4caf0990c1
* regcache.h (deprecated_read_register_gen): Rename read_register_gen. (deprecated_write_register_gen): Rename write_register_gen. * i387-tdep.c: Update. * x86-64-linux-nat.c: Update * wince.c: Update. * thread-db.c: Update. * win32-nat.c: Update. * mips-tdep.c: Update. * d10v-tdep.c: Update. * cris-tdep.c: Update. * remote-sim.c: Update. * remote-rdi.c: Update. * remote-rdp.c: Update. * frame.c: Update. * target.c: Update. * blockframe.c: Update. * x86-64-tdep.c: Update. * xstormy16-tdep.c: Update. * sh-tdep.c: Update. * s390-tdep.c: Update. * rs6000-tdep.c: Update. * sparc-tdep.c: Update. * i386-tdep.c: Update. * dwarf2cfi.c: Update. * regcache.c: Update.
1643 lines
48 KiB
C
1643 lines
48 KiB
C
/* Intel 386 target-dependent stuff.
|
||
|
||
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "objfiles.h"
|
||
#include "target.h"
|
||
#include "floatformat.h"
|
||
#include "symfile.h"
|
||
#include "symtab.h"
|
||
#include "gdbcmd.h"
|
||
#include "command.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "doublest.h"
|
||
#include "value.h"
|
||
#include "gdb_assert.h"
|
||
|
||
#include "i386-tdep.h"
|
||
#include "i387-tdep.h"
|
||
|
||
/* Names of the registers. The first 10 registers match the register
|
||
numbering scheme used by GCC for stabs and DWARF. */
|
||
static char *i386_register_names[] =
|
||
{
|
||
"eax", "ecx", "edx", "ebx",
|
||
"esp", "ebp", "esi", "edi",
|
||
"eip", "eflags", "cs", "ss",
|
||
"ds", "es", "fs", "gs",
|
||
"st0", "st1", "st2", "st3",
|
||
"st4", "st5", "st6", "st7",
|
||
"fctrl", "fstat", "ftag", "fiseg",
|
||
"fioff", "foseg", "fooff", "fop",
|
||
"xmm0", "xmm1", "xmm2", "xmm3",
|
||
"xmm4", "xmm5", "xmm6", "xmm7",
|
||
"mxcsr"
|
||
};
|
||
|
||
/* MMX registers. */
|
||
|
||
static char *i386_mmx_names[] =
|
||
{
|
||
"mm0", "mm1", "mm2", "mm3",
|
||
"mm4", "mm5", "mm6", "mm7"
|
||
};
|
||
static const int mmx_num_regs = (sizeof (i386_mmx_names)
|
||
/ sizeof (i386_mmx_names[0]));
|
||
#define MM0_REGNUM (NUM_REGS)
|
||
|
||
static int
|
||
mmx_regnum_p (int reg)
|
||
{
|
||
return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
|
||
}
|
||
|
||
/* Return the name of register REG. */
|
||
|
||
const char *
|
||
i386_register_name (int reg)
|
||
{
|
||
if (reg < 0)
|
||
return NULL;
|
||
if (mmx_regnum_p (reg))
|
||
return i386_mmx_names[reg - MM0_REGNUM];
|
||
if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
|
||
return NULL;
|
||
|
||
return i386_register_names[reg];
|
||
}
|
||
|
||
/* Convert stabs register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
i386_stab_reg_to_regnum (int reg)
|
||
{
|
||
/* This implements what GCC calls the "default" register map. */
|
||
if (reg >= 0 && reg <= 7)
|
||
{
|
||
/* General registers. */
|
||
return reg;
|
||
}
|
||
else if (reg >= 12 && reg <= 19)
|
||
{
|
||
/* Floating-point registers. */
|
||
return reg - 12 + FP0_REGNUM;
|
||
}
|
||
else if (reg >= 21 && reg <= 28)
|
||
{
|
||
/* SSE registers. */
|
||
return reg - 21 + XMM0_REGNUM;
|
||
}
|
||
else if (reg >= 29 && reg <= 36)
|
||
{
|
||
/* MMX registers. */
|
||
return reg - 29 + MM0_REGNUM;
|
||
}
|
||
|
||
/* This will hopefully provoke a warning. */
|
||
return NUM_REGS + NUM_PSEUDO_REGS;
|
||
}
|
||
|
||
/* Convert DWARF register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
i386_dwarf_reg_to_regnum (int reg)
|
||
{
|
||
/* The DWARF register numbering includes %eip and %eflags, and
|
||
numbers the floating point registers differently. */
|
||
if (reg >= 0 && reg <= 9)
|
||
{
|
||
/* General registers. */
|
||
return reg;
|
||
}
|
||
else if (reg >= 11 && reg <= 18)
|
||
{
|
||
/* Floating-point registers. */
|
||
return reg - 11 + FP0_REGNUM;
|
||
}
|
||
else if (reg >= 21)
|
||
{
|
||
/* The SSE and MMX registers have identical numbers as in stabs. */
|
||
return i386_stab_reg_to_regnum (reg);
|
||
}
|
||
|
||
/* This will hopefully provoke a warning. */
|
||
return NUM_REGS + NUM_PSEUDO_REGS;
|
||
}
|
||
|
||
|
||
/* This is the variable that is set with "set disassembly-flavor", and
|
||
its legitimate values. */
|
||
static const char att_flavor[] = "att";
|
||
static const char intel_flavor[] = "intel";
|
||
static const char *valid_flavors[] =
|
||
{
|
||
att_flavor,
|
||
intel_flavor,
|
||
NULL
|
||
};
|
||
static const char *disassembly_flavor = att_flavor;
|
||
|
||
/* Stdio style buffering was used to minimize calls to ptrace, but
|
||
this buffering did not take into account that the code section
|
||
being accessed may not be an even number of buffers long (even if
|
||
the buffer is only sizeof(int) long). In cases where the code
|
||
section size happened to be a non-integral number of buffers long,
|
||
attempting to read the last buffer would fail. Simply using
|
||
target_read_memory and ignoring errors, rather than read_memory, is
|
||
not the correct solution, since legitimate access errors would then
|
||
be totally ignored. To properly handle this situation and continue
|
||
to use buffering would require that this code be able to determine
|
||
the minimum code section size granularity (not the alignment of the
|
||
section itself, since the actual failing case that pointed out this
|
||
problem had a section alignment of 4 but was not a multiple of 4
|
||
bytes long), on a target by target basis, and then adjust it's
|
||
buffer size accordingly. This is messy, but potentially feasible.
|
||
It probably needs the bfd library's help and support. For now, the
|
||
buffer size is set to 1. (FIXME -fnf) */
|
||
|
||
#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
|
||
static CORE_ADDR codestream_next_addr;
|
||
static CORE_ADDR codestream_addr;
|
||
static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
|
||
static int codestream_off;
|
||
static int codestream_cnt;
|
||
|
||
#define codestream_tell() (codestream_addr + codestream_off)
|
||
#define codestream_peek() \
|
||
(codestream_cnt == 0 ? \
|
||
codestream_fill(1) : codestream_buf[codestream_off])
|
||
#define codestream_get() \
|
||
(codestream_cnt-- == 0 ? \
|
||
codestream_fill(0) : codestream_buf[codestream_off++])
|
||
|
||
static unsigned char
|
||
codestream_fill (int peek_flag)
|
||
{
|
||
codestream_addr = codestream_next_addr;
|
||
codestream_next_addr += CODESTREAM_BUFSIZ;
|
||
codestream_off = 0;
|
||
codestream_cnt = CODESTREAM_BUFSIZ;
|
||
read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
|
||
|
||
if (peek_flag)
|
||
return (codestream_peek ());
|
||
else
|
||
return (codestream_get ());
|
||
}
|
||
|
||
static void
|
||
codestream_seek (CORE_ADDR place)
|
||
{
|
||
codestream_next_addr = place / CODESTREAM_BUFSIZ;
|
||
codestream_next_addr *= CODESTREAM_BUFSIZ;
|
||
codestream_cnt = 0;
|
||
codestream_fill (1);
|
||
while (codestream_tell () != place)
|
||
codestream_get ();
|
||
}
|
||
|
||
static void
|
||
codestream_read (unsigned char *buf, int count)
|
||
{
|
||
unsigned char *p;
|
||
int i;
|
||
p = buf;
|
||
for (i = 0; i < count; i++)
|
||
*p++ = codestream_get ();
|
||
}
|
||
|
||
|
||
/* If the next instruction is a jump, move to its target. */
|
||
|
||
static void
|
||
i386_follow_jump (void)
|
||
{
|
||
unsigned char buf[4];
|
||
long delta;
|
||
|
||
int data16;
|
||
CORE_ADDR pos;
|
||
|
||
pos = codestream_tell ();
|
||
|
||
data16 = 0;
|
||
if (codestream_peek () == 0x66)
|
||
{
|
||
codestream_get ();
|
||
data16 = 1;
|
||
}
|
||
|
||
switch (codestream_get ())
|
||
{
|
||
case 0xe9:
|
||
/* Relative jump: if data16 == 0, disp32, else disp16. */
|
||
if (data16)
|
||
{
|
||
codestream_read (buf, 2);
|
||
delta = extract_signed_integer (buf, 2);
|
||
|
||
/* Include the size of the jmp instruction (including the
|
||
0x66 prefix). */
|
||
pos += delta + 4;
|
||
}
|
||
else
|
||
{
|
||
codestream_read (buf, 4);
|
||
delta = extract_signed_integer (buf, 4);
|
||
|
||
pos += delta + 5;
|
||
}
|
||
break;
|
||
case 0xeb:
|
||
/* Relative jump, disp8 (ignore data16). */
|
||
codestream_read (buf, 1);
|
||
/* Sign-extend it. */
|
||
delta = extract_signed_integer (buf, 1);
|
||
|
||
pos += delta + 2;
|
||
break;
|
||
}
|
||
codestream_seek (pos);
|
||
}
|
||
|
||
/* Find & return the amount a local space allocated, and advance the
|
||
codestream to the first register push (if any).
|
||
|
||
If the entry sequence doesn't make sense, return -1, and leave
|
||
codestream pointer at a random spot. */
|
||
|
||
static long
|
||
i386_get_frame_setup (CORE_ADDR pc)
|
||
{
|
||
unsigned char op;
|
||
|
||
codestream_seek (pc);
|
||
|
||
i386_follow_jump ();
|
||
|
||
op = codestream_get ();
|
||
|
||
if (op == 0x58) /* popl %eax */
|
||
{
|
||
/* This function must start with
|
||
|
||
popl %eax 0x58
|
||
xchgl %eax, (%esp) 0x87 0x04 0x24
|
||
or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
|
||
|
||
(the System V compiler puts out the second `xchg'
|
||
instruction, and the assembler doesn't try to optimize it, so
|
||
the 'sib' form gets generated). This sequence is used to get
|
||
the address of the return buffer for a function that returns
|
||
a structure. */
|
||
int pos;
|
||
unsigned char buf[4];
|
||
static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
|
||
static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
|
||
|
||
pos = codestream_tell ();
|
||
codestream_read (buf, 4);
|
||
if (memcmp (buf, proto1, 3) == 0)
|
||
pos += 3;
|
||
else if (memcmp (buf, proto2, 4) == 0)
|
||
pos += 4;
|
||
|
||
codestream_seek (pos);
|
||
op = codestream_get (); /* Update next opcode. */
|
||
}
|
||
|
||
if (op == 0x68 || op == 0x6a)
|
||
{
|
||
/* This function may start with
|
||
|
||
pushl constant
|
||
call _probe
|
||
addl $4, %esp
|
||
|
||
followed by
|
||
|
||
pushl %ebp
|
||
|
||
etc. */
|
||
int pos;
|
||
unsigned char buf[8];
|
||
|
||
/* Skip past the `pushl' instruction; it has either a one-byte
|
||
or a four-byte operand, depending on the opcode. */
|
||
pos = codestream_tell ();
|
||
if (op == 0x68)
|
||
pos += 4;
|
||
else
|
||
pos += 1;
|
||
codestream_seek (pos);
|
||
|
||
/* Read the following 8 bytes, which should be "call _probe" (6
|
||
bytes) followed by "addl $4,%esp" (2 bytes). */
|
||
codestream_read (buf, sizeof (buf));
|
||
if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
|
||
pos += sizeof (buf);
|
||
codestream_seek (pos);
|
||
op = codestream_get (); /* Update next opcode. */
|
||
}
|
||
|
||
if (op == 0x55) /* pushl %ebp */
|
||
{
|
||
/* Check for "movl %esp, %ebp" -- can be written in two ways. */
|
||
switch (codestream_get ())
|
||
{
|
||
case 0x8b:
|
||
if (codestream_get () != 0xec)
|
||
return -1;
|
||
break;
|
||
case 0x89:
|
||
if (codestream_get () != 0xe5)
|
||
return -1;
|
||
break;
|
||
default:
|
||
return -1;
|
||
}
|
||
/* Check for stack adjustment
|
||
|
||
subl $XXX, %esp
|
||
|
||
NOTE: You can't subtract a 16 bit immediate from a 32 bit
|
||
reg, so we don't have to worry about a data16 prefix. */
|
||
op = codestream_peek ();
|
||
if (op == 0x83)
|
||
{
|
||
/* `subl' with 8 bit immediate. */
|
||
codestream_get ();
|
||
if (codestream_get () != 0xec)
|
||
/* Some instruction starting with 0x83 other than `subl'. */
|
||
{
|
||
codestream_seek (codestream_tell () - 2);
|
||
return 0;
|
||
}
|
||
/* `subl' with signed byte immediate (though it wouldn't
|
||
make sense to be negative). */
|
||
return (codestream_get ());
|
||
}
|
||
else if (op == 0x81)
|
||
{
|
||
char buf[4];
|
||
/* Maybe it is `subl' with a 32 bit immedediate. */
|
||
codestream_get ();
|
||
if (codestream_get () != 0xec)
|
||
/* Some instruction starting with 0x81 other than `subl'. */
|
||
{
|
||
codestream_seek (codestream_tell () - 2);
|
||
return 0;
|
||
}
|
||
/* It is `subl' with a 32 bit immediate. */
|
||
codestream_read ((unsigned char *) buf, 4);
|
||
return extract_signed_integer (buf, 4);
|
||
}
|
||
else
|
||
{
|
||
return 0;
|
||
}
|
||
}
|
||
else if (op == 0xc8)
|
||
{
|
||
char buf[2];
|
||
/* `enter' with 16 bit unsigned immediate. */
|
||
codestream_read ((unsigned char *) buf, 2);
|
||
codestream_get (); /* Flush final byte of enter instruction. */
|
||
return extract_unsigned_integer (buf, 2);
|
||
}
|
||
return (-1);
|
||
}
|
||
|
||
/* Signal trampolines don't have a meaningful frame. The frame
|
||
pointer value we use is actually the frame pointer of the calling
|
||
frame -- that is, the frame which was in progress when the signal
|
||
trampoline was entered. GDB mostly treats this frame pointer value
|
||
as a magic cookie. We detect the case of a signal trampoline by
|
||
looking at the SIGNAL_HANDLER_CALLER field, which is set based on
|
||
PC_IN_SIGTRAMP.
|
||
|
||
When a signal trampoline is invoked from a frameless function, we
|
||
essentially have two frameless functions in a row. In this case,
|
||
we use the same magic cookie for three frames in a row. We detect
|
||
this case by seeing whether the next frame has
|
||
SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
|
||
current frame is actually frameless. In this case, we need to get
|
||
the PC by looking at the SP register value stored in the signal
|
||
context.
|
||
|
||
This should work in most cases except in horrible situations where
|
||
a signal occurs just as we enter a function but before the frame
|
||
has been set up. Incidentally, that's just what happens when we
|
||
call a function from GDB with a signal pending (there's a test in
|
||
the testsuite that makes this happen). Therefore we pretend that
|
||
we have a frameless function if we're stopped at the start of a
|
||
function. */
|
||
|
||
/* Return non-zero if we're dealing with a frameless signal, that is,
|
||
a signal trampoline invoked from a frameless function. */
|
||
|
||
static int
|
||
i386_frameless_signal_p (struct frame_info *frame)
|
||
{
|
||
return (frame->next && frame->next->signal_handler_caller
|
||
&& (frameless_look_for_prologue (frame)
|
||
|| frame->pc == get_pc_function_start (frame->pc)));
|
||
}
|
||
|
||
/* Return the chain-pointer for FRAME. In the case of the i386, the
|
||
frame's nominal address is the address of a 4-byte word containing
|
||
the calling frame's address. */
|
||
|
||
static CORE_ADDR
|
||
i386_frame_chain (struct frame_info *frame)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
|
||
return frame->frame;
|
||
|
||
if (frame->signal_handler_caller
|
||
|| i386_frameless_signal_p (frame))
|
||
return frame->frame;
|
||
|
||
if (! inside_entry_file (frame->pc))
|
||
return read_memory_unsigned_integer (frame->frame, 4);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Determine whether the function invocation represented by FRAME does
|
||
not have a from on the stack associated with it. If it does not,
|
||
return non-zero, otherwise return zero. */
|
||
|
||
static int
|
||
i386_frameless_function_invocation (struct frame_info *frame)
|
||
{
|
||
if (frame->signal_handler_caller)
|
||
return 0;
|
||
|
||
return frameless_look_for_prologue (frame);
|
||
}
|
||
|
||
/* Assuming FRAME is for a sigtramp routine, return the saved program
|
||
counter. */
|
||
|
||
static CORE_ADDR
|
||
i386_sigtramp_saved_pc (struct frame_info *frame)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
CORE_ADDR addr;
|
||
|
||
addr = tdep->sigcontext_addr (frame);
|
||
return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
|
||
}
|
||
|
||
/* Assuming FRAME is for a sigtramp routine, return the saved stack
|
||
pointer. */
|
||
|
||
static CORE_ADDR
|
||
i386_sigtramp_saved_sp (struct frame_info *frame)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
CORE_ADDR addr;
|
||
|
||
addr = tdep->sigcontext_addr (frame);
|
||
return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
|
||
}
|
||
|
||
/* Return the saved program counter for FRAME. */
|
||
|
||
static CORE_ADDR
|
||
i386_frame_saved_pc (struct frame_info *frame)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
|
||
{
|
||
ULONGEST pc;
|
||
|
||
frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
|
||
return pc;
|
||
}
|
||
|
||
if (frame->signal_handler_caller)
|
||
return i386_sigtramp_saved_pc (frame);
|
||
|
||
if (i386_frameless_signal_p (frame))
|
||
{
|
||
CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
|
||
return read_memory_unsigned_integer (sp, 4);
|
||
}
|
||
|
||
return read_memory_unsigned_integer (frame->frame + 4, 4);
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc. */
|
||
|
||
static CORE_ADDR
|
||
i386_saved_pc_after_call (struct frame_info *frame)
|
||
{
|
||
if (frame->signal_handler_caller)
|
||
return i386_sigtramp_saved_pc (frame);
|
||
|
||
return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
|
||
}
|
||
|
||
/* Return number of args passed to a frame.
|
||
Can return -1, meaning no way to tell. */
|
||
|
||
static int
|
||
i386_frame_num_args (struct frame_info *fi)
|
||
{
|
||
#if 1
|
||
return -1;
|
||
#else
|
||
/* This loses because not only might the compiler not be popping the
|
||
args right after the function call, it might be popping args from
|
||
both this call and a previous one, and we would say there are
|
||
more args than there really are. */
|
||
|
||
int retpc;
|
||
unsigned char op;
|
||
struct frame_info *pfi;
|
||
|
||
/* On the i386, the instruction following the call could be:
|
||
popl %ecx - one arg
|
||
addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
|
||
anything else - zero args. */
|
||
|
||
int frameless;
|
||
|
||
frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
|
||
if (frameless)
|
||
/* In the absence of a frame pointer, GDB doesn't get correct
|
||
values for nameless arguments. Return -1, so it doesn't print
|
||
any nameless arguments. */
|
||
return -1;
|
||
|
||
pfi = get_prev_frame (fi);
|
||
if (pfi == 0)
|
||
{
|
||
/* NOTE: This can happen if we are looking at the frame for
|
||
main, because FRAME_CHAIN_VALID won't let us go into start.
|
||
If we have debugging symbols, that's not really a big deal;
|
||
it just means it will only show as many arguments to main as
|
||
are declared. */
|
||
return -1;
|
||
}
|
||
else
|
||
{
|
||
retpc = pfi->pc;
|
||
op = read_memory_integer (retpc, 1);
|
||
if (op == 0x59) /* pop %ecx */
|
||
return 1;
|
||
else if (op == 0x83)
|
||
{
|
||
op = read_memory_integer (retpc + 1, 1);
|
||
if (op == 0xc4)
|
||
/* addl $<signed imm 8 bits>, %esp */
|
||
return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
|
||
else
|
||
return 0;
|
||
}
|
||
else if (op == 0x81) /* `add' with 32 bit immediate. */
|
||
{
|
||
op = read_memory_integer (retpc + 1, 1);
|
||
if (op == 0xc4)
|
||
/* addl $<imm 32>, %esp */
|
||
return read_memory_integer (retpc + 2, 4) / 4;
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
return 0;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Parse the first few instructions the function to see what registers
|
||
were stored.
|
||
|
||
We handle these cases:
|
||
|
||
The startup sequence can be at the start of the function, or the
|
||
function can start with a branch to startup code at the end.
|
||
|
||
%ebp can be set up with either the 'enter' instruction, or "pushl
|
||
%ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
|
||
once used in the System V compiler).
|
||
|
||
Local space is allocated just below the saved %ebp by either the
|
||
'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
|
||
bit unsigned argument for space to allocate, and the 'addl'
|
||
instruction could have either a signed byte, or 32 bit immediate.
|
||
|
||
Next, the registers used by this function are pushed. With the
|
||
System V compiler they will always be in the order: %edi, %esi,
|
||
%ebx (and sometimes a harmless bug causes it to also save but not
|
||
restore %eax); however, the code below is willing to see the pushes
|
||
in any order, and will handle up to 8 of them.
|
||
|
||
If the setup sequence is at the end of the function, then the next
|
||
instruction will be a branch back to the start. */
|
||
|
||
static void
|
||
i386_frame_init_saved_regs (struct frame_info *fip)
|
||
{
|
||
long locals = -1;
|
||
unsigned char op;
|
||
CORE_ADDR addr;
|
||
CORE_ADDR pc;
|
||
int i;
|
||
|
||
if (fip->saved_regs)
|
||
return;
|
||
|
||
frame_saved_regs_zalloc (fip);
|
||
|
||
pc = get_pc_function_start (fip->pc);
|
||
if (pc != 0)
|
||
locals = i386_get_frame_setup (pc);
|
||
|
||
if (locals >= 0)
|
||
{
|
||
addr = fip->frame - 4 - locals;
|
||
for (i = 0; i < 8; i++)
|
||
{
|
||
op = codestream_get ();
|
||
if (op < 0x50 || op > 0x57)
|
||
break;
|
||
#ifdef I386_REGNO_TO_SYMMETRY
|
||
/* Dynix uses different internal numbering. Ick. */
|
||
fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
|
||
#else
|
||
fip->saved_regs[op - 0x50] = addr;
|
||
#endif
|
||
addr -= 4;
|
||
}
|
||
}
|
||
|
||
fip->saved_regs[PC_REGNUM] = fip->frame + 4;
|
||
fip->saved_regs[FP_REGNUM] = fip->frame;
|
||
}
|
||
|
||
/* Return PC of first real instruction. */
|
||
|
||
static CORE_ADDR
|
||
i386_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
unsigned char op;
|
||
int i;
|
||
static unsigned char pic_pat[6] =
|
||
{ 0xe8, 0, 0, 0, 0, /* call 0x0 */
|
||
0x5b, /* popl %ebx */
|
||
};
|
||
CORE_ADDR pos;
|
||
|
||
if (i386_get_frame_setup (pc) < 0)
|
||
return (pc);
|
||
|
||
/* Found valid frame setup -- codestream now points to start of push
|
||
instructions for saving registers. */
|
||
|
||
/* Skip over register saves. */
|
||
for (i = 0; i < 8; i++)
|
||
{
|
||
op = codestream_peek ();
|
||
/* Break if not `pushl' instrunction. */
|
||
if (op < 0x50 || op > 0x57)
|
||
break;
|
||
codestream_get ();
|
||
}
|
||
|
||
/* The native cc on SVR4 in -K PIC mode inserts the following code
|
||
to get the address of the global offset table (GOT) into register
|
||
%ebx
|
||
|
||
call 0x0
|
||
popl %ebx
|
||
movl %ebx,x(%ebp) (optional)
|
||
addl y,%ebx
|
||
|
||
This code is with the rest of the prologue (at the end of the
|
||
function), so we have to skip it to get to the first real
|
||
instruction at the start of the function. */
|
||
|
||
pos = codestream_tell ();
|
||
for (i = 0; i < 6; i++)
|
||
{
|
||
op = codestream_get ();
|
||
if (pic_pat[i] != op)
|
||
break;
|
||
}
|
||
if (i == 6)
|
||
{
|
||
unsigned char buf[4];
|
||
long delta = 6;
|
||
|
||
op = codestream_get ();
|
||
if (op == 0x89) /* movl %ebx, x(%ebp) */
|
||
{
|
||
op = codestream_get ();
|
||
if (op == 0x5d) /* One byte offset from %ebp. */
|
||
{
|
||
delta += 3;
|
||
codestream_read (buf, 1);
|
||
}
|
||
else if (op == 0x9d) /* Four byte offset from %ebp. */
|
||
{
|
||
delta += 6;
|
||
codestream_read (buf, 4);
|
||
}
|
||
else /* Unexpected instruction. */
|
||
delta = -1;
|
||
op = codestream_get ();
|
||
}
|
||
/* addl y,%ebx */
|
||
if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
|
||
{
|
||
pos += delta + 6;
|
||
}
|
||
}
|
||
codestream_seek (pos);
|
||
|
||
i386_follow_jump ();
|
||
|
||
return (codestream_tell ());
|
||
}
|
||
|
||
/* Use the program counter to determine the contents and size of a
|
||
breakpoint instruction. Return a pointer to a string of bytes that
|
||
encode a breakpoint instruction, store the length of the string in
|
||
*LEN and optionally adjust *PC to point to the correct memory
|
||
location for inserting the breakpoint.
|
||
|
||
On the i386 we have a single breakpoint that fits in a single byte
|
||
and can be inserted anywhere. */
|
||
|
||
static const unsigned char *
|
||
i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
|
||
{
|
||
static unsigned char break_insn[] = { 0xcc }; /* int 3 */
|
||
|
||
*len = sizeof (break_insn);
|
||
return break_insn;
|
||
}
|
||
|
||
/* Push the return address (pointing to the call dummy) onto the stack
|
||
and return the new value for the stack pointer. */
|
||
|
||
static CORE_ADDR
|
||
i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
char buf[4];
|
||
|
||
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
|
||
write_memory (sp - 4, buf, 4);
|
||
return sp - 4;
|
||
}
|
||
|
||
static void
|
||
i386_do_pop_frame (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR fp;
|
||
int regnum;
|
||
char regbuf[I386_MAX_REGISTER_SIZE];
|
||
|
||
fp = FRAME_FP (frame);
|
||
i386_frame_init_saved_regs (frame);
|
||
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||
{
|
||
CORE_ADDR addr;
|
||
addr = frame->saved_regs[regnum];
|
||
if (addr)
|
||
{
|
||
read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
|
||
deprecated_write_register_gen (regnum, regbuf);
|
||
}
|
||
}
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
||
write_register (SP_REGNUM, fp + 8);
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
static void
|
||
i386_pop_frame (void)
|
||
{
|
||
generic_pop_current_frame (i386_do_pop_frame);
|
||
}
|
||
|
||
|
||
/* Figure out where the longjmp will land. Slurp the args out of the
|
||
stack. We expect the first arg to be a pointer to the jmp_buf
|
||
structure from which we extract the address that we will land at.
|
||
This address is copied into PC. This routine returns true on
|
||
success. */
|
||
|
||
static int
|
||
i386_get_longjmp_target (CORE_ADDR *pc)
|
||
{
|
||
char buf[4];
|
||
CORE_ADDR sp, jb_addr;
|
||
int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
|
||
|
||
/* If JB_PC_OFFSET is -1, we have no way to find out where the
|
||
longjmp will land. */
|
||
if (jb_pc_offset == -1)
|
||
return 0;
|
||
|
||
sp = read_register (SP_REGNUM);
|
||
if (target_read_memory (sp + 4, buf, 4))
|
||
return 0;
|
||
|
||
jb_addr = extract_address (buf, 4);
|
||
if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
|
||
return 0;
|
||
|
||
*pc = extract_address (buf, 4);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
|
||
|
||
if (struct_return)
|
||
{
|
||
char buf[4];
|
||
|
||
sp -= 4;
|
||
store_address (buf, 4, struct_addr);
|
||
write_memory (sp, buf, 4);
|
||
}
|
||
|
||
return sp;
|
||
}
|
||
|
||
static void
|
||
i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
/* Do nothing. Everything was already done by i386_push_arguments. */
|
||
}
|
||
|
||
/* These registers are used for returning integers (and on some
|
||
targets also for returning `struct' and `union' values when their
|
||
size and alignment match an integer type). */
|
||
#define LOW_RETURN_REGNUM 0 /* %eax */
|
||
#define HIGH_RETURN_REGNUM 2 /* %edx */
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state, a
|
||
function return value of TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
static void
|
||
i386_extract_return_value (struct type *type, struct regcache *regcache,
|
||
void *dst)
|
||
{
|
||
bfd_byte *valbuf = dst;
|
||
int len = TYPE_LENGTH (type);
|
||
char buf[I386_MAX_REGISTER_SIZE];
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& TYPE_NFIELDS (type) == 1)
|
||
{
|
||
i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
|
||
return;
|
||
}
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
if (FP0_REGNUM == 0)
|
||
{
|
||
warning ("Cannot find floating-point return value.");
|
||
memset (valbuf, 0, len);
|
||
return;
|
||
}
|
||
|
||
/* Floating-point return values can be found in %st(0). Convert
|
||
its contents to the desired type. This is probably not
|
||
exactly how it would happen on the target itself, but it is
|
||
the best we can do. */
|
||
regcache_raw_read (regcache, FP0_REGNUM, buf);
|
||
convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
|
||
}
|
||
else
|
||
{
|
||
int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
|
||
int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
|
||
|
||
if (len <= low_size)
|
||
{
|
||
regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
|
||
memcpy (valbuf, buf, len);
|
||
}
|
||
else if (len <= (low_size + high_size))
|
||
{
|
||
regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
|
||
memcpy (valbuf, buf, low_size);
|
||
regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
|
||
memcpy (valbuf + low_size, buf, len - low_size);
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"Cannot extract return value of %d bytes long.", len);
|
||
}
|
||
}
|
||
|
||
/* Write into the appropriate registers a function return value stored
|
||
in VALBUF of type TYPE, given in virtual format. */
|
||
|
||
static void
|
||
i386_store_return_value (struct type *type, struct regcache *regcache,
|
||
const void *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& TYPE_NFIELDS (type) == 1)
|
||
{
|
||
i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
|
||
return;
|
||
}
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
ULONGEST fstat;
|
||
char buf[FPU_REG_RAW_SIZE];
|
||
|
||
if (FP0_REGNUM == 0)
|
||
{
|
||
warning ("Cannot set floating-point return value.");
|
||
return;
|
||
}
|
||
|
||
/* Returning floating-point values is a bit tricky. Apart from
|
||
storing the return value in %st(0), we have to simulate the
|
||
state of the FPU at function return point. */
|
||
|
||
/* Convert the value found in VALBUF to the extended
|
||
floating-point format used by the FPU. This is probably
|
||
not exactly how it would happen on the target itself, but
|
||
it is the best we can do. */
|
||
convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
|
||
regcache_raw_write (regcache, FP0_REGNUM, buf);
|
||
|
||
/* Set the top of the floating-point register stack to 7. The
|
||
actual value doesn't really matter, but 7 is what a normal
|
||
function return would end up with if the program started out
|
||
with a freshly initialized FPU. */
|
||
regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
|
||
fstat |= (7 << 11);
|
||
regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
|
||
|
||
/* Mark %st(1) through %st(7) as empty. Since we set the top of
|
||
the floating-point register stack to 7, the appropriate value
|
||
for the tag word is 0x3fff. */
|
||
regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
|
||
}
|
||
else
|
||
{
|
||
int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
|
||
int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
|
||
|
||
if (len <= low_size)
|
||
regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
|
||
else if (len <= (low_size + high_size))
|
||
{
|
||
regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
|
||
regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
|
||
len - low_size, (char *) valbuf + low_size);
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"Cannot store return value of %d bytes long.", len);
|
||
}
|
||
}
|
||
|
||
/* Extract from REGCACHE, which contains the (raw) register state, the
|
||
address in which a function should return its structure value, as a
|
||
CORE_ADDR. */
|
||
|
||
static CORE_ADDR
|
||
i386_extract_struct_value_address (struct regcache *regcache)
|
||
{
|
||
ULONGEST addr;
|
||
|
||
regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
|
||
return addr;
|
||
}
|
||
|
||
|
||
/* This is the variable that is set with "set struct-convention", and
|
||
its legitimate values. */
|
||
static const char default_struct_convention[] = "default";
|
||
static const char pcc_struct_convention[] = "pcc";
|
||
static const char reg_struct_convention[] = "reg";
|
||
static const char *valid_conventions[] =
|
||
{
|
||
default_struct_convention,
|
||
pcc_struct_convention,
|
||
reg_struct_convention,
|
||
NULL
|
||
};
|
||
static const char *struct_convention = default_struct_convention;
|
||
|
||
static int
|
||
i386_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
enum struct_return struct_return;
|
||
|
||
if (struct_convention == default_struct_convention)
|
||
struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
|
||
else if (struct_convention == pcc_struct_convention)
|
||
struct_return = pcc_struct_return;
|
||
else
|
||
struct_return = reg_struct_return;
|
||
|
||
return generic_use_struct_convention (struct_return == reg_struct_return,
|
||
type);
|
||
}
|
||
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. Perhaps %esi and %edi should go here, but
|
||
potentially they could be used for things other than address. */
|
||
|
||
static struct type *
|
||
i386_register_virtual_type (int regnum)
|
||
{
|
||
if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
|
||
return lookup_pointer_type (builtin_type_void);
|
||
|
||
if (FP_REGNUM_P (regnum))
|
||
return builtin_type_i387_ext;
|
||
|
||
if (SSE_REGNUM_P (regnum))
|
||
return builtin_type_vec128i;
|
||
|
||
if (mmx_regnum_p (regnum))
|
||
return builtin_type_vec64i;
|
||
|
||
return builtin_type_int;
|
||
}
|
||
|
||
/* Map a cooked register onto a raw register or memory. For the i386,
|
||
the MMX registers need to be mapped onto floating point registers. */
|
||
|
||
static int
|
||
mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
|
||
{
|
||
int mmxi;
|
||
ULONGEST fstat;
|
||
int tos;
|
||
int fpi;
|
||
mmxi = regnum - MM0_REGNUM;
|
||
regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
|
||
tos = (fstat >> 11) & 0x7;
|
||
fpi = (mmxi + tos) % 8;
|
||
return (FP0_REGNUM + fpi);
|
||
}
|
||
|
||
static void
|
||
i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int regnum, void *buf)
|
||
{
|
||
if (mmx_regnum_p (regnum))
|
||
{
|
||
char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
|
||
int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
|
||
regcache_raw_read (regcache, fpnum, mmx_buf);
|
||
/* Extract (always little endian). */
|
||
memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
else
|
||
regcache_raw_read (regcache, regnum, buf);
|
||
}
|
||
|
||
static void
|
||
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int regnum, const void *buf)
|
||
{
|
||
if (mmx_regnum_p (regnum))
|
||
{
|
||
char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
|
||
int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
|
||
/* Read ... */
|
||
regcache_raw_read (regcache, fpnum, mmx_buf);
|
||
/* ... Modify ... (always little endian). */
|
||
memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
|
||
/* ... Write. */
|
||
regcache_raw_write (regcache, fpnum, mmx_buf);
|
||
}
|
||
else
|
||
regcache_raw_write (regcache, regnum, buf);
|
||
}
|
||
|
||
/* Return true iff register REGNUM's virtual format is different from
|
||
its raw format. Note that this definition assumes that the host
|
||
supports IEEE 32-bit floats, since it doesn't say that SSE
|
||
registers need conversion. Even if we can't find a counterexample,
|
||
this is still sloppy. */
|
||
|
||
static int
|
||
i386_register_convertible (int regnum)
|
||
{
|
||
return FP_REGNUM_P (regnum);
|
||
}
|
||
|
||
/* Convert data from raw format for register REGNUM in buffer FROM to
|
||
virtual format with type TYPE in buffer TO. */
|
||
|
||
static void
|
||
i386_register_convert_to_virtual (int regnum, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
gdb_assert (FP_REGNUM_P (regnum));
|
||
|
||
/* We only support floating-point values. */
|
||
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
||
{
|
||
warning ("Cannot convert floating-point register value "
|
||
"to non-floating-point type.");
|
||
memset (to, 0, TYPE_LENGTH (type));
|
||
return;
|
||
}
|
||
|
||
/* Convert to TYPE. This should be a no-op if TYPE is equivalent to
|
||
the extended floating-point format used by the FPU. */
|
||
convert_typed_floating (from, builtin_type_i387_ext, to, type);
|
||
}
|
||
|
||
/* Convert data from virtual format with type TYPE in buffer FROM to
|
||
raw format for register REGNUM in buffer TO. */
|
||
|
||
static void
|
||
i386_register_convert_to_raw (struct type *type, int regnum,
|
||
char *from, char *to)
|
||
{
|
||
gdb_assert (FP_REGNUM_P (regnum));
|
||
|
||
/* We only support floating-point values. */
|
||
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
||
{
|
||
warning ("Cannot convert non-floating-point type "
|
||
"to floating-point register value.");
|
||
memset (to, 0, TYPE_LENGTH (type));
|
||
return;
|
||
}
|
||
|
||
/* Convert from TYPE. This should be a no-op if TYPE is equivalent
|
||
to the extended floating-point format used by the FPU. */
|
||
convert_typed_floating (from, type, to, builtin_type_i387_ext);
|
||
}
|
||
|
||
|
||
#ifdef STATIC_TRANSFORM_NAME
|
||
/* SunPRO encodes the static variables. This is not related to C++
|
||
mangling, it is done for C too. */
|
||
|
||
char *
|
||
sunpro_static_transform_name (char *name)
|
||
{
|
||
char *p;
|
||
if (IS_STATIC_TRANSFORM_NAME (name))
|
||
{
|
||
/* For file-local statics there will be a period, a bunch of
|
||
junk (the contents of which match a string given in the
|
||
N_OPT), a period and the name. For function-local statics
|
||
there will be a bunch of junk (which seems to change the
|
||
second character from 'A' to 'B'), a period, the name of the
|
||
function, and the name. So just skip everything before the
|
||
last period. */
|
||
p = strrchr (name, '.');
|
||
if (p != NULL)
|
||
name = p + 1;
|
||
}
|
||
return name;
|
||
}
|
||
#endif /* STATIC_TRANSFORM_NAME */
|
||
|
||
|
||
/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
|
||
|
||
CORE_ADDR
|
||
i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
|
||
{
|
||
if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
|
||
{
|
||
unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
|
||
struct minimal_symbol *indsym =
|
||
indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
|
||
char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
|
||
|
||
if (symname)
|
||
{
|
||
if (strncmp (symname, "__imp_", 6) == 0
|
||
|| strncmp (symname, "_imp_", 5) == 0)
|
||
return name ? 1 : read_memory_unsigned_integer (indirect, 4);
|
||
}
|
||
}
|
||
return 0; /* Not a trampoline. */
|
||
}
|
||
|
||
|
||
/* Return non-zero if PC and NAME show that we are in a signal
|
||
trampoline. */
|
||
|
||
static int
|
||
i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
|
||
{
|
||
return (name && strcmp ("_sigtramp", name) == 0);
|
||
}
|
||
|
||
|
||
/* We have two flavours of disassembly. The machinery on this page
|
||
deals with switching between those. */
|
||
|
||
static int
|
||
i386_print_insn (bfd_vma pc, disassemble_info *info)
|
||
{
|
||
gdb_assert (disassembly_flavor == att_flavor
|
||
|| disassembly_flavor == intel_flavor);
|
||
|
||
/* FIXME: kettenis/20020915: Until disassembler_options is properly
|
||
constified, cast to prevent a compiler warning. */
|
||
info->disassembler_options = (char *) disassembly_flavor;
|
||
info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
|
||
|
||
return print_insn_i386 (pc, info);
|
||
}
|
||
|
||
|
||
/* There are a few i386 architecture variants that differ only
|
||
slightly from the generic i386 target. For now, we don't give them
|
||
their own source file, but include them here. As a consequence,
|
||
they'll always be included. */
|
||
|
||
/* System V Release 4 (SVR4). */
|
||
|
||
static int
|
||
i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
|
||
{
|
||
return (name && (strcmp ("_sigreturn", name) == 0
|
||
|| strcmp ("_sigacthandler", name) == 0
|
||
|| strcmp ("sigvechandler", name) == 0));
|
||
}
|
||
|
||
/* Get address of the pushed ucontext (sigcontext) on the stack for
|
||
all three variants of SVR4 sigtramps. */
|
||
|
||
static CORE_ADDR
|
||
i386_svr4_sigcontext_addr (struct frame_info *frame)
|
||
{
|
||
int sigcontext_offset = -1;
|
||
char *name = NULL;
|
||
|
||
find_pc_partial_function (frame->pc, &name, NULL, NULL);
|
||
if (name)
|
||
{
|
||
if (strcmp (name, "_sigreturn") == 0)
|
||
sigcontext_offset = 132;
|
||
else if (strcmp (name, "_sigacthandler") == 0)
|
||
sigcontext_offset = 80;
|
||
else if (strcmp (name, "sigvechandler") == 0)
|
||
sigcontext_offset = 120;
|
||
}
|
||
|
||
gdb_assert (sigcontext_offset != -1);
|
||
|
||
if (frame->next)
|
||
return frame->next->frame + sigcontext_offset;
|
||
return read_register (SP_REGNUM) + sigcontext_offset;
|
||
}
|
||
|
||
|
||
/* DJGPP. */
|
||
|
||
static int
|
||
i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
|
||
{
|
||
/* DJGPP doesn't have any special frames for signal handlers. */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Generic ELF. */
|
||
|
||
void
|
||
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
/* We typically use stabs-in-ELF with the DWARF register numbering. */
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
|
||
}
|
||
|
||
/* System V Release 4 (SVR4). */
|
||
|
||
void
|
||
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* System V Release 4 uses ELF. */
|
||
i386_elf_init_abi (info, gdbarch);
|
||
|
||
/* System V Release 4 has shared libraries. */
|
||
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
|
||
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
||
|
||
/* FIXME: kettenis/20020511: Why do we override this function here? */
|
||
set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
|
||
|
||
set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
|
||
tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
|
||
tdep->sc_pc_offset = 14 * 4;
|
||
tdep->sc_sp_offset = 7 * 4;
|
||
|
||
tdep->jb_pc_offset = 20;
|
||
}
|
||
|
||
/* DJGPP. */
|
||
|
||
static void
|
||
i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
|
||
|
||
tdep->jb_pc_offset = 36;
|
||
}
|
||
|
||
/* NetWare. */
|
||
|
||
static void
|
||
i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* FIXME: kettenis/20020511: Why do we override this function here? */
|
||
set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
|
||
|
||
tdep->jb_pc_offset = 24;
|
||
}
|
||
|
||
|
||
static struct gdbarch *
|
||
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch_tdep *tdep;
|
||
struct gdbarch *gdbarch;
|
||
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
|
||
|
||
/* Try to determine the OS ABI of the object we're loading. */
|
||
if (info.abfd != NULL)
|
||
osabi = gdbarch_lookup_osabi (info.abfd);
|
||
|
||
/* Find a candidate among extant architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Make sure the OS ABI selection matches. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->osabi == osabi)
|
||
return arches->gdbarch;
|
||
}
|
||
|
||
/* Allocate space for the new architecture. */
|
||
tdep = XMALLOC (struct gdbarch_tdep);
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
tdep->osabi = osabi;
|
||
|
||
/* The i386 default settings don't include the SSE registers.
|
||
FIXME: kettenis/20020614: They do include the FPU registers for
|
||
now, which probably is not quite right. */
|
||
tdep->num_xmm_regs = 0;
|
||
|
||
tdep->jb_pc_offset = -1;
|
||
tdep->struct_return = pcc_struct_return;
|
||
tdep->sigtramp_start = 0;
|
||
tdep->sigtramp_end = 0;
|
||
tdep->sigcontext_addr = NULL;
|
||
tdep->sc_pc_offset = -1;
|
||
tdep->sc_sp_offset = -1;
|
||
|
||
/* The format used for `long double' on almost all i386 targets is
|
||
the i387 extended floating-point format. In fact, of all targets
|
||
in the GCC 2.95 tree, only OSF/1 does it different, and insists
|
||
on having a `long double' that's not `long' at all. */
|
||
set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
|
||
|
||
/* Although the i387 extended floating-point has only 80 significant
|
||
bits, a `long double' actually takes up 96, probably to enforce
|
||
alignment. */
|
||
set_gdbarch_long_double_bit (gdbarch, 96);
|
||
|
||
/* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
|
||
tm-symmetry.h currently override this. Sigh. */
|
||
set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
|
||
|
||
set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
|
||
set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
|
||
set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
|
||
set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
|
||
set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
|
||
|
||
/* Use the "default" register numbering scheme for stabs and COFF. */
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
|
||
set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
|
||
|
||
/* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
|
||
set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
|
||
|
||
/* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
|
||
be in use on any of the supported i386 targets. */
|
||
|
||
set_gdbarch_register_name (gdbarch, i386_register_name);
|
||
set_gdbarch_register_size (gdbarch, 4);
|
||
set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
|
||
set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
|
||
set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
|
||
|
||
set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
|
||
|
||
set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
|
||
|
||
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_words (gdbarch, NULL);
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
||
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
||
|
||
set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
|
||
set_gdbarch_register_convert_to_virtual (gdbarch,
|
||
i386_register_convert_to_virtual);
|
||
set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
|
||
|
||
set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
|
||
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
||
|
||
/* "An argument's size is increased, if necessary, to make it a
|
||
multiple of [32-bit] words. This may require tail padding,
|
||
depending on the size of the argument" -- from the x86 ABI. */
|
||
set_gdbarch_parm_boundary (gdbarch, 32);
|
||
|
||
set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
|
||
set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
|
||
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
||
set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
|
||
set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
|
||
set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
|
||
set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
|
||
set_gdbarch_extract_struct_value_address (gdbarch,
|
||
i386_extract_struct_value_address);
|
||
set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
|
||
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
|
||
set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
|
||
|
||
/* Stack grows downward. */
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 1);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
|
||
/* The following redefines make backtracing through sigtramp work.
|
||
They manufacture a fake sigtramp frame and obtain the saved pc in
|
||
sigtramp from the sigcontext structure which is pushed by the
|
||
kernel on the user stack, along with a pointer to it. */
|
||
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
set_gdbarch_frameless_function_invocation (gdbarch,
|
||
i386_frameless_function_invocation);
|
||
set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
|
||
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
||
set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
|
||
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
||
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
||
set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
|
||
set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
|
||
set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
|
||
|
||
/* Wire in the MMX registers. */
|
||
set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
|
||
set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
|
||
|
||
set_gdbarch_print_insn (gdbarch, i386_print_insn);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch, osabi);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static enum gdb_osabi
|
||
i386_coff_osabi_sniffer (bfd *abfd)
|
||
{
|
||
if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
|
||
|| strcmp (bfd_get_target (abfd), "coff-go32") == 0)
|
||
return GDB_OSABI_GO32;
|
||
|
||
return GDB_OSABI_UNKNOWN;
|
||
}
|
||
|
||
static enum gdb_osabi
|
||
i386_nlm_osabi_sniffer (bfd *abfd)
|
||
{
|
||
return GDB_OSABI_NETWARE;
|
||
}
|
||
|
||
|
||
/* Provide a prototype to silence -Wmissing-prototypes. */
|
||
void _initialize_i386_tdep (void);
|
||
|
||
void
|
||
_initialize_i386_tdep (void)
|
||
{
|
||
register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
|
||
|
||
/* Add the variable that controls the disassembly flavor. */
|
||
{
|
||
struct cmd_list_element *new_cmd;
|
||
|
||
new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
|
||
valid_flavors,
|
||
&disassembly_flavor,
|
||
"\
|
||
Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
|
||
and the default value is \"att\".",
|
||
&setlist);
|
||
add_show_from_set (new_cmd, &showlist);
|
||
}
|
||
|
||
/* Add the variable that controls the convention for returning
|
||
structs. */
|
||
{
|
||
struct cmd_list_element *new_cmd;
|
||
|
||
new_cmd = add_set_enum_cmd ("struct-convention", no_class,
|
||
valid_conventions,
|
||
&struct_convention, "\
|
||
Set the convention for returning small structs, valid values \
|
||
are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
|
||
&setlist);
|
||
add_show_from_set (new_cmd, &showlist);
|
||
}
|
||
|
||
gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
|
||
i386_coff_osabi_sniffer);
|
||
gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
|
||
i386_nlm_osabi_sniffer);
|
||
|
||
gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
|
||
i386_svr4_init_abi);
|
||
gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
|
||
i386_go32_init_abi);
|
||
gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
|
||
i386_nw_init_abi);
|
||
}
|