binutils-gdb/gdb/utils.c
Andrew Stubbs fa3fd85b06 2006-12-06 Andrew Stubbs <andrew.stubbs@st.com>
* event-top.c (command_handler): On EOF, print 'quit' and run quit
	command via execute_command such that hooks and trace work.
	* utils.c (defaulted_query): On EOF, print default answer and newline.
2006-12-06 16:49:57 +00:00

3213 lines
83 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* General utility routines for GDB, the GNU debugger.
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "gdb_assert.h"
#include <ctype.h>
#include "gdb_string.h"
#include "event-top.h"
#include "exceptions.h"
#ifdef TUI
#include "tui/tui.h" /* For tui_get_command_dimension. */
#endif
#ifdef __GO32__
#include <pc.h>
#endif
/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
#ifdef reg
#undef reg
#endif
#include <signal.h>
#include "gdbcmd.h"
#include "serial.h"
#include "bfd.h"
#include "target.h"
#include "demangle.h"
#include "expression.h"
#include "language.h"
#include "charset.h"
#include "annotate.h"
#include "filenames.h"
#include "symfile.h"
#include "gdb_obstack.h"
#include "top.h"
#include "inferior.h" /* for signed_pointer_to_address */
#include <sys/param.h> /* For MAXPATHLEN */
#include "gdb_curses.h"
#include "readline/readline.h"
#if !HAVE_DECL_MALLOC
extern PTR malloc (); /* OK: PTR */
#endif
#if !HAVE_DECL_REALLOC
extern PTR realloc (); /* OK: PTR */
#endif
#if !HAVE_DECL_FREE
extern void free ();
#endif
/* readline defines this. */
#undef savestring
void (*deprecated_error_begin_hook) (void);
/* Prototypes for local functions */
static void vfprintf_maybe_filtered (struct ui_file *, const char *,
va_list, int) ATTR_FORMAT (printf, 2, 0);
static void fputs_maybe_filtered (const char *, struct ui_file *, int);
static void do_my_cleanups (struct cleanup **, struct cleanup *);
static void prompt_for_continue (void);
static void set_screen_size (void);
static void set_width (void);
/* Chain of cleanup actions established with make_cleanup,
to be executed if an error happens. */
static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
/* cleaned up on each error from within an execution command */
static struct cleanup *exec_error_cleanup_chain;
/* Pointer to what is left to do for an execution command after the
target stops. Used only in asynchronous mode, by targets that
support async execution. The finish and until commands use it. So
does the target extended-remote command. */
struct continuation *cmd_continuation;
struct continuation *intermediate_continuation;
/* Nonzero if we have job control. */
int job_control;
/* Nonzero means a quit has been requested. */
int quit_flag;
/* Nonzero means quit immediately if Control-C is typed now, rather
than waiting until QUIT is executed. Be careful in setting this;
code which executes with immediate_quit set has to be very careful
about being able to deal with being interrupted at any time. It is
almost always better to use QUIT; the only exception I can think of
is being able to quit out of a system call (using EINTR loses if
the SIGINT happens between the previous QUIT and the system call).
To immediately quit in the case in which a SIGINT happens between
the previous QUIT and setting immediate_quit (desirable anytime we
expect to block), call QUIT after setting immediate_quit. */
int immediate_quit;
/* Nonzero means that encoded C++/ObjC names should be printed out in their
C++/ObjC form rather than raw. */
int demangle = 1;
static void
show_demangle (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("\
Demangling of encoded C++/ObjC names when displaying symbols is %s.\n"),
value);
}
/* Nonzero means that encoded C++/ObjC names should be printed out in their
C++/ObjC form even in assembler language displays. If this is set, but
DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
int asm_demangle = 0;
static void
show_asm_demangle (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("\
Demangling of C++/ObjC names in disassembly listings is %s.\n"),
value);
}
/* Nonzero means that strings with character values >0x7F should be printed
as octal escapes. Zero means just print the value (e.g. it's an
international character, and the terminal or window can cope.) */
int sevenbit_strings = 0;
static void
show_sevenbit_strings (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("\
Printing of 8-bit characters in strings as \\nnn is %s.\n"),
value);
}
/* String to be printed before error messages, if any. */
char *error_pre_print;
/* String to be printed before quit messages, if any. */
char *quit_pre_print;
/* String to be printed before warning messages, if any. */
char *warning_pre_print = "\nwarning: ";
int pagination_enabled = 1;
static void
show_pagination_enabled (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("State of pagination is %s.\n"), value);
}
/* Add a new cleanup to the cleanup_chain,
and return the previous chain pointer
to be passed later to do_cleanups or discard_cleanups.
Args are FUNCTION to clean up with, and ARG to pass to it. */
struct cleanup *
make_cleanup (make_cleanup_ftype *function, void *arg)
{
return make_my_cleanup (&cleanup_chain, function, arg);
}
struct cleanup *
make_final_cleanup (make_cleanup_ftype *function, void *arg)
{
return make_my_cleanup (&final_cleanup_chain, function, arg);
}
struct cleanup *
make_run_cleanup (make_cleanup_ftype *function, void *arg)
{
return make_my_cleanup (&run_cleanup_chain, function, arg);
}
struct cleanup *
make_exec_cleanup (make_cleanup_ftype *function, void *arg)
{
return make_my_cleanup (&exec_cleanup_chain, function, arg);
}
struct cleanup *
make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
{
return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
}
static void
do_freeargv (void *arg)
{
freeargv ((char **) arg);
}
struct cleanup *
make_cleanup_freeargv (char **arg)
{
return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
}
static void
do_bfd_close_cleanup (void *arg)
{
bfd_close (arg);
}
struct cleanup *
make_cleanup_bfd_close (bfd *abfd)
{
return make_cleanup (do_bfd_close_cleanup, abfd);
}
static void
do_close_cleanup (void *arg)
{
int *fd = arg;
close (*fd);
xfree (fd);
}
struct cleanup *
make_cleanup_close (int fd)
{
int *saved_fd = xmalloc (sizeof (fd));
*saved_fd = fd;
return make_cleanup (do_close_cleanup, saved_fd);
}
static void
do_ui_file_delete (void *arg)
{
ui_file_delete (arg);
}
struct cleanup *
make_cleanup_ui_file_delete (struct ui_file *arg)
{
return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
}
static void
do_free_section_addr_info (void *arg)
{
free_section_addr_info (arg);
}
struct cleanup *
make_cleanup_free_section_addr_info (struct section_addr_info *addrs)
{
return make_my_cleanup (&cleanup_chain, do_free_section_addr_info, addrs);
}
struct cleanup *
make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
void *arg)
{
struct cleanup *new
= (struct cleanup *) xmalloc (sizeof (struct cleanup));
struct cleanup *old_chain = *pmy_chain;
new->next = *pmy_chain;
new->function = function;
new->arg = arg;
*pmy_chain = new;
return old_chain;
}
/* Discard cleanups and do the actions they describe
until we get back to the point OLD_CHAIN in the cleanup_chain. */
void
do_cleanups (struct cleanup *old_chain)
{
do_my_cleanups (&cleanup_chain, old_chain);
}
void
do_final_cleanups (struct cleanup *old_chain)
{
do_my_cleanups (&final_cleanup_chain, old_chain);
}
void
do_run_cleanups (struct cleanup *old_chain)
{
do_my_cleanups (&run_cleanup_chain, old_chain);
}
void
do_exec_cleanups (struct cleanup *old_chain)
{
do_my_cleanups (&exec_cleanup_chain, old_chain);
}
void
do_exec_error_cleanups (struct cleanup *old_chain)
{
do_my_cleanups (&exec_error_cleanup_chain, old_chain);
}
static void
do_my_cleanups (struct cleanup **pmy_chain,
struct cleanup *old_chain)
{
struct cleanup *ptr;
while ((ptr = *pmy_chain) != old_chain)
{
*pmy_chain = ptr->next; /* Do this first incase recursion */
(*ptr->function) (ptr->arg);
xfree (ptr);
}
}
/* Discard cleanups, not doing the actions they describe,
until we get back to the point OLD_CHAIN in the cleanup_chain. */
void
discard_cleanups (struct cleanup *old_chain)
{
discard_my_cleanups (&cleanup_chain, old_chain);
}
void
discard_final_cleanups (struct cleanup *old_chain)
{
discard_my_cleanups (&final_cleanup_chain, old_chain);
}
void
discard_exec_error_cleanups (struct cleanup *old_chain)
{
discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
}
void
discard_my_cleanups (struct cleanup **pmy_chain,
struct cleanup *old_chain)
{
struct cleanup *ptr;
while ((ptr = *pmy_chain) != old_chain)
{
*pmy_chain = ptr->next;
xfree (ptr);
}
}
/* Set the cleanup_chain to 0, and return the old cleanup chain. */
struct cleanup *
save_cleanups (void)
{
return save_my_cleanups (&cleanup_chain);
}
struct cleanup *
save_final_cleanups (void)
{
return save_my_cleanups (&final_cleanup_chain);
}
struct cleanup *
save_my_cleanups (struct cleanup **pmy_chain)
{
struct cleanup *old_chain = *pmy_chain;
*pmy_chain = 0;
return old_chain;
}
/* Restore the cleanup chain from a previously saved chain. */
void
restore_cleanups (struct cleanup *chain)
{
restore_my_cleanups (&cleanup_chain, chain);
}
void
restore_final_cleanups (struct cleanup *chain)
{
restore_my_cleanups (&final_cleanup_chain, chain);
}
void
restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
{
*pmy_chain = chain;
}
/* This function is useful for cleanups.
Do
foo = xmalloc (...);
old_chain = make_cleanup (free_current_contents, &foo);
to arrange to free the object thus allocated. */
void
free_current_contents (void *ptr)
{
void **location = ptr;
if (location == NULL)
internal_error (__FILE__, __LINE__,
_("free_current_contents: NULL pointer"));
if (*location != NULL)
{
xfree (*location);
*location = NULL;
}
}
/* Provide a known function that does nothing, to use as a base for
for a possibly long chain of cleanups. This is useful where we
use the cleanup chain for handling normal cleanups as well as dealing
with cleanups that need to be done as a result of a call to error().
In such cases, we may not be certain where the first cleanup is, unless
we have a do-nothing one to always use as the base. */
void
null_cleanup (void *arg)
{
}
/* Add a continuation to the continuation list, the global list
cmd_continuation. The new continuation will be added at the front.*/
void
add_continuation (void (*continuation_hook) (struct continuation_arg *),
struct continuation_arg *arg_list)
{
struct continuation *continuation_ptr;
continuation_ptr =
(struct continuation *) xmalloc (sizeof (struct continuation));
continuation_ptr->continuation_hook = continuation_hook;
continuation_ptr->arg_list = arg_list;
continuation_ptr->next = cmd_continuation;
cmd_continuation = continuation_ptr;
}
/* Walk down the cmd_continuation list, and execute all the
continuations. There is a problem though. In some cases new
continuations may be added while we are in the middle of this
loop. If this happens they will be added in the front, and done
before we have a chance of exhausting those that were already
there. We need to then save the beginning of the list in a pointer
and do the continuations from there on, instead of using the
global beginning of list as our iteration pointer. */
void
do_all_continuations (void)
{
struct continuation *continuation_ptr;
struct continuation *saved_continuation;
/* Copy the list header into another pointer, and set the global
list header to null, so that the global list can change as a side
effect of invoking the continuations and the processing of
the preexisting continuations will not be affected. */
continuation_ptr = cmd_continuation;
cmd_continuation = NULL;
/* Work now on the list we have set aside. */
while (continuation_ptr)
{
(continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
saved_continuation = continuation_ptr;
continuation_ptr = continuation_ptr->next;
xfree (saved_continuation);
}
}
/* Walk down the cmd_continuation list, and get rid of all the
continuations. */
void
discard_all_continuations (void)
{
struct continuation *continuation_ptr;
while (cmd_continuation)
{
continuation_ptr = cmd_continuation;
cmd_continuation = continuation_ptr->next;
xfree (continuation_ptr);
}
}
/* Add a continuation to the continuation list, the global list
intermediate_continuation. The new continuation will be added at
the front. */
void
add_intermediate_continuation (void (*continuation_hook)
(struct continuation_arg *),
struct continuation_arg *arg_list)
{
struct continuation *continuation_ptr;
continuation_ptr =
(struct continuation *) xmalloc (sizeof (struct continuation));
continuation_ptr->continuation_hook = continuation_hook;
continuation_ptr->arg_list = arg_list;
continuation_ptr->next = intermediate_continuation;
intermediate_continuation = continuation_ptr;
}
/* Walk down the cmd_continuation list, and execute all the
continuations. There is a problem though. In some cases new
continuations may be added while we are in the middle of this
loop. If this happens they will be added in the front, and done
before we have a chance of exhausting those that were already
there. We need to then save the beginning of the list in a pointer
and do the continuations from there on, instead of using the
global beginning of list as our iteration pointer.*/
void
do_all_intermediate_continuations (void)
{
struct continuation *continuation_ptr;
struct continuation *saved_continuation;
/* Copy the list header into another pointer, and set the global
list header to null, so that the global list can change as a side
effect of invoking the continuations and the processing of
the preexisting continuations will not be affected. */
continuation_ptr = intermediate_continuation;
intermediate_continuation = NULL;
/* Work now on the list we have set aside. */
while (continuation_ptr)
{
(continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
saved_continuation = continuation_ptr;
continuation_ptr = continuation_ptr->next;
xfree (saved_continuation);
}
}
/* Walk down the cmd_continuation list, and get rid of all the
continuations. */
void
discard_all_intermediate_continuations (void)
{
struct continuation *continuation_ptr;
while (intermediate_continuation)
{
continuation_ptr = intermediate_continuation;
intermediate_continuation = continuation_ptr->next;
xfree (continuation_ptr);
}
}
/* Print a warning message. The first argument STRING is the warning
message, used as an fprintf format string, the second is the
va_list of arguments for that string. A warning is unfiltered (not
paginated) so that the user does not need to page through each
screen full of warnings when there are lots of them. */
void
vwarning (const char *string, va_list args)
{
if (deprecated_warning_hook)
(*deprecated_warning_hook) (string, args);
else
{
target_terminal_ours ();
wrap_here (""); /* Force out any buffered output */
gdb_flush (gdb_stdout);
if (warning_pre_print)
fputs_unfiltered (warning_pre_print, gdb_stderr);
vfprintf_unfiltered (gdb_stderr, string, args);
fprintf_unfiltered (gdb_stderr, "\n");
va_end (args);
}
}
/* Print a warning message.
The first argument STRING is the warning message, used as a fprintf string,
and the remaining args are passed as arguments to it.
The primary difference between warnings and errors is that a warning
does not force the return to command level. */
void
warning (const char *string, ...)
{
va_list args;
va_start (args, string);
vwarning (string, args);
va_end (args);
}
/* Print an error message and return to command level.
The first argument STRING is the error message, used as a fprintf string,
and the remaining args are passed as arguments to it. */
NORETURN void
verror (const char *string, va_list args)
{
throw_verror (GENERIC_ERROR, string, args);
}
NORETURN void
error (const char *string, ...)
{
va_list args;
va_start (args, string);
throw_verror (GENERIC_ERROR, string, args);
va_end (args);
}
/* Print an error message and quit.
The first argument STRING is the error message, used as a fprintf string,
and the remaining args are passed as arguments to it. */
NORETURN void
vfatal (const char *string, va_list args)
{
throw_vfatal (string, args);
}
NORETURN void
fatal (const char *string, ...)
{
va_list args;
va_start (args, string);
throw_vfatal (string, args);
va_end (args);
}
NORETURN void
error_stream (struct ui_file *stream)
{
long len;
char *message = ui_file_xstrdup (stream, &len);
make_cleanup (xfree, message);
error (("%s"), message);
}
/* Print a message reporting an internal error/warning. Ask the user
if they want to continue, dump core, or just exit. Return
something to indicate a quit. */
struct internal_problem
{
const char *name;
/* FIXME: cagney/2002-08-15: There should be ``maint set/show''
commands available for controlling these variables. */
enum auto_boolean should_quit;
enum auto_boolean should_dump_core;
};
/* Report a problem, internal to GDB, to the user. Once the problem
has been reported, and assuming GDB didn't quit, the caller can
either allow execution to resume or throw an error. */
static void ATTR_FORMAT (printf, 4, 0)
internal_vproblem (struct internal_problem *problem,
const char *file, int line, const char *fmt, va_list ap)
{
static int dejavu;
int quit_p;
int dump_core_p;
char *reason;
/* Don't allow infinite error/warning recursion. */
{
static char msg[] = "Recursive internal problem.\n";
switch (dejavu)
{
case 0:
dejavu = 1;
break;
case 1:
dejavu = 2;
fputs_unfiltered (msg, gdb_stderr);
abort (); /* NOTE: GDB has only three calls to abort(). */
default:
dejavu = 3;
write (STDERR_FILENO, msg, sizeof (msg));
exit (1);
}
}
/* Try to get the message out and at the start of a new line. */
target_terminal_ours ();
begin_line ();
/* Create a string containing the full error/warning message. Need
to call query with this full string, as otherwize the reason
(error/warning) and question become separated. Format using a
style similar to a compiler error message. Include extra detail
so that the user knows that they are living on the edge. */
{
char *msg;
msg = xstrvprintf (fmt, ap);
reason = xstrprintf ("\
%s:%d: %s: %s\n\
A problem internal to GDB has been detected,\n\
further debugging may prove unreliable.", file, line, problem->name, msg);
xfree (msg);
make_cleanup (xfree, reason);
}
switch (problem->should_quit)
{
case AUTO_BOOLEAN_AUTO:
/* Default (yes/batch case) is to quit GDB. When in batch mode
this lessens the likelhood of GDB going into an infinate
loop. */
quit_p = query (_("%s\nQuit this debugging session? "), reason);
break;
case AUTO_BOOLEAN_TRUE:
quit_p = 1;
break;
case AUTO_BOOLEAN_FALSE:
quit_p = 0;
break;
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
switch (problem->should_dump_core)
{
case AUTO_BOOLEAN_AUTO:
/* Default (yes/batch case) is to dump core. This leaves a GDB
`dropping' so that it is easier to see that something went
wrong in GDB. */
dump_core_p = query (_("%s\nCreate a core file of GDB? "), reason);
break;
break;
case AUTO_BOOLEAN_TRUE:
dump_core_p = 1;
break;
case AUTO_BOOLEAN_FALSE:
dump_core_p = 0;
break;
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
if (quit_p)
{
if (dump_core_p)
abort (); /* NOTE: GDB has only three calls to abort(). */
else
exit (1);
}
else
{
if (dump_core_p)
{
#ifdef HAVE_WORKING_FORK
if (fork () == 0)
abort (); /* NOTE: GDB has only three calls to abort(). */
#endif
}
}
dejavu = 0;
}
static struct internal_problem internal_error_problem = {
"internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
};
NORETURN void
internal_verror (const char *file, int line, const char *fmt, va_list ap)
{
internal_vproblem (&internal_error_problem, file, line, fmt, ap);
deprecated_throw_reason (RETURN_ERROR);
}
NORETURN void
internal_error (const char *file, int line, const char *string, ...)
{
va_list ap;
va_start (ap, string);
internal_verror (file, line, string, ap);
va_end (ap);
}
static struct internal_problem internal_warning_problem = {
"internal-warning", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
};
void
internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
{
internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
}
void
internal_warning (const char *file, int line, const char *string, ...)
{
va_list ap;
va_start (ap, string);
internal_vwarning (file, line, string, ap);
va_end (ap);
}
/* Print the system error message for errno, and also mention STRING
as the file name for which the error was encountered.
Then return to command level. */
NORETURN void
perror_with_name (const char *string)
{
char *err;
char *combined;
err = safe_strerror (errno);
combined = (char *) alloca (strlen (err) + strlen (string) + 3);
strcpy (combined, string);
strcat (combined, ": ");
strcat (combined, err);
/* I understand setting these is a matter of taste. Still, some people
may clear errno but not know about bfd_error. Doing this here is not
unreasonable. */
bfd_set_error (bfd_error_no_error);
errno = 0;
error (_("%s."), combined);
}
/* Print the system error message for ERRCODE, and also mention STRING
as the file name for which the error was encountered. */
void
print_sys_errmsg (const char *string, int errcode)
{
char *err;
char *combined;
err = safe_strerror (errcode);
combined = (char *) alloca (strlen (err) + strlen (string) + 3);
strcpy (combined, string);
strcat (combined, ": ");
strcat (combined, err);
/* We want anything which was printed on stdout to come out first, before
this message. */
gdb_flush (gdb_stdout);
fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
}
/* Control C eventually causes this to be called, at a convenient time. */
void
quit (void)
{
#ifdef __MSDOS__
/* No steenking SIGINT will ever be coming our way when the
program is resumed. Don't lie. */
fatal ("Quit");
#else
if (job_control
/* If there is no terminal switching for this target, then we can't
possibly get screwed by the lack of job control. */
|| current_target.to_terminal_ours == NULL)
fatal ("Quit");
else
fatal ("Quit (expect signal SIGINT when the program is resumed)");
#endif
}
/* Control C comes here */
void
request_quit (int signo)
{
quit_flag = 1;
/* Restore the signal handler. Harmless with BSD-style signals,
needed for System V-style signals. */
signal (signo, request_quit);
if (immediate_quit)
quit ();
}
/* Called when a memory allocation fails, with the number of bytes of
memory requested in SIZE. */
NORETURN void
nomem (long size)
{
if (size > 0)
{
internal_error (__FILE__, __LINE__,
_("virtual memory exhausted: can't allocate %ld bytes."),
size);
}
else
{
internal_error (__FILE__, __LINE__, _("virtual memory exhausted."));
}
}
/* The xmalloc() (libiberty.h) family of memory management routines.
These are like the ISO-C malloc() family except that they implement
consistent semantics and guard against typical memory management
problems. */
/* NOTE: These are declared using PTR to ensure consistency with
"libiberty.h". xfree() is GDB local. */
PTR /* OK: PTR */
xmalloc (size_t size)
{
void *val;
/* See libiberty/xmalloc.c. This function need's to match that's
semantics. It never returns NULL. */
if (size == 0)
size = 1;
val = malloc (size); /* OK: malloc */
if (val == NULL)
nomem (size);
return (val);
}
void *
xzalloc (size_t size)
{
return xcalloc (1, size);
}
PTR /* OK: PTR */
xrealloc (PTR ptr, size_t size) /* OK: PTR */
{
void *val;
/* See libiberty/xmalloc.c. This function need's to match that's
semantics. It never returns NULL. */
if (size == 0)
size = 1;
if (ptr != NULL)
val = realloc (ptr, size); /* OK: realloc */
else
val = malloc (size); /* OK: malloc */
if (val == NULL)
nomem (size);
return (val);
}
PTR /* OK: PTR */
xcalloc (size_t number, size_t size)
{
void *mem;
/* See libiberty/xmalloc.c. This function need's to match that's
semantics. It never returns NULL. */
if (number == 0 || size == 0)
{
number = 1;
size = 1;
}
mem = calloc (number, size); /* OK: xcalloc */
if (mem == NULL)
nomem (number * size);
return mem;
}
void
xfree (void *ptr)
{
if (ptr != NULL)
free (ptr); /* OK: free */
}
/* Like asprintf/vasprintf but get an internal_error if the call
fails. */
char *
xstrprintf (const char *format, ...)
{
char *ret;
va_list args;
va_start (args, format);
ret = xstrvprintf (format, args);
va_end (args);
return ret;
}
void
xasprintf (char **ret, const char *format, ...)
{
va_list args;
va_start (args, format);
(*ret) = xstrvprintf (format, args);
va_end (args);
}
void
xvasprintf (char **ret, const char *format, va_list ap)
{
(*ret) = xstrvprintf (format, ap);
}
char *
xstrvprintf (const char *format, va_list ap)
{
char *ret = NULL;
int status = vasprintf (&ret, format, ap);
/* NULL is returned when there was a memory allocation problem, or
any other error (for instance, a bad format string). A negative
status (the printed length) with a non-NULL buffer should never
happen, but just to be sure. */
if (ret == NULL || status < 0)
internal_error (__FILE__, __LINE__, _("vasprintf call failed"));
return ret;
}
int
xsnprintf (char *str, size_t size, const char *format, ...)
{
va_list args;
int ret;
va_start (args, format);
ret = vsnprintf (str, size, format, args);
gdb_assert (ret < size);
va_end (args);
return ret;
}
/* My replacement for the read system call.
Used like `read' but keeps going if `read' returns too soon. */
int
myread (int desc, char *addr, int len)
{
int val;
int orglen = len;
while (len > 0)
{
val = read (desc, addr, len);
if (val < 0)
return val;
if (val == 0)
return orglen - len;
len -= val;
addr += val;
}
return orglen;
}
/* Make a copy of the string at PTR with SIZE characters
(and add a null character at the end in the copy).
Uses malloc to get the space. Returns the address of the copy. */
char *
savestring (const char *ptr, size_t size)
{
char *p = (char *) xmalloc (size + 1);
memcpy (p, ptr, size);
p[size] = 0;
return p;
}
void
print_spaces (int n, struct ui_file *file)
{
fputs_unfiltered (n_spaces (n), file);
}
/* Print a host address. */
void
gdb_print_host_address (const void *addr, struct ui_file *stream)
{
/* We could use the %p conversion specifier to fprintf if we had any
way of knowing whether this host supports it. But the following
should work on the Alpha and on 32 bit machines. */
fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
}
/* This function supports the query, nquery, and yquery functions.
Ask user a y-or-n question and return 0 if answer is no, 1 if
answer is yes, or default the answer to the specified default
(for yquery or nquery). DEFCHAR may be 'y' or 'n' to provide a
default answer, or '\0' for no default.
CTLSTR is the control string and should end in "? ". It should
not say how to answer, because we do that.
ARGS are the arguments passed along with the CTLSTR argument to
printf. */
static int ATTR_FORMAT (printf, 1, 0)
defaulted_query (const char *ctlstr, const char defchar, va_list args)
{
int answer;
int ans2;
int retval;
int def_value;
char def_answer, not_def_answer;
char *y_string, *n_string, *question;
/* Set up according to which answer is the default. */
if (defchar == '\0')
{
def_value = 1;
def_answer = 'Y';
not_def_answer = 'N';
y_string = "y";
n_string = "n";
}
else if (defchar == 'y')
{
def_value = 1;
def_answer = 'Y';
not_def_answer = 'N';
y_string = "[y]";
n_string = "n";
}
else
{
def_value = 0;
def_answer = 'N';
not_def_answer = 'Y';
y_string = "y";
n_string = "[n]";
}
/* Automatically answer the default value if the user did not want
prompts. */
if (! caution)
return def_value;
/* If input isn't coming from the user directly, just say what
question we're asking, and then answer "yes" automatically. This
way, important error messages don't get lost when talking to GDB
over a pipe. */
if (! input_from_terminal_p ())
{
wrap_here ("");
vfprintf_filtered (gdb_stdout, ctlstr, args);
printf_filtered (_("(%s or %s) [answered %c; input not from terminal]\n"),
y_string, n_string, def_answer);
gdb_flush (gdb_stdout);
return def_value;
}
/* Automatically answer the default value if input is not from the user
directly, or if the user did not want prompts. */
if (!input_from_terminal_p () || !caution)
return def_value;
if (deprecated_query_hook)
{
return deprecated_query_hook (ctlstr, args);
}
/* Format the question outside of the loop, to avoid reusing args. */
question = xstrvprintf (ctlstr, args);
while (1)
{
wrap_here (""); /* Flush any buffered output */
gdb_flush (gdb_stdout);
if (annotation_level > 1)
printf_filtered (("\n\032\032pre-query\n"));
fputs_filtered (question, gdb_stdout);
printf_filtered (_("(%s or %s) "), y_string, n_string);
if (annotation_level > 1)
printf_filtered (("\n\032\032query\n"));
wrap_here ("");
gdb_flush (gdb_stdout);
answer = fgetc (stdin);
clearerr (stdin); /* in case of C-d */
if (answer == EOF) /* C-d */
{
printf_filtered ("EOF [assumed %c]\n", def_answer);
retval = def_value;
break;
}
/* Eat rest of input line, to EOF or newline */
if (answer != '\n')
do
{
ans2 = fgetc (stdin);
clearerr (stdin);
}
while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
if (answer >= 'a')
answer -= 040;
/* Check answer. For the non-default, the user must specify
the non-default explicitly. */
if (answer == not_def_answer)
{
retval = !def_value;
break;
}
/* Otherwise, if a default was specified, the user may either
specify the required input or have it default by entering
nothing. */
if (answer == def_answer
|| (defchar != '\0' &&
(answer == '\n' || answer == '\r' || answer == EOF)))
{
retval = def_value;
break;
}
/* Invalid entries are not defaulted and require another selection. */
printf_filtered (_("Please answer %s or %s.\n"),
y_string, n_string);
}
xfree (question);
if (annotation_level > 1)
printf_filtered (("\n\032\032post-query\n"));
return retval;
}
/* Ask user a y-or-n question and return 0 if answer is no, 1 if
answer is yes, or 0 if answer is defaulted.
Takes three args which are given to printf to print the question.
The first, a control string, should end in "? ".
It should not say how to answer, because we do that. */
int
nquery (const char *ctlstr, ...)
{
va_list args;
va_start (args, ctlstr);
return defaulted_query (ctlstr, 'n', args);
va_end (args);
}
/* Ask user a y-or-n question and return 0 if answer is no, 1 if
answer is yes, or 1 if answer is defaulted.
Takes three args which are given to printf to print the question.
The first, a control string, should end in "? ".
It should not say how to answer, because we do that. */
int
yquery (const char *ctlstr, ...)
{
va_list args;
va_start (args, ctlstr);
return defaulted_query (ctlstr, 'y', args);
va_end (args);
}
/* Ask user a y-or-n question and return 1 iff answer is yes.
Takes three args which are given to printf to print the question.
The first, a control string, should end in "? ".
It should not say how to answer, because we do that. */
int
query (const char *ctlstr, ...)
{
va_list args;
va_start (args, ctlstr);
return defaulted_query (ctlstr, '\0', args);
va_end (args);
}
/* Print an error message saying that we couldn't make sense of a
\^mumble sequence in a string or character constant. START and END
indicate a substring of some larger string that contains the
erroneous backslash sequence, missing the initial backslash. */
static NORETURN int
no_control_char_error (const char *start, const char *end)
{
int len = end - start;
char *copy = alloca (end - start + 1);
memcpy (copy, start, len);
copy[len] = '\0';
error (_("There is no control character `\\%s' in the `%s' character set."),
copy, target_charset ());
}
/* Parse a C escape sequence. STRING_PTR points to a variable
containing a pointer to the string to parse. That pointer
should point to the character after the \. That pointer
is updated past the characters we use. The value of the
escape sequence is returned.
A negative value means the sequence \ newline was seen,
which is supposed to be equivalent to nothing at all.
If \ is followed by a null character, we return a negative
value and leave the string pointer pointing at the null character.
If \ is followed by 000, we return 0 and leave the string pointer
after the zeros. A value of 0 does not mean end of string. */
int
parse_escape (char **string_ptr)
{
int target_char;
int c = *(*string_ptr)++;
if (c_parse_backslash (c, &target_char))
return target_char;
else
switch (c)
{
case '\n':
return -2;
case 0:
(*string_ptr)--;
return 0;
case '^':
{
/* Remember where this escape sequence started, for reporting
errors. */
char *sequence_start_pos = *string_ptr - 1;
c = *(*string_ptr)++;
if (c == '?')
{
/* XXXCHARSET: What is `delete' in the host character set? */
c = 0177;
if (!host_char_to_target (c, &target_char))
error (_("There is no character corresponding to `Delete' "
"in the target character set `%s'."), host_charset ());
return target_char;
}
else if (c == '\\')
target_char = parse_escape (string_ptr);
else
{
if (!host_char_to_target (c, &target_char))
no_control_char_error (sequence_start_pos, *string_ptr);
}
/* Now target_char is something like `c', and we want to find
its control-character equivalent. */
if (!target_char_to_control_char (target_char, &target_char))
no_control_char_error (sequence_start_pos, *string_ptr);
return target_char;
}
/* XXXCHARSET: we need to use isdigit and value-of-digit
methods of the host character set here. */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
{
int i = c - '0';
int count = 0;
while (++count < 3)
{
c = (**string_ptr);
if (c >= '0' && c <= '7')
{
(*string_ptr)++;
i *= 8;
i += c - '0';
}
else
{
break;
}
}
return i;
}
default:
if (!host_char_to_target (c, &target_char))
error
("The escape sequence `\%c' is equivalent to plain `%c', which"
" has no equivalent\n" "in the `%s' character set.", c, c,
target_charset ());
return target_char;
}
}
/* Print the character C on STREAM as part of the contents of a literal
string whose delimiter is QUOTER. Note that this routine should only
be call for printing things which are independent of the language
of the program being debugged. */
static void
printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
void (*do_fprintf) (struct ui_file *, const char *, ...)
ATTRIBUTE_FPTR_PRINTF_2, struct ui_file *stream, int quoter)
{
c &= 0xFF; /* Avoid sign bit follies */
if (c < 0x20 || /* Low control chars */
(c >= 0x7F && c < 0xA0) || /* DEL, High controls */
(sevenbit_strings && c >= 0x80))
{ /* high order bit set */
switch (c)
{
case '\n':
do_fputs ("\\n", stream);
break;
case '\b':
do_fputs ("\\b", stream);
break;
case '\t':
do_fputs ("\\t", stream);
break;
case '\f':
do_fputs ("\\f", stream);
break;
case '\r':
do_fputs ("\\r", stream);
break;
case '\033':
do_fputs ("\\e", stream);
break;
case '\007':
do_fputs ("\\a", stream);
break;
default:
do_fprintf (stream, "\\%.3o", (unsigned int) c);
break;
}
}
else
{
if (c == '\\' || c == quoter)
do_fputs ("\\", stream);
do_fprintf (stream, "%c", c);
}
}
/* Print the character C on STREAM as part of the contents of a
literal string whose delimiter is QUOTER. Note that these routines
should only be call for printing things which are independent of
the language of the program being debugged. */
void
fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
{
while (*str)
printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
}
void
fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
{
while (*str)
printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
}
void
fputstrn_filtered (const char *str, int n, int quoter,
struct ui_file *stream)
{
int i;
for (i = 0; i < n; i++)
printchar (str[i], fputs_filtered, fprintf_filtered, stream, quoter);
}
void
fputstrn_unfiltered (const char *str, int n, int quoter,
struct ui_file *stream)
{
int i;
for (i = 0; i < n; i++)
printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
}
/* Number of lines per page or UINT_MAX if paging is disabled. */
static unsigned int lines_per_page;
static void
show_lines_per_page (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("\
Number of lines gdb thinks are in a page is %s.\n"),
value);
}
/* Number of chars per line or UINT_MAX if line folding is disabled. */
static unsigned int chars_per_line;
static void
show_chars_per_line (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("\
Number of characters gdb thinks are in a line is %s.\n"),
value);
}
/* Current count of lines printed on this page, chars on this line. */
static unsigned int lines_printed, chars_printed;
/* Buffer and start column of buffered text, for doing smarter word-
wrapping. When someone calls wrap_here(), we start buffering output
that comes through fputs_filtered(). If we see a newline, we just
spit it out and forget about the wrap_here(). If we see another
wrap_here(), we spit it out and remember the newer one. If we see
the end of the line, we spit out a newline, the indent, and then
the buffered output. */
/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
are waiting to be output (they have already been counted in chars_printed).
When wrap_buffer[0] is null, the buffer is empty. */
static char *wrap_buffer;
/* Pointer in wrap_buffer to the next character to fill. */
static char *wrap_pointer;
/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
is non-zero. */
static char *wrap_indent;
/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
is not in effect. */
static int wrap_column;
/* Inialize the number of lines per page and chars per line. */
void
init_page_info (void)
{
#if defined(TUI)
if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
#endif
{
int rows, cols;
#if defined(__GO32__)
rows = ScreenRows ();
cols = ScreenCols ();
lines_per_page = rows;
chars_per_line = cols;
#else
/* Make sure Readline has initialized its terminal settings. */
rl_reset_terminal (NULL);
/* Get the screen size from Readline. */
rl_get_screen_size (&rows, &cols);
lines_per_page = rows;
chars_per_line = cols;
/* Readline should have fetched the termcap entry for us. */
if (tgetnum ("li") < 0 || getenv ("EMACS"))
{
/* The number of lines per page is not mentioned in the
terminal description. This probably means that paging is
not useful (e.g. emacs shell window), so disable paging. */
lines_per_page = UINT_MAX;
}
/* FIXME: Get rid of this junk. */
#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
SIGWINCH_HANDLER (SIGWINCH);
#endif
/* If the output is not a terminal, don't paginate it. */
if (!ui_file_isatty (gdb_stdout))
lines_per_page = UINT_MAX;
#endif
}
set_screen_size ();
set_width ();
}
/* Set the screen size based on LINES_PER_PAGE and CHARS_PER_LINE. */
static void
set_screen_size (void)
{
int rows = lines_per_page;
int cols = chars_per_line;
if (rows <= 0)
rows = INT_MAX;
if (cols <= 0)
rl_get_screen_size (NULL, &cols);
/* Update Readline's idea of the terminal size. */
rl_set_screen_size (rows, cols);
}
/* Reinitialize WRAP_BUFFER according to the current value of
CHARS_PER_LINE. */
static void
set_width (void)
{
if (chars_per_line == 0)
init_page_info ();
if (!wrap_buffer)
{
wrap_buffer = (char *) xmalloc (chars_per_line + 2);
wrap_buffer[0] = '\0';
}
else
wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
wrap_pointer = wrap_buffer; /* Start it at the beginning. */
}
static void
set_width_command (char *args, int from_tty, struct cmd_list_element *c)
{
set_screen_size ();
set_width ();
}
static void
set_height_command (char *args, int from_tty, struct cmd_list_element *c)
{
set_screen_size ();
}
/* Wait, so the user can read what's on the screen. Prompt the user
to continue by pressing RETURN. */
static void
prompt_for_continue (void)
{
char *ignore;
char cont_prompt[120];
if (annotation_level > 1)
printf_unfiltered (("\n\032\032pre-prompt-for-continue\n"));
strcpy (cont_prompt,
"---Type <return> to continue, or q <return> to quit---");
if (annotation_level > 1)
strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
/* We must do this *before* we call gdb_readline, else it will eventually
call us -- thinking that we're trying to print beyond the end of the
screen. */
reinitialize_more_filter ();
immediate_quit++;
/* On a real operating system, the user can quit with SIGINT.
But not on GO32.
'q' is provided on all systems so users don't have to change habits
from system to system, and because telling them what to do in
the prompt is more user-friendly than expecting them to think of
SIGINT. */
/* Call readline, not gdb_readline, because GO32 readline handles control-C
whereas control-C to gdb_readline will cause the user to get dumped
out to DOS. */
ignore = gdb_readline_wrapper (cont_prompt);
if (annotation_level > 1)
printf_unfiltered (("\n\032\032post-prompt-for-continue\n"));
if (ignore)
{
char *p = ignore;
while (*p == ' ' || *p == '\t')
++p;
if (p[0] == 'q')
async_request_quit (0);
xfree (ignore);
}
immediate_quit--;
/* Now we have to do this again, so that GDB will know that it doesn't
need to save the ---Type <return>--- line at the top of the screen. */
reinitialize_more_filter ();
dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
}
/* Reinitialize filter; ie. tell it to reset to original values. */
void
reinitialize_more_filter (void)
{
lines_printed = 0;
chars_printed = 0;
}
/* Indicate that if the next sequence of characters overflows the line,
a newline should be inserted here rather than when it hits the end.
If INDENT is non-null, it is a string to be printed to indent the
wrapped part on the next line. INDENT must remain accessible until
the next call to wrap_here() or until a newline is printed through
fputs_filtered().
If the line is already overfull, we immediately print a newline and
the indentation, and disable further wrapping.
If we don't know the width of lines, but we know the page height,
we must not wrap words, but should still keep track of newlines
that were explicitly printed.
INDENT should not contain tabs, as that will mess up the char count
on the next line. FIXME.
This routine is guaranteed to force out any output which has been
squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
used to force out output from the wrap_buffer. */
void
wrap_here (char *indent)
{
/* This should have been allocated, but be paranoid anyway. */
if (!wrap_buffer)
internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
if (wrap_buffer[0])
{
*wrap_pointer = '\0';
fputs_unfiltered (wrap_buffer, gdb_stdout);
}
wrap_pointer = wrap_buffer;
wrap_buffer[0] = '\0';
if (chars_per_line == UINT_MAX) /* No line overflow checking */
{
wrap_column = 0;
}
else if (chars_printed >= chars_per_line)
{
puts_filtered ("\n");
if (indent != NULL)
puts_filtered (indent);
wrap_column = 0;
}
else
{
wrap_column = chars_printed;
if (indent == NULL)
wrap_indent = "";
else
wrap_indent = indent;
}
}
/* Print input string to gdb_stdout, filtered, with wrap,
arranging strings in columns of n chars. String can be
right or left justified in the column. Never prints
trailing spaces. String should never be longer than
width. FIXME: this could be useful for the EXAMINE
command, which currently doesn't tabulate very well */
void
puts_filtered_tabular (char *string, int width, int right)
{
int spaces = 0;
int stringlen;
char *spacebuf;
gdb_assert (chars_per_line > 0);
if (chars_per_line == UINT_MAX)
{
fputs_filtered (string, gdb_stdout);
fputs_filtered ("\n", gdb_stdout);
return;
}
if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
fputs_filtered ("\n", gdb_stdout);
if (width >= chars_per_line)
width = chars_per_line - 1;
stringlen = strlen (string);
if (chars_printed > 0)
spaces = width - (chars_printed - 1) % width - 1;
if (right)
spaces += width - stringlen;
spacebuf = alloca (spaces + 1);
spacebuf[spaces] = '\0';
while (spaces--)
spacebuf[spaces] = ' ';
fputs_filtered (spacebuf, gdb_stdout);
fputs_filtered (string, gdb_stdout);
}
/* Ensure that whatever gets printed next, using the filtered output
commands, starts at the beginning of the line. I.E. if there is
any pending output for the current line, flush it and start a new
line. Otherwise do nothing. */
void
begin_line (void)
{
if (chars_printed > 0)
{
puts_filtered ("\n");
}
}
/* Like fputs but if FILTER is true, pause after every screenful.
Regardless of FILTER can wrap at points other than the final
character of a line.
Unlike fputs, fputs_maybe_filtered does not return a value.
It is OK for LINEBUFFER to be NULL, in which case just don't print
anything.
Note that a longjmp to top level may occur in this routine (only if
FILTER is true) (since prompt_for_continue may do so) so this
routine should not be called when cleanups are not in place. */
static void
fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
int filter)
{
const char *lineptr;
if (linebuffer == 0)
return;
/* Don't do any filtering if it is disabled. */
if ((stream != gdb_stdout) || !pagination_enabled
|| (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
{
fputs_unfiltered (linebuffer, stream);
return;
}
/* Go through and output each character. Show line extension
when this is necessary; prompt user for new page when this is
necessary. */
lineptr = linebuffer;
while (*lineptr)
{
/* Possible new page. */
if (filter && (lines_printed >= lines_per_page - 1))
prompt_for_continue ();
while (*lineptr && *lineptr != '\n')
{
/* Print a single line. */
if (*lineptr == '\t')
{
if (wrap_column)
*wrap_pointer++ = '\t';
else
fputc_unfiltered ('\t', stream);
/* Shifting right by 3 produces the number of tab stops
we have already passed, and then adding one and
shifting left 3 advances to the next tab stop. */
chars_printed = ((chars_printed >> 3) + 1) << 3;
lineptr++;
}
else
{
if (wrap_column)
*wrap_pointer++ = *lineptr;
else
fputc_unfiltered (*lineptr, stream);
chars_printed++;
lineptr++;
}
if (chars_printed >= chars_per_line)
{
unsigned int save_chars = chars_printed;
chars_printed = 0;
lines_printed++;
/* If we aren't actually wrapping, don't output newline --
if chars_per_line is right, we probably just overflowed
anyway; if it's wrong, let us keep going. */
if (wrap_column)
fputc_unfiltered ('\n', stream);
/* Possible new page. */
if (lines_printed >= lines_per_page - 1)
prompt_for_continue ();
/* Now output indentation and wrapped string */
if (wrap_column)
{
fputs_unfiltered (wrap_indent, stream);
*wrap_pointer = '\0'; /* Null-terminate saved stuff */
fputs_unfiltered (wrap_buffer, stream); /* and eject it */
/* FIXME, this strlen is what prevents wrap_indent from
containing tabs. However, if we recurse to print it
and count its chars, we risk trouble if wrap_indent is
longer than (the user settable) chars_per_line.
Note also that this can set chars_printed > chars_per_line
if we are printing a long string. */
chars_printed = strlen (wrap_indent)
+ (save_chars - wrap_column);
wrap_pointer = wrap_buffer; /* Reset buffer */
wrap_buffer[0] = '\0';
wrap_column = 0; /* And disable fancy wrap */
}
}
}
if (*lineptr == '\n')
{
chars_printed = 0;
wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
lines_printed++;
fputc_unfiltered ('\n', stream);
lineptr++;
}
}
}
void
fputs_filtered (const char *linebuffer, struct ui_file *stream)
{
fputs_maybe_filtered (linebuffer, stream, 1);
}
int
putchar_unfiltered (int c)
{
char buf = c;
ui_file_write (gdb_stdout, &buf, 1);
return c;
}
/* Write character C to gdb_stdout using GDB's paging mechanism and return C.
May return nonlocally. */
int
putchar_filtered (int c)
{
return fputc_filtered (c, gdb_stdout);
}
int
fputc_unfiltered (int c, struct ui_file *stream)
{
char buf = c;
ui_file_write (stream, &buf, 1);
return c;
}
int
fputc_filtered (int c, struct ui_file *stream)
{
char buf[2];
buf[0] = c;
buf[1] = 0;
fputs_filtered (buf, stream);
return c;
}
/* puts_debug is like fputs_unfiltered, except it prints special
characters in printable fashion. */
void
puts_debug (char *prefix, char *string, char *suffix)
{
int ch;
/* Print prefix and suffix after each line. */
static int new_line = 1;
static int return_p = 0;
static char *prev_prefix = "";
static char *prev_suffix = "";
if (*string == '\n')
return_p = 0;
/* If the prefix is changing, print the previous suffix, a new line,
and the new prefix. */
if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
{
fputs_unfiltered (prev_suffix, gdb_stdlog);
fputs_unfiltered ("\n", gdb_stdlog);
fputs_unfiltered (prefix, gdb_stdlog);
}
/* Print prefix if we printed a newline during the previous call. */
if (new_line)
{
new_line = 0;
fputs_unfiltered (prefix, gdb_stdlog);
}
prev_prefix = prefix;
prev_suffix = suffix;
/* Output characters in a printable format. */
while ((ch = *string++) != '\0')
{
switch (ch)
{
default:
if (isprint (ch))
fputc_unfiltered (ch, gdb_stdlog);
else
fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
break;
case '\\':
fputs_unfiltered ("\\\\", gdb_stdlog);
break;
case '\b':
fputs_unfiltered ("\\b", gdb_stdlog);
break;
case '\f':
fputs_unfiltered ("\\f", gdb_stdlog);
break;
case '\n':
new_line = 1;
fputs_unfiltered ("\\n", gdb_stdlog);
break;
case '\r':
fputs_unfiltered ("\\r", gdb_stdlog);
break;
case '\t':
fputs_unfiltered ("\\t", gdb_stdlog);
break;
case '\v':
fputs_unfiltered ("\\v", gdb_stdlog);
break;
}
return_p = ch == '\r';
}
/* Print suffix if we printed a newline. */
if (new_line)
{
fputs_unfiltered (suffix, gdb_stdlog);
fputs_unfiltered ("\n", gdb_stdlog);
}
}
/* Print a variable number of ARGS using format FORMAT. If this
information is going to put the amount written (since the last call
to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
call prompt_for_continue to get the users permision to continue.
Unlike fprintf, this function does not return a value.
We implement three variants, vfprintf (takes a vararg list and stream),
fprintf (takes a stream to write on), and printf (the usual).
Note also that a longjmp to top level may occur in this routine
(since prompt_for_continue may do so) so this routine should not be
called when cleanups are not in place. */
static void
vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
va_list args, int filter)
{
char *linebuffer;
struct cleanup *old_cleanups;
linebuffer = xstrvprintf (format, args);
old_cleanups = make_cleanup (xfree, linebuffer);
fputs_maybe_filtered (linebuffer, stream, filter);
do_cleanups (old_cleanups);
}
void
vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
{
vfprintf_maybe_filtered (stream, format, args, 1);
}
void
vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
{
char *linebuffer;
struct cleanup *old_cleanups;
linebuffer = xstrvprintf (format, args);
old_cleanups = make_cleanup (xfree, linebuffer);
fputs_unfiltered (linebuffer, stream);
do_cleanups (old_cleanups);
}
void
vprintf_filtered (const char *format, va_list args)
{
vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
}
void
vprintf_unfiltered (const char *format, va_list args)
{
vfprintf_unfiltered (gdb_stdout, format, args);
}
void
fprintf_filtered (struct ui_file *stream, const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_filtered (stream, format, args);
va_end (args);
}
void
fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_unfiltered (stream, format, args);
va_end (args);
}
/* Like fprintf_filtered, but prints its result indented.
Called as fprintfi_filtered (spaces, stream, format, ...); */
void
fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
...)
{
va_list args;
va_start (args, format);
print_spaces_filtered (spaces, stream);
vfprintf_filtered (stream, format, args);
va_end (args);
}
void
printf_filtered (const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_filtered (gdb_stdout, format, args);
va_end (args);
}
void
printf_unfiltered (const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_unfiltered (gdb_stdout, format, args);
va_end (args);
}
/* Like printf_filtered, but prints it's result indented.
Called as printfi_filtered (spaces, format, ...); */
void
printfi_filtered (int spaces, const char *format, ...)
{
va_list args;
va_start (args, format);
print_spaces_filtered (spaces, gdb_stdout);
vfprintf_filtered (gdb_stdout, format, args);
va_end (args);
}
/* Easy -- but watch out!
This routine is *not* a replacement for puts()! puts() appends a newline.
This one doesn't, and had better not! */
void
puts_filtered (const char *string)
{
fputs_filtered (string, gdb_stdout);
}
void
puts_unfiltered (const char *string)
{
fputs_unfiltered (string, gdb_stdout);
}
/* Return a pointer to N spaces and a null. The pointer is good
until the next call to here. */
char *
n_spaces (int n)
{
char *t;
static char *spaces = 0;
static int max_spaces = -1;
if (n > max_spaces)
{
if (spaces)
xfree (spaces);
spaces = (char *) xmalloc (n + 1);
for (t = spaces + n; t != spaces;)
*--t = ' ';
spaces[n] = '\0';
max_spaces = n;
}
return spaces + max_spaces - n;
}
/* Print N spaces. */
void
print_spaces_filtered (int n, struct ui_file *stream)
{
fputs_filtered (n_spaces (n), stream);
}
/* C++/ObjC demangler stuff. */
/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
If the name is not mangled, or the language for the name is unknown, or
demangling is off, the name is printed in its "raw" form. */
void
fprintf_symbol_filtered (struct ui_file *stream, char *name,
enum language lang, int arg_mode)
{
char *demangled;
if (name != NULL)
{
/* If user wants to see raw output, no problem. */
if (!demangle)
{
fputs_filtered (name, stream);
}
else
{
demangled = language_demangle (language_def (lang), name, arg_mode);
fputs_filtered (demangled ? demangled : name, stream);
if (demangled != NULL)
{
xfree (demangled);
}
}
}
}
/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
differences in whitespace. Returns 0 if they match, non-zero if they
don't (slightly different than strcmp()'s range of return values).
As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
This "feature" is useful when searching for matching C++ function names
(such as if the user types 'break FOO', where FOO is a mangled C++
function). */
int
strcmp_iw (const char *string1, const char *string2)
{
while ((*string1 != '\0') && (*string2 != '\0'))
{
while (isspace (*string1))
{
string1++;
}
while (isspace (*string2))
{
string2++;
}
if (*string1 != *string2)
{
break;
}
if (*string1 != '\0')
{
string1++;
string2++;
}
}
return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
}
/* This is like strcmp except that it ignores whitespace and treats
'(' as the first non-NULL character in terms of ordering. Like
strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
according to that ordering.
If a list is sorted according to this function and if you want to
find names in the list that match some fixed NAME according to
strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
where this function would put NAME.
Here are some examples of why using strcmp to sort is a bad idea:
Whitespace example:
Say your partial symtab contains: "foo<char *>", "goo". Then, if
we try to do a search for "foo<char*>", strcmp will locate this
after "foo<char *>" and before "goo". Then lookup_partial_symbol
will start looking at strings beginning with "goo", and will never
see the correct match of "foo<char *>".
Parenthesis example:
In practice, this is less like to be an issue, but I'll give it a
shot. Let's assume that '$' is a legitimate character to occur in
symbols. (Which may well even be the case on some systems.) Then
say that the partial symbol table contains "foo$" and "foo(int)".
strcmp will put them in this order, since '$' < '('. Now, if the
user searches for "foo", then strcmp will sort "foo" before "foo$".
Then lookup_partial_symbol will notice that strcmp_iw("foo$",
"foo") is false, so it won't proceed to the actual match of
"foo(int)" with "foo". */
int
strcmp_iw_ordered (const char *string1, const char *string2)
{
while ((*string1 != '\0') && (*string2 != '\0'))
{
while (isspace (*string1))
{
string1++;
}
while (isspace (*string2))
{
string2++;
}
if (*string1 != *string2)
{
break;
}
if (*string1 != '\0')
{
string1++;
string2++;
}
}
switch (*string1)
{
/* Characters are non-equal unless they're both '\0'; we want to
make sure we get the comparison right according to our
comparison in the cases where one of them is '\0' or '('. */
case '\0':
if (*string2 == '\0')
return 0;
else
return -1;
case '(':
if (*string2 == '\0')
return 1;
else
return -1;
default:
if (*string2 == '(')
return 1;
else
return *string1 - *string2;
}
}
/* A simple comparison function with opposite semantics to strcmp. */
int
streq (const char *lhs, const char *rhs)
{
return !strcmp (lhs, rhs);
}
/*
** subset_compare()
** Answer whether string_to_compare is a full or partial match to
** template_string. The partial match must be in sequence starting
** at index 0.
*/
int
subset_compare (char *string_to_compare, char *template_string)
{
int match;
if (template_string != (char *) NULL && string_to_compare != (char *) NULL
&& strlen (string_to_compare) <= strlen (template_string))
match =
(strncmp
(template_string, string_to_compare, strlen (string_to_compare)) == 0);
else
match = 0;
return match;
}
static void pagination_on_command (char *arg, int from_tty);
static void
pagination_on_command (char *arg, int from_tty)
{
pagination_enabled = 1;
}
static void pagination_on_command (char *arg, int from_tty);
static void
pagination_off_command (char *arg, int from_tty)
{
pagination_enabled = 0;
}
void
initialize_utils (void)
{
struct cmd_list_element *c;
add_setshow_uinteger_cmd ("width", class_support, &chars_per_line, _("\
Set number of characters gdb thinks are in a line."), _("\
Show number of characters gdb thinks are in a line."), NULL,
set_width_command,
show_chars_per_line,
&setlist, &showlist);
add_setshow_uinteger_cmd ("height", class_support, &lines_per_page, _("\
Set number of lines gdb thinks are in a page."), _("\
Show number of lines gdb thinks are in a page."), NULL,
set_height_command,
show_lines_per_page,
&setlist, &showlist);
init_page_info ();
add_setshow_boolean_cmd ("demangle", class_support, &demangle, _("\
Set demangling of encoded C++/ObjC names when displaying symbols."), _("\
Show demangling of encoded C++/ObjC names when displaying symbols."), NULL,
NULL,
show_demangle,
&setprintlist, &showprintlist);
add_setshow_boolean_cmd ("pagination", class_support,
&pagination_enabled, _("\
Set state of pagination."), _("\
Show state of pagination."), NULL,
NULL,
show_pagination_enabled,
&setlist, &showlist);
if (xdb_commands)
{
add_com ("am", class_support, pagination_on_command,
_("Enable pagination"));
add_com ("sm", class_support, pagination_off_command,
_("Disable pagination"));
}
add_setshow_boolean_cmd ("sevenbit-strings", class_support,
&sevenbit_strings, _("\
Set printing of 8-bit characters in strings as \\nnn."), _("\
Show printing of 8-bit characters in strings as \\nnn."), NULL,
NULL,
show_sevenbit_strings,
&setprintlist, &showprintlist);
add_setshow_boolean_cmd ("asm-demangle", class_support, &asm_demangle, _("\
Set demangling of C++/ObjC names in disassembly listings."), _("\
Show demangling of C++/ObjC names in disassembly listings."), NULL,
NULL,
show_asm_demangle,
&setprintlist, &showprintlist);
}
/* Machine specific function to handle SIGWINCH signal. */
#ifdef SIGWINCH_HANDLER_BODY
SIGWINCH_HANDLER_BODY
#endif
/* print routines to handle variable size regs, etc. */
/* temporary storage using circular buffer */
#define NUMCELLS 16
#define CELLSIZE 50
static char *
get_cell (void)
{
static char buf[NUMCELLS][CELLSIZE];
static int cell = 0;
if (++cell >= NUMCELLS)
cell = 0;
return buf[cell];
}
int
strlen_paddr (void)
{
return (TARGET_ADDR_BIT / 8 * 2);
}
char *
paddr (CORE_ADDR addr)
{
return phex (addr, TARGET_ADDR_BIT / 8);
}
char *
paddr_nz (CORE_ADDR addr)
{
return phex_nz (addr, TARGET_ADDR_BIT / 8);
}
const char *
paddress (CORE_ADDR addr)
{
/* Truncate address to the size of a target address, avoiding shifts
larger or equal than the width of a CORE_ADDR. The local
variable ADDR_BIT stops the compiler reporting a shift overflow
when it won't occur. */
/* NOTE: This assumes that the significant address information is
kept in the least significant bits of ADDR - the upper bits were
either zero or sign extended. Should ADDRESS_TO_POINTER() or
some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
int addr_bit = TARGET_ADDR_BIT;
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
addr &= ((CORE_ADDR) 1 << addr_bit) - 1;
return hex_string (addr);
}
static char *
decimal2str (char *sign, ULONGEST addr, int width)
{
/* Steal code from valprint.c:print_decimal(). Should this worry
about the real size of addr as the above does? */
unsigned long temp[3];
char *str = get_cell ();
int i = 0;
do
{
temp[i] = addr % (1000 * 1000 * 1000);
addr /= (1000 * 1000 * 1000);
i++;
width -= 9;
}
while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
width += 9;
if (width < 0)
width = 0;
switch (i)
{
case 1:
xsnprintf (str, CELLSIZE, "%s%0*lu", sign, width, temp[0]);
break;
case 2:
xsnprintf (str, CELLSIZE, "%s%0*lu%09lu", sign, width,
temp[1], temp[0]);
break;
case 3:
xsnprintf (str, CELLSIZE, "%s%0*lu%09lu%09lu", sign, width,
temp[2], temp[1], temp[0]);
break;
default:
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
}
return str;
}
static char *
octal2str (ULONGEST addr, int width)
{
unsigned long temp[3];
char *str = get_cell ();
int i = 0;
do
{
temp[i] = addr % (0100000 * 0100000);
addr /= (0100000 * 0100000);
i++;
width -= 10;
}
while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
width += 10;
if (width < 0)
width = 0;
switch (i)
{
case 1:
if (temp[0] == 0)
xsnprintf (str, CELLSIZE, "%*o", width, 0);
else
xsnprintf (str, CELLSIZE, "0%0*lo", width, temp[0]);
break;
case 2:
xsnprintf (str, CELLSIZE, "0%0*lo%010lo", width, temp[1], temp[0]);
break;
case 3:
xsnprintf (str, CELLSIZE, "0%0*lo%010lo%010lo", width,
temp[2], temp[1], temp[0]);
break;
default:
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
}
return str;
}
char *
paddr_u (CORE_ADDR addr)
{
return decimal2str ("", addr, 0);
}
char *
paddr_d (LONGEST addr)
{
if (addr < 0)
return decimal2str ("-", -addr, 0);
else
return decimal2str ("", addr, 0);
}
/* Eliminate warning from compiler on 32-bit systems. */
static int thirty_two = 32;
char *
phex (ULONGEST l, int sizeof_l)
{
char *str;
switch (sizeof_l)
{
case 8:
str = get_cell ();
xsnprintf (str, CELLSIZE, "%08lx%08lx",
(unsigned long) (l >> thirty_two),
(unsigned long) (l & 0xffffffff));
break;
case 4:
str = get_cell ();
xsnprintf (str, CELLSIZE, "%08lx", (unsigned long) l);
break;
case 2:
str = get_cell ();
xsnprintf (str, CELLSIZE, "%04x", (unsigned short) (l & 0xffff));
break;
default:
str = phex (l, sizeof (l));
break;
}
return str;
}
char *
phex_nz (ULONGEST l, int sizeof_l)
{
char *str;
switch (sizeof_l)
{
case 8:
{
unsigned long high = (unsigned long) (l >> thirty_two);
str = get_cell ();
if (high == 0)
xsnprintf (str, CELLSIZE, "%lx",
(unsigned long) (l & 0xffffffff));
else
xsnprintf (str, CELLSIZE, "%lx%08lx", high,
(unsigned long) (l & 0xffffffff));
break;
}
case 4:
str = get_cell ();
xsnprintf (str, CELLSIZE, "%lx", (unsigned long) l);
break;
case 2:
str = get_cell ();
xsnprintf (str, CELLSIZE, "%x", (unsigned short) (l & 0xffff));
break;
default:
str = phex_nz (l, sizeof (l));
break;
}
return str;
}
/* Converts a LONGEST to a C-format hexadecimal literal and stores it
in a static string. Returns a pointer to this string. */
char *
hex_string (LONGEST num)
{
char *result = get_cell ();
xsnprintf (result, CELLSIZE, "0x%s", phex_nz (num, sizeof (num)));
return result;
}
/* Converts a LONGEST number to a C-format hexadecimal literal and
stores it in a static string. Returns a pointer to this string
that is valid until the next call. The number is padded on the
left with 0s to at least WIDTH characters. */
char *
hex_string_custom (LONGEST num, int width)
{
char *result = get_cell ();
char *result_end = result + CELLSIZE - 1;
const char *hex = phex_nz (num, sizeof (num));
int hex_len = strlen (hex);
if (hex_len > width)
width = hex_len;
if (width + 2 >= CELLSIZE)
internal_error (__FILE__, __LINE__,
_("hex_string_custom: insufficient space to store result"));
strcpy (result_end - width - 2, "0x");
memset (result_end - width, '0', width);
strcpy (result_end - hex_len, hex);
return result_end - width - 2;
}
/* Convert VAL to a numeral in the given radix. For
* radix 10, IS_SIGNED may be true, indicating a signed quantity;
* otherwise VAL is interpreted as unsigned. If WIDTH is supplied,
* it is the minimum width (0-padded if needed). USE_C_FORMAT means
* to use C format in all cases. If it is false, then 'x'
* and 'o' formats do not include a prefix (0x or leading 0). */
char *
int_string (LONGEST val, int radix, int is_signed, int width,
int use_c_format)
{
switch (radix)
{
case 16:
{
char *result;
if (width == 0)
result = hex_string (val);
else
result = hex_string_custom (val, width);
if (! use_c_format)
result += 2;
return result;
}
case 10:
{
if (is_signed && val < 0)
return decimal2str ("-", -val, width);
else
return decimal2str ("", val, width);
}
case 8:
{
char *result = octal2str (val, width);
if (use_c_format || val == 0)
return result;
else
return result + 1;
}
default:
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
}
}
/* Convert a CORE_ADDR into a string. */
const char *
core_addr_to_string (const CORE_ADDR addr)
{
char *str = get_cell ();
strcpy (str, "0x");
strcat (str, phex (addr, sizeof (addr)));
return str;
}
const char *
core_addr_to_string_nz (const CORE_ADDR addr)
{
char *str = get_cell ();
strcpy (str, "0x");
strcat (str, phex_nz (addr, sizeof (addr)));
return str;
}
/* Convert a string back into a CORE_ADDR. */
CORE_ADDR
string_to_core_addr (const char *my_string)
{
CORE_ADDR addr = 0;
if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
{
/* Assume that it is in decimal. */
int i;
for (i = 2; my_string[i] != '\0'; i++)
{
if (isdigit (my_string[i]))
addr = (my_string[i] - '0') + (addr * 16);
else if (isxdigit (my_string[i]))
addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
else
error (_("invalid hex \"%s\""), my_string);
}
}
else
{
/* Assume that it is in decimal. */
int i;
for (i = 0; my_string[i] != '\0'; i++)
{
if (isdigit (my_string[i]))
addr = (my_string[i] - '0') + (addr * 10);
else
error (_("invalid decimal \"%s\""), my_string);
}
}
return addr;
}
char *
gdb_realpath (const char *filename)
{
/* Method 1: The system has a compile time upper bound on a filename
path. Use that and realpath() to canonicalize the name. This is
the most common case. Note that, if there isn't a compile time
upper bound, you want to avoid realpath() at all costs. */
#if defined(HAVE_REALPATH)
{
# if defined (PATH_MAX)
char buf[PATH_MAX];
# define USE_REALPATH
# elif defined (MAXPATHLEN)
char buf[MAXPATHLEN];
# define USE_REALPATH
# endif
# if defined (USE_REALPATH)
const char *rp = realpath (filename, buf);
if (rp == NULL)
rp = filename;
return xstrdup (rp);
# endif
}
#endif /* HAVE_REALPATH */
/* Method 2: The host system (i.e., GNU) has the function
canonicalize_file_name() which malloc's a chunk of memory and
returns that, use that. */
#if defined(HAVE_CANONICALIZE_FILE_NAME)
{
char *rp = canonicalize_file_name (filename);
if (rp == NULL)
return xstrdup (filename);
else
return rp;
}
#endif
/* FIXME: cagney/2002-11-13:
Method 2a: Use realpath() with a NULL buffer. Some systems, due
to the problems described in in method 3, have modified their
realpath() implementation so that it will allocate a buffer when
NULL is passed in. Before this can be used, though, some sort of
configure time test would need to be added. Otherwize the code
will likely core dump. */
/* Method 3: Now we're getting desperate! The system doesn't have a
compile time buffer size and no alternative function. Query the
OS, using pathconf(), for the buffer limit. Care is needed
though, some systems do not limit PATH_MAX (return -1 for
pathconf()) making it impossible to pass a correctly sized buffer
to realpath() (it could always overflow). On those systems, we
skip this. */
#if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
{
/* Find out the max path size. */
long path_max = pathconf ("/", _PC_PATH_MAX);
if (path_max > 0)
{
/* PATH_MAX is bounded. */
char *buf = alloca (path_max);
char *rp = realpath (filename, buf);
return xstrdup (rp ? rp : filename);
}
}
#endif
/* This system is a lost cause, just dup the buffer. */
return xstrdup (filename);
}
/* Return a copy of FILENAME, with its directory prefix canonicalized
by gdb_realpath. */
char *
xfullpath (const char *filename)
{
const char *base_name = lbasename (filename);
char *dir_name;
char *real_path;
char *result;
/* Extract the basename of filename, and return immediately
a copy of filename if it does not contain any directory prefix. */
if (base_name == filename)
return xstrdup (filename);
dir_name = alloca ((size_t) (base_name - filename + 2));
/* Allocate enough space to store the dir_name + plus one extra
character sometimes needed under Windows (see below), and
then the closing \000 character */
strncpy (dir_name, filename, base_name - filename);
dir_name[base_name - filename] = '\000';
#ifdef HAVE_DOS_BASED_FILE_SYSTEM
/* We need to be careful when filename is of the form 'd:foo', which
is equivalent of d:./foo, which is totally different from d:/foo. */
if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
{
dir_name[2] = '.';
dir_name[3] = '\000';
}
#endif
/* Canonicalize the directory prefix, and build the resulting
filename. If the dirname realpath already contains an ending
directory separator, avoid doubling it. */
real_path = gdb_realpath (dir_name);
if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
result = concat (real_path, base_name, (char *)NULL);
else
result = concat (real_path, SLASH_STRING, base_name, (char *)NULL);
xfree (real_path);
return result;
}
/* This is the 32-bit CRC function used by the GNU separate debug
facility. An executable may contain a section named
.gnu_debuglink, which holds the name of a separate executable file
containing its debug info, and a checksum of that file's contents,
computed using this function. */
unsigned long
gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
{
static const unsigned long crc32_table[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
0x2d02ef8d
};
unsigned char *end;
crc = ~crc & 0xffffffff;
for (end = buf + len; buf < end; ++buf)
crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
return ~crc & 0xffffffff;;
}
ULONGEST
align_up (ULONGEST v, int n)
{
/* Check that N is really a power of two. */
gdb_assert (n && (n & (n-1)) == 0);
return (v + n - 1) & -n;
}
ULONGEST
align_down (ULONGEST v, int n)
{
/* Check that N is really a power of two. */
gdb_assert (n && (n & (n-1)) == 0);
return (v & -n);
}
/* Allocation function for the libiberty hash table which uses an
obstack. The obstack is passed as DATA. */
void *
hashtab_obstack_allocate (void *data, size_t size, size_t count)
{
unsigned int total = size * count;
void *ptr = obstack_alloc ((struct obstack *) data, total);
memset (ptr, 0, total);
return ptr;
}
/* Trivial deallocation function for the libiberty splay tree and hash
table - don't deallocate anything. Rely on later deletion of the
obstack. DATA will be the obstack, although it is not needed
here. */
void
dummy_obstack_deallocate (void *object, void *data)
{
return;
}
/* The bit offset of the highest byte in a ULONGEST, for overflow
checking. */
#define HIGH_BYTE_POSN ((sizeof (ULONGEST) - 1) * HOST_CHAR_BIT)
/* True (non-zero) iff DIGIT is a valid digit in radix BASE,
where 2 <= BASE <= 36. */
static int
is_digit_in_base (unsigned char digit, int base)
{
if (!isalnum (digit))
return 0;
if (base <= 10)
return (isdigit (digit) && digit < base + '0');
else
return (isdigit (digit) || tolower (digit) < base - 10 + 'a');
}
static int
digit_to_int (unsigned char c)
{
if (isdigit (c))
return c - '0';
else
return tolower (c) - 'a' + 10;
}
/* As for strtoul, but for ULONGEST results. */
ULONGEST
strtoulst (const char *num, const char **trailer, int base)
{
unsigned int high_part;
ULONGEST result;
int minus = 0;
int i = 0;
/* Skip leading whitespace. */
while (isspace (num[i]))
i++;
/* Handle prefixes. */
if (num[i] == '+')
i++;
else if (num[i] == '-')
{
minus = 1;
i++;
}
if (base == 0 || base == 16)
{
if (num[i] == '0' && (num[i + 1] == 'x' || num[i + 1] == 'X'))
{
i += 2;
if (base == 0)
base = 16;
}
}
if (base == 0 && num[i] == '0')
base = 8;
if (base == 0)
base = 10;
if (base < 2 || base > 36)
{
errno = EINVAL;
return 0;
}
result = high_part = 0;
for (; is_digit_in_base (num[i], base); i += 1)
{
result = result * base + digit_to_int (num[i]);
high_part = high_part * base + (unsigned int) (result >> HIGH_BYTE_POSN);
result &= ((ULONGEST) 1 << HIGH_BYTE_POSN) - 1;
if (high_part > 0xff)
{
errno = ERANGE;
result = ~ (ULONGEST) 0;
high_part = 0;
minus = 0;
break;
}
}
if (trailer != NULL)
*trailer = &num[i];
result = result + ((ULONGEST) high_part << HIGH_BYTE_POSN);
if (minus)
return -result;
else
return result;
}