df6335e19f
REGISTER_U_ADDR to corresponding xm- file. Sugg. by Peter Schauer.
93 lines
3.2 KiB
C
93 lines
3.2 KiB
C
/* Parameters for execution on a Gould PN, for GDB, the GNU debugger.
|
||
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#define HOST_BYTE_ORDER BIG_ENDIAN
|
||
|
||
/* Get rid of any system-imposed stack limit if possible. */
|
||
#define SET_STACK_LIMIT_HUGE
|
||
|
||
#define MISSING_VPRINTF
|
||
|
||
/* Address of U in kernel space */
|
||
#define KERNEL_U_ADDR 0x3fc000
|
||
|
||
/* This is a piece of magic that is given a register number REGNO
|
||
and as BLOCKEND the address in the system of the end of the user structure
|
||
and stores in ADDR the address in the kernel or core dump
|
||
of that register. */
|
||
#define REGISTER_U_ADDR(addr, blockend, regno) { \
|
||
addr = blockend + regno * 4; \
|
||
if (regno == PC_REGNUM) addr = blockend - 8 * 4; \
|
||
if (regno == PS_REGNUM) addr = blockend - 7 * 4; \
|
||
if (regno == SP_REGNUM) addr = blockend - 6 * 4; \
|
||
}
|
||
|
||
/* No KDB support, Yet! */
|
||
/* Interface definitions for kernel debugger KDB. */
|
||
|
||
/* Map machine fault codes into signal numbers.
|
||
First subtract 0, divide by 4, then index in a table.
|
||
Faults for which the entry in this table is 0
|
||
are not handled by KDB; the program's own trap handler
|
||
gets to handle then. */
|
||
|
||
#define FAULT_CODE_ORIGIN 0
|
||
#define FAULT_CODE_UNITS 4
|
||
#define FAULT_TABLE \
|
||
{ 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
|
||
0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
SIGILL }
|
||
|
||
/* Start running with a stack stretching from BEG to END.
|
||
BEG and END should be symbols meaningful to the assembler.
|
||
This is used only for kdb. */
|
||
|
||
#define INIT_STACK(beg, end) \
|
||
{ asm (".globl end"); \
|
||
asm ("movel $ end, sp"); \
|
||
asm ("clrl fp"); }
|
||
|
||
/* Push the frame pointer register on the stack. */
|
||
#define PUSH_FRAME_PTR \
|
||
asm ("movel fp, -(sp)");
|
||
|
||
/* Copy the top-of-stack to the frame pointer register. */
|
||
#define POP_FRAME_PTR \
|
||
asm ("movl (sp), fp");
|
||
|
||
/* After KDB is entered by a fault, push all registers
|
||
that GDB thinks about (all NUM_REGS of them),
|
||
so that they appear in order of ascending GDB register number.
|
||
The fault code will be on the stack beyond the last register. */
|
||
|
||
#define PUSH_REGISTERS \
|
||
{ asm ("clrw -(sp)"); \
|
||
asm ("pea 10(sp)"); \
|
||
asm ("movem $ 0xfffe,-(sp)"); }
|
||
|
||
/* Assuming the registers (including processor status) have been
|
||
pushed on the stack in order of ascending GDB register number,
|
||
restore them and return to the address in the saved PC register. */
|
||
|
||
#define POP_REGISTERS \
|
||
{ asm ("subil $8,28(sp)"); \
|
||
asm ("movem (sp),$ 0xffff"); \
|
||
asm ("rte"); }
|