg2", 264 },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static CORE_ADDR
|
|
ppc64_standard_linkage2_target (struct frame_info *frame,
|
|
CORE_ADDR pc, unsigned int *insn)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
|
|
|
/* The address of the function descriptor this linkage function
|
|
references. */
|
|
CORE_ADDR desc
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
|
tdep->ppc_gp0_regnum + 2)
|
|
+ (insn_d_field (insn[0]) << 16)
|
|
+ insn_ds_field (insn[2]));
|
|
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
|
return ppc64_desc_entry_point (desc);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
ppc64_standard_linkage3_target (struct frame_info *frame,
|
|
CORE_ADDR pc, unsigned int *insn)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
|
|
|
/* The address of the function descriptor this linkage function
|
|
references. */
|
|
CORE_ADDR desc
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
|
tdep->ppc_gp0_regnum + 2)
|
|
+ insn_ds_field (insn[1]));
|
|
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
|
return ppc64_desc_entry_point (desc);
|
|
}
|
|
|
|
|
|
/* Given that we've begun executing a call trampoline at PC, return
|
|
the entry point of the function the trampoline will go to. */
|
|
static CORE_ADDR
|
|
ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
|
|
unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
|
|
unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
|
|
CORE_ADDR target;
|
|
|
|
if (insns_match_pattern (pc, ppc64_standard_linkage1,
|
|
ppc64_standard_linkage1_insn))
|
|
pc = ppc64_standard_linkage1_target (frame, pc,
|
|
ppc64_standard_linkage1_insn);
|
|
else if (insns_match_pattern (pc, ppc64_standard_linkage2,
|
|
ppc64_standard_linkage2_insn))
|
|
pc = ppc64_standard_linkage2_target (frame, pc,
|
|
ppc64_standard_linkage2_insn);
|
|
else if (insns_match_pattern (pc, ppc64_standard_linkage3,
|
|
ppc64_standard_linkage3_insn))
|
|
pc = ppc64_standard_linkage3_target (frame, pc,
|
|
ppc64_standard_linkage3_insn);
|
|
else
|
|
return 0;
|
|
|
|
/* The PLT descriptor will either point to the already resolved target
|
|
address, or else to a glink stub. As the latter carry synthetic @plt
|
|
symbols, find_solib_trampoline_target should be able to resolve them. */
|
|
target = find_solib_trampoline_target (frame, pc);
|
|
return target? target : pc;
|
|
}
|
|
|
|
|
|
/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
|
|
GNU/Linux.
|
|
|
|
Usually a function pointer's representation is simply the address
|
|
of the function. On GNU/Linux on the PowerPC however, a function
|
|
pointer may be a pointer to a function descriptor.
|
|
|
|
For PPC64, a function descriptor is a TOC entry, in a data section,
|
|
which contains three words: the first word is the address of the
|
|
function, the second word is the TOC pointer (r2), and the third word
|
|
is the static chain value.
|
|
|
|
Throughout GDB it is currently assumed that a function pointer contains
|
|
the address of the function, which is not easy to fix. In addition, the
|
|
conversion of a function address to a function pointer would
|
|
require allocation of a TOC entry in the inferior's memory space,
|
|
with all its drawbacks. To be able to call C++ virtual methods in
|
|
the inferior (which are called via function pointers),
|
|
find_function_addr uses this function to get the function address
|
|
from a function pointer.
|
|
|
|
If ADDR points at what is clearly a function descriptor, transform
|
|
it into the address of the corresponding function, if needed. Be
|
|
conservative, otherwise GDB will do the transformation on any
|
|
random addresses such as occur when there is no symbol table. */
|
|
|
|
static CORE_ADDR
|
|
ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
|
CORE_ADDR addr,
|
|
struct target_ops *targ)
|
|
{
|
|
struct section_table *s = target_section_by_addr (targ, addr);
|
|
|
|
/* Check if ADDR points to a function descriptor. */
|
|
if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
|
|
{
|
|
/* There may be relocations that need to be applied to the .opd
|
|
section. Unfortunately, this function may be called at a time
|
|
where these relocations have not yet been performed -- this can
|
|
happen for example shortly after a library has been loaded with
|
|
dlopen, but ld.so has not yet applied the relocations.
|
|
|
|
To cope with both the case where the relocation has been applied,
|
|
and the case where it has not yet been applied, we do *not* read
|
|
the (maybe) relocated value from target memory, but we instead
|
|
read the non-relocated value from the BFD, and apply the relocation
|
|
offset manually.
|
|
|
|
This makes the assumption that all .opd entries are always relocated
|
|
by the same offset the section itself was relocated. This should
|
|
always be the case for GNU/Linux executables and shared libraries.
|
|
Note that other kind of object files (e.g. those added via
|
|
add-symbol-files) will currently never end up here anyway, as this
|
|
function accesses *target* sections only; only the main exec and
|
|
shared libraries are ever added to the target. */
|
|
|
|
gdb_byte buf[8];
|
|
int res;
|
|
|
|
res = bfd_get_section_contents (s->bfd, s->the_bfd_section,
|
|
&buf, addr - s->addr, 8);
|
|
if (res != 0)
|
|
return extract_unsigned_integer (buf, 8)
|
|
- bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* Wrappers to handle Linux-only registers. */
|
|
|
|
static void
|
|
ppc_linux_supply_gregset (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs, size_t len)
|
|
{
|
|
const struct ppc_reg_offsets *offsets = regset->descr;
|
|
|
|
ppc_supply_gregset (regset, regcache, regnum, gregs, len);
|
|
|
|
if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
|
|
{
|
|
/* "orig_r3" is stored 2 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
|
|
ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
|
|
offsets->pc_offset + 2 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
|
|
/* "trap" is stored 8 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
|
|
ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
|
|
offsets->pc_offset + 8 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ppc_linux_collect_gregset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs, size_t len)
|
|
{
|
|
const struct ppc_reg_offsets *offsets = regset->descr;
|
|
|
|
/* Clear areas in the linux gregset not written elsewhere. */
|
|
if (regnum == -1)
|
|
memset (gregs, 0, len);
|
|
|
|
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
|
|
|
|
if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
|
|
{
|
|
/* "orig_r3" is stored 2 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
|
|
ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
|
|
offsets->pc_offset + 2 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
|
|
/* "trap" is stored 8 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
|
|
ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
|
|
offsets->pc_offset + 8 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
}
|
|
}
|
|
|
|
/* Regset descriptions. */
|
|
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
|
|
{
|
|
/* General-purpose registers. */
|
|
/* .r0_offset = */ 0,
|
|
/* .gpr_size = */ 4,
|
|
/* .xr_size = */ 4,
|
|
/* .pc_offset = */ 128,
|
|
/* .ps_offset = */ 132,
|
|
/* .cr_offset = */ 152,
|
|
/* .lr_offset = */ 144,
|
|
/* .ctr_offset = */ 140,
|
|
/* .xer_offset = */ 148,
|
|
/* .mq_offset = */ 156,
|
|
|
|
/* Floating-point registers. */
|
|
/* .f0_offset = */ 0,
|
|
/* .fpscr_offset = */ 256,
|
|
/* .fpscr_size = */ 8,
|
|
|
|
/* AltiVec registers. */
|
|
/* .vr0_offset = */ 0,
|
|
/* .vscr_offset = */ 512 + 12,
|
|
/* .vrsave_offset = */ 528
|
|
};
|
|
|
|
static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
|
|
{
|
|
/* General-purpose registers. */
|
|
/* .r0_offset = */ 0,
|
|
/* .gpr_size = */ 8,
|
|
/* .xr_size = */ 8,
|
|
/* .pc_offset = */ 256,
|
|
/* .ps_offset = */ 264,
|
|
/* .cr_offset = */ 304,
|
|
/* .lr_offset = */ 288,
|
|
/* .ctr_offset = */ 280,
|
|
/* .xer_offset = */ 296,
|
|
/* .mq_offset = */ 312,
|
|
|
|
/* Floating-point registers. */
|
|
/* .f0_offset = */ 0,
|
|
/* .fpscr_offset = */ 256,
|
|
/* .fpscr_size = */ 8,
|
|
|
|
/* AltiVec registers. */
|
|
/* .vr0_offset = */ 0,
|
|
/* .vscr_offset = */ 512 + 12,
|
|
/* .vrsave_offset = */ 528
|
|
};
|
|
|
|
static const struct regset ppc32_linux_gregset = {
|
|
&ppc32_linux_reg_offsets,
|
|
ppc_linux_supply_gregset,
|
|
ppc_linux_collect_gregset,
|
|
NULL
|
|
};
|
|
|
|
static const struct regset ppc64_linux_gregset = {
|
|
&ppc64_linux_reg_offsets,
|
|
ppc_linux_supply_gregset,
|
|
ppc_linux_collect_gregset,
|
|
NULL
|
|
};
|
|
|
|
static const struct regset ppc32_linux_fpregset = {
|
|
&ppc32_linux_reg_offsets,
|
|
ppc_supply_fpregset,
|
|
ppc_collect_fpregset,
|
|
NULL
|
|
};
|
|
|
|
static const struct regset ppc32_linux_vrregset = {
|
|
&ppc32_linux_reg_offsets,
|
|
ppc_supply_vrregset,
|
|
ppc_collect_vrregset,
|
|
NULL
|
|
};
|
|
|
|
static const struct regset ppc32_linux_vsxregset = {
|
|
&ppc32_linux_reg_offsets,
|
|
ppc_supply_vsxregset,
|
|
ppc_collect_vsxregset,
|
|
NULL
|
|
};
|
|
|
|
const struct regset *
|
|
ppc_linux_gregset (int wordsize)
|
|
{
|
|
return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
|
|
}
|
|
|
|
const struct regset *
|
|
ppc_linux_fpregset (void)
|
|
{
|
|
return &ppc32_linux_fpregset;
|
|
}
|
|
|
|
static const struct regset *
|
|
ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
|
|
const char *sect_name, size_t sect_size)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
|
|
if (strcmp (sect_name, ".reg") == 0)
|
|
{
|
|
if (tdep->wordsize == 4)
|
|
return &ppc32_linux_gregset;
|
|
else
|
|
return &ppc64_linux_gregset;
|
|
}
|
|
if (strcmp (sect_name, ".reg2") == 0)
|
|
return &ppc32_linux_fpregset;
|
|
if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
|
|
return &ppc32_linux_vrregset;
|
|
if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
|
|
return &ppc32_linux_vsxregset;
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func, LONGEST offset,
|
|
int bias)
|
|
{
|
|
CORE_ADDR base;
|
|
CORE_ADDR regs;
|
|
CORE_ADDR gpregs;
|
|
CORE_ADDR fpregs;
|
|
int i;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
base = get_frame_register_unsigned (this_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
if (bias > 0 && get_frame_pc (this_frame) != func)
|
|
/* See below, some signal trampolines increment the stack as their
|
|
first instruction, need to compensate for that. */
|
|
base -= bias;
|
|
|
|
/* Find the address of the register buffer pointer. */
|
|
regs = base + offset;
|
|
/* Use that to find the address of the corresponding register
|
|
buffers. */
|
|
gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
|
|
fpregs = gpregs + 48 * tdep->wordsize;
|
|
|
|
/* General purpose. */
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
int regnum = i + tdep->ppc_gp0_regnum;
|
|
trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
|
|
}
|
|
trad_frame_set_reg_addr (this_cache,
|
|
gdbarch_pc_regnum (gdbarch),
|
|
gpregs + 32 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
|
|
gpregs + 35 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
|
|
gpregs + 36 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
|
|
gpregs + 37 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
|
|
gpregs + 38 * tdep->wordsize);
|
|
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
{
|
|
trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
|
|
gpregs + 34 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
|
|
gpregs + 40 * tdep->wordsize);
|
|
}
|
|
|
|
if (ppc_floating_point_unit_p (gdbarch))
|
|
{
|
|
/* Floating point registers. */
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
int regnum = i + gdbarch_fp0_regnum (gdbarch);
|
|
trad_frame_set_reg_addr (this_cache, regnum,
|
|
fpregs + i * tdep->wordsize);
|
|
}
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
|
|
fpregs + 32 * tdep->wordsize);
|
|
}
|
|
trad_frame_set_id (this_cache, frame_id_build (base, func));
|
|
}
|
|
|
|
static void
|
|
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0xd0 /* Offset to ucontext_t. */
|
|
+ 0x30 /* Offset to .reg. */,
|
|
0);
|
|
}
|
|
|
|
static void
|
|
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0x80 /* Offset to ucontext_t. */
|
|
+ 0xe0 /* Offset to .reg. */,
|
|
128);
|
|
}
|
|
|
|
static void
|
|
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0x40 /* Offset to ucontext_t. */
|
|
+ 0x1c /* Offset to .reg. */,
|
|
0);
|
|
}
|
|
|
|
static void
|
|
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0x80 /* Offset to struct sigcontext. */
|
|
+ 0x38 /* Offset to .reg. */,
|
|
128);
|
|
}
|
|
|
|
static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x380000ac, -1 }, /* li r0, 172 */
|
|
{ 0x44000002, -1 }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc32_linux_sigaction_cache_init
|
|
};
|
|
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x38210080, -1 }, /* addi r1,r1,128 */
|
|
{ 0x380000ac, -1 }, /* li r0, 172 */
|
|
{ 0x44000002, -1 }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc64_linux_sigaction_cache_init
|
|
};
|
|
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x38000077, -1 }, /* li r0,119 */
|
|
{ 0x44000002, -1 }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc32_linux_sighandler_cache_init
|
|
};
|
|
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x38210080, -1 }, /* addi r1,r1,128 */
|
|
{ 0x38000077, -1 }, /* li r0,119 */
|
|
{ 0x44000002, -1 }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc64_linux_sighandler_cache_init
|
|
};
|
|
|
|
|
|
/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
|
|
int
|
|
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
|
|
{
|
|
/* If we do not have a target description with registers, then
|
|
the special registers will not be included in the register set. */
|
|
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
|
return 0;
|
|
|
|
/* If we do, then it is safe to check the size. */
|
|
return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
|
|
&& register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
|
|
}
|
|
|
|
static void
|
|
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
|
|
regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
|
|
|
|
/* Set special TRAP register to -1 to prevent the kernel from
|
|
messing with the PC we just installed, if we happen to be
|
|
within an interrupted system call that the kernel wants to
|
|
restart.
|
|
|
|
Note that after we return from the dummy call, the TRAP and
|
|
ORIG_R3 registers will be automatically restored, and the
|
|
kernel continues to restart the system call at this point. */
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
|
|
}
|
|
|
|
static const struct target_desc *
|
|
ppc_linux_core_read_description (struct gdbarch *gdbarch,
|
|
struct target_ops *target,
|
|
bfd *abfd)
|
|
{
|
|
asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
|
|
asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
|
|
asection *section = bfd_get_section_by_name (abfd, ".reg");
|
|
if (! section)
|
|
return NULL;
|
|
|
|
switch (bfd_section_size (abfd, section))
|
|
{
|
|
case 48 * 4:
|
|
if (vsx)
|
|
return tdesc_powerpc_vsx32l;
|
|
else if (altivec)
|
|
return tdesc_powerpc_altivec32l;
|
|
else
|
|
return tdesc_powerpc_32l;
|
|
|
|
case 48 * 8:
|
|
if (vsx)
|
|
return tdesc_powerpc_vsx64l;
|
|
else if (altivec)
|
|
return tdesc_powerpc_altivec64l;
|
|
else
|
|
return tdesc_powerpc_64l;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ppc_linux_init_abi (struct gdbarch_info info,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
|
|
|
|
/* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
|
|
128-bit, they are IBM long double, not IEEE quad long double as
|
|
in the System V ABI PowerPC Processor Supplement. We can safely
|
|
let them default to 128-bit, since the debug info will give the
|
|
size of type actually used in each case. */
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
|
|
|
|
/* Handle inferior calls during interrupted system calls. */
|
|
set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
|
|
|
|
if (tdep->wordsize == 4)
|
|
{
|
|
/* Until November 2001, gcc did not comply with the 32 bit SysV
|
|
R4 ABI requirement that structures less than or equal to 8
|
|
bytes should be returned in registers. Instead GCC was using
|
|
the the AIX/PowerOpen ABI - everything returned in memory
|
|
(well ignoring vectors that is). When this was corrected, it
|
|
wasn't fixed for GNU/Linux native platform. Use the
|
|
PowerOpen struct convention. */
|
|
set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
|
|
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
|
ppc_linux_memory_remove_breakpoint);
|
|
|
|
/* Shared library handling. */
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
|
/* Trampolines. */
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
|
|
}
|
|
|
|
if (tdep->wordsize == 8)
|
|
{
|
|
/* Handle PPC GNU/Linux 64-bit function pointers (which are really
|
|
function descriptors). */
|
|
set_gdbarch_convert_from_func_ptr_addr
|
|
(gdbarch, ppc64_linux_convert_from_func_ptr_addr);
|
|
|
|
/* Shared library handling. */
|
|
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
|
|
|
/* Trampolines. */
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
|
|
}
|
|
set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
|
|
set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
|
|
|
|
/* Supported register sections. */
|
|
if (tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.power.vsx"))
|
|
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vsx_regset_sections);
|
|
else if (tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.power.altivec"))
|
|
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vmx_regset_sections);
|
|
else
|
|
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_fp_regset_sections);
|
|
|
|
/* Enable TLS support. */
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
|
svr4_fetch_objfile_link_map);
|
|
|
|
if (tdesc_data)
|
|
{
|
|
const struct tdesc_feature *feature;
|
|
|
|
/* If we have target-described registers, then we can safely
|
|
reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
|
|
(whether they are described or not). */
|
|
gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
|
|
set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
|
|
|
|
/* If they are present, then assign them to the reserved number. */
|
|
feature = tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.power.linux");
|
|
if (feature != NULL)
|
|
{
|
|
tdesc_numbered_register (feature, tdesc_data,
|
|
PPC_ORIG_R3_REGNUM, "orig_r3");
|
|
tdesc_numbered_register (feature, tdesc_data,
|
|
PPC_TRAP_REGNUM, "trap");
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
_initialize_ppc_linux_tdep (void)
|
|
{
|
|
/* Register for all sub-familes of the POWER/PowerPC: 32-bit and
|
|
64-bit PowerPC, and the older rs6k. */
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
|
|
ppc_linux_init_abi);
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
|
|
ppc_linux_init_abi);
|
|
gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
|
|
ppc_linux_init_abi);
|
|
|
|
/* Initialize the Linux target descriptions. */
|
|
initialize_tdesc_powerpc_32l ();
|
|
initialize_tdesc_powerpc_altivec32l ();
|
|
initialize_tdesc_powerpc_vsx32l ();
|
|
initialize_tdesc_powerpc_64l ();
|
|
initialize_tdesc_powerpc_altivec64l ();
|
|
initialize_tdesc_powerpc_vsx64l ();
|
|
initialize_tdesc_powerpc_e500l ();
|
|
}
|