binutils-gdb/gold/arm.cc

13211 lines
422 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// arm.cc -- arm target support for gold.
// Copyright (C) 2009-2016 Free Software Foundation, Inc.
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
// by Ian Lance Taylor <iant@google.com>.
// This file also contains borrowed and adapted code from
// bfd/elf32-arm.c.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstring>
#include <limits>
#include <cstdio>
#include <string>
#include <algorithm>
#include <map>
#include <utility>
#include <set>
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "arm.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "defstd.h"
#include "gc.h"
#include "attributes.h"
#include "arm-reloc-property.h"
#include "nacl.h"
namespace
{
using namespace gold;
template<bool big_endian>
class Output_data_plt_arm;
template<bool big_endian>
class Output_data_plt_arm_short;
template<bool big_endian>
class Output_data_plt_arm_long;
template<bool big_endian>
class Stub_table;
template<bool big_endian>
class Arm_input_section;
class Arm_exidx_cantunwind;
class Arm_exidx_merged_section;
class Arm_exidx_fixup;
template<bool big_endian>
class Arm_output_section;
class Arm_exidx_input_section;
template<bool big_endian>
class Arm_relobj;
template<bool big_endian>
class Arm_relocate_functions;
template<bool big_endian>
class Arm_output_data_got;
template<bool big_endian>
class Target_arm;
// For convenience.
typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
// Maximum branch offsets for ARM, THUMB and THUMB2.
const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
// Thread Control Block size.
const size_t ARM_TCB_SIZE = 8;
// The arm target class.
//
// This is a very simple port of gold for ARM-EABI. It is intended for
// supporting Android only for the time being.
//
// TODOs:
// - Implement all static relocation types documented in arm-reloc.def.
// - Make PLTs more flexible for different architecture features like
// Thumb-2 and BE8.
// There are probably a lot more.
// Ideally we would like to avoid using global variables but this is used
// very in many places and sometimes in loops. If we use a function
// returning a static instance of Arm_reloc_property_table, it will be very
// slow in an threaded environment since the static instance needs to be
// locked. The pointer is below initialized in the
// Target::do_select_as_default_target() hook so that we do not spend time
// building the table if we are not linking ARM objects.
//
// An alternative is to to process the information in arm-reloc.def in
// compilation time and generate a representation of it in PODs only. That
// way we can avoid initialization when the linker starts.
Arm_reloc_property_table* arm_reloc_property_table = NULL;
// Instruction template class. This class is similar to the insn_sequence
// struct in bfd/elf32-arm.c.
class Insn_template
{
public:
// Types of instruction templates.
enum Type
{
THUMB16_TYPE = 1,
// THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
// templates with class-specific semantics. Currently this is used
// only by the Cortex_a8_stub class for handling condition codes in
// conditional branches.
THUMB16_SPECIAL_TYPE,
THUMB32_TYPE,
ARM_TYPE,
DATA_TYPE
};
// Factory methods to create instruction templates in different formats.
static const Insn_template
thumb16_insn(uint32_t data)
{ return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
// A Thumb conditional branch, in which the proper condition is inserted
// when we build the stub.
static const Insn_template
thumb16_bcond_insn(uint32_t data)
{ return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
static const Insn_template
thumb32_insn(uint32_t data)
{ return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
static const Insn_template
thumb32_b_insn(uint32_t data, int reloc_addend)
{
return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
reloc_addend);
}
static const Insn_template
arm_insn(uint32_t data)
{ return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
static const Insn_template
arm_rel_insn(unsigned data, int reloc_addend)
{ return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
static const Insn_template
data_word(unsigned data, unsigned int r_type, int reloc_addend)
{ return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
// Accessors. This class is used for read-only objects so no modifiers
// are provided.
uint32_t
data() const
{ return this->data_; }
// Return the instruction sequence type of this.
Type
type() const
{ return this->type_; }
// Return the ARM relocation type of this.
unsigned int
r_type() const
{ return this->r_type_; }
int32_t
reloc_addend() const
{ return this->reloc_addend_; }
// Return size of instruction template in bytes.
size_t
size() const;
// Return byte-alignment of instruction template.
unsigned
alignment() const;
private:
// We make the constructor private to ensure that only the factory
// methods are used.
inline
Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
: data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
{ }
// Instruction specific data. This is used to store information like
// some of the instruction bits.
uint32_t data_;
// Instruction template type.
Type type_;
// Relocation type if there is a relocation or R_ARM_NONE otherwise.
unsigned int r_type_;
// Relocation addend.
int32_t reloc_addend_;
};
// Macro for generating code to stub types. One entry per long/short
// branch stub
#define DEF_STUBS \
DEF_STUB(long_branch_any_any) \
DEF_STUB(long_branch_v4t_arm_thumb) \
DEF_STUB(long_branch_thumb_only) \
DEF_STUB(long_branch_v4t_thumb_thumb) \
DEF_STUB(long_branch_v4t_thumb_arm) \
DEF_STUB(short_branch_v4t_thumb_arm) \
DEF_STUB(long_branch_any_arm_pic) \
DEF_STUB(long_branch_any_thumb_pic) \
DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
DEF_STUB(long_branch_v4t_arm_thumb_pic) \
DEF_STUB(long_branch_v4t_thumb_arm_pic) \
DEF_STUB(long_branch_thumb_only_pic) \
DEF_STUB(a8_veneer_b_cond) \
DEF_STUB(a8_veneer_b) \
DEF_STUB(a8_veneer_bl) \
DEF_STUB(a8_veneer_blx) \
DEF_STUB(v4_veneer_bx)
// Stub types.
#define DEF_STUB(x) arm_stub_##x,
typedef enum
{
arm_stub_none,
DEF_STUBS
// First reloc stub type.
arm_stub_reloc_first = arm_stub_long_branch_any_any,
// Last reloc stub type.
arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
// First Cortex-A8 stub type.
arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
// Last Cortex-A8 stub type.
arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
// Last stub type.
arm_stub_type_last = arm_stub_v4_veneer_bx
} Stub_type;
#undef DEF_STUB
// Stub template class. Templates are meant to be read-only objects.
// A stub template for a stub type contains all read-only attributes
// common to all stubs of the same type.
class Stub_template
{
public:
Stub_template(Stub_type, const Insn_template*, size_t);
~Stub_template()
{ }
// Return stub type.
Stub_type
type() const
{ return this->type_; }
// Return an array of instruction templates.
const Insn_template*
insns() const
{ return this->insns_; }
// Return size of template in number of instructions.
size_t
insn_count() const
{ return this->insn_count_; }
// Return size of template in bytes.
size_t
size() const
{ return this->size_; }
// Return alignment of the stub template.
unsigned
alignment() const
{ return this->alignment_; }
// Return whether entry point is in thumb mode.
bool
entry_in_thumb_mode() const
{ return this->entry_in_thumb_mode_; }
// Return number of relocations in this template.
size_t
reloc_count() const
{ return this->relocs_.size(); }
// Return index of the I-th instruction with relocation.
size_t
reloc_insn_index(size_t i) const
{
gold_assert(i < this->relocs_.size());
return this->relocs_[i].first;
}
// Return the offset of the I-th instruction with relocation from the
// beginning of the stub.
section_size_type
reloc_offset(size_t i) const
{
gold_assert(i < this->relocs_.size());
return this->relocs_[i].second;
}
private:
// This contains information about an instruction template with a relocation
// and its offset from start of stub.
typedef std::pair<size_t, section_size_type> Reloc;
// A Stub_template may not be copied. We want to share templates as much
// as possible.
Stub_template(const Stub_template&);
Stub_template& operator=(const Stub_template&);
// Stub type.
Stub_type type_;
// Points to an array of Insn_templates.
const Insn_template* insns_;
// Number of Insn_templates in insns_[].
size_t insn_count_;
// Size of templated instructions in bytes.
size_t size_;
// Alignment of templated instructions.
unsigned alignment_;
// Flag to indicate if entry is in thumb mode.
bool entry_in_thumb_mode_;
// A table of reloc instruction indices and offsets. We can find these by
// looking at the instruction templates but we pre-compute and then stash
// them here for speed.
std::vector<Reloc> relocs_;
};
//
// A class for code stubs. This is a base class for different type of
// stubs used in the ARM target.
//
class Stub
{
private:
static const section_offset_type invalid_offset =
static_cast<section_offset_type>(-1);
public:
Stub(const Stub_template* stub_template)
: stub_template_(stub_template), offset_(invalid_offset)
{ }
virtual
~Stub()
{ }
// Return the stub template.
const Stub_template*
stub_template() const
{ return this->stub_template_; }
// Return offset of code stub from beginning of its containing stub table.
section_offset_type
offset() const
{
gold_assert(this->offset_ != invalid_offset);
return this->offset_;
}
// Set offset of code stub from beginning of its containing stub table.
void
set_offset(section_offset_type offset)
{ this->offset_ = offset; }
// Return the relocation target address of the i-th relocation in the
// stub. This must be defined in a child class.
Arm_address
reloc_target(size_t i)
{ return this->do_reloc_target(i); }
// Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
void
write(unsigned char* view, section_size_type view_size, bool big_endian)
{ this->do_write(view, view_size, big_endian); }
// Return the instruction for THUMB16_SPECIAL_TYPE instruction template
// for the i-th instruction.
uint16_t
thumb16_special(size_t i)
{ return this->do_thumb16_special(i); }
protected:
// This must be defined in the child class.
virtual Arm_address
do_reloc_target(size_t) = 0;
// This may be overridden in the child class.
virtual void
do_write(unsigned char* view, section_size_type view_size, bool big_endian)
{
if (big_endian)
this->do_fixed_endian_write<true>(view, view_size);
else
this->do_fixed_endian_write<false>(view, view_size);
}
// This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
// instruction template.
virtual uint16_t
do_thumb16_special(size_t)
{ gold_unreachable(); }
private:
// A template to implement do_write.
template<bool big_endian>
void inline
do_fixed_endian_write(unsigned char*, section_size_type);
// Its template.
const Stub_template* stub_template_;
// Offset within the section of containing this stub.
section_offset_type offset_;
};
// Reloc stub class. These are stubs we use to fix up relocation because
// of limited branch ranges.
class Reloc_stub : public Stub
{
public:
static const unsigned int invalid_index = static_cast<unsigned int>(-1);
// We assume we never jump to this address.
static const Arm_address invalid_address = static_cast<Arm_address>(-1);
// Return destination address.
Arm_address
destination_address() const
{
gold_assert(this->destination_address_ != this->invalid_address);
return this->destination_address_;
}
// Set destination address.
void
set_destination_address(Arm_address address)
{
gold_assert(address != this->invalid_address);
this->destination_address_ = address;
}
// Reset destination address.
void
reset_destination_address()
{ this->destination_address_ = this->invalid_address; }
// Determine stub type for a branch of a relocation of R_TYPE going
// from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
// the branch target is a thumb instruction. TARGET is used for look
// up ARM-specific linker settings.
static Stub_type
stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
Arm_address branch_target, bool target_is_thumb);
// Reloc_stub key. A key is logically a triplet of a stub type, a symbol
// and an addend. Since we treat global and local symbol differently, we
// use a Symbol object for a global symbol and a object-index pair for
// a local symbol.
class Key
{
public:
// If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
// R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
// and R_SYM must not be invalid_index.
Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
unsigned int r_sym, int32_t addend)
: stub_type_(stub_type), addend_(addend)
{
if (symbol != NULL)
{
this->r_sym_ = Reloc_stub::invalid_index;
this->u_.symbol = symbol;
}
else
{
gold_assert(relobj != NULL && r_sym != invalid_index);
this->r_sym_ = r_sym;
this->u_.relobj = relobj;
}
}
~Key()
{ }
// Accessors: Keys are meant to be read-only object so no modifiers are
// provided.
// Return stub type.
Stub_type
stub_type() const
{ return this->stub_type_; }
// Return the local symbol index or invalid_index.
unsigned int
r_sym() const
{ return this->r_sym_; }
// Return the symbol if there is one.
const Symbol*
symbol() const
{ return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
// Return the relobj if there is one.
const Relobj*
relobj() const
{ return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
// Whether this equals to another key k.
bool
eq(const Key& k) const
{
return ((this->stub_type_ == k.stub_type_)
&& (this->r_sym_ == k.r_sym_)
&& ((this->r_sym_ != Reloc_stub::invalid_index)
? (this->u_.relobj == k.u_.relobj)
: (this->u_.symbol == k.u_.symbol))
&& (this->addend_ == k.addend_));
}
// Return a hash value.
size_t
hash_value() const
{
return (this->stub_type_
^ this->r_sym_
^ gold::string_hash<char>(
(this->r_sym_ != Reloc_stub::invalid_index)
? this->u_.relobj->name().c_str()
: this->u_.symbol->name())
^ this->addend_);
}
// Functors for STL associative containers.
struct hash
{
size_t
operator()(const Key& k) const
{ return k.hash_value(); }
};
struct equal_to
{
bool
operator()(const Key& k1, const Key& k2) const
{ return k1.eq(k2); }
};
// Name of key. This is mainly for debugging.
std::string
name() const ATTRIBUTE_UNUSED;
private:
// Stub type.
Stub_type stub_type_;
// If this is a local symbol, this is the index in the defining object.
// Otherwise, it is invalid_index for a global symbol.
unsigned int r_sym_;
// If r_sym_ is an invalid index, this points to a global symbol.
// Otherwise, it points to a relobj. We used the unsized and target
// independent Symbol and Relobj classes instead of Sized_symbol<32> and
// Arm_relobj, in order to avoid making the stub class a template
// as most of the stub machinery is endianness-neutral. However, it
// may require a bit of casting done by users of this class.
union
{
const Symbol* symbol;
const Relobj* relobj;
} u_;
// Addend associated with a reloc.
int32_t addend_;
};
protected:
// Reloc_stubs are created via a stub factory. So these are protected.
Reloc_stub(const Stub_template* stub_template)
: Stub(stub_template), destination_address_(invalid_address)
{ }
~Reloc_stub()
{ }
friend class Stub_factory;
// Return the relocation target address of the i-th relocation in the
// stub.
Arm_address
do_reloc_target(size_t i)
{
// All reloc stub have only one relocation.
gold_assert(i == 0);
return this->destination_address_;
}
private:
// Address of destination.
Arm_address destination_address_;
};
// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
// THUMB branch that meets the following conditions:
//
// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
// branch address is 0xffe.
// 2. The branch target address is in the same page as the first word of the
// branch.
// 3. The branch follows a 32-bit instruction which is not a branch.
//
// To do the fix up, we need to store the address of the branch instruction
// and its target at least. We also need to store the original branch
// instruction bits for the condition code in a conditional branch. The
// condition code is used in a special instruction template. We also want
// to identify input sections needing Cortex-A8 workaround quickly. We store
// extra information about object and section index of the code section
// containing a branch being fixed up. The information is used to mark
// the code section when we finalize the Cortex-A8 stubs.
//
class Cortex_a8_stub : public Stub
{
public:
~Cortex_a8_stub()
{ }
// Return the object of the code section containing the branch being fixed
// up.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of the code section containing the branch being
// fixed up.
unsigned int
shndx() const
{ return this->shndx_; }
// Return the source address of stub. This is the address of the original
// branch instruction. LSB is 1 always set to indicate that it is a THUMB
// instruction.
Arm_address
source_address() const
{ return this->source_address_; }
// Return the destination address of the stub. This is the branch taken
// address of the original branch instruction. LSB is 1 if it is a THUMB
// instruction address.
Arm_address
destination_address() const
{ return this->destination_address_; }
// Return the instruction being fixed up.
uint32_t
original_insn() const
{ return this->original_insn_; }
protected:
// Cortex_a8_stubs are created via a stub factory. So these are protected.
Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
unsigned int shndx, Arm_address source_address,
Arm_address destination_address, uint32_t original_insn)
: Stub(stub_template), relobj_(relobj), shndx_(shndx),
source_address_(source_address | 1U),
destination_address_(destination_address),
original_insn_(original_insn)
{ }
friend class Stub_factory;
// Return the relocation target address of the i-th relocation in the
// stub.
Arm_address
do_reloc_target(size_t i)
{
if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
{
// The conditional branch veneer has two relocations.
gold_assert(i < 2);
return i == 0 ? this->source_address_ + 4 : this->destination_address_;
}
else
{
// All other Cortex-A8 stubs have only one relocation.
gold_assert(i == 0);
return this->destination_address_;
}
}
// Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
uint16_t
do_thumb16_special(size_t);
private:
// Object of the code section containing the branch being fixed up.
Relobj* relobj_;
// Section index of the code section containing the branch begin fixed up.
unsigned int shndx_;
// Source address of original branch.
Arm_address source_address_;
// Destination address of the original branch.
Arm_address destination_address_;
// Original branch instruction. This is needed for copying the condition
// code from a condition branch to its stub.
uint32_t original_insn_;
};
// ARMv4 BX Rx branch relocation stub class.
class Arm_v4bx_stub : public Stub
{
public:
~Arm_v4bx_stub()
{ }
// Return the associated register.
uint32_t
reg() const
{ return this->reg_; }
protected:
// Arm V4BX stubs are created via a stub factory. So these are protected.
Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
: Stub(stub_template), reg_(reg)
{ }
friend class Stub_factory;
// Return the relocation target address of the i-th relocation in the
// stub.
Arm_address
do_reloc_target(size_t)
{ gold_unreachable(); }
// This may be overridden in the child class.
virtual void
do_write(unsigned char* view, section_size_type view_size, bool big_endian)
{
if (big_endian)
this->do_fixed_endian_v4bx_write<true>(view, view_size);
else
this->do_fixed_endian_v4bx_write<false>(view, view_size);
}
private:
// A template to implement do_write.
template<bool big_endian>
void inline
do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
{
const Insn_template* insns = this->stub_template()->insns();
elfcpp::Swap<32, big_endian>::writeval(view,
(insns[0].data()
+ (this->reg_ << 16)));
view += insns[0].size();
elfcpp::Swap<32, big_endian>::writeval(view,
(insns[1].data() + this->reg_));
view += insns[1].size();
elfcpp::Swap<32, big_endian>::writeval(view,
(insns[2].data() + this->reg_));
}
// A register index (r0-r14), which is associated with the stub.
uint32_t reg_;
};
// Stub factory class.
class Stub_factory
{
public:
// Return the unique instance of this class.
static const Stub_factory&
get_instance()
{
static Stub_factory singleton;
return singleton;
}
// Make a relocation stub.
Reloc_stub*
make_reloc_stub(Stub_type stub_type) const
{
gold_assert(stub_type >= arm_stub_reloc_first
&& stub_type <= arm_stub_reloc_last);
return new Reloc_stub(this->stub_templates_[stub_type]);
}
// Make a Cortex-A8 stub.
Cortex_a8_stub*
make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
Arm_address source, Arm_address destination,
uint32_t original_insn) const
{
gold_assert(stub_type >= arm_stub_cortex_a8_first
&& stub_type <= arm_stub_cortex_a8_last);
return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
source, destination, original_insn);
}
// Make an ARM V4BX relocation stub.
// This method creates a stub from the arm_stub_v4_veneer_bx template only.
Arm_v4bx_stub*
make_arm_v4bx_stub(uint32_t reg) const
{
gold_assert(reg < 0xf);
return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
reg);
}
private:
// Constructor and destructor are protected since we only return a single
// instance created in Stub_factory::get_instance().
Stub_factory();
// A Stub_factory may not be copied since it is a singleton.
Stub_factory(const Stub_factory&);
Stub_factory& operator=(Stub_factory&);
// Stub templates. These are initialized in the constructor.
const Stub_template* stub_templates_[arm_stub_type_last+1];
};
// A class to hold stubs for the ARM target.
template<bool big_endian>
class Stub_table : public Output_data
{
public:
Stub_table(Arm_input_section<big_endian>* owner)
: Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
prev_data_size_(0), prev_addralign_(1)
{ }
~Stub_table()
{ }
// Owner of this stub table.
Arm_input_section<big_endian>*
owner() const
{ return this->owner_; }
// Whether this stub table is empty.
bool
empty() const
{
return (this->reloc_stubs_.empty()
&& this->cortex_a8_stubs_.empty()
&& this->arm_v4bx_stubs_.empty());
}
// Return the current data size.
off_t
current_data_size() const
{ return this->current_data_size_for_child(); }
// Add a STUB using KEY. The caller is responsible for avoiding addition
// if a STUB with the same key has already been added.
void
add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
{
const Stub_template* stub_template = stub->stub_template();
gold_assert(stub_template->type() == key.stub_type());
this->reloc_stubs_[key] = stub;
// Assign stub offset early. We can do this because we never remove
// reloc stubs and they are in the beginning of the stub table.
uint64_t align = stub_template->alignment();
this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
stub->set_offset(this->reloc_stubs_size_);
this->reloc_stubs_size_ += stub_template->size();
this->reloc_stubs_addralign_ =
std::max(this->reloc_stubs_addralign_, align);
}
// Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
// The caller is responsible for avoiding addition if a STUB with the same
// address has already been added.
void
add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
{
std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
this->cortex_a8_stubs_.insert(value);
}
// Add an ARM V4BX relocation stub. A register index will be retrieved
// from the stub.
void
add_arm_v4bx_stub(Arm_v4bx_stub* stub)
{
gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
this->arm_v4bx_stubs_[stub->reg()] = stub;
}
// Remove all Cortex-A8 stubs.
void
remove_all_cortex_a8_stubs();
// Look up a relocation stub using KEY. Return NULL if there is none.
Reloc_stub*
find_reloc_stub(const Reloc_stub::Key& key) const
{
typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
return (p != this->reloc_stubs_.end()) ? p->second : NULL;
}
// Look up an arm v4bx relocation stub using the register index.
// Return NULL if there is none.
Arm_v4bx_stub*
find_arm_v4bx_stub(const uint32_t reg) const
{
gold_assert(reg < 0xf);
return this->arm_v4bx_stubs_[reg];
}
// Relocate stubs in this stub table.
void
relocate_stubs(const Relocate_info<32, big_endian>*,
Target_arm<big_endian>*, Output_section*,
unsigned char*, Arm_address, section_size_type);
// Update data size and alignment at the end of a relaxation pass. Return
// true if either data size or alignment is different from that of the
// previous relaxation pass.
bool
update_data_size_and_addralign();
// Finalize stubs. Set the offsets of all stubs and mark input sections
// needing the Cortex-A8 workaround.
void
finalize_stubs();
// Apply Cortex-A8 workaround to an address range.
void
apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
unsigned char*, Arm_address,
section_size_type);
protected:
// Write out section contents.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return this->prev_addralign_; }
// Reset address and file offset.
void
do_reset_address_and_file_offset()
{ this->set_current_data_size_for_child(this->prev_data_size_); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size(this->current_data_size()); }
private:
// Relocate one stub.
void
relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
Target_arm<big_endian>*, Output_section*,
unsigned char*, Arm_address, section_size_type);
// Unordered map of relocation stubs.
typedef
Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
Reloc_stub::Key::equal_to>
Reloc_stub_map;
// List of Cortex-A8 stubs ordered by addresses of branches being
// fixed up in output.
typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
// List of Arm V4BX relocation stubs ordered by associated registers.
typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
// Owner of this stub table.
Arm_input_section<big_endian>* owner_;
// The relocation stubs.
Reloc_stub_map reloc_stubs_;
// Size of reloc stubs.
off_t reloc_stubs_size_;
// Maximum address alignment of reloc stubs.
uint64_t reloc_stubs_addralign_;
// The cortex_a8_stubs.
Cortex_a8_stub_list cortex_a8_stubs_;
// The Arm V4BX relocation stubs.
Arm_v4bx_stub_list arm_v4bx_stubs_;
// data size of this in the previous pass.
off_t prev_data_size_;
// address alignment of this in the previous pass.
uint64_t prev_addralign_;
};
// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
// we add to the end of an EXIDX input section that goes into the output.
class Arm_exidx_cantunwind : public Output_section_data
{
public:
Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
: Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
{ }
// Return the object containing the section pointed by this.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of the section pointed by this.
unsigned int
shndx() const
{ return this->shndx_; }
protected:
void
do_write(Output_file* of)
{
if (parameters->target().is_big_endian())
this->do_fixed_endian_write<true>(of);
else
this->do_fixed_endian_write<false>(of);
}
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** ARM cantunwind")); }
private:
// Implement do_write for a given endianness.
template<bool big_endian>
void inline
do_fixed_endian_write(Output_file*);
// The object containing the section pointed by this.
Relobj* relobj_;
// The section index of the section pointed by this.
unsigned int shndx_;
};
// During EXIDX coverage fix-up, we compact an EXIDX section. The
// Offset map is used to map input section offset within the EXIDX section
// to the output offset from the start of this EXIDX section.
typedef std::map<section_offset_type, section_offset_type>
Arm_exidx_section_offset_map;
// Arm_exidx_merged_section class. This represents an EXIDX input section
// with some of its entries merged.
class Arm_exidx_merged_section : public Output_relaxed_input_section
{
public:
// Constructor for Arm_exidx_merged_section.
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
// SECTION_OFFSET_MAP points to a section offset map describing how
// parts of the input section are mapped to output. DELETED_BYTES is
// the number of bytes deleted from the EXIDX input section.
Arm_exidx_merged_section(
const Arm_exidx_input_section& exidx_input_section,
const Arm_exidx_section_offset_map& section_offset_map,
uint32_t deleted_bytes);
// Build output contents.
void
build_contents(const unsigned char*, section_size_type);
// Return the original EXIDX input section.
const Arm_exidx_input_section&
exidx_input_section() const
{ return this->exidx_input_section_; }
// Return the section offset map.
const Arm_exidx_section_offset_map&
section_offset_map() const
{ return this->section_offset_map_; }
protected:
// Write merged section into file OF.
void
do_write(Output_file* of);
bool
do_output_offset(const Relobj*, unsigned int, section_offset_type,
section_offset_type*) const;
private:
// Original EXIDX input section.
const Arm_exidx_input_section& exidx_input_section_;
// Section offset map.
const Arm_exidx_section_offset_map& section_offset_map_;
// Merged section contents. We need to keep build the merged section
// and save it here to avoid accessing the original EXIDX section when
// we cannot lock the sections' object.
unsigned char* section_contents_;
};
// A class to wrap an ordinary input section containing executable code.
template<bool big_endian>
class Arm_input_section : public Output_relaxed_input_section
{
public:
Arm_input_section(Relobj* relobj, unsigned int shndx)
: Output_relaxed_input_section(relobj, shndx, 1),
original_addralign_(1), original_size_(0), stub_table_(NULL),
original_contents_(NULL)
{ }
~Arm_input_section()
{ delete[] this->original_contents_; }
// Initialize.
void
init();
// Whether this is a stub table owner.
bool
is_stub_table_owner() const
{ return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
// Return the stub table.
Stub_table<big_endian>*
stub_table() const
{ return this->stub_table_; }
// Set the stub_table.
void
set_stub_table(Stub_table<big_endian>* stub_table)
{ this->stub_table_ = stub_table; }
// Downcast a base pointer to an Arm_input_section pointer. This is
// not type-safe but we only use Arm_input_section not the base class.
static Arm_input_section<big_endian>*
as_arm_input_section(Output_relaxed_input_section* poris)
{ return static_cast<Arm_input_section<big_endian>*>(poris); }
// Return the original size of the section.
uint32_t
original_size() const
{ return this->original_size_; }
protected:
// Write data to output file.
void
do_write(Output_file*);
// Return required alignment of this.
uint64_t
do_addralign() const
{
if (this->is_stub_table_owner())
return std::max(this->stub_table_->addralign(),
static_cast<uint64_t>(this->original_addralign_));
else
return this->original_addralign_;
}
// Finalize data size.
void
set_final_data_size();
// Reset address and file offset.
void
do_reset_address_and_file_offset();
// Output offset.
bool
do_output_offset(const Relobj* object, unsigned int shndx,
section_offset_type offset,
section_offset_type* poutput) const
{
if ((object == this->relobj())
&& (shndx == this->shndx())
&& (offset >= 0)
&& (offset <=
convert_types<section_offset_type, uint32_t>(this->original_size_)))
{
*poutput = offset;
return true;
}
else
return false;
}
private:
// Copying is not allowed.
Arm_input_section(const Arm_input_section&);
Arm_input_section& operator=(const Arm_input_section&);
// Address alignment of the original input section.
uint32_t original_addralign_;
// Section size of the original input section.
uint32_t original_size_;
// Stub table.
Stub_table<big_endian>* stub_table_;
// Original section contents. We have to make a copy here since the file
// containing the original section may not be locked when we need to access
// the contents.
unsigned char* original_contents_;
};
// Arm_exidx_fixup class. This is used to define a number of methods
// and keep states for fixing up EXIDX coverage.
class Arm_exidx_fixup
{
public:
Arm_exidx_fixup(Output_section* exidx_output_section,
bool merge_exidx_entries = true)
: exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
last_inlined_entry_(0), last_input_section_(NULL),
section_offset_map_(NULL), first_output_text_section_(NULL),
merge_exidx_entries_(merge_exidx_entries)
{ }
~Arm_exidx_fixup()
{ delete this->section_offset_map_; }
// Process an EXIDX section for entry merging. SECTION_CONTENTS points
// to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
// number of bytes to be deleted in output. If parts of the input EXIDX
// section are merged a heap allocated Arm_exidx_section_offset_map is store
// in the located PSECTION_OFFSET_MAP. The caller owns the map and is
// responsible for releasing it.
template<bool big_endian>
uint32_t
process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
const unsigned char* section_contents,
section_size_type section_size,
Arm_exidx_section_offset_map** psection_offset_map);
// Append an EXIDX_CANTUNWIND entry pointing at the end of the last
// input section, if there is not one already.
void
add_exidx_cantunwind_as_needed();
// Return the output section for the text section which is linked to the
// first exidx input in output.
Output_section*
first_output_text_section() const
{ return this->first_output_text_section_; }
private:
// Copying is not allowed.
Arm_exidx_fixup(const Arm_exidx_fixup&);
Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
// Type of EXIDX unwind entry.
enum Unwind_type
{
// No type.
UT_NONE,
// EXIDX_CANTUNWIND.
UT_EXIDX_CANTUNWIND,
// Inlined entry.
UT_INLINED_ENTRY,
// Normal entry.
UT_NORMAL_ENTRY,
};
// Process an EXIDX entry. We only care about the second word of the
// entry. Return true if the entry can be deleted.
bool
process_exidx_entry(uint32_t second_word);
// Update the current section offset map during EXIDX section fix-up.
// If there is no map, create one. INPUT_OFFSET is the offset of a
// reference point, DELETED_BYTES is the number of deleted by in the
// section so far. If DELETE_ENTRY is true, the reference point and
// all offsets after the previous reference point are discarded.
void
update_offset_map(section_offset_type input_offset,
section_size_type deleted_bytes, bool delete_entry);
// EXIDX output section.
Output_section* exidx_output_section_;
// Unwind type of the last EXIDX entry processed.
Unwind_type last_unwind_type_;
// Last seen inlined EXIDX entry.
uint32_t last_inlined_entry_;
// Last processed EXIDX input section.
const Arm_exidx_input_section* last_input_section_;
// Section offset map created in process_exidx_section.
Arm_exidx_section_offset_map* section_offset_map_;
// Output section for the text section which is linked to the first exidx
// input in output.
Output_section* first_output_text_section_;
bool merge_exidx_entries_;
};
// Arm output section class. This is defined mainly to add a number of
// stub generation methods.
template<bool big_endian>
class Arm_output_section : public Output_section
{
public:
typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
// We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
Arm_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
: Output_section(name, type,
(type == elfcpp::SHT_ARM_EXIDX
? flags | elfcpp::SHF_LINK_ORDER
: flags))
{
if (type == elfcpp::SHT_ARM_EXIDX)
this->set_always_keeps_input_sections();
}
~Arm_output_section()
{ }
// Group input sections for stub generation.
void
group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
// Downcast a base pointer to an Arm_output_section pointer. This is
// not type-safe but we only use Arm_output_section not the base class.
static Arm_output_section<big_endian>*
as_arm_output_section(Output_section* os)
{ return static_cast<Arm_output_section<big_endian>*>(os); }
// Append all input text sections in this into LIST.
void
append_text_sections_to_list(Text_section_list* list);
// Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
// is a list of text input sections sorted in ascending order of their
// output addresses.
void
fix_exidx_coverage(Layout* layout,
const Text_section_list& sorted_text_section,
Symbol_table* symtab,
bool merge_exidx_entries,
const Task* task);
// Link an EXIDX section into its corresponding text section.
void
set_exidx_section_link();
private:
// For convenience.
typedef Output_section::Input_section Input_section;
typedef Output_section::Input_section_list Input_section_list;
// Create a stub group.
void create_stub_group(Input_section_list::const_iterator,
Input_section_list::const_iterator,
Input_section_list::const_iterator,
Target_arm<big_endian>*,
std::vector<Output_relaxed_input_section*>*,
const Task* task);
};
// Arm_exidx_input_section class. This represents an EXIDX input section.
class Arm_exidx_input_section
{
public:
static const section_offset_type invalid_offset =
static_cast<section_offset_type>(-1);
Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
unsigned int link, uint32_t size,
uint32_t addralign, uint32_t text_size)
: relobj_(relobj), shndx_(shndx), link_(link), size_(size),
addralign_(addralign), text_size_(text_size), has_errors_(false)
{ }
~Arm_exidx_input_section()
{ }
// Accessors: This is a read-only class.
// Return the object containing this EXIDX input section.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of this EXIDX input section.
unsigned int
shndx() const
{ return this->shndx_; }
// Return the section index of linked text section in the same object.
unsigned int
link() const
{ return this->link_; }
// Return size of the EXIDX input section.
uint32_t
size() const
{ return this->size_; }
// Return address alignment of EXIDX input section.
uint32_t
addralign() const
{ return this->addralign_; }
// Return size of the associated text input section.
uint32_t
text_size() const
{ return this->text_size_; }
// Whether there are any errors in the EXIDX input section.
bool
has_errors() const
{ return this->has_errors_; }
// Set has-errors flag.
void
set_has_errors()
{ this->has_errors_ = true; }
private:
// Object containing this.
Relobj* relobj_;
// Section index of this.
unsigned int shndx_;
// text section linked to this in the same object.
unsigned int link_;
// Size of this. For ARM 32-bit is sufficient.
uint32_t size_;
// Address alignment of this. For ARM 32-bit is sufficient.
uint32_t addralign_;
// Size of associated text section.
uint32_t text_size_;
// Whether this has any errors.
bool has_errors_;
};
// Arm_relobj class.
template<bool big_endian>
class Arm_relobj : public Sized_relobj_file<32, big_endian>
{
public:
static const Arm_address invalid_address = static_cast<Arm_address>(-1);
Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
const typename elfcpp::Ehdr<32, big_endian>& ehdr)
: Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
stub_tables_(), local_symbol_is_thumb_function_(),
attributes_section_data_(NULL), mapping_symbols_info_(),
section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
output_local_symbol_count_needs_update_(false),
merge_flags_and_attributes_(true)
{ }
~Arm_relobj()
{ delete this->attributes_section_data_; }
// Return the stub table of the SHNDX-th section if there is one.
Stub_table<big_endian>*
stub_table(unsigned int shndx) const
{
gold_assert(shndx < this->stub_tables_.size());
return this->stub_tables_[shndx];
}
// Set STUB_TABLE to be the stub_table of the SHNDX-th section.
void
set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
{
gold_assert(shndx < this->stub_tables_.size());
this->stub_tables_[shndx] = stub_table;
}
// Whether a local symbol is a THUMB function. R_SYM is the symbol table
// index. This is only valid after do_count_local_symbol is called.
bool
local_symbol_is_thumb_function(unsigned int r_sym) const
{
gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
return this->local_symbol_is_thumb_function_[r_sym];
}
// Scan all relocation sections for stub generation.
void
scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
const Layout*);
// Convert regular input section with index SHNDX to a relaxed section.
void
convert_input_section_to_relaxed_section(unsigned shndx)
{
// The stubs have relocations and we need to process them after writing
// out the stubs. So relocation now must follow section write.
this->set_section_offset(shndx, -1ULL);
this->set_relocs_must_follow_section_writes();
}
// Downcast a base pointer to an Arm_relobj pointer. This is
// not type-safe but we only use Arm_relobj not the base class.
static Arm_relobj<big_endian>*
as_arm_relobj(Relobj* relobj)
{ return static_cast<Arm_relobj<big_endian>*>(relobj); }
// Processor-specific flags in ELF file header. This is valid only after
// reading symbols.
elfcpp::Elf_Word
processor_specific_flags() const
{ return this->processor_specific_flags_; }
// Attribute section data This is the contents of the .ARM.attribute section
// if there is one.
const Attributes_section_data*
attributes_section_data() const
{ return this->attributes_section_data_; }
// Mapping symbol location.
typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
// Functor for STL container.
struct Mapping_symbol_position_less
{
bool
operator()(const Mapping_symbol_position& p1,
const Mapping_symbol_position& p2) const
{
return (p1.first < p2.first
|| (p1.first == p2.first && p1.second < p2.second));
}
};
// We only care about the first character of a mapping symbol, so
// we only store that instead of the whole symbol name.
typedef std::map<Mapping_symbol_position, char,
Mapping_symbol_position_less> Mapping_symbols_info;
// Whether a section contains any Cortex-A8 workaround.
bool
section_has_cortex_a8_workaround(unsigned int shndx) const
{
return (this->section_has_cortex_a8_workaround_ != NULL
&& (*this->section_has_cortex_a8_workaround_)[shndx]);
}
// Mark a section that has Cortex-A8 workaround.
void
mark_section_for_cortex_a8_workaround(unsigned int shndx)
{
if (this->section_has_cortex_a8_workaround_ == NULL)
this->section_has_cortex_a8_workaround_ =
new std::vector<bool>(this->shnum(), false);
(*this->section_has_cortex_a8_workaround_)[shndx] = true;
}
// Return the EXIDX section of an text section with index SHNDX or NULL
// if the text section has no associated EXIDX section.
const Arm_exidx_input_section*
exidx_input_section_by_link(unsigned int shndx) const
{
Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
return ((p != this->exidx_section_map_.end()
&& p->second->link() == shndx)
? p->second
: NULL);
}
// Return the EXIDX section with index SHNDX or NULL if there is none.
const Arm_exidx_input_section*
exidx_input_section_by_shndx(unsigned shndx) const
{
Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
return ((p != this->exidx_section_map_.end()
&& p->second->shndx() == shndx)
? p->second
: NULL);
}
// Whether output local symbol count needs updating.
bool
output_local_symbol_count_needs_update() const
{ return this->output_local_symbol_count_needs_update_; }
// Set output_local_symbol_count_needs_update flag to be true.
void
set_output_local_symbol_count_needs_update()
{ this->output_local_symbol_count_needs_update_ = true; }
// Update output local symbol count at the end of relaxation.
void
update_output_local_symbol_count();
// Whether we want to merge processor-specific flags and attributes.
bool
merge_flags_and_attributes() const
{ return this->merge_flags_and_attributes_; }
// Export list of EXIDX section indices.
void
get_exidx_shndx_list(std::vector<unsigned int>* list) const
{
list->clear();
for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
p != this->exidx_section_map_.end();
++p)
{
if (p->second->shndx() == p->first)
list->push_back(p->first);
}
// Sort list to make result independent of implementation of map.
std::sort(list->begin(), list->end());
}
protected:
// Post constructor setup.
void
do_setup()
{
// Call parent's setup method.
Sized_relobj_file<32, big_endian>::do_setup();
// Initialize look-up tables.
Stub_table_list empty_stub_table_list(this->shnum(), NULL);
this->stub_tables_.swap(empty_stub_table_list);
}
// Count the local symbols.
void
do_count_local_symbols(Stringpool_template<char>*,
Stringpool_template<char>*);
void
do_relocate_sections(
const Symbol_table* symtab, const Layout* layout,
const unsigned char* pshdrs, Output_file* of,
typename Sized_relobj_file<32, big_endian>::Views* pivews);
// Read the symbol information.
void
do_read_symbols(Read_symbols_data* sd);
// Process relocs for garbage collection.
void
do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
private:
// Whether a section needs to be scanned for relocation stubs.
bool
section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
const Relobj::Output_sections&,
const Symbol_table*, const unsigned char*);
// Whether a section is a scannable text section.
bool
section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
const Output_section*, const Symbol_table*);
// Whether a section needs to be scanned for the Cortex-A8 erratum.
bool
section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
unsigned int, Output_section*,
const Symbol_table*);
// Scan a section for the Cortex-A8 erratum.
void
scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
unsigned int, Output_section*,
Target_arm<big_endian>*);
// Find the linked text section of an EXIDX section by looking at the
// first relocation of the EXIDX section. PSHDR points to the section
// headers of a relocation section and PSYMS points to the local symbols.
// PSHNDX points to a location storing the text section index if found.
// Return whether we can find the linked section.
bool
find_linked_text_section(const unsigned char* pshdr,
const unsigned char* psyms, unsigned int* pshndx);
//
// Make a new Arm_exidx_input_section object for EXIDX section with
// index SHNDX and section header SHDR. TEXT_SHNDX is the section
// index of the linked text section.
void
make_exidx_input_section(unsigned int shndx,
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int text_shndx,
const elfcpp::Shdr<32, big_endian>& text_shdr);
// Return the output address of either a plain input section or a
// relaxed input section. SHNDX is the section index.
Arm_address
simple_input_section_output_address(unsigned int, Output_section*);
typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
Exidx_section_map;
// List of stub tables.
Stub_table_list stub_tables_;
// Bit vector to tell if a local symbol is a thumb function or not.
// This is only valid after do_count_local_symbol is called.
std::vector<bool> local_symbol_is_thumb_function_;
// processor-specific flags in ELF file header.
elfcpp::Elf_Word processor_specific_flags_;
// Object attributes if there is an .ARM.attributes section or NULL.
Attributes_section_data* attributes_section_data_;
// Mapping symbols information.
Mapping_symbols_info mapping_symbols_info_;
// Bitmap to indicate sections with Cortex-A8 workaround or NULL.
std::vector<bool>* section_has_cortex_a8_workaround_;
// Map a text section to its associated .ARM.exidx section, if there is one.
Exidx_section_map exidx_section_map_;
// Whether output local symbol count needs updating.
bool output_local_symbol_count_needs_update_;
// Whether we merge processor flags and attributes of this object to
// output.
bool merge_flags_and_attributes_;
};
// Arm_dynobj class.
template<bool big_endian>
class Arm_dynobj : public Sized_dynobj<32, big_endian>
{
public:
Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
const elfcpp::Ehdr<32, big_endian>& ehdr)
: Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
processor_specific_flags_(0), attributes_section_data_(NULL)
{ }
~Arm_dynobj()
{ delete this->attributes_section_data_; }
// Downcast a base pointer to an Arm_relobj pointer. This is
// not type-safe but we only use Arm_relobj not the base class.
static Arm_dynobj<big_endian>*
as_arm_dynobj(Dynobj* dynobj)
{ return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
// Processor-specific flags in ELF file header. This is valid only after
// reading symbols.
elfcpp::Elf_Word
processor_specific_flags() const
{ return this->processor_specific_flags_; }
// Attributes section data.
const Attributes_section_data*
attributes_section_data() const
{ return this->attributes_section_data_; }
protected:
// Read the symbol information.
void
do_read_symbols(Read_symbols_data* sd);
private:
// processor-specific flags in ELF file header.
elfcpp::Elf_Word processor_specific_flags_;
// Object attributes if there is an .ARM.attributes section or NULL.
Attributes_section_data* attributes_section_data_;
};
// Functor to read reloc addends during stub generation.
template<int sh_type, bool big_endian>
struct Stub_addend_reader
{
// Return the addend for a relocation of a particular type. Depending
// on whether this is a REL or RELA relocation, read the addend from a
// view or from a Reloc object.
elfcpp::Elf_types<32>::Elf_Swxword
operator()(
unsigned int /* r_type */,
const unsigned char* /* view */,
const typename Reloc_types<sh_type,
32, big_endian>::Reloc& /* reloc */) const;
};
// Specialized Stub_addend_reader for SHT_REL type relocation sections.
template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
{
elfcpp::Elf_types<32>::Elf_Swxword
operator()(
unsigned int,
const unsigned char*,
const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
};
// Specialized Stub_addend_reader for RELA type relocation sections.
// We currently do not handle RELA type relocation sections but it is trivial
// to implement the addend reader. This is provided for completeness and to
// make it easier to add support for RELA relocation sections in the future.
template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
{
elfcpp::Elf_types<32>::Elf_Swxword
operator()(
unsigned int,
const unsigned char*,
const typename Reloc_types<elfcpp::SHT_RELA, 32,
big_endian>::Reloc& reloc) const
{ return reloc.get_r_addend(); }
};
// Cortex_a8_reloc class. We keep record of relocation that may need
// the Cortex-A8 erratum workaround.
class Cortex_a8_reloc
{
public:
Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
Arm_address destination)
: reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
{ }
~Cortex_a8_reloc()
{ }
// Accessors: This is a read-only class.
// Return the relocation stub associated with this relocation if there is
// one.
const Reloc_stub*
reloc_stub() const
{ return this->reloc_stub_; }
// Return the relocation type.
unsigned int
r_type() const
{ return this->r_type_; }
// Return the destination address of the relocation. LSB stores the THUMB
// bit.
Arm_address
destination() const
{ return this->destination_; }
private:
// Associated relocation stub if there is one, or NULL.
const Reloc_stub* reloc_stub_;
// Relocation type.
unsigned int r_type_;
// Destination address of this relocation. LSB is used to distinguish
// ARM/THUMB mode.
Arm_address destination_;
};
// Arm_output_data_got class. We derive this from Output_data_got to add
// extra methods to handle TLS relocations in a static link.
template<bool big_endian>
class Arm_output_data_got : public Output_data_got<32, big_endian>
{
public:
Arm_output_data_got(Symbol_table* symtab, Layout* layout)
: Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
{ }
// Add a static entry for the GOT entry at OFFSET. GSYM is a global
// symbol and R_TYPE is the code of a dynamic relocation that needs to be
// applied in a static link.
void
add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
{ this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
// Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
// defining a local symbol with INDEX. R_TYPE is the code of a dynamic
// relocation that needs to be applied in a static link.
void
add_static_reloc(unsigned int got_offset, unsigned int r_type,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int index)
{
this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
index));
}
// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
// The first one is initialized to be 1, which is the module index for
// the main executable and the second one 0. A reloc of the type
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
// be applied by gold. GSYM is a global symbol.
void
add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
// Same as the above but for a local symbol in OBJECT with INDEX.
void
add_tls_gd32_with_static_reloc(unsigned int got_type,
Sized_relobj_file<32, big_endian>* object,
unsigned int index);
protected:
// Write out the GOT table.
void
do_write(Output_file*);
private:
// This class represent dynamic relocations that need to be applied by
// gold because we are using TLS relocations in a static link.
class Static_reloc
{
public:
Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
{ this->u_.global.symbol = gsym; }
Static_reloc(unsigned int got_offset, unsigned int r_type,
Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
{
this->u_.local.relobj = relobj;
this->u_.local.index = index;
}
// Return the GOT offset.
unsigned int
got_offset() const
{ return this->got_offset_; }
// Relocation type.
unsigned int
r_type() const
{ return this->r_type_; }
// Whether the symbol is global or not.
bool
symbol_is_global() const
{ return this->symbol_is_global_; }
// For a relocation against a global symbol, the global symbol.
Symbol*
symbol() const
{
gold_assert(this->symbol_is_global_);
return this->u_.global.symbol;
}
// For a relocation against a local symbol, the defining object.
Sized_relobj_file<32, big_endian>*
relobj() const
{
gold_assert(!this->symbol_is_global_);
return this->u_.local.relobj;
}
// For a relocation against a local symbol, the local symbol index.
unsigned int
index() const
{
gold_assert(!this->symbol_is_global_);
return this->u_.local.index;
}
private:
// GOT offset of the entry to which this relocation is applied.
unsigned int got_offset_;
// Type of relocation.
unsigned int r_type_;
// Whether this relocation is against a global symbol.
bool symbol_is_global_;
// A global or local symbol.
union
{
struct
{
// For a global symbol, the symbol itself.
Symbol* symbol;
} global;
struct
{
// For a local symbol, the object defining object.
Sized_relobj_file<32, big_endian>* relobj;
// For a local symbol, the symbol index.
unsigned int index;
} local;
} u_;
};
// Symbol table of the output object.
Symbol_table* symbol_table_;
// Layout of the output object.
Layout* layout_;
// Static relocs to be applied to the GOT.
std::vector<Static_reloc> static_relocs_;
};
// The ARM target has many relocation types with odd-sizes or noncontiguous
// bits. The default handling of relocatable relocation cannot process these
// relocations. So we have to extend the default code.
template<bool big_endian, typename Classify_reloc>
class Arm_scan_relocatable_relocs :
public Default_scan_relocatable_relocs<Classify_reloc>
{
public:
// Return the strategy to use for a local symbol which is a section
// symbol, given the relocation type.
inline Relocatable_relocs::Reloc_strategy
local_section_strategy(unsigned int r_type, Relobj*)
{
if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
else
{
if (r_type == elfcpp::R_ARM_TARGET1
|| r_type == elfcpp::R_ARM_TARGET2)
{
const Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
r_type = arm_target->get_real_reloc_type(r_type);
}
switch(r_type)
{
// Relocations that write nothing. These exclude R_ARM_TARGET1
// and R_ARM_TARGET2.
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_TLS_GOTDESC:
case elfcpp::R_ARM_TLS_CALL:
case elfcpp::R_ARM_TLS_DESCSEQ:
case elfcpp::R_ARM_THM_TLS_CALL:
case elfcpp::R_ARM_GOTRELAX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
// These should have been converted to something else above.
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
gold_unreachable();
// Relocations that write full 32 bits and
// have alignment of 1.
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_ABS32_NOI:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_PLT32_ABS:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
case elfcpp::R_ARM_TLS_GD32:
case elfcpp::R_ARM_TLS_LDM32:
case elfcpp::R_ARM_TLS_LDO32:
case elfcpp::R_ARM_TLS_IE32:
case elfcpp::R_ARM_TLS_LE32:
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
default:
// For all other static relocations, return RELOC_SPECIAL.
return Relocatable_relocs::RELOC_SPECIAL;
}
}
}
};
template<bool big_endian>
class Target_arm : public Sized_target<32, big_endian>
{
public:
typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
Reloc_section;
// When were are relocating a stub, we pass this as the relocation number.
static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
Target_arm(const Target::Target_info* info = &arm_info)
: Sized_target<32, big_endian>(info),
got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
stub_tables_(), stub_factory_(Stub_factory::get_instance()),
should_force_pic_veneer_(false),
arm_input_section_map_(), attributes_section_data_(NULL),
fix_cortex_a8_(false), cortex_a8_relocs_info_(),
target1_reloc_(elfcpp::R_ARM_ABS32),
// This can be any reloc type but usually is R_ARM_GOT_PREL.
target2_reloc_(elfcpp::R_ARM_GOT_PREL)
{
if (parameters->options().user_set_target1_rel())
{
// FIXME: This is not strictly compatible with ld, which allows both
// --target1-abs and --target-rel to be given.
if (parameters->options().user_set_target1_abs())
gold_error(_("Cannot use both --target1-abs and --target1-rel."));
else
this->target1_reloc_ = elfcpp::R_ARM_REL32;
}
// We don't need to handle --target1-abs because target1_reloc_ is set
// to elfcpp::R_ARM_ABS32 in the member initializer list.
if (parameters->options().user_set_target2())
{
const char* target2 = parameters->options().target2();
if (strcmp(target2, "rel") == 0)
this->target2_reloc_ = elfcpp::R_ARM_REL32;
else if (strcmp(target2, "abs") == 0)
this->target2_reloc_ = elfcpp::R_ARM_ABS32;
else if (strcmp(target2, "got-rel") == 0)
this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL;
else
gold_unreachable();
}
}
// Whether we force PCI branch veneers.
bool
should_force_pic_veneer() const
{ return this->should_force_pic_veneer_; }
// Set PIC veneer flag.
void
set_should_force_pic_veneer(bool value)
{ this->should_force_pic_veneer_ = value; }
// Whether we use THUMB-2 instructions.
bool
using_thumb2() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
}
// Whether we use THUMB/THUMB-2 instructions only.
bool
using_thumb_only() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
|| attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
return true;
if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
return false;
attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
return attr->int_value() == 'M';
}
// Whether we have an NOP instruction. If not, use mov r0, r0 instead.
bool
may_use_arm_nop() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|| arch == elfcpp::TAG_CPU_ARCH_V6K
|| arch == elfcpp::TAG_CPU_ARCH_V7
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
}
// Whether we have THUMB-2 NOP.W instruction.
bool
may_use_thumb2_nop() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|| arch == elfcpp::TAG_CPU_ARCH_V7
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
}
// Whether we have v4T interworking instructions available.
bool
may_use_v4t_interworking() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
&& arch != elfcpp::TAG_CPU_ARCH_V4);
}
// Whether we have v5T interworking instructions available.
bool
may_use_v5t_interworking() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
if (parameters->options().fix_arm1176())
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|| arch == elfcpp::TAG_CPU_ARCH_V7
|| arch == elfcpp::TAG_CPU_ARCH_V6_M
|| arch == elfcpp::TAG_CPU_ARCH_V6S_M
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
else
return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
&& arch != elfcpp::TAG_CPU_ARCH_V4
&& arch != elfcpp::TAG_CPU_ARCH_V4T);
}
// Process the relocations to determine unreferenced sections for
// garbage collection.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
// Return the value to use for a dynamic symbol which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Return the plt address for globals. Since we have irelative plt entries,
// address calculation is not as straightforward as plt_address + plt_offset.
uint64_t
do_plt_address_for_global(const Symbol* gsym) const
{ return this->plt_section()->address_for_global(gsym); }
// Return the plt address for locals. Since we have irelative plt entries,
// address calculation is not as straightforward as plt_address + plt_offset.
uint64_t
do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
{ return this->plt_section()->address_for_local(relobj, symndx); }
// Relocate a section.
void
relocate_section(const Relocate_info<32, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Arm_address view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Scan the relocs for --emit-relocs.
void
emit_relocs_scan(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr);
// Emit relocations for a section.
void
relocate_relocs(const Relocate_info<32, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off
offset_in_output_section,
unsigned char* view,
Arm_address view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Perform target-specific processing in a relocatable link. This is
// only used if we use the relocation strategy RELOC_SPECIAL.
void
relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* preloc_in,
size_t relnum,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off
offset_in_output_section,
unsigned char* view,
typename elfcpp::Elf_types<32>::Elf_Addr
view_address,
section_size_type view_size,
unsigned char* preloc_out);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{ return strcmp(sym->name(), "__tls_get_addr") == 0; }
// Return whether there is a GOT section.
bool
has_got_section() const
{ return this->got_ != NULL; }
// Return the size of the GOT section.
section_size_type
got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
// Return the number of entries in the GOT.
unsigned int
got_entry_count() const
{
if (!this->has_got_section())
return 0;
return this->got_size() / 4;
}
// Return the number of entries in the PLT.
unsigned int
plt_entry_count() const;
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const;
// Return the size of each PLT entry.
unsigned int
plt_entry_size() const;
// Get the section to use for IRELATIVE relocations, create it if necessary.
Reloc_section*
rel_irelative_section(Layout*);
// Map platform-specific reloc types
unsigned int
get_real_reloc_type(unsigned int r_type) const;
//
// Methods to support stub-generations.
//
// Return the stub factory
const Stub_factory&
stub_factory() const
{ return this->stub_factory_; }
// Make a new Arm_input_section object.
Arm_input_section<big_endian>*
new_arm_input_section(Relobj*, unsigned int);
// Find the Arm_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.
Arm_input_section<big_endian>*
find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
// Make a new Stub_table
Stub_table<big_endian>*
new_stub_table(Arm_input_section<big_endian>*);
// Scan a section for stub generation.
void
scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
const unsigned char*, size_t, Output_section*,
bool, const unsigned char*, Arm_address,
section_size_type);
// Relocate a stub.
void
relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
Output_section*, unsigned char*, Arm_address,
section_size_type);
// Get the default ARM target.
static Target_arm<big_endian>*
default_target()
{
gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
&& parameters->target().is_big_endian() == big_endian);
return static_cast<Target_arm<big_endian>*>(
parameters->sized_target<32, big_endian>());
}
// Whether NAME belongs to a mapping symbol.
static bool
is_mapping_symbol_name(const char* name)
{
return (name
&& name[0] == '$'
&& (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
&& (name[2] == '\0' || name[2] == '.'));
}
// Whether we work around the Cortex-A8 erratum.
bool
fix_cortex_a8() const
{ return this->fix_cortex_a8_; }
// Whether we merge exidx entries in debuginfo.
bool
merge_exidx_entries() const
{ return parameters->options().merge_exidx_entries(); }
// Whether we fix R_ARM_V4BX relocation.
// 0 - do not fix
// 1 - replace with MOV instruction (armv4 target)
// 2 - make interworking veneer (>= armv4t targets only)
General_options::Fix_v4bx
fix_v4bx() const
{ return parameters->options().fix_v4bx(); }
// Scan a span of THUMB code section for Cortex-A8 erratum.
void
scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
section_size_type, section_size_type,
const unsigned char*, Arm_address);
// Apply Cortex-A8 workaround to a branch.
void
apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
unsigned char*, Arm_address);
protected:
// Make the PLT-generator object.
Output_data_plt_arm<big_endian>*
make_data_plt(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
{ return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
// Make an ELF object.
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<32, big_endian>& ehdr);
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<32, !big_endian>&)
{ gold_unreachable(); }
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<64, false>&)
{ gold_unreachable(); }
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<64, true>&)
{ gold_unreachable(); }
// Make an output section.
Output_section*
do_make_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
{ return new Arm_output_section<big_endian>(name, type, flags); }
void
do_adjust_elf_header(unsigned char* view, int len);
// We only need to generate stubs, and hence perform relaxation if we are
// not doing relocatable linking.
bool
do_may_relax() const
{ return !parameters->options().relocatable(); }
bool
do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
// Determine whether an object attribute tag takes an integer, a
// string or both.
int
do_attribute_arg_type(int tag) const;
// Reorder tags during output.
int
do_attributes_order(int num) const;
// This is called when the target is selected as the default.
void
do_select_as_default_target()
{
// No locking is required since there should only be one default target.
// We cannot have both the big-endian and little-endian ARM targets
// as the default.
gold_assert(arm_reloc_property_table == NULL);
arm_reloc_property_table = new Arm_reloc_property_table();
}
// Virtual function which is set to return true by a target if
// it can use relocation types to determine if a function's
// pointer is taken.
virtual bool
do_can_check_for_function_pointers() const
{ return true; }
// Whether a section called SECTION_NAME may have function pointers to
// sections not eligible for safe ICF folding.
virtual bool
do_section_may_have_icf_unsafe_pointers(const char* section_name) const
{
return (!is_prefix_of(".ARM.exidx", section_name)
&& !is_prefix_of(".ARM.extab", section_name)
&& Target::do_section_may_have_icf_unsafe_pointers(section_name));
}
virtual void
do_define_standard_symbols(Symbol_table*, Layout*);
virtual Output_data_plt_arm<big_endian>*
do_make_data_plt(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
{
gold_assert(got_plt != NULL && got_irelative != NULL);
if (parameters->options().long_plt())
return new Output_data_plt_arm_long<big_endian>(
layout, got, got_plt, got_irelative);
else
return new Output_data_plt_arm_short<big_endian>(
layout, got, got_plt, got_irelative);
}
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
: issued_non_pic_error_(false)
{ }
static inline int
get_reference_flags(unsigned int r_type);
inline void
local(Symbol_table* symtab, Layout* layout, Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
const elfcpp::Sym<32, big_endian>& lsym,
bool is_discarded);
inline void
global(Symbol_table* symtab, Layout* layout, Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
inline bool
local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
Sized_relobj_file<32, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rel<32, big_endian>& ,
unsigned int ,
const elfcpp::Sym<32, big_endian>&);
inline bool
global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
Sized_relobj_file<32, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rel<32, big_endian>& ,
unsigned int , Symbol*);
private:
static void
unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
unsigned int r_type, Symbol*);
void
check_non_pic(Relobj*, unsigned int r_type);
// Almost identical to Symbol::needs_plt_entry except that it also
// handles STT_ARM_TFUNC.
static bool
symbol_needs_plt_entry(const Symbol* sym)
{
// An undefined symbol from an executable does not need a PLT entry.
if (sym->is_undefined() && !parameters->options().shared())
return false;
if (sym->type() == elfcpp::STT_GNU_IFUNC)
return true;
return (!parameters->doing_static_link()
&& (sym->type() == elfcpp::STT_FUNC
|| sym->type() == elfcpp::STT_ARM_TFUNC)
&& (sym->is_from_dynobj()
|| sym->is_undefined()
|| sym->is_preemptible()));
}
inline bool
possible_function_pointer_reloc(unsigned int r_type);
// Whether a plt entry is needed for ifunc.
bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// The class which implements relocation.
class Relocate
{
public:
Relocate()
{ }
~Relocate()
{ }
// Return whether the static relocation needs to be applied.
inline bool
should_apply_static_reloc(const Sized_symbol<32>* gsym,
unsigned int r_type,
bool is_32bit,
Output_section* output_section);
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<32, big_endian>*, unsigned int,
Target_arm*, Output_section*, size_t, const unsigned char*,
const Sized_symbol<32>*, const Symbol_value<32>*,
unsigned char*, Arm_address, section_size_type);
// Return whether we want to pass flag NON_PIC_REF for this
// reloc. This means the relocation type accesses a symbol not via
// GOT or PLT.
static inline bool
reloc_is_non_pic(unsigned int r_type)
{
switch (r_type)
{
// These relocation types reference GOT or PLT entries explicitly.
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
case elfcpp::R_ARM_GOT_BREL12:
case elfcpp::R_ARM_PLT32_ABS:
case elfcpp::R_ARM_TLS_GD32:
case elfcpp::R_ARM_TLS_LDM32:
case elfcpp::R_ARM_TLS_IE32:
case elfcpp::R_ARM_TLS_IE12GP:
// These relocate types may use PLT entries.
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_SBREL31:
return false;
default:
return true;
}
}
private:
// Do a TLS relocation.
inline typename Arm_relocate_functions<big_endian>::Status
relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
const Sized_symbol<32>*, const Symbol_value<32>*,
unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
section_size_type);
};
// A class for inquiring about properties of a relocation,
// used while scanning relocs during a relocatable link and
// garbage collection.
class Classify_reloc :
public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
{
public:
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
Reltype;
// Return the explicit addend of the relocation (return 0 for SHT_REL).
static typename elfcpp::Elf_types<32>::Elf_Swxword
get_r_addend(const Reltype*)
{ return 0; }
// Return the size of the addend of the relocation (only used for SHT_REL).
static unsigned int
get_size_for_reloc(unsigned int, Relobj*);
};
// Adjust TLS relocation type based on the options and whether this
// is a local symbol.
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type);
// Get the GOT section, creating it if necessary.
Arm_output_data_got<big_endian>*
got_section(Symbol_table*, Layout*);
// Get the GOT PLT section.
Output_data_space*
got_plt_section() const
{
gold_assert(this->got_plt_ != NULL);
return this->got_plt_;
}
// Create the PLT section.
void
make_plt_section(Symbol_table* symtab, Layout* layout);
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create a PLT entry for a local STT_GNU_IFUNC symbol.
void
make_local_ifunc_plt_entry(Symbol_table*, Layout*,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index);
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
void
define_tls_base_symbol(Symbol_table*, Layout*);
// Create a GOT entry for the TLS module index.
unsigned int
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<32, big_endian>* object);
// Get the PLT section.
const Output_data_plt_arm<big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rel_dyn_section(Layout*);
// Get the section to use for TLS_DESC relocations.
Reloc_section*
rel_tls_desc_section(Layout*) const;
// Return true if the symbol may need a COPY relocation.
// References from an executable object to non-function symbols
// defined in a dynamic object may need a COPY relocation.
bool
may_need_copy_reloc(Symbol* gsym)
{
return (gsym->type() != elfcpp::STT_ARM_TFUNC
&& gsym->may_need_copy_reloc());
}
// Add a potential copy relocation.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
{
unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<32>(sym),
object, shndx, output_section,
r_type, reloc.get_r_offset(), 0,
this->rel_dyn_section(layout));
}
// Whether two EABI versions are compatible.
static bool
are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
// Merge processor-specific flags from input object and those in the ELF
// header of the output.
void
merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
// Get the secondary compatible architecture.
static int
get_secondary_compatible_arch(const Attributes_section_data*);
// Set the secondary compatible architecture.
static void
set_secondary_compatible_arch(Attributes_section_data*, int);
static int
tag_cpu_arch_combine(const char*, int, int*, int, int);
// Helper to print AEABI enum tag value.
static std::string
aeabi_enum_name(unsigned int);
// Return string value for TAG_CPU_name.
static std::string
tag_cpu_name_value(unsigned int);
// Query attributes object to see if integer divide instructions may be
// present in an object.
static bool
attributes_accept_div(int arch, int profile,
const Object_attribute* div_attr);
// Query attributes object to see if integer divide instructions are
// forbidden to be in the object. This is not the inverse of
// attributes_accept_div.
static bool
attributes_forbid_div(const Object_attribute* div_attr);
// Merge object attributes from input object and those in the output.
void
merge_object_attributes(const char*, const Attributes_section_data*);
// Helper to get an AEABI object attribute
Object_attribute*
get_aeabi_object_attribute(int tag) const
{
Attributes_section_data* pasd = this->attributes_section_data_;
gold_assert(pasd != NULL);
Object_attribute* attr =
pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
gold_assert(attr != NULL);
return attr;
}
//
// Methods to support stub-generations.
//
// Group input sections for stub generation.
void
group_sections(Layout*, section_size_type, bool, const Task*);
// Scan a relocation for stub generation.
void
scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
const Sized_symbol<32>*, unsigned int,
const Symbol_value<32>*,
elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
// Scan a relocation section for stub.
template<int sh_type>
void
scan_reloc_section_for_stubs(
const Relocate_info<32, big_endian>* relinfo,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
const unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type);
// Fix .ARM.exidx section coverage.
void
fix_exidx_coverage(Layout*, const Input_objects*,
Arm_output_section<big_endian>*, Symbol_table*,
const Task*);
// Functors for STL set.
struct output_section_address_less_than
{
bool
operator()(const Output_section* s1, const Output_section* s2) const
{ return s1->address() < s2->address(); }
};
// Information about this specific target which we pass to the
// general Target structure.
static const Target::Target_info arm_info;
// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
};
typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
// Map input section to Arm_input_section.
typedef Unordered_map<Section_id,
Arm_input_section<big_endian>*,
Section_id_hash>
Arm_input_section_map;
// Map output addresses to relocs for Cortex-A8 erratum.
typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
Cortex_a8_relocs_info;
// The GOT section.
Arm_output_data_got<big_endian>* got_;
// The PLT section.
Output_data_plt_arm<big_endian>* plt_;
// The GOT PLT section.
Output_data_space* got_plt_;
// The GOT section for IRELATIVE relocations.
Output_data_space* got_irelative_;
// The dynamic reloc section.
Reloc_section* rel_dyn_;
// The section to use for IRELATIVE relocs.
Reloc_section* rel_irelative_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
// Offset of the GOT entry for the TLS module index.
unsigned int got_mod_index_offset_;
// True if the _TLS_MODULE_BASE_ symbol has been defined.
bool tls_base_symbol_defined_;
// Vector of Stub_tables created.
Stub_table_list stub_tables_;
// Stub factory.
const Stub_factory &stub_factory_;
// Whether we force PIC branch veneers.
bool should_force_pic_veneer_;
// Map for locating Arm_input_sections.
Arm_input_section_map arm_input_section_map_;
// Attributes section data in output.
Attributes_section_data* attributes_section_data_;
// Whether we want to fix code for Cortex-A8 erratum.
bool fix_cortex_a8_;
// Map addresses to relocs for Cortex-A8 erratum.
Cortex_a8_relocs_info cortex_a8_relocs_info_;
// What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32.
unsigned int target1_reloc_;
// What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32
// and R_ARM_GOT_PREL.
unsigned int target2_reloc_;
};
template<bool big_endian>
const Target::Target_info Target_arm<big_endian>::arm_info =
{
32, // size
big_endian, // is_big_endian
elfcpp::EM_ARM, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/libc.so.1", // dynamic_linker
0x8000, // default_text_segment_address
0x1000, // abi_pagesize (overridable by -z max-page-size)
0x1000, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
".ARM.attributes", // attributes_section
"aeabi", // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
// Arm relocate functions class
//
template<bool big_endian>
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
{
public:
typedef enum
{
STATUS_OKAY, // No error during relocation.
STATUS_OVERFLOW, // Relocation overflow.
STATUS_BAD_RELOC // Relocation cannot be applied.
} Status;
private:
typedef Relocate_functions<32, big_endian> Base;
typedef Arm_relocate_functions<big_endian> This;
// Encoding of imm16 argument for movt and movw ARM instructions
// from ARM ARM:
//
// imm16 := imm4 | imm12
//
// f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
// +-------+---------------+-------+-------+-----------------------+
// | | |imm4 | |imm12 |
// +-------+---------------+-------+-------+-----------------------+
// Extract the relocation addend from VAL based on the ARM
// instruction encoding described above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
extract_arm_movw_movt_addend(
typename elfcpp::Swap<32, big_endian>::Valtype val)
{
// According to the Elf ABI for ARM Architecture the immediate
// field is sign-extended to form the addend.
return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
}
// Insert X into VAL based on the ARM instruction encoding described
// above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
insert_val_arm_movw_movt(
typename elfcpp::Swap<32, big_endian>::Valtype val,
typename elfcpp::Swap<32, big_endian>::Valtype x)
{
val &= 0xfff0f000;
val |= x & 0x0fff;
val |= (x & 0xf000) << 4;
return val;
}
// Encoding of imm16 argument for movt and movw Thumb2 instructions
// from ARM ARM:
//
// imm16 := imm4 | i | imm3 | imm8
//
// f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
// +---------+-+-----------+-------++-+-----+-------+---------------+
// | |i| |imm4 || |imm3 | |imm8 |
// +---------+-+-----------+-------++-+-----+-------+---------------+
// Extract the relocation addend from VAL based on the Thumb2
// instruction encoding described above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
extract_thumb_movw_movt_addend(
typename elfcpp::Swap<32, big_endian>::Valtype val)
{
// According to the Elf ABI for ARM Architecture the immediate
// field is sign-extended to form the addend.
return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
| ((val >> 15) & 0x0800)
| ((val >> 4) & 0x0700)
| (val & 0x00ff));
}
// Insert X into VAL based on the Thumb2 instruction encoding
// described above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
insert_val_thumb_movw_movt(
typename elfcpp::Swap<32, big_endian>::Valtype val,
typename elfcpp::Swap<32, big_endian>::Valtype x)
{
val &= 0xfbf08f00;
val |= (x & 0xf000) << 4;
val |= (x & 0x0800) << 15;
val |= (x & 0x0700) << 4;
val |= (x & 0x00ff);
return val;
}
// Calculate the smallest constant Kn for the specified residual.
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
static uint32_t
calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
{
int32_t msb;
if (residual == 0)
return 0;
// Determine the most significant bit in the residual and
// align the resulting value to a 2-bit boundary.
for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
;
// The desired shift is now (msb - 6), or zero, whichever
// is the greater.
return (((msb - 6) < 0) ? 0 : (msb - 6));
}
// Calculate the final residual for the specified group index.
// If the passed group index is less than zero, the method will return
// the value of the specified residual without any change.
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
static typename elfcpp::Swap<32, big_endian>::Valtype
calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
const int group)
{
for (int n = 0; n <= group; n++)
{
// Calculate which part of the value to mask.
uint32_t shift = calc_grp_kn(residual);
// Calculate the residual for the next time around.
residual &= ~(residual & (0xff << shift));
}
return residual;
}
// Calculate the value of Gn for the specified group index.
// We return it in the form of an encoded constant-and-rotation.
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
static typename elfcpp::Swap<32, big_endian>::Valtype
calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
const int group)
{
typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
uint32_t shift = 0;
for (int n = 0; n <= group; n++)
{
// Calculate which part of the value to mask.
shift = calc_grp_kn(residual);
// Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
gn = residual & (0xff << shift);
// Calculate the residual for the next time around.
residual &= ~gn;
}
// Return Gn in the form of an encoded constant-and-rotation.
return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
}
public:
// Handle ARM long branches.
static typename This::Status
arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
unsigned char*, const Sized_symbol<32>*,
const Arm_relobj<big_endian>*, unsigned int,
const Symbol_value<32>*, Arm_address, Arm_address, bool);
// Handle THUMB long branches.
static typename This::Status
thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
unsigned char*, const Sized_symbol<32>*,
const Arm_relobj<big_endian>*, unsigned int,
const Symbol_value<32>*, Arm_address, Arm_address, bool);
// Return the branch offset of a 32-bit THUMB branch.
static inline int32_t
thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
{
// We use the Thumb-2 encoding (backwards compatible with Thumb-1)
// involving the J1 and J2 bits.
uint32_t s = (upper_insn & (1U << 10)) >> 10;
uint32_t upper = upper_insn & 0x3ffU;
uint32_t lower = lower_insn & 0x7ffU;
uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
uint32_t i1 = j1 ^ s ? 0 : 1;
uint32_t i2 = j2 ^ s ? 0 : 1;
return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
| (upper << 12) | (lower << 1));
}
// Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
// UPPER_INSN is the original upper instruction of the branch. Caller is
// responsible for overflow checking and BLX offset adjustment.
static inline uint16_t
thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
{
uint32_t s = offset < 0 ? 1 : 0;
uint32_t bits = static_cast<uint32_t>(offset);
return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
}
// Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
// LOWER_INSN is the original lower instruction of the branch. Caller is
// responsible for overflow checking and BLX offset adjustment.
static inline uint16_t
thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
{
uint32_t s = offset < 0 ? 1 : 0;
uint32_t bits = static_cast<uint32_t>(offset);
return ((lower_insn & ~0x2fffU)
| ((((bits >> 23) & 1) ^ !s) << 13)
| ((((bits >> 22) & 1) ^ !s) << 11)
| ((bits >> 1) & 0x7ffU));
}
// Return the branch offset of a 32-bit THUMB conditional branch.
static inline int32_t
thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
{
uint32_t s = (upper_insn & 0x0400U) >> 10;
uint32_t j1 = (lower_insn & 0x2000U) >> 13;
uint32_t j2 = (lower_insn & 0x0800U) >> 11;
uint32_t lower = (lower_insn & 0x07ffU);
uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
}
// Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
// instruction. UPPER_INSN is the original upper instruction of the branch.
// Caller is responsible for overflow checking.
static inline uint16_t
thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
{
uint32_t s = offset < 0 ? 1 : 0;
uint32_t bits = static_cast<uint32_t>(offset);
return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
}
// Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
// instruction. LOWER_INSN is the original lower instruction of the branch.
// The caller is responsible for overflow checking.
static inline uint16_t
thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
{
uint32_t bits = static_cast<uint32_t>(offset);
uint32_t j2 = (bits & 0x00080000U) >> 19;
uint32_t j1 = (bits & 0x00040000U) >> 18;
uint32_t lo = (bits & 0x00000ffeU) >> 1;
return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
}
// R_ARM_ABS8: S + A
static inline typename This::Status
abs8(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
int32_t addend = Bits<8>::sign_extend32(val);
Arm_address x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x, 0xffU);
elfcpp::Swap<8, big_endian>::writeval(wv, val);
// R_ARM_ABS8 permits signed or unsigned results.
return (Bits<8>::has_signed_unsigned_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_ABS5: S + A
static inline typename This::Status
thm_abs5(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
Reltype addend = (val & 0x7e0U) >> 6;
Reltype x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
elfcpp::Swap<16, big_endian>::writeval(wv, val);
return (Bits<5>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS12: S + A
static inline typename This::Status
abs12(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Reltype addend = val & 0x0fffU;
Reltype x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x, 0x0fffU);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return (Bits<12>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS16: S + A
static inline typename This::Status
abs16(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
int32_t addend = Bits<16>::sign_extend32(val);
Arm_address x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x, 0xffffU);
elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
// R_ARM_ABS16 permits signed or unsigned results.
return (Bits<16>::has_signed_unsigned_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS32: (S + A) | T
static inline typename This::Status
abs32(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
Valtype x = psymval->value(object, addend) | thumb_bit;
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
return This::STATUS_OKAY;
}
// R_ARM_REL32: (S + A) | T - P
static inline typename This::Status
rel32(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
return This::STATUS_OKAY;
}
// R_ARM_THM_JUMP24: (S + A) | T - P
static typename This::Status
thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
const Symbol_value<32>* psymval, Arm_address address,
Arm_address thumb_bit);
// R_ARM_THM_JUMP6: S + A P
static inline typename This::Status
thm_jump6(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
// bit[9]:bit[7:3]:0 (mask: 0x02f8)
Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
Reltype x = (psymval->value(object, addend) - address);
val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
elfcpp::Swap<16, big_endian>::writeval(wv, val);
// CZB does only forward jumps.
return ((x > 0x007e)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_JUMP8: S + A P
static inline typename This::Status
thm_jump8(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
int32_t x = (psymval->value(object, addend) - address);
elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
| ((x & 0x01fe) >> 1)));
// We do a 9-bit overflow check because x is right-shifted by 1 bit.
return (Bits<9>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_JUMP11: S + A P
static inline typename This::Status
thm_jump11(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
int32_t x = (psymval->value(object, addend) - address);
elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
| ((x & 0x0ffe) >> 1)));
// We do a 12-bit overflow check because x is right-shifted by 1 bit.
return (Bits<12>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_BASE_PREL: B(S) + A - P
static inline typename This::Status
base_prel(unsigned char* view,
Arm_address origin,
Arm_address address)
{
Base::rel32(view, origin - address);
return STATUS_OKAY;
}
// R_ARM_BASE_ABS: B(S) + A
static inline typename This::Status
base_abs(unsigned char* view,
Arm_address origin)
{
Base::rel32(view, origin);
return STATUS_OKAY;
}
// R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
static inline typename This::Status
got_brel(unsigned char* view,
typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
{
Base::rel32(view, got_offset);
return This::STATUS_OKAY;
}
// R_ARM_GOT_PREL: GOT(S) + A - P
static inline typename This::Status
got_prel(unsigned char* view,
Arm_address got_entry,
Arm_address address)
{
Base::rel32(view, got_entry - address);
return This::STATUS_OKAY;
}
// R_ARM_PREL: (S + A) | T - P
static inline typename This::Status
prel31(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
Valtype addend = Bits<31>::sign_extend32(val);
Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
return (Bits<31>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
// R_ARM_MOVW_PREL_NC: (S + A) | T - P
// R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
// R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
static inline typename This::Status
movw(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base,
Arm_address thumb_bit,
bool check_overflow)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = This::extract_arm_movw_movt_addend(val);
Valtype x = ((psymval->value(object, addend) | thumb_bit)
- relative_address_base);
val = This::insert_val_arm_movw_movt(val, x);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return ((check_overflow && Bits<16>::has_overflow32(x))
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_MOVT_ABS: S + A (relative address base is 0)
// R_ARM_MOVT_PREL: S + A - P
// R_ARM_MOVT_BREL: S + A - B(S)
static inline typename This::Status
movt(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = This::extract_arm_movw_movt_addend(val);
Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
val = This::insert_val_arm_movw_movt(val, x);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
// FIXME: IHI0044D says that we should check for overflow.
return This::STATUS_OKAY;
}
// R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
// R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
// R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
// R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
static inline typename This::Status
thm_movw(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base,
Arm_address thumb_bit,
bool check_overflow)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
Reltype addend = This::extract_thumb_movw_movt_addend(val);
Reltype x =
(psymval->value(object, addend) | thumb_bit) - relative_address_base;
val = This::insert_val_thumb_movw_movt(val, x);
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
return ((check_overflow && Bits<16>::has_overflow32(x))
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
// R_ARM_THM_MOVT_PREL: S + A - P
// R_ARM_THM_MOVT_BREL: S + A - B(S)
static inline typename This::Status
thm_movt(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
Reltype addend = This::extract_thumb_movw_movt_addend(val);
Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
val = This::insert_val_thumb_movw_movt(val, x);
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
return This::STATUS_OKAY;
}
// R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
static inline typename This::Status
thm_alu11(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
// f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
// -----------------------------------------------------------------------
// ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
// ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
// ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
// SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
// SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
// ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
// Determine a sign for the addend.
const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
|| (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
// Thumb2 addend encoding:
// imm12 := i | imm3 | imm8
int32_t addend = (insn & 0xff)
| ((insn & 0x00007000) >> 4)
| ((insn & 0x04000000) >> 15);
// Apply a sign to the added.
addend *= sign;
int32_t x = (psymval->value(object, addend) | thumb_bit)
- (address & 0xfffffffc);
Reltype val = abs(x);
// Mask out the value and a distinct part of the ADD/SUB opcode
// (bits 7:5 of opword).
insn = (insn & 0xfb0f8f00)
| (val & 0xff)
| ((val & 0x700) << 4)
| ((val & 0x800) << 15);
// Set the opcode according to whether the value to go in the
// place is negative.
if (x < 0)
insn |= 0x00a00000;
elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
return ((val > 0xfff) ?
This::STATUS_OVERFLOW : This::STATUS_OKAY);
}
// R_ARM_THM_PC8: S + A - Pa (Thumb)
static inline typename This::Status
thm_pc8(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
Reltype addend = ((insn & 0x00ff) << 2);
int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
Reltype val = abs(x);
insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
elfcpp::Swap<16, big_endian>::writeval(wv, insn);
return ((val > 0x03fc)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_PC12: S + A - Pa (Thumb32)
static inline typename This::Status
thm_pc12(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
// Determine a sign for the addend (positive if the U bit is 1).
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = (insn & 0xfff);
// Apply a sign to the added.
addend *= sign;
int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
Reltype val = abs(x);
// Mask out and apply the value and the U bit.
insn = (insn & 0xff7ff000) | (val & 0xfff);
// Set the U bit according to whether the value to go in the
// place is positive.
if (x >= 0)
insn |= 0x00800000;
elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
return ((val > 0xfff) ?
This::STATUS_OVERFLOW : This::STATUS_OKAY);
}
// R_ARM_V4BX
static inline typename This::Status
v4bx(const Relocate_info<32, big_endian>* relinfo,
unsigned char* view,
const Arm_relobj<big_endian>* object,
const Arm_address address,
const bool is_interworking)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
// Ensure that we have a BX instruction.
gold_assert((val & 0x0ffffff0) == 0x012fff10);
const uint32_t reg = (val & 0xf);
if (is_interworking && reg != 0xf)
{
Stub_table<big_endian>* stub_table =
object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
gold_assert(stub != NULL);
int32_t veneer_address =
stub_table->address() + stub->offset() - 8 - address;
gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
&& (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
// Replace with a branch to veneer (B <addr>)
val = (val & 0xf0000000) | 0x0a000000
| ((veneer_address >> 2) & 0x00ffffff);
}
else
{
// Preserve Rm (lowest four bits) and the condition code
// (highest four bits). Other bits encode MOV PC,Rm.
val = (val & 0xf000000f) | 0x01a0f000;
}
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
// R_ARM_ALU_PC_G0: ((S + A) | T) - P
// R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
// R_ARM_ALU_PC_G1: ((S + A) | T) - P
// R_ARM_ALU_PC_G2: ((S + A) | T) - P
// R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
static inline typename This::Status
arm_grp_alu(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address,
Arm_address thumb_bit,
bool check_overflow)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
// ALU group relocations are allowed only for the ADD/SUB instructions.
// (0x00800000 - ADD, 0x00400000 - SUB)
const Valtype opcode = insn & 0x01e00000;
if (opcode != 0x00800000 && opcode != 0x00400000)
return This::STATUS_BAD_RELOC;
// Determine a sign for the addend.
const int sign = (opcode == 0x00800000) ? 1 : -1;
// shifter = rotate_imm * 2
const uint32_t shifter = (insn & 0xf00) >> 7;
// Initial addend value.
int32_t addend = insn & 0xff;
// Rotate addend right by shifter.
addend = (addend >> shifter) | (addend << (32 - shifter));
// Apply a sign to the added.
addend *= sign;
int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
// Check for overflow if required
if (check_overflow
&& (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
return This::STATUS_OVERFLOW;
// Mask out the value and the ADD/SUB part of the opcode; take care
// not to destroy the S bit.
insn &= 0xff1ff000;
// Set the opcode according to whether the value to go in the
// place is negative.
insn |= ((x < 0) ? 0x00400000 : 0x00800000);
// Encode the offset (encoded Gn).
insn |= gn;
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
// R_ARM_LDR_PC_G0: S + A - P
// R_ARM_LDR_PC_G1: S + A - P
// R_ARM_LDR_PC_G2: S + A - P
// R_ARM_LDR_SB_G0: S + A - B(S)
// R_ARM_LDR_SB_G1: S + A - B(S)
// R_ARM_LDR_SB_G2: S + A - B(S)
static inline typename This::Status
arm_grp_ldr(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = (insn & 0xfff) * sign;
int32_t x = (psymval->value(object, addend) - address);
// Calculate the relevant G(n-1) value to obtain this stage residual.
Valtype residual =
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
if (residual >= 0x1000)
return This::STATUS_OVERFLOW;
// Mask out the value and U bit.
insn &= 0xff7ff000;
// Set the U bit for non-negative values.
if (x >= 0)
insn |= 0x00800000;
insn |= residual;
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
// R_ARM_LDRS_PC_G0: S + A - P
// R_ARM_LDRS_PC_G1: S + A - P
// R_ARM_LDRS_PC_G2: S + A - P
// R_ARM_LDRS_SB_G0: S + A - B(S)
// R_ARM_LDRS_SB_G1: S + A - B(S)
// R_ARM_LDRS_SB_G2: S + A - B(S)
static inline typename This::Status
arm_grp_ldrs(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
int32_t x = (psymval->value(object, addend) - address);
// Calculate the relevant G(n-1) value to obtain this stage residual.
Valtype residual =
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
if (residual >= 0x100)
return This::STATUS_OVERFLOW;
// Mask out the value and U bit.
insn &= 0xff7ff0f0;
// Set the U bit for non-negative values.
if (x >= 0)
insn |= 0x00800000;
insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
// R_ARM_LDC_PC_G0: S + A - P
// R_ARM_LDC_PC_G1: S + A - P
// R_ARM_LDC_PC_G2: S + A - P
// R_ARM_LDC_SB_G0: S + A - B(S)
// R_ARM_LDC_SB_G1: S + A - B(S)
// R_ARM_LDC_SB_G2: S + A - B(S)
static inline typename This::Status
arm_grp_ldc(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = ((insn & 0xff) << 2) * sign;
int32_t x = (psymval->value(object, addend) - address);
// Calculate the relevant G(n-1) value to obtain this stage residual.
Valtype residual =
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
if ((residual & 0x3) != 0 || residual >= 0x400)
return This::STATUS_OVERFLOW;
// Mask out the value and U bit.
insn &= 0xff7fff00;
// Set the U bit for non-negative values.
if (x >= 0)
insn |= 0x00800000;
insn |= (residual >> 2);
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
};
// Relocate ARM long branches. This handles relocation types
// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
// undefined and we do not use PLT in this relocation. In such a case,
// the branch is converted into an NOP.
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::arm_branch_common(
unsigned int r_type,
const Relocate_info<32, big_endian>* relinfo,
unsigned char* view,
const Sized_symbol<32>* gsym,
const Arm_relobj<big_endian>* object,
unsigned int r_sym,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit,
bool is_weakly_undefined_without_plt)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
&& ((val & 0x0f000000UL) == 0x0a000000UL);
bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
&& ((val & 0x0f000000UL) == 0x0b000000UL);
bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
// Check that the instruction is valid.
if (r_type == elfcpp::R_ARM_CALL)
{
if (!insn_is_uncond_bl && !insn_is_blx)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_JUMP24)
{
if (!insn_is_b && !insn_is_cond_bl)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_PLT32)
{
if (!insn_is_any_branch)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_XPC25)
{
// FIXME: AAELF document IH0044C does not say much about it other
// than it being obsolete.
if (!insn_is_any_branch)
return This::STATUS_BAD_RELOC;
}
else
gold_unreachable();
// A branch to an undefined weak symbol is turned into a jump to
// the next instruction unless a PLT entry will be created.
// Do the same for local undefined symbols.
// The jump to the next instruction is optimized as a NOP depending
// on the architecture.
const Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
if (is_weakly_undefined_without_plt)
{
gold_assert(!parameters->options().relocatable());
Valtype cond = val & 0xf0000000U;
if (arm_target->may_use_arm_nop())
val = cond | 0x0320f000;
else
val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
Valtype addend = Bits<26>::sign_extend32(val << 2);
Valtype branch_target = psymval->value(object, addend);
int32_t branch_offset = branch_target - address;
// We need a stub if the branch offset is too large or if we need
// to switch mode.
bool may_use_blx = arm_target->may_use_v5t_interworking();
Reloc_stub* stub = NULL;
if (!parameters->options().relocatable()
&& (Bits<26>::has_overflow32(branch_offset)
|| ((thumb_bit != 0)
&& !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
{
Valtype unadjusted_branch_target = psymval->value(object, 0);
Stub_type stub_type =
Reloc_stub::stub_type_for_reloc(r_type, address,
unadjusted_branch_target,
(thumb_bit != 0));
if (stub_type != arm_stub_none)
{
Stub_table<big_endian>* stub_table =
object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
stub = stub_table->find_reloc_stub(stub_key);
gold_assert(stub != NULL);
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
branch_target = stub_table->address() + stub->offset() + addend;
branch_offset = branch_target - address;
gold_assert(!Bits<26>::has_overflow32(branch_offset));
}
}
// At this point, if we still need to switch mode, the instruction
// must either be a BLX or a BL that can be converted to a BLX.
if (thumb_bit != 0)
{
// Turn BL to BLX.
gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
}
val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return (Bits<26>::has_overflow32(branch_offset)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// Relocate THUMB long branches. This handles relocation types
// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
// undefined and we do not use PLT in this relocation. In such a case,
// the branch is converted into an NOP.
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thumb_branch_common(
unsigned int r_type,
const Relocate_info<32, big_endian>* relinfo,
unsigned char* view,
const Sized_symbol<32>* gsym,
const Arm_relobj<big_endian>* object,
unsigned int r_sym,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit,
bool is_weakly_undefined_without_plt)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
// FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
// into account.
bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
// Check that the instruction is valid.
if (r_type == elfcpp::R_ARM_THM_CALL)
{
if (!is_bl_insn && !is_blx_insn)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_THM_JUMP24)
{
// This cannot be a BLX.
if (!is_bl_insn)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_THM_XPC22)
{
// Check for Thumb to Thumb call.
if (!is_blx_insn)
return This::STATUS_BAD_RELOC;
if (thumb_bit != 0)
{
gold_warning(_("%s: Thumb BLX instruction targets "
"thumb function '%s'."),
object->name().c_str(),
(gsym ? gsym->name() : "(local)"));
// Convert BLX to BL.
lower_insn |= 0x1000U;
}
}
else
gold_unreachable();
// A branch to an undefined weak symbol is turned into a jump to
// the next instruction unless a PLT entry will be created.
// The jump to the next instruction is optimized as a NOP.W for
// Thumb-2 enabled architectures.
const Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
if (is_weakly_undefined_without_plt)
{
gold_assert(!parameters->options().relocatable());
if (arm_target->may_use_thumb2_nop())
{
elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
}
else
{
elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
}
return This::STATUS_OKAY;
}
int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
Arm_address branch_target = psymval->value(object, addend);
// For BLX, bit 1 of target address comes from bit 1 of base address.
bool may_use_blx = arm_target->may_use_v5t_interworking();
if (thumb_bit == 0 && may_use_blx)
branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
int32_t branch_offset = branch_target - address;
// We need a stub if the branch offset is too large or if we need
// to switch mode.
bool thumb2 = arm_target->using_thumb2();
if (!parameters->options().relocatable()
&& ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
|| (thumb2 && Bits<25>::has_overflow32(branch_offset))
|| ((thumb_bit == 0)
&& (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
|| r_type == elfcpp::R_ARM_THM_JUMP24))))
{
Arm_address unadjusted_branch_target = psymval->value(object, 0);
Stub_type stub_type =
Reloc_stub::stub_type_for_reloc(r_type, address,
unadjusted_branch_target,
(thumb_bit != 0));
if (stub_type != arm_stub_none)
{
Stub_table<big_endian>* stub_table =
object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
gold_assert(stub != NULL);
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
branch_target = stub_table->address() + stub->offset() + addend;
if (thumb_bit == 0 && may_use_blx)
branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
branch_offset = branch_target - address;
}
}
// At this point, if we still need to switch mode, the instruction
// must either be a BLX or a BL that can be converted to a BLX.
if (thumb_bit == 0)
{
gold_assert(may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL
|| r_type == elfcpp::R_ARM_THM_XPC22));
// Make sure this is a BLX.
lower_insn &= ~0x1000U;
}
else
{
// Make sure this is a BL.
lower_insn |= 0x1000U;
}
// For a BLX instruction, make sure that the relocation is rounded up
// to a word boundary. This follows the semantics of the instruction
// which specifies that bit 1 of the target address will come from bit
// 1 of the base address.
if ((lower_insn & 0x5000U) == 0x4000U)
gold_assert((branch_offset & 3) == 0);
// Put BRANCH_OFFSET back into the insn. Assumes two's complement.
// We use the Thumb-2 encoding, which is safe even if dealing with
// a Thumb-1 instruction by virtue of our overflow check above. */
upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
gold_assert(!Bits<25>::has_overflow32(branch_offset));
return ((thumb2
? Bits<25>::has_overflow32(branch_offset)
: Bits<23>::has_overflow32(branch_offset))
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// Relocate THUMB-2 long conditional branches.
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
// undefined and we do not use PLT in this relocation. In such a case,
// the branch is converted into an NOP.
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thm_jump19(
unsigned char* view,
const Arm_relobj<big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
Arm_address branch_target = psymval->value(object, addend);
int32_t branch_offset = branch_target - address;
// ??? Should handle interworking? GCC might someday try to
// use this for tail calls.
// FIXME: We do support thumb entry to PLT yet.
if (thumb_bit == 0)
{
gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
return This::STATUS_BAD_RELOC;
}
// Put RELOCATION back into the insn.
upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
// Put the relocated value back in the object file:
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
return (Bits<21>::has_overflow32(branch_offset)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// Get the GOT section, creating it if necessary.
template<bool big_endian>
Arm_output_data_got<big_endian>*
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
// When using -z now, we can treat .got as a relro section.
// Without -z now, it is modified after program startup by lazy
// PLT relocations.
bool is_got_relro = parameters->options().now();
Output_section_order got_order = (is_got_relro
? ORDER_RELRO_LAST
: ORDER_DATA);
// Unlike some targets (.e.g x86), ARM does not use separate .got and
// .got.plt sections in output. The output .got section contains both
// PLT and non-PLT GOT entries.
this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_, got_order, is_got_relro);
// The old GNU linker creates a .got.plt section. We just
// create another set of data in the .got section. Note that we
// always create a PLT if we create a GOT, although the PLT
// might be empty.
this->got_plt_ = new Output_data_space(4, "** GOT PLT");
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_plt_, got_order, is_got_relro);
// The first three entries are reserved.
this->got_plt_->set_current_data_size(3 * 4);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->got_plt_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
// If there are any IRELATIVE relocations, they get GOT entries
// in .got.plt after the jump slot entries.
this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_irelative_,
got_order, is_got_relro);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
{
if (this->rel_dyn_ == NULL)
{
gold_assert(layout != NULL);
// Create both relocation sections in the same place, so as to ensure
// their relative order in the output section.
this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
this->rel_irelative_ = new Reloc_section(false);
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_dyn_,
ORDER_DYNAMIC_RELOCS, false);
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_irelative_,
ORDER_DYNAMIC_RELOCS, false);
}
return this->rel_dyn_;
}
// Get the section to use for IRELATIVE relocs, creating it if necessary. These
// go in .rela.dyn, but only after all other dynamic relocations. They need to
// follow the other dynamic relocations so that they can refer to global
// variables initialized by those relocs.
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_irelative_section(Layout* layout)
{
if (this->rel_irelative_ == NULL)
{
// Delegate the creation to rel_dyn_section so as to ensure their order in
// the output section.
this->rel_dyn_section(layout);
gold_assert(this->rel_irelative_ != NULL
&& (this->rel_dyn_->output_section()
== this->rel_irelative_->output_section()));
}
return this->rel_irelative_;
}
// Insn_template methods.
// Return byte size of an instruction template.
size_t
Insn_template::size() const
{
switch (this->type())
{
case THUMB16_TYPE:
case THUMB16_SPECIAL_TYPE:
return 2;
case ARM_TYPE:
case THUMB32_TYPE:
case DATA_TYPE:
return 4;
default:
gold_unreachable();
}
}
// Return alignment of an instruction template.
unsigned
Insn_template::alignment() const
{
switch (this->type())
{
case THUMB16_TYPE:
case THUMB16_SPECIAL_TYPE:
case THUMB32_TYPE:
return 2;
case ARM_TYPE:
case DATA_TYPE:
return 4;
default:
gold_unreachable();
}
}
// Stub_template methods.
Stub_template::Stub_template(
Stub_type type, const Insn_template* insns,
size_t insn_count)
: type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
entry_in_thumb_mode_(false), relocs_()
{
off_t offset = 0;
// Compute byte size and alignment of stub template.
for (size_t i = 0; i < insn_count; i++)
{
unsigned insn_alignment = insns[i].alignment();
size_t insn_size = insns[i].size();
gold_assert((offset & (insn_alignment - 1)) == 0);
this->alignment_ = std::max(this->alignment_, insn_alignment);
switch (insns[i].type())
{
case Insn_template::THUMB16_TYPE:
case Insn_template::THUMB16_SPECIAL_TYPE:
if (i == 0)
this->entry_in_thumb_mode_ = true;
break;
case Insn_template::THUMB32_TYPE:
if (insns[i].r_type() != elfcpp::R_ARM_NONE)
this->relocs_.push_back(Reloc(i, offset));
if (i == 0)
this->entry_in_thumb_mode_ = true;
break;
case Insn_template::ARM_TYPE:
// Handle cases where the target is encoded within the
// instruction.
if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
this->relocs_.push_back(Reloc(i, offset));
break;
case Insn_template::DATA_TYPE:
// Entry point cannot be data.
gold_assert(i != 0);
this->relocs_.push_back(Reloc(i, offset));
break;
default:
gold_unreachable();
}
offset += insn_size;
}
this->size_ = offset;
}
// Stub methods.
// Template to implement do_write for a specific target endianness.
template<bool big_endian>
void inline
Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
{
const Stub_template* stub_template = this->stub_template();
const Insn_template* insns = stub_template->insns();
// FIXME: We do not handle BE8 encoding yet.
unsigned char* pov = view;
for (size_t i = 0; i < stub_template->insn_count(); i++)
{
switch (insns[i].type())
{
case Insn_template::THUMB16_TYPE:
elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
break;
case Insn_template::THUMB16_SPECIAL_TYPE:
elfcpp::Swap<16, big_endian>::writeval(
pov,
this->thumb16_special(i));
break;
case Insn_template::THUMB32_TYPE:
{
uint32_t hi = (insns[i].data() >> 16) & 0xffff;
uint32_t lo = insns[i].data() & 0xffff;
elfcpp::Swap<16, big_endian>::writeval(pov, hi);
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
}
break;
case Insn_template::ARM_TYPE:
case Insn_template::DATA_TYPE:
elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
break;
default:
gold_unreachable();
}
pov += insns[i].size();
}
gold_assert(static_cast<section_size_type>(pov - view) == view_size);
}
// Reloc_stub::Key methods.
// Dump a Key as a string for debugging.
std::string
Reloc_stub::Key::name() const
{
if (this->r_sym_ == invalid_index)
{
// Global symbol key name
// <stub-type>:<symbol name>:<addend>.
const std::string sym_name = this->u_.symbol->name();
// We need to print two hex number and two colons. So just add 100 bytes
// to the symbol name size.
size_t len = sym_name.size() + 100;
char* buffer = new char[len];
int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
sym_name.c_str(), this->addend_);
gold_assert(c > 0 && c < static_cast<int>(len));
delete[] buffer;
return std::string(buffer);
}
else
{
// local symbol key name
// <stub-type>:<object>:<r_sym>:<addend>.
const size_t len = 200;
char buffer[len];
int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
this->u_.relobj, this->r_sym_, this->addend_);
gold_assert(c > 0 && c < static_cast<int>(len));
return std::string(buffer);
}
}
// Reloc_stub methods.
// Determine the type of stub needed, if any, for a relocation of R_TYPE at
// LOCATION to DESTINATION.
// This code is based on the arm_type_of_stub function in
// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
// class simple.
Stub_type
Reloc_stub::stub_type_for_reloc(
unsigned int r_type,
Arm_address location,
Arm_address destination,
bool target_is_thumb)
{
Stub_type stub_type = arm_stub_none;
// This is a bit ugly but we want to avoid using a templated class for
// big and little endianities.
bool may_use_blx;
bool should_force_pic_veneer = parameters->options().pic_veneer();
bool thumb2;
bool thumb_only;
if (parameters->target().is_big_endian())
{
const Target_arm<true>* big_endian_target =
Target_arm<true>::default_target();
may_use_blx = big_endian_target->may_use_v5t_interworking();
should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
thumb2 = big_endian_target->using_thumb2();
thumb_only = big_endian_target->using_thumb_only();
}
else
{
const Target_arm<false>* little_endian_target =
Target_arm<false>::default_target();
may_use_blx = little_endian_target->may_use_v5t_interworking();
should_force_pic_veneer |=
little_endian_target->should_force_pic_veneer();
thumb2 = little_endian_target->using_thumb2();
thumb_only = little_endian_target->using_thumb_only();
}
int64_t branch_offset;
bool output_is_position_independent =
parameters->options().output_is_position_independent();
if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
{
// For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
// base address (instruction address + 4).
if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
destination = Bits<32>::bit_select32(destination, location, 0x2);
branch_offset = static_cast<int64_t>(destination) - location;
// Handle cases where:
// - this call goes too far (different Thumb/Thumb2 max
// distance)
// - it's a Thumb->Arm call and blx is not available, or it's a
// Thumb->Arm branch (not bl). A stub is needed in this case.
if ((!thumb2
&& (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
|| (thumb2
&& (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
|| (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
|| ((!target_is_thumb)
&& (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
|| (r_type == elfcpp::R_ARM_THM_JUMP24))))
{
if (target_is_thumb)
{
// Thumb to thumb.
if (!thumb_only)
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
// PIC stubs.
? ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
// V5T and above. Stub starts with ARM code, so
// we must be able to switch mode before
// reaching it, which is only possible for 'bl'
// (ie R_ARM_THM_CALL relocation).
? arm_stub_long_branch_any_thumb_pic
// On V4T, use Thumb code only.
: arm_stub_long_branch_v4t_thumb_thumb_pic)
// non-PIC stubs.
: ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
? arm_stub_long_branch_any_any // V5T and above.
: arm_stub_long_branch_v4t_thumb_thumb); // V4T.
}
else
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
? arm_stub_long_branch_thumb_only_pic // PIC stub.
: arm_stub_long_branch_thumb_only; // non-PIC stub.
}
}
else
{
// Thumb to arm.
// FIXME: We should check that the input section is from an
// object that has interwork enabled.
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
// PIC stubs.
? ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
? arm_stub_long_branch_any_arm_pic // V5T and above.
: arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
// non-PIC stubs.
: ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
? arm_stub_long_branch_any_any // V5T and above.
: arm_stub_long_branch_v4t_thumb_arm); // V4T.
// Handle v4t short branches.
if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
&& (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
&& (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
stub_type = arm_stub_short_branch_v4t_thumb_arm;
}
}
}
else if (r_type == elfcpp::R_ARM_CALL
|| r_type == elfcpp::R_ARM_JUMP24
|| r_type == elfcpp::R_ARM_PLT32)
{
branch_offset = static_cast<int64_t>(destination) - location;
if (target_is_thumb)
{
// Arm to thumb.
// FIXME: We should check that the input section is from an
// object that has interwork enabled.
// We have an extra 2-bytes reach because of
// the mode change (bit 24 (H) of BLX encoding).
if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
|| ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
|| (r_type == elfcpp::R_ARM_JUMP24)
|| (r_type == elfcpp::R_ARM_PLT32))
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
// PIC stubs.
? (may_use_blx
? arm_stub_long_branch_any_thumb_pic// V5T and above.
: arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
// non-PIC stubs.
: (may_use_blx
? arm_stub_long_branch_any_any // V5T and above.
: arm_stub_long_branch_v4t_arm_thumb); // V4T.
}
}
else
{
// Arm to arm.
if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
? arm_stub_long_branch_any_arm_pic // PIC stubs.
: arm_stub_long_branch_any_any; /// non-PIC.
}
}
}
return stub_type;
}
// Cortex_a8_stub methods.
// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
// I is the position of the instruction template in the stub template.
uint16_t
Cortex_a8_stub::do_thumb16_special(size_t i)
{
// The only use of this is to copy condition code from a conditional
// branch being worked around to the corresponding conditional branch in
// to the stub.
gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
&& i == 0);
uint16_t data = this->stub_template()->insns()[i].data();
gold_assert((data & 0xff00U) == 0xd000U);
data |= ((this->original_insn_ >> 22) & 0xf) << 8;
return data;
}
// Stub_factory methods.
Stub_factory::Stub_factory()
{
// The instruction template sequences are declared as static
// objects and initialized first time the constructor runs.
// Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
// to reach the stub if necessary.
static const Insn_template elf32_arm_stub_long_branch_any_any[] =
{
Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
// available.
static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
{
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// Thumb -> Thumb long branch stub. Used on M-profile architectures.
static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
{
Insn_template::thumb16_insn(0xb401), // push {r0}
Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
Insn_template::thumb16_insn(0x4684), // mov ip, r0
Insn_template::thumb16_insn(0xbc01), // pop {r0}
Insn_template::thumb16_insn(0x4760), // bx ip
Insn_template::thumb16_insn(0xbf00), // nop
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Thumb -> Thumb long branch stub. Using the stack is not
// allowed.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
// available.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Thumb -> ARM short branch stub. Shorter variant of the above
// one, when the destination is close enough.
static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
};
// ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
// blx to reach the stub if necessary.
static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
{
Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
// dcd R_ARM_REL32(X-4)
};
// ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
// blx to reach the stub if necessary. We can not add into pc;
// it is not guaranteed to mode switch (different in ARMv6 and
// ARMv7).
static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
{
Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
// dcd R_ARM_REL32(X)
};
// V4T ARM -> ARM long branch stub, PIC.
static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
{
Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
// dcd R_ARM_REL32(X)
};
// V4T Thumb -> ARM long branch stub, PIC.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
// dcd R_ARM_REL32(X)
};
// Thumb -> Thumb long branch stub, PIC. Used on M-profile
// architectures.
static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
{
Insn_template::thumb16_insn(0xb401), // push {r0}
Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
Insn_template::thumb16_insn(0x46fc), // mov ip, pc
Insn_template::thumb16_insn(0x4484), // add ip, r0
Insn_template::thumb16_insn(0xbc01), // pop {r0}
Insn_template::thumb16_insn(0x4760), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
// dcd R_ARM_REL32(X)
};
// V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
// allowed.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
// dcd R_ARM_REL32(X)
};
// Cortex-A8 erratum-workaround stubs.
// Stub used for conditional branches (which may be beyond +/-1MB away,
// so we can't use a conditional branch to reach this stub).
// original code:
//
// b<cond> X
// after:
//
static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
{
Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
// b.w X
};
// Stub used for b.w and bl.w instructions.
static const Insn_template elf32_arm_stub_a8_veneer_b[] =
{
Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
};
static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
{
Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
};
// Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
// instruction (which switches to ARM mode) to point to this stub. Jump to
// the real destination using an ARM-mode branch.
static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
{
Insn_template::arm_rel_insn(0xea000000, -8) // b dest
};
// Stub used to provide an interworking for R_ARM_V4BX relocation
// (bx r[n] instruction).
static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
{
Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
Insn_template::arm_insn(0xe12fff10) // bx r<n>
};
// Fill in the stub template look-up table. Stub templates are constructed
// per instance of Stub_factory for fast look-up without locking
// in a thread-enabled environment.
this->stub_templates_[arm_stub_none] =
new Stub_template(arm_stub_none, NULL, 0);
#define DEF_STUB(x) \
do \
{ \
size_t array_size \
= sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
Stub_type type = arm_stub_##x; \
this->stub_templates_[type] = \
new Stub_template(type, elf32_arm_stub_##x, array_size); \
} \
while (0);
DEF_STUBS
#undef DEF_STUB
}
// Stub_table methods.
// Remove all Cortex-A8 stub.
template<bool big_endian>
void
Stub_table<big_endian>::remove_all_cortex_a8_stubs()
{
for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
delete p->second;
this->cortex_a8_stubs_.clear();
}
// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
template<bool big_endian>
void
Stub_table<big_endian>::relocate_stub(
Stub* stub,
const Relocate_info<32, big_endian>* relinfo,
Target_arm<big_endian>* arm_target,
Output_section* output_section,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
const Stub_template* stub_template = stub->stub_template();
if (stub_template->reloc_count() != 0)
{
// Adjust view to cover the stub only.
section_size_type offset = stub->offset();
section_size_type stub_size = stub_template->size();
gold_assert(offset + stub_size <= view_size);
arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
address + offset, stub_size);
}
}
// Relocate all stubs in this stub table.
template<bool big_endian>
void
Stub_table<big_endian>::relocate_stubs(
const Relocate_info<32, big_endian>* relinfo,
Target_arm<big_endian>* arm_target,
Output_section* output_section,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
// If we are passed a view bigger than the stub table's. we need to
// adjust the view.
gold_assert(address == this->address()
&& (view_size
== static_cast<section_size_type>(this->data_size())));
// Relocate all relocation stubs.
for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
p != this->reloc_stubs_.end();
++p)
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
address, view_size);
// Relocate all Cortex-A8 stubs.
for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
address, view_size);
// Relocate all ARM V4BX stubs.
for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p != NULL)
this->relocate_stub(*p, relinfo, arm_target, output_section, view,
address, view_size);
}
}
// Write out the stubs to file.
template<bool big_endian>
void
Stub_table<big_endian>::do_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
// Write relocation stubs.
for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
p != this->reloc_stubs_.end();
++p)
{
Reloc_stub* stub = p->second;
Arm_address address = this->address() + stub->offset();
gold_assert(address
== align_address(address,
stub->stub_template()->alignment()));
stub->write(oview + stub->offset(), stub->stub_template()->size(),
big_endian);
}
// Write Cortex-A8 stubs.
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
{
Cortex_a8_stub* stub = p->second;
Arm_address address = this->address() + stub->offset();
gold_assert(address
== align_address(address,
stub->stub_template()->alignment()));
stub->write(oview + stub->offset(), stub->stub_template()->size(),
big_endian);
}
// Write ARM V4BX relocation stubs.
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p == NULL)
continue;
Arm_address address = this->address() + (*p)->offset();
gold_assert(address
== align_address(address,
(*p)->stub_template()->alignment()));
(*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
big_endian);
}
of->write_output_view(this->offset(), oview_size, oview);
}
// Update the data size and address alignment of the stub table at the end
// of a relaxation pass. Return true if either the data size or the
// alignment changed in this relaxation pass.
template<bool big_endian>
bool
Stub_table<big_endian>::update_data_size_and_addralign()
{
// Go over all stubs in table to compute data size and address alignment.
off_t size = this->reloc_stubs_size_;
unsigned addralign = this->reloc_stubs_addralign_;
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
{
const Stub_template* stub_template = p->second->stub_template();
addralign = std::max(addralign, stub_template->alignment());
size = (align_address(size, stub_template->alignment())
+ stub_template->size());
}
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p == NULL)
continue;
const Stub_template* stub_template = (*p)->stub_template();
addralign = std::max(addralign, stub_template->alignment());
size = (align_address(size, stub_template->alignment())
+ stub_template->size());
}
// Check if either data size or alignment changed in this pass.
// Update prev_data_size_ and prev_addralign_. These will be used
// as the current data size and address alignment for the next pass.
bool changed = size != this->prev_data_size_;
this->prev_data_size_ = size;
if (addralign != this->prev_addralign_)
changed = true;
this->prev_addralign_ = addralign;
return changed;
}
// Finalize the stubs. This sets the offsets of the stubs within the stub
// table. It also marks all input sections needing Cortex-A8 workaround.
template<bool big_endian>
void
Stub_table<big_endian>::finalize_stubs()
{
off_t off = this->reloc_stubs_size_;
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
{
Cortex_a8_stub* stub = p->second;
const Stub_template* stub_template = stub->stub_template();
uint64_t stub_addralign = stub_template->alignment();
off = align_address(off, stub_addralign);
stub->set_offset(off);
off += stub_template->size();
// Mark input section so that we can determine later if a code section
// needs the Cortex-A8 workaround quickly.
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
}
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p == NULL)
continue;
const Stub_template* stub_template = (*p)->stub_template();
uint64_t stub_addralign = stub_template->alignment();
off = align_address(off, stub_addralign);
(*p)->set_offset(off);
off += stub_template->size();
}
gold_assert(off <= this->prev_data_size_);
}
// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
// of the address range seen by the linker.
template<bool big_endian>
void
Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
Target_arm<big_endian>* arm_target,
unsigned char* view,
Arm_address view_address,
section_size_type view_size)
{
// Cortex-A8 stubs are sorted by addresses of branches being fixed up.
for (Cortex_a8_stub_list::const_iterator p =
this->cortex_a8_stubs_.lower_bound(view_address);
((p != this->cortex_a8_stubs_.end())
&& (p->first < (view_address + view_size)));
++p)
{
// We do not store the THUMB bit in the LSB of either the branch address
// or the stub offset. There is no need to strip the LSB.
Arm_address branch_address = p->first;
const Cortex_a8_stub* stub = p->second;
Arm_address stub_address = this->address() + stub->offset();
// Offset of the branch instruction relative to this view.
section_size_type offset =
convert_to_section_size_type(branch_address - view_address);
gold_assert((offset + 4) <= view_size);
arm_target->apply_cortex_a8_workaround(stub, stub_address,
view + offset, branch_address);
}
}
// Arm_input_section methods.
// Initialize an Arm_input_section.
template<bool big_endian>
void
Arm_input_section<big_endian>::init()
{
Relobj* relobj = this->relobj();
unsigned int shndx = this->shndx();
// We have to cache original size, alignment and contents to avoid locking
// the original file.
this->original_addralign_ =
convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
// This is not efficient but we expect only a small number of relaxed
// input sections for stubs.
section_size_type section_size;
const unsigned char* section_contents =
relobj->section_contents(shndx, &section_size, false);
this->original_size_ =
convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
gold_assert(this->original_contents_ == NULL);
this->original_contents_ = new unsigned char[section_size];
memcpy(this->original_contents_, section_contents, section_size);
// We want to make this look like the original input section after
// output sections are finalized.
Output_section* os = relobj->output_section(shndx);
off_t offset = relobj->output_section_offset(shndx);
gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
this->set_address(os->address() + offset);
this->set_file_offset(os->offset() + offset);
this->set_current_data_size(this->original_size_);
this->finalize_data_size();
}
template<bool big_endian>
void
Arm_input_section<big_endian>::do_write(Output_file* of)
{
// We have to write out the original section content.
gold_assert(this->original_contents_ != NULL);
of->write(this->offset(), this->original_contents_,
this->original_size_);
// If this owns a stub table and it is not empty, write it.
if (this->is_stub_table_owner() && !this->stub_table_->empty())
this->stub_table_->write(of);
}
// Finalize data size.
template<bool big_endian>
void
Arm_input_section<big_endian>::set_final_data_size()
{
off_t off = convert_types<off_t, uint64_t>(this->original_size_);
if (this->is_stub_table_owner())
{
this->stub_table_->finalize_data_size();
off = align_address(off, this->stub_table_->addralign());
off += this->stub_table_->data_size();
}
this->set_data_size(off);
}
// Reset address and file offset.
template<bool big_endian>
void
Arm_input_section<big_endian>::do_reset_address_and_file_offset()
{
// Size of the original input section contents.
off_t off = convert_types<off_t, uint64_t>(this->original_size_);
// If this is a stub table owner, account for the stub table size.
if (this->is_stub_table_owner())
{
Stub_table<big_endian>* stub_table = this->stub_table_;
// Reset the stub table's address and file offset. The
// current data size for child will be updated after that.
stub_table_->reset_address_and_file_offset();
off = align_address(off, stub_table_->addralign());
off += stub_table->current_data_size();
}
this->set_current_data_size(off);
}
// Arm_exidx_cantunwind methods.
// Write this to Output file OF for a fixed endianness.
template<bool big_endian>
void
Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size = 8;
unsigned char* const oview = of->get_output_view(offset, oview_size);
Output_section* os = this->relobj_->output_section(this->shndx_);
gold_assert(os != NULL);
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
Arm_address output_offset =
arm_relobj->get_output_section_offset(this->shndx_);
Arm_address section_start;
section_size_type section_size;
// Find out the end of the text section referred by this.
if (output_offset != Arm_relobj<big_endian>::invalid_address)
{
section_start = os->address() + output_offset;
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_link(this->shndx_);
gold_assert(exidx_input_section != NULL);
section_size =
convert_to_section_size_type(exidx_input_section->text_size());
}
else
{
// Currently this only happens for a relaxed section.
const Output_relaxed_input_section* poris =
os->find_relaxed_input_section(this->relobj_, this->shndx_);
gold_assert(poris != NULL);
section_start = poris->address();
section_size = convert_to_section_size_type(poris->data_size());
}
// We always append this to the end of an EXIDX section.
Arm_address output_address = section_start + section_size;
// Write out the entry. The first word either points to the beginning
// or after the end of a text section. The second word is the special
// EXIDX_CANTUNWIND value.
uint32_t prel31_offset = output_address - this->address();
if (Bits<31>::has_overflow32(offset))
gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
prel31_offset & 0x7fffffffU);
elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
elfcpp::EXIDX_CANTUNWIND);
of->write_output_view(this->offset(), oview_size, oview);
}
// Arm_exidx_merged_section methods.
// Constructor for Arm_exidx_merged_section.
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
// SECTION_OFFSET_MAP points to a section offset map describing how
// parts of the input section are mapped to output. DELETED_BYTES is
// the number of bytes deleted from the EXIDX input section.
Arm_exidx_merged_section::Arm_exidx_merged_section(
const Arm_exidx_input_section& exidx_input_section,
const Arm_exidx_section_offset_map& section_offset_map,
uint32_t deleted_bytes)
: Output_relaxed_input_section(exidx_input_section.relobj(),
exidx_input_section.shndx(),
exidx_input_section.addralign()),
exidx_input_section_(exidx_input_section),
section_offset_map_(section_offset_map)
{
// If we retain or discard the whole EXIDX input section, we would
// not be here.
gold_assert(deleted_bytes != 0
&& deleted_bytes != this->exidx_input_section_.size());
// Fix size here so that we do not need to implement set_final_data_size.
uint32_t size = exidx_input_section.size() - deleted_bytes;
this->set_data_size(size);
this->fix_data_size();
// Allocate buffer for section contents and build contents.
this->section_contents_ = new unsigned char[size];
}
// Build the contents of a merged EXIDX output section.
void
Arm_exidx_merged_section::build_contents(
const unsigned char* original_contents,
section_size_type original_size)
{
// Go over spans of input offsets and write only those that are not
// discarded.
section_offset_type in_start = 0;
section_offset_type out_start = 0;
section_offset_type in_max =
convert_types<section_offset_type>(original_size);
section_offset_type out_max =
convert_types<section_offset_type>(this->data_size());
for (Arm_exidx_section_offset_map::const_iterator p =
this->section_offset_map_.begin();
p != this->section_offset_map_.end();
++p)
{
section_offset_type in_end = p->first;
gold_assert(in_end >= in_start);
section_offset_type out_end = p->second;
size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
if (out_end != -1)
{
size_t out_chunk_size =
convert_types<size_t>(out_end - out_start + 1);
gold_assert(out_chunk_size == in_chunk_size
&& in_end < in_max && out_end < out_max);
memcpy(this->section_contents_ + out_start,
original_contents + in_start,
out_chunk_size);
out_start += out_chunk_size;
}
in_start += in_chunk_size;
}
}
// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the corresponding offset within
// the output section is known. If this function returns true, it
// sets *POUTPUT to the output offset. The value -1 indicates that
// this input offset is being discarded.
bool
Arm_exidx_merged_section::do_output_offset(
const Relobj* relobj,
unsigned int shndx,
section_offset_type offset,
section_offset_type* poutput) const
{
// We only handle offsets for the original EXIDX input section.
if (relobj != this->exidx_input_section_.relobj()
|| shndx != this->exidx_input_section_.shndx())
return false;
section_offset_type section_size =
convert_types<section_offset_type>(this->exidx_input_section_.size());
if (offset < 0 || offset >= section_size)
// Input offset is out of valid range.
*poutput = -1;
else
{
// We need to look up the section offset map to determine the output
// offset. Find the reference point in map that is first offset
// bigger than or equal to this offset.
Arm_exidx_section_offset_map::const_iterator p =
this->section_offset_map_.lower_bound(offset);
// The section offset maps are build such that this should not happen if
// input offset is in the valid range.
gold_assert(p != this->section_offset_map_.end());
// We need to check if this is dropped.
section_offset_type ref = p->first;
section_offset_type mapped_ref = p->second;
if (mapped_ref != Arm_exidx_input_section::invalid_offset)
// Offset is present in output.
*poutput = mapped_ref + (offset - ref);
else
// Offset is discarded owing to EXIDX entry merging.
*poutput = -1;
}
return true;
}
// Write this to output file OF.
void
Arm_exidx_merged_section::do_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size = this->data_size();
unsigned char* const oview = of->get_output_view(offset, oview_size);
Output_section* os = this->relobj()->output_section(this->shndx());
gold_assert(os != NULL);
memcpy(oview, this->section_contents_, oview_size);
of->write_output_view(this->offset(), oview_size, oview);
}
// Arm_exidx_fixup methods.
// Append an EXIDX_CANTUNWIND in the current output section if the last entry
// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
// points to the end of the last seen EXIDX section.
void
Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
{
if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
&& this->last_input_section_ != NULL)
{
Relobj* relobj = this->last_input_section_->relobj();
unsigned int text_shndx = this->last_input_section_->link();
Arm_exidx_cantunwind* cantunwind =
new Arm_exidx_cantunwind(relobj, text_shndx);
this->exidx_output_section_->add_output_section_data(cantunwind);
this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
}
}
// Process an EXIDX section entry in input. Return whether this entry
// can be deleted in the output. SECOND_WORD in the second word of the
// EXIDX entry.
bool
Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
{
bool delete_entry;
if (second_word == elfcpp::EXIDX_CANTUNWIND)
{
// Merge if previous entry is also an EXIDX_CANTUNWIND.
delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
}
else if ((second_word & 0x80000000) != 0)
{
// Inlined unwinding data. Merge if equal to previous.
delete_entry = (merge_exidx_entries_
&& this->last_unwind_type_ == UT_INLINED_ENTRY
&& this->last_inlined_entry_ == second_word);
this->last_unwind_type_ = UT_INLINED_ENTRY;
this->last_inlined_entry_ = second_word;
}
else
{
// Normal table entry. In theory we could merge these too,
// but duplicate entries are likely to be much less common.
delete_entry = false;
this->last_unwind_type_ = UT_NORMAL_ENTRY;
}
return delete_entry;
}
// Update the current section offset map during EXIDX section fix-up.
// If there is no map, create one. INPUT_OFFSET is the offset of a
// reference point, DELETED_BYTES is the number of deleted by in the
// section so far. If DELETE_ENTRY is true, the reference point and
// all offsets after the previous reference point are discarded.
void
Arm_exidx_fixup::update_offset_map(
section_offset_type input_offset,
section_size_type deleted_bytes,
bool delete_entry)
{
if (this->section_offset_map_ == NULL)
this->section_offset_map_ = new Arm_exidx_section_offset_map();
section_offset_type output_offset;
if (delete_entry)
output_offset = Arm_exidx_input_section::invalid_offset;
else
output_offset = input_offset - deleted_bytes;
(*this->section_offset_map_)[input_offset] = output_offset;
}
// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
// If some entries are merged, also store a pointer to a newly created
// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
// owns the map and is responsible for releasing it after use.
template<bool big_endian>
uint32_t
Arm_exidx_fixup::process_exidx_section(
const Arm_exidx_input_section* exidx_input_section,
const unsigned char* section_contents,
section_size_type section_size,
Arm_exidx_section_offset_map** psection_offset_map)
{
Relobj* relobj = exidx_input_section->relobj();
unsigned shndx = exidx_input_section->shndx();
if ((section_size % 8) != 0)
{
// Something is wrong with this section. Better not touch it.
gold_error(_("uneven .ARM.exidx section size in %s section %u"),
relobj->name().c_str(), shndx);
this->last_input_section_ = exidx_input_section;
this->last_unwind_type_ = UT_NONE;
return 0;
}
uint32_t deleted_bytes = 0;
bool prev_delete_entry = false;
gold_assert(this->section_offset_map_ == NULL);
for (section_size_type i = 0; i < section_size; i += 8)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
const Valtype* wv =
reinterpret_cast<const Valtype*>(section_contents + i + 4);
uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
bool delete_entry = this->process_exidx_entry(second_word);
// Entry deletion causes changes in output offsets. We use a std::map
// to record these. And entry (x, y) means input offset x
// is mapped to output offset y. If y is invalid_offset, then x is
// dropped in the output. Because of the way std::map::lower_bound
// works, we record the last offset in a region w.r.t to keeping or
// dropping. If there is no entry (x0, y0) for an input offset x0,
// the output offset y0 of it is determined by the output offset y1 of
// the smallest input offset x1 > x0 that there is an (x1, y1) entry
// in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
// y0 is also -1.
if (delete_entry != prev_delete_entry && i != 0)
this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
// Update total deleted bytes for this entry.
if (delete_entry)
deleted_bytes += 8;
prev_delete_entry = delete_entry;
}
// If section offset map is not NULL, make an entry for the end of
// section.
if (this->section_offset_map_ != NULL)
update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
*psection_offset_map = this->section_offset_map_;
this->section_offset_map_ = NULL;
this->last_input_section_ = exidx_input_section;
// Set the first output text section so that we can link the EXIDX output
// section to it. Ignore any EXIDX input section that is completely merged.
if (this->first_output_text_section_ == NULL
&& deleted_bytes != section_size)
{
unsigned int link = exidx_input_section->link();
Output_section* os = relobj->output_section(link);
gold_assert(os != NULL);
this->first_output_text_section_ = os;
}
return deleted_bytes;
}
// Arm_output_section methods.
// Create a stub group for input sections from BEGIN to END. OWNER
// points to the input section to be the owner a new stub table.
template<bool big_endian>
void
Arm_output_section<big_endian>::create_stub_group(
Input_section_list::const_iterator begin,
Input_section_list::const_iterator end,
Input_section_list::const_iterator owner,
Target_arm<big_endian>* target,
std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
const Task* task)
{
// We use a different kind of relaxed section in an EXIDX section.
// The static casting from Output_relaxed_input_section to
// Arm_input_section is invalid in an EXIDX section. We are okay
// because we should not be calling this for an EXIDX section.
gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
// Currently we convert ordinary input sections into relaxed sections only
// at this point but we may want to support creating relaxed input section
// very early. So we check here to see if owner is already a relaxed
// section.
Arm_input_section<big_endian>* arm_input_section;
if (owner->is_relaxed_input_section())
{
arm_input_section =
Arm_input_section<big_endian>::as_arm_input_section(
owner->relaxed_input_section());
}
else
{
gold_assert(owner->is_input_section());
// Create a new relaxed input section. We need to lock the original
// file.
Task_lock_obj<Object> tl(task, owner->relobj());
arm_input_section =
target->new_arm_input_section(owner->relobj(), owner->shndx());
new_relaxed_sections->push_back(arm_input_section);
}
// Create a stub table.
Stub_table<big_endian>* stub_table =
target->new_stub_table(arm_input_section);
arm_input_section->set_stub_table(stub_table);
Input_section_list::const_iterator p = begin;
Input_section_list::const_iterator prev_p;
// Look for input sections or relaxed input sections in [begin ... end].
do
{
if (p->is_input_section() || p->is_relaxed_input_section())
{
// The stub table information for input sections live
// in their objects.
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
arm_relobj->set_stub_table(p->shndx(), stub_table);
}
prev_p = p++;
}
while (prev_p != end);
}
// Group input sections for stub generation. GROUP_SIZE is roughly the limit
// of stub groups. We grow a stub group by adding input section until the
// size is just below GROUP_SIZE. The last input section will be converted
// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
// input section after the stub table, effectively double the group size.
//
// This is similar to the group_sections() function in elf32-arm.c but is
// implemented differently.
template<bool big_endian>
void
Arm_output_section<big_endian>::group_sections(
section_size_type group_size,
bool stubs_always_after_branch,
Target_arm<big_endian>* target,
const Task* task)
{
// States for grouping.
typedef enum
{
// No group is being built.
NO_GROUP,
// A group is being built but the stub table is not found yet.
// We keep group a stub group until the size is just under GROUP_SIZE.
// The last input section in the group will be used as the stub table.
FINDING_STUB_SECTION,
// A group is being built and we have already found a stub table.
// We enter this state to grow a stub group by adding input section
// after the stub table. This effectively doubles the group size.
HAS_STUB_SECTION
} State;
// Any newly created relaxed sections are stored here.
std::vector<Output_relaxed_input_section*> new_relaxed_sections;
State state = NO_GROUP;
section_size_type off = 0;
section_size_type group_begin_offset = 0;
section_size_type group_end_offset = 0;
section_size_type stub_table_end_offset = 0;
Input_section_list::const_iterator group_begin =
this->input_sections().end();
Input_section_list::const_iterator stub_table =
this->input_sections().end();
Input_section_list::const_iterator group_end = this->input_sections().end();
for (Input_section_list::const_iterator p = this->input_sections().begin();
p != this->input_sections().end();
++p)
{
section_size_type section_begin_offset =
align_address(off, p->addralign());
section_size_type section_end_offset =
section_begin_offset + p->data_size();
// Check to see if we should group the previously seen sections.
switch (state)
{
case NO_GROUP:
break;
case FINDING_STUB_SECTION:
// Adding this section makes the group larger than GROUP_SIZE.
if (section_end_offset - group_begin_offset >= group_size)
{
if (stubs_always_after_branch)
{
gold_assert(group_end != this->input_sections().end());
this->create_stub_group(group_begin, group_end, group_end,
target, &new_relaxed_sections,
task);
state = NO_GROUP;
}
else
{
// But wait, there's more! Input sections up to
// stub_group_size bytes after the stub table can be
// handled by it too.
state = HAS_STUB_SECTION;
stub_table = group_end;
stub_table_end_offset = group_end_offset;
}
}
break;
case HAS_STUB_SECTION:
// Adding this section makes the post stub-section group larger
// than GROUP_SIZE.
if (section_end_offset - stub_table_end_offset >= group_size)
{
gold_assert(group_end != this->input_sections().end());
this->create_stub_group(group_begin, group_end, stub_table,
target, &new_relaxed_sections, task);
state = NO_GROUP;
}
break;
default:
gold_unreachable();
}
// If we see an input section and currently there is no group, start
// a new one. Skip any empty sections. We look at the data size
// instead of calling p->relobj()->section_size() to avoid locking.
if ((p->is_input_section() || p->is_relaxed_input_section())
&& (p->data_size() != 0))
{
if (state == NO_GROUP)
{
state = FINDING_STUB_SECTION;
group_begin = p;
group_begin_offset = section_begin_offset;
}
// Keep track of the last input section seen.
group_end = p;
group_end_offset = section_end_offset;
}
off = section_end_offset;
}
// Create a stub group for any ungrouped sections.
if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
{
gold_assert(group_end != this->input_sections().end());
this->create_stub_group(group_begin, group_end,
(state == FINDING_STUB_SECTION
? group_end
: stub_table),
target, &new_relaxed_sections, task);
}
// Convert input section into relaxed input section in a batch.
if (!new_relaxed_sections.empty())
this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
// Update the section offsets
for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(
new_relaxed_sections[i]->relobj());
unsigned int shndx = new_relaxed_sections[i]->shndx();
// Tell Arm_relobj that this input section is converted.
arm_relobj->convert_input_section_to_relaxed_section(shndx);
}
}
// Append non empty text sections in this to LIST in ascending
// order of their position in this.
template<bool big_endian>
void
Arm_output_section<big_endian>::append_text_sections_to_list(
Text_section_list* list)
{
gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
for (Input_section_list::const_iterator p = this->input_sections().begin();
p != this->input_sections().end();
++p)
{
// We only care about plain or relaxed input sections. We also
// ignore any merged sections.
if (p->is_input_section() || p->is_relaxed_input_section())
list->push_back(Text_section_list::value_type(p->relobj(),
p->shndx()));
}
}
template<bool big_endian>
void
Arm_output_section<big_endian>::fix_exidx_coverage(
Layout* layout,
const Text_section_list& sorted_text_sections,
Symbol_table* symtab,
bool merge_exidx_entries,
const Task* task)
{
// We should only do this for the EXIDX output section.
gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
// We don't want the relaxation loop to undo these changes, so we discard
// the current saved states and take another one after the fix-up.
this->discard_states();
// Remove all input sections.
uint64_t address = this->address();
typedef std::list<Output_section::Input_section> Input_section_list;
Input_section_list input_sections;
this->reset_address_and_file_offset();
this->get_input_sections(address, std::string(""), &input_sections);
if (!this->input_sections().empty())
gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
// Go through all the known input sections and record them.
typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
typedef Unordered_map<Section_id, const Output_section::Input_section*,
Section_id_hash> Text_to_exidx_map;
Text_to_exidx_map text_to_exidx_map;
for (Input_section_list::const_iterator p = input_sections.begin();
p != input_sections.end();
++p)
{
// This should never happen. At this point, we should only see
// plain EXIDX input sections.
gold_assert(!p->is_relaxed_input_section());
text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
}
Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
// Go over the sorted text sections.
typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
Section_id_set processed_input_sections;
for (Text_section_list::const_iterator p = sorted_text_sections.begin();
p != sorted_text_sections.end();
++p)
{
Relobj* relobj = p->first;
unsigned int shndx = p->second;
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(relobj);
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_link(shndx);
// If this text section has no EXIDX section or if the EXIDX section
// has errors, force an EXIDX_CANTUNWIND entry pointing to the end
// of the last seen EXIDX section.
if (exidx_input_section == NULL || exidx_input_section->has_errors())
{
exidx_fixup.add_exidx_cantunwind_as_needed();
continue;
}
Relobj* exidx_relobj = exidx_input_section->relobj();
unsigned int exidx_shndx = exidx_input_section->shndx();
Section_id sid(exidx_relobj, exidx_shndx);
Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
if (iter == text_to_exidx_map.end())
{
// This is odd. We have not seen this EXIDX input section before.
// We cannot do fix-up. If we saw a SECTIONS clause in a script,
// issue a warning instead. We assume the user knows what he
// or she is doing. Otherwise, this is an error.
if (layout->script_options()->saw_sections_clause())
gold_warning(_("unwinding may not work because EXIDX input section"
" %u of %s is not in EXIDX output section"),
exidx_shndx, exidx_relobj->name().c_str());
else
gold_error(_("unwinding may not work because EXIDX input section"
" %u of %s is not in EXIDX output section"),
exidx_shndx, exidx_relobj->name().c_str());
exidx_fixup.add_exidx_cantunwind_as_needed();
continue;
}
// We need to access the contents of the EXIDX section, lock the
// object here.
Task_lock_obj<Object> tl(task, exidx_relobj);
section_size_type exidx_size;
const unsigned char* exidx_contents =
exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
// Fix up coverage and append input section to output data list.
Arm_exidx_section_offset_map* section_offset_map = NULL;
uint32_t deleted_bytes =
exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
exidx_contents,
exidx_size,
&section_offset_map);
if (deleted_bytes == exidx_input_section->size())
{
// The whole EXIDX section got merged. Remove it from output.
gold_assert(section_offset_map == NULL);
exidx_relobj->set_output_section(exidx_shndx, NULL);
// All local symbols defined in this input section will be dropped.
// We need to adjust output local symbol count.
arm_relobj->set_output_local_symbol_count_needs_update();
}
else if (deleted_bytes > 0)
{
// Some entries are merged. We need to convert this EXIDX input
// section into a relaxed section.
gold_assert(section_offset_map != NULL);
Arm_exidx_merged_section* merged_section =
new Arm_exidx_merged_section(*exidx_input_section,
*section_offset_map, deleted_bytes);
merged_section->build_contents(exidx_contents, exidx_size);
const std::string secname = exidx_relobj->section_name(exidx_shndx);
this->add_relaxed_input_section(layout, merged_section, secname);
arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
// All local symbols defined in discarded portions of this input
// section will be dropped. We need to adjust output local symbol
// count.
arm_relobj->set_output_local_symbol_count_needs_update();
}
else
{
// Just add back the EXIDX input section.
gold_assert(section_offset_map == NULL);
const Output_section::Input_section* pis = iter->second;
gold_assert(pis->is_input_section());
this->add_script_input_section(*pis);
}
processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
}
// Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
exidx_fixup.add_exidx_cantunwind_as_needed();
// Remove any known EXIDX input sections that are not processed.
for (Input_section_list::const_iterator p = input_sections.begin();
p != input_sections.end();
++p)
{
if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
== processed_input_sections.end())
{
// We discard a known EXIDX section because its linked
// text section has been folded by ICF. We also discard an
// EXIDX section with error, the output does not matter in this
// case. We do this to avoid triggering asserts.
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_shndx(p->shndx());
gold_assert(exidx_input_section != NULL);
if (!exidx_input_section->has_errors())
{
unsigned int text_shndx = exidx_input_section->link();
gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
}
// Remove this from link. We also need to recount the
// local symbols.
p->relobj()->set_output_section(p->shndx(), NULL);
arm_relobj->set_output_local_symbol_count_needs_update();
}
}
// Link exidx output section to the first seen output section and
// set correct entry size.
this->set_link_section(exidx_fixup.first_output_text_section());
this->set_entsize(8);
// Make changes permanent.
this->save_states();
this->set_section_offsets_need_adjustment();
}
// Link EXIDX output sections to text output sections.
template<bool big_endian>
void
Arm_output_section<big_endian>::set_exidx_section_link()
{
gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
if (!this->input_sections().empty())
{
Input_section_list::const_iterator p = this->input_sections().begin();
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
unsigned exidx_shndx = p->shndx();
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
gold_assert(exidx_input_section != NULL);
unsigned int text_shndx = exidx_input_section->link();
Output_section* os = arm_relobj->output_section(text_shndx);
this->set_link_section(os);
}
}
// Arm_relobj methods.
// Determine if an input section is scannable for stub processing. SHDR is
// the header of the section and SHNDX is the section index. OS is the output
// section for the input section and SYMTAB is the global symbol table used to
// look up ICF information.
template<bool big_endian>
bool
Arm_relobj<big_endian>::section_is_scannable(
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int shndx,
const Output_section* os,
const Symbol_table* symtab)
{
// Skip any empty sections, unallocated sections or sections whose
// type are not SHT_PROGBITS.
if (shdr.get_sh_size() == 0
|| (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
|| shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
return false;
// Skip any discarded or ICF'ed sections.
if (os == NULL || symtab->is_section_folded(this, shndx))
return false;
// If this requires special offset handling, check to see if it is
// a relaxed section. If this is not, then it is a merged section that
// we cannot handle.
if (this->is_output_section_offset_invalid(shndx))
{
const Output_relaxed_input_section* poris =
os->find_relaxed_input_section(this, shndx);
if (poris == NULL)
return false;
}
return true;
}
// Determine if we want to scan the SHNDX-th section for relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
const elfcpp::Shdr<32, big_endian>& shdr,
const Relobj::Output_sections& out_sections,
const Symbol_table* symtab,
const unsigned char* pshdrs)
{
unsigned int sh_type = shdr.get_sh_type();
if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
return false;
// Ignore empty section.
off_t sh_size = shdr.get_sh_size();
if (sh_size == 0)
return false;
// Ignore reloc section with unexpected symbol table. The
// error will be reported in the final link.
if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
return false;
unsigned int reloc_size;
if (sh_type == elfcpp::SHT_REL)
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
else
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
// Ignore reloc section with unexpected entsize or uneven size.
// The error will be reported in the final link.
if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
return false;
// Ignore reloc section with bad info. This error will be
// reported in the final link.
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
if (index >= this->shnum())
return false;
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
return this->section_is_scannable(text_shdr, index,
out_sections[index], symtab);
}
// Return the output address of either a plain input section or a relaxed
// input section. SHNDX is the section index. We define and use this
// instead of calling Output_section::output_address because that is slow
// for large output.
template<bool big_endian>
Arm_address
Arm_relobj<big_endian>::simple_input_section_output_address(
unsigned int shndx,
Output_section* os)
{
if (this->is_output_section_offset_invalid(shndx))
{
const Output_relaxed_input_section* poris =
os->find_relaxed_input_section(this, shndx);
// We do not handle merged sections here.
gold_assert(poris != NULL);
return poris->address();
}
else
return os->address() + this->get_output_section_offset(shndx);
}
// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int shndx,
Output_section* os,
const Symbol_table* symtab)
{
if (!this->section_is_scannable(shdr, shndx, os, symtab))
return false;
// If the section does not cross any 4K-boundaries, it does not need to
// be scanned.
Arm_address address = this->simple_input_section_output_address(shndx, os);
if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
return false;
return true;
}
// Scan a section for Cortex-A8 workaround.
template<bool big_endian>
void
Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int shndx,
Output_section* os,
Target_arm<big_endian>* arm_target)
{
// Look for the first mapping symbol in this section. It should be
// at (shndx, 0).
Mapping_symbol_position section_start(shndx, 0);
typename Mapping_symbols_info::const_iterator p =
this->mapping_symbols_info_.lower_bound(section_start);
// There are no mapping symbols for this section. Treat it as a data-only
// section.
if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
return;
Arm_address output_address =
this->simple_input_section_output_address(shndx, os);
// Get the section contents.
section_size_type input_view_size = 0;
const unsigned char* input_view =
this->section_contents(shndx, &input_view_size, false);
// We need to go through the mapping symbols to determine what to
// scan. There are two reasons. First, we should look at THUMB code and
// THUMB code only. Second, we only want to look at the 4K-page boundary
// to speed up the scanning.
while (p != this->mapping_symbols_info_.end()
&& p->first.first == shndx)
{
typename Mapping_symbols_info::const_iterator next =
this->mapping_symbols_info_.upper_bound(p->first);
// Only scan part of a section with THUMB code.
if (p->second == 't')
{
// Determine the end of this range.
section_size_type span_start =
convert_to_section_size_type(p->first.second);
section_size_type span_end;
if (next != this->mapping_symbols_info_.end()
&& next->first.first == shndx)
span_end = convert_to_section_size_type(next->first.second);
else
span_end = convert_to_section_size_type(shdr.get_sh_size());
if (((span_start + output_address) & ~0xfffUL)
!= ((span_end + output_address - 1) & ~0xfffUL))
{
arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
span_start, span_end,
input_view,
output_address);
}
}
p = next;
}
}
// Scan relocations for stub generation.
template<bool big_endian>
void
Arm_relobj<big_endian>::scan_sections_for_stubs(
Target_arm<big_endian>* arm_target,
const Symbol_table* symtab,
const Layout* layout)
{
unsigned int shnum = this->shnum();
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
// Read the section headers.
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
shnum * shdr_size,
true, true);
// To speed up processing, we set up hash tables for fast lookup of
// input offsets to output addresses.
this->initialize_input_to_output_maps();
const Relobj::Output_sections& out_sections(this->output_sections());
Relocate_info<32, big_endian> relinfo;
relinfo.symtab = symtab;
relinfo.layout = layout;
relinfo.object = this;
// Do relocation stubs scanning.
const unsigned char* p = pshdrs + shdr_size;
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
{
const elfcpp::Shdr<32, big_endian> shdr(p);
if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
pshdrs))
{
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
Arm_address output_offset = this->get_output_section_offset(index);
Arm_address output_address;
if (output_offset != invalid_address)
output_address = out_sections[index]->address() + output_offset;
else
{
// Currently this only happens for a relaxed section.
const Output_relaxed_input_section* poris =
out_sections[index]->find_relaxed_input_section(this, index);
gold_assert(poris != NULL);
output_address = poris->address();
}
// Get the relocations.
const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
shdr.get_sh_size(),
true, false);
// Get the section contents. This does work for the case in which
// we modify the contents of an input section. We need to pass the
// output view under such circumstances.
section_size_type input_view_size = 0;
const unsigned char* input_view =
this->section_contents(index, &input_view_size, false);
relinfo.reloc_shndx = i;
relinfo.data_shndx = index;
unsigned int sh_type = shdr.get_sh_type();
unsigned int reloc_size;
if (sh_type == elfcpp::SHT_REL)
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
else
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
Output_section* os = out_sections[index];
arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
shdr.get_sh_size() / reloc_size,
os,
output_offset == invalid_address,
input_view, output_address,
input_view_size);
}
}
// Do Cortex-A8 erratum stubs scanning. This has to be done for a section
// after its relocation section, if there is one, is processed for
// relocation stubs. Merging this loop with the one above would have been
// complicated since we would have had to make sure that relocation stub
// scanning is done first.
if (arm_target->fix_cortex_a8())
{
const unsigned char* p = pshdrs + shdr_size;
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
{
const elfcpp::Shdr<32, big_endian> shdr(p);
if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
out_sections[i],
symtab))
this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
arm_target);
}
}
// After we've done the relocations, we release the hash tables,
// since we no longer need them.
this->free_input_to_output_maps();
}
// Count the local symbols. The ARM backend needs to know if a symbol
// is a THUMB function or not. For global symbols, it is easy because
// the Symbol object keeps the ELF symbol type. For local symbol it is
// harder because we cannot access this information. So we override the
// do_count_local_symbol in parent and scan local symbols to mark
// THUMB functions. This is not the most efficient way but I do not want to
// slow down other ports by calling a per symbol target hook inside
// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_count_local_symbols(
Stringpool_template<char>* pool,
Stringpool_template<char>* dynpool)
{
// We need to fix-up the values of any local symbols whose type are
// STT_ARM_TFUNC.
// Ask parent to count the local symbols.
Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
const unsigned int loccount = this->local_symbol_count();
if (loccount == 0)
return;
// Initialize the thumb function bit-vector.
std::vector<bool> empty_vector(loccount, false);
this->local_symbol_is_thumb_function_.swap(empty_vector);
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<32, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// For mapping symbol processing, we need to read the symbol names.
unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
if (strtab_shndx >= this->shnum())
{
this->error(_("invalid symbol table name index: %u"), strtab_shndx);
return;
}
elfcpp::Shdr<32, big_endian>
strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
{
this->error(_("symbol table name section has wrong type: %u"),
static_cast<unsigned int>(strtabshdr.get_sh_type()));
return;
}
const char* pnames =
reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
strtabshdr.get_sh_size(),
false, false));
// Loop over the local symbols and mark any local symbols pointing
// to THUMB functions.
// Skip the first dummy symbol.
psyms += sym_size;
typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
this->local_values();
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<32, big_endian> sym(psyms);
elfcpp::STT st_type = sym.get_st_type();
Symbol_value<32>& lv((*plocal_values)[i]);
Arm_address input_value = lv.input_value();
// Check to see if this is a mapping symbol.
const char* sym_name = pnames + sym.get_st_name();
if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
{
bool is_ordinary;
unsigned int input_shndx =
this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
gold_assert(is_ordinary);
// Strip of LSB in case this is a THUMB symbol.
Mapping_symbol_position msp(input_shndx, input_value & ~1U);
this->mapping_symbols_info_[msp] = sym_name[1];
}
if (st_type == elfcpp::STT_ARM_TFUNC
|| (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
{
// This is a THUMB function. Mark this and canonicalize the
// symbol value by setting LSB.
this->local_symbol_is_thumb_function_[i] = true;
if ((input_value & 1) == 0)
lv.set_input_value(input_value | 1);
}
}
}
// Relocate sections.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_relocate_sections(
const Symbol_table* symtab,
const Layout* layout,
const unsigned char* pshdrs,
Output_file* of,
typename Sized_relobj_file<32, big_endian>::Views* pviews)
{
// Call parent to relocate sections.
Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
pshdrs, of, pviews);
// We do not generate stubs if doing a relocatable link.
if (parameters->options().relocatable())
return;
// Relocate stub tables.
unsigned int shnum = this->shnum();
Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
Relocate_info<32, big_endian> relinfo;
relinfo.symtab = symtab;
relinfo.layout = layout;
relinfo.object = this;
for (unsigned int i = 1; i < shnum; ++i)
{
Arm_input_section<big_endian>* arm_input_section =
arm_target->find_arm_input_section(this, i);
if (arm_input_section != NULL
&& arm_input_section->is_stub_table_owner()
&& !arm_input_section->stub_table()->empty())
{
// We cannot discard a section if it owns a stub table.
Output_section* os = this->output_section(i);
gold_assert(os != NULL);
relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
relinfo.reloc_shdr = NULL;
relinfo.data_shndx = i;
relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
gold_assert((*pviews)[i].view != NULL);
// We are passed the output section view. Adjust it to cover the
// stub table only.
Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
gold_assert((stub_table->address() >= (*pviews)[i].address)
&& ((stub_table->address() + stub_table->data_size())
<= (*pviews)[i].address + (*pviews)[i].view_size));
off_t offset = stub_table->address() - (*pviews)[i].address;
unsigned char* view = (*pviews)[i].view + offset;
Arm_address address = stub_table->address();
section_size_type view_size = stub_table->data_size();
stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
view_size);
}
// Apply Cortex A8 workaround if applicable.
if (this->section_has_cortex_a8_workaround(i))
{
unsigned char* view = (*pviews)[i].view;
Arm_address view_address = (*pviews)[i].address;
section_size_type view_size = (*pviews)[i].view_size;
Stub_table<big_endian>* stub_table = this->stub_tables_[i];
// Adjust view to cover section.
Output_section* os = this->output_section(i);
gold_assert(os != NULL);
Arm_address section_address =
this->simple_input_section_output_address(i, os);
uint64_t section_size = this->section_size(i);
gold_assert(section_address >= view_address
&& ((section_address + section_size)
<= (view_address + view_size)));
unsigned char* section_view = view + (section_address - view_address);
// Apply the Cortex-A8 workaround to the output address range
// corresponding to this input section.
stub_table->apply_cortex_a8_workaround_to_address_range(
arm_target,
section_view,
section_address,
section_size);
}
// BE8 swapping
if (parameters->options().be8())
{
section_size_type span_start, span_end;
elfcpp::Shdr<32, big_endian>
shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
Mapping_symbol_position section_start(i, 0);
typename Mapping_symbols_info::const_iterator p =
this->mapping_symbols_info_.lower_bound(section_start);
unsigned char* view = (*pviews)[i].view;
Arm_address view_address = (*pviews)[i].address;
section_size_type view_size = (*pviews)[i].view_size;
while (p != this->mapping_symbols_info_.end()
&& p->first.first == i)
{
typename Mapping_symbols_info::const_iterator next =
this->mapping_symbols_info_.upper_bound(p->first);
// Only swap arm or thumb code.
if ((p->second == 'a') || (p->second == 't'))
{
Output_section* os = this->output_section(i);
gold_assert(os != NULL);
Arm_address section_address =
this->simple_input_section_output_address(i, os);
span_start = convert_to_section_size_type(p->first.second);
if (next != this->mapping_symbols_info_.end()
&& next->first.first == i)
span_end =
convert_to_section_size_type(next->first.second);
else
span_end =
convert_to_section_size_type(shdr.get_sh_size());
unsigned char* section_view =
view + (section_address - view_address);
uint64_t section_size = this->section_size(i);
gold_assert(section_address >= view_address
&& ((section_address + section_size)
<= (view_address + view_size)));
// Set Output view for swapping
unsigned char *oview = section_view + span_start;
unsigned int index = 0;
if (p->second == 'a')
{
while (index + 3 < (span_end - span_start))
{
typedef typename elfcpp::Swap<32, big_endian>
::Valtype Valtype;
Valtype* wv =
reinterpret_cast<Valtype*>(oview+index);
uint32_t val = elfcpp::Swap<32, false>::readval(wv);
elfcpp::Swap<32, true>::writeval(wv, val);
index += 4;
}
}
else if (p->second == 't')
{
while (index + 1 < (span_end - span_start))
{
typedef typename elfcpp::Swap<16, big_endian>
::Valtype Valtype;
Valtype* wv =
reinterpret_cast<Valtype*>(oview+index);
uint16_t val = elfcpp::Swap<16, false>::readval(wv);
elfcpp::Swap<16, true>::writeval(wv, val);
index += 2;
}
}
}
p = next;
}
}
}
}
// Find the linked text section of an EXIDX section by looking at the first
// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
// must be linked to its associated code section via the sh_link field of
// its section header. However, some tools are broken and the link is not
// always set. LD just drops such an EXIDX section silently, causing the
// associated code not unwindabled. Here we try a little bit harder to
// discover the linked code section.
//
// PSHDR points to the section header of a relocation section of an EXIDX
// section. If we can find a linked text section, return true and
// store the text section index in the location PSHNDX. Otherwise
// return false.
template<bool big_endian>
bool
Arm_relobj<big_endian>::find_linked_text_section(
const unsigned char* pshdr,
const unsigned char* psyms,
unsigned int* pshndx)
{
elfcpp::Shdr<32, big_endian> shdr(pshdr);
// If there is no relocation, we cannot find the linked text section.
size_t reloc_size;
if (shdr.get_sh_type() == elfcpp::SHT_REL)
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
else
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
size_t reloc_count = shdr.get_sh_size() / reloc_size;
// Get the relocations.
const unsigned char* prelocs =
this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
// Find the REL31 relocation for the first word of the first EXIDX entry.
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Arm_address r_offset;
typename elfcpp::Elf_types<32>::Elf_WXword r_info;
if (shdr.get_sh_type() == elfcpp::SHT_REL)
{
typename elfcpp::Rel<32, big_endian> reloc(prelocs);
r_info = reloc.get_r_info();
r_offset = reloc.get_r_offset();
}
else
{
typename elfcpp::Rela<32, big_endian> reloc(prelocs);
r_info = reloc.get_r_info();
r_offset = reloc.get_r_offset();
}
unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
continue;
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
if (r_sym == 0
|| r_sym >= this->local_symbol_count()
|| r_offset != 0)
continue;
// This is the relocation for the first word of the first EXIDX entry.
// We expect to see a local section symbol.
const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
if (sym.get_st_type() == elfcpp::STT_SECTION)
{
bool is_ordinary;
*pshndx =
this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
gold_assert(is_ordinary);
return true;
}
else
return false;
}
return false;
}
// Make an EXIDX input section object for an EXIDX section whose index is
// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
// is the section index of the linked text section.
template<bool big_endian>
void
Arm_relobj<big_endian>::make_exidx_input_section(
unsigned int shndx,
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int text_shndx,
const elfcpp::Shdr<32, big_endian>& text_shdr)
{
// Create an Arm_exidx_input_section object for this EXIDX section.
Arm_exidx_input_section* exidx_input_section =
new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
shdr.get_sh_addralign(),
text_shdr.get_sh_size());
gold_assert(this->exidx_section_map_[shndx] == NULL);
this->exidx_section_map_[shndx] = exidx_input_section;
if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
{
gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
this->section_name(shndx).c_str(), shndx, text_shndx,
this->name().c_str());
exidx_input_section->set_has_errors();
}
else if (this->exidx_section_map_[text_shndx] != NULL)
{
unsigned other_exidx_shndx =
this->exidx_section_map_[text_shndx]->shndx();
gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
"%s(%u) in %s"),
this->section_name(shndx).c_str(), shndx,
this->section_name(other_exidx_shndx).c_str(),
other_exidx_shndx, this->section_name(text_shndx).c_str(),
text_shndx, this->name().c_str());
exidx_input_section->set_has_errors();
}
else
this->exidx_section_map_[text_shndx] = exidx_input_section;
// Check section flags of text section.
if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
{
gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
" in %s"),
this->section_name(shndx).c_str(), shndx,
this->section_name(text_shndx).c_str(), text_shndx,
this->name().c_str());
exidx_input_section->set_has_errors();
}
else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
// I would like to make this an error but currently ld just ignores
// this.
gold_warning(_("EXIDX section %s(%u) links to non-executable section "
"%s(%u) in %s"),
this->section_name(shndx).c_str(), shndx,
this->section_name(text_shndx).c_str(), text_shndx,
this->name().c_str());
}
// Read the symbol information.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
// Call parent class to read symbol information.
this->base_read_symbols(sd);
// If this input file is a binary file, it has no processor
// specific flags and attributes section.
Input_file::Format format = this->input_file()->format();
if (format != Input_file::FORMAT_ELF)
{
gold_assert(format == Input_file::FORMAT_BINARY);
this->merge_flags_and_attributes_ = false;
return;
}
// Read processor-specific flags in ELF file header.
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
elfcpp::Elf_sizes<32>::ehdr_size,
true, false);
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
this->processor_specific_flags_ = ehdr.get_e_flags();
// Go over the section headers and look for .ARM.attributes and .ARM.exidx
// sections.
std::vector<unsigned int> deferred_exidx_sections;
const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* pshdrs = sd->section_headers->data();
const unsigned char* ps = pshdrs + shdr_size;
bool must_merge_flags_and_attributes = false;
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
// Sometimes an object has no contents except the section name string
// table and an empty symbol table with the undefined symbol. We
// don't want to merge processor-specific flags from such an object.
if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
{
// Symbol table is not empty.
const elfcpp::Elf_types<32>::Elf_WXword sym_size =
elfcpp::Elf_sizes<32>::sym_size;
if (shdr.get_sh_size() > sym_size)
must_merge_flags_and_attributes = true;
}
else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
// If this is neither an empty symbol table nor a string table,
// be conservative.
must_merge_flags_and_attributes = true;
if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
{
gold_assert(this->attributes_section_data_ == NULL);
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->attributes_section_data_ =
new Attributes_section_data(view, section_size);
}
else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
{
unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
if (text_shndx == elfcpp::SHN_UNDEF)
deferred_exidx_sections.push_back(i);
else
{
elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
+ text_shndx * shdr_size);
this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
}
// EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
this->section_name(i).c_str(), this->name().c_str());
}
}
// This is rare.
if (!must_merge_flags_and_attributes)
{
gold_assert(deferred_exidx_sections.empty());
this->merge_flags_and_attributes_ = false;
return;
}
// Some tools are broken and they do not set the link of EXIDX sections.
// We look at the first relocation to figure out the linked sections.
if (!deferred_exidx_sections.empty())
{
// We need to go over the section headers again to find the mapping
// from sections being relocated to their relocation sections. This is
// a bit inefficient as we could do that in the loop above. However,
// we do not expect any deferred EXIDX sections normally. So we do not
// want to slow down the most common path.
typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
Reloc_map reloc_map;
ps = pshdrs + shdr_size;
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
elfcpp::Elf_Word sh_type = shdr.get_sh_type();
if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
{
unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
if (info_shndx >= this->shnum())
gold_error(_("relocation section %u has invalid info %u"),
i, info_shndx);
Reloc_map::value_type value(info_shndx, i);
std::pair<Reloc_map::iterator, bool> result =
reloc_map.insert(value);
if (!result.second)
gold_error(_("section %u has multiple relocation sections "
"%u and %u"),
info_shndx, i, reloc_map[info_shndx]);
}
}
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<32, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
const unsigned int loccount = this->local_symbol_count();
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// Process the deferred EXIDX sections.
for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
{
unsigned int shndx = deferred_exidx_sections[i];
elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
unsigned int text_shndx = elfcpp::SHN_UNDEF;
Reloc_map::const_iterator it = reloc_map.find(shndx);
if (it != reloc_map.end())
find_linked_text_section(pshdrs + it->second * shdr_size,
psyms, &text_shndx);
elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
+ text_shndx * shdr_size);
this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
}
}
}
// Process relocations for garbage collection. The ARM target uses .ARM.exidx
// sections for unwinding. These sections are referenced implicitly by
// text sections linked in the section headers. If we ignore these implicit
// references, the .ARM.exidx sections and any .ARM.extab sections they use
// will be garbage-collected incorrectly. Hence we override the same function
// in the base class to handle these implicit references.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Read_relocs_data* rd)
{
// First, call base class method to process relocations in this object.
Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
// If --gc-sections is not specified, there is nothing more to do.
// This happens when --icf is used but --gc-sections is not.
if (!parameters->options().gc_sections())
return;
unsigned int shnum = this->shnum();
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
shnum * shdr_size,
true, true);
// Scan section headers for sections of type SHT_ARM_EXIDX. Add references
// to these from the linked text sections.
const unsigned char* ps = pshdrs + shdr_size;
for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
{
// Found an .ARM.exidx section, add it to the set of reachable
// sections from its linked text section.
unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
symtab->gc()->add_reference(this, text_shndx, this, i);
}
}
}
// Update output local symbol count. Owing to EXIDX entry merging, some local
// symbols will be removed in output. Adjust output local symbol count
// accordingly. We can only changed the static output local symbol count. It
// is too late to change the dynamic symbols.
template<bool big_endian>
void
Arm_relobj<big_endian>::update_output_local_symbol_count()
{
// Caller should check that this needs updating. We want caller checking
// because output_local_symbol_count_needs_update() is most likely inlined.
gold_assert(this->output_local_symbol_count_needs_update_);
gold_assert(this->symtab_shndx() != -1U);
if (this->symtab_shndx() == 0)
{
// This object has no symbols. Weird but legal.
return;
}
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<32, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
const unsigned int loccount = this->local_symbol_count();
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// Loop over the local symbols.
typedef typename Sized_relobj_file<32, big_endian>::Output_sections
Output_sections;
const Output_sections& out_sections(this->output_sections());
unsigned int shnum = this->shnum();
unsigned int count = 0;
// Skip the first, dummy, symbol.
psyms += sym_size;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<32, big_endian> sym(psyms);
Symbol_value<32>& lv((*this->local_values())[i]);
// This local symbol was already discarded by do_count_local_symbols.
if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
continue;
bool is_ordinary;
unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
&is_ordinary);
if (shndx < shnum)
{
Output_section* os = out_sections[shndx];
// This local symbol no longer has an output section. Discard it.
if (os == NULL)
{
lv.set_no_output_symtab_entry();
continue;
}
// Currently we only discard parts of EXIDX input sections.
// We explicitly check for a merged EXIDX input section to avoid
// calling Output_section_data::output_offset unless necessary.
if ((this->get_output_section_offset(shndx) == invalid_address)
&& (this->exidx_input_section_by_shndx(shndx) != NULL))
{
section_offset_type output_offset =
os->output_offset(this, shndx, lv.input_value());
if (output_offset == -1)
{
// This symbol is defined in a part of an EXIDX input section
// that is discarded due to entry merging.
lv.set_no_output_symtab_entry();
continue;
}
}
}
++count;
}
this->set_output_local_symbol_count(count);
this->output_local_symbol_count_needs_update_ = false;
}
// Arm_dynobj methods.
// Read the symbol information.
template<bool big_endian>
void
Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
// Call parent class to read symbol information.
this->base_read_symbols(sd);
// Read processor-specific flags in ELF file header.
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
elfcpp::Elf_sizes<32>::ehdr_size,
true, false);
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
this->processor_specific_flags_ = ehdr.get_e_flags();
// Read the attributes section if there is one.
// We read from the end because gas seems to put it near the end of
// the section headers.
const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* ps =
sd->section_headers->data() + shdr_size * (this->shnum() - 1);
for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
{
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->attributes_section_data_ =
new Attributes_section_data(view, section_size);
break;
}
}
}
// Stub_addend_reader methods.
// Read the addend of a REL relocation of type R_TYPE at VIEW.
template<bool big_endian>
elfcpp::Elf_types<32>::Elf_Swxword
Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
unsigned int r_type,
const unsigned char* view,
const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
{
typedef class Arm_relocate_functions<big_endian> RelocFuncs;
switch (r_type)
{
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_PLT32:
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
return Bits<26>::sign_extend32(val << 2);
}
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_XPC22:
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
}
case elfcpp::R_ARM_THM_JUMP19:
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
}
default:
gold_unreachable();
}
}
// Arm_output_data_got methods.
// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
// The first one is initialized to be 1, which is the module index for
// the main executable and the second one 0. A reloc of the type
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
// be applied by gold. GSYM is a global symbol.
//
template<bool big_endian>
void
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
unsigned int got_type,
Symbol* gsym)
{
if (gsym->has_got_offset(got_type))
return;
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
unsigned int got_offset = this->add_constant(1);
gsym->set_got_offset(got_type, got_offset);
got_offset = this->add_constant(0);
this->static_relocs_.push_back(Static_reloc(got_offset,
elfcpp::R_ARM_TLS_DTPOFF32,
gsym));
}
// Same as the above but for a local symbol.
template<bool big_endian>
void
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
unsigned int got_type,
Sized_relobj_file<32, big_endian>* object,
unsigned int index)
{
if (object->local_has_got_offset(index, got_type))
return;
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
unsigned int got_offset = this->add_constant(1);
object->set_local_got_offset(index, got_type, got_offset);
got_offset = this->add_constant(0);
this->static_relocs_.push_back(Static_reloc(got_offset,
elfcpp::R_ARM_TLS_DTPOFF32,
object, index));
}
template<bool big_endian>
void
Arm_output_data_got<big_endian>::do_write(Output_file* of)
{
// Call parent to write out GOT.
Output_data_got<32, big_endian>::do_write(of);
// We are done if there is no fix up.
if (this->static_relocs_.empty())
return;
gold_assert(parameters->doing_static_link());
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
Output_segment* tls_segment = this->layout_->tls_segment();
gold_assert(tls_segment != NULL);
// The thread pointer $tp points to the TCB, which is followed by the
// TLS. So we need to adjust $tp relative addressing by this amount.
Arm_address aligned_tcb_size =
align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
for (size_t i = 0; i < this->static_relocs_.size(); ++i)
{
Static_reloc& reloc(this->static_relocs_[i]);
Arm_address value;
if (!reloc.symbol_is_global())
{
Sized_relobj_file<32, big_endian>* object = reloc.relobj();
const Symbol_value<32>* psymval =
reloc.relobj()->local_symbol(reloc.index());
// We are doing static linking. Issue an error and skip this
// relocation if the symbol is undefined or in a discarded_section.
bool is_ordinary;
unsigned int shndx = psymval->input_shndx(&is_ordinary);
if ((shndx == elfcpp::SHN_UNDEF)
|| (is_ordinary
&& shndx != elfcpp::SHN_UNDEF
&& !object->is_section_included(shndx)
&& !this->symbol_table_->is_section_folded(object, shndx)))
{
gold_error(_("undefined or discarded local symbol %u from "
" object %s in GOT"),
reloc.index(), reloc.relobj()->name().c_str());
continue;
}
value = psymval->value(object, 0);
}
else
{
const Symbol* gsym = reloc.symbol();
gold_assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = this->symbol_table_->resolve_forwards(gsym);
// We are doing static linking. Issue an error and skip this
// relocation if the symbol is undefined or in a discarded_section
// unless it is a weakly_undefined symbol.
if ((gsym->is_defined_in_discarded_section()
|| gsym->is_undefined())
&& !gsym->is_weak_undefined())
{
gold_error(_("undefined or discarded symbol %s in GOT"),
gsym->name());
continue;
}
if (!gsym->is_weak_undefined())
{
const Sized_symbol<32>* sym =
static_cast<const Sized_symbol<32>*>(gsym);
value = sym->value();
}
else
value = 0;
}
unsigned got_offset = reloc.got_offset();
gold_assert(got_offset < oview_size);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
Valtype x;
switch (reloc.r_type())
{
case elfcpp::R_ARM_TLS_DTPOFF32:
x = value;
break;
case elfcpp::R_ARM_TLS_TPOFF32:
x = value + aligned_tcb_size;
break;
default:
gold_unreachable();
}
elfcpp::Swap<32, big_endian>::writeval(wv, x);
}
of->write_output_view(offset, oview_size, oview);
}
// A class to handle the PLT data.
// This is an abstract base class that handles most of the linker details
// but does not know the actual contents of PLT entries. The derived
// classes below fill in those details.
template<bool big_endian>
class Output_data_plt_arm : public Output_section_data
{
public:
// Unlike aarch64, which records symbol value in "addend" field of relocations
// and could be done at the same time an IRelative reloc is created for the
// symbol, arm puts the symbol value into "GOT" table, which, however, is
// issued later in Output_data_plt_arm::do_write(). So we have a struct here
// to keep necessary symbol information for later use in do_write. We usually
// have only a very limited number of ifuncs, so the extra data required here
// is also limited.
struct IRelative_data
{
IRelative_data(Sized_symbol<32>* sized_symbol)
: symbol_is_global_(true)
{
u_.global = sized_symbol;
}
IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
unsigned int index)
: symbol_is_global_(false)
{
u_.local.relobj = relobj;
u_.local.index = index;
}
union
{
Sized_symbol<32>* global;
struct
{
Sized_relobj_file<32, big_endian>* relobj;
unsigned int index;
} local;
} u_;
bool symbol_is_global_;
};
typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
Reloc_section;
Output_data_plt_arm(Layout* layout, uint64_t addralign,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative);
// Add an entry to the PLT.
void
add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
// Add the relocation for a plt entry.
void
add_relocation(Symbol_table* symtab, Layout* layout,
Symbol* gsym, unsigned int got_offset);
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
unsigned int
add_local_ifunc_entry(Symbol_table* symtab, Layout*,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index);
// Return the .rel.plt section data.
const Reloc_section*
rel_plt() const
{ return this->rel_; }
// Return the PLT relocation container for IRELATIVE.
Reloc_section*
rel_irelative(Symbol_table*, Layout*);
// Return the number of PLT entries.
unsigned int
entry_count() const
{ return this->count_ + this->irelative_count_; }
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const
{ return this->do_first_plt_entry_offset(); }
// Return the size of a PLT entry.
unsigned int
get_plt_entry_size() const
{ return this->do_get_plt_entry_size(); }
// Return the PLT address for globals.
uint32_t
address_for_global(const Symbol*) const;
// Return the PLT address for locals.
uint32_t
address_for_local(const Relobj*, unsigned int symndx) const;
protected:
// Fill in the first PLT entry.
void
fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address)
{ this->do_fill_first_plt_entry(pov, got_address, plt_address); }
void
fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{ do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
virtual unsigned int
do_first_plt_entry_offset() const = 0;
virtual unsigned int
do_get_plt_entry_size() const = 0;
virtual void
do_fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address) = 0;
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset) = 0;
void
do_adjust_output_section(Output_section* os);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** PLT")); }
private:
// Set the final size.
void
set_final_data_size()
{
this->set_data_size(this->first_plt_entry_offset()
+ ((this->count_ + this->irelative_count_)
* this->get_plt_entry_size()));
}
// Write out the PLT data.
void
do_write(Output_file*);
// Record irelative symbol data.
void insert_irelative_data(const IRelative_data& idata)
{ irelative_data_vec_.push_back(idata); }
// The reloc section.
Reloc_section* rel_;
// The IRELATIVE relocs, if necessary. These must follow the
// regular PLT relocations.
Reloc_section* irelative_rel_;
// The .got section.
Arm_output_data_got<big_endian>* got_;
// The .got.plt section.
Output_data_space* got_plt_;
// The part of the .got.plt section used for IRELATIVE relocs.
Output_data_space* got_irelative_;
// The number of PLT entries.
unsigned int count_;
// Number of PLT entries with R_ARM_IRELATIVE relocs. These
// follow the regular PLT entries.
unsigned int irelative_count_;
// Vector for irelative data.
typedef std::vector<IRelative_data> IRelative_data_vec;
IRelative_data_vec irelative_data_vec_;
};
// Create the PLT section. The ordinary .got section is an argument,
// since we need to refer to the start. We also create our own .got
// section just for PLT entries.
template<bool big_endian>
Output_data_plt_arm<big_endian>::Output_data_plt_arm(
Layout* layout, uint64_t addralign,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_section_data(addralign), irelative_rel_(NULL),
got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
count_(0), irelative_count_(0)
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
}
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
{
os->set_entsize(0);
}
// Add an entry to the PLT.
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
Layout* layout,
Symbol* gsym)
{
gold_assert(!gsym->has_plt_offset());
unsigned int* entry_count;
Output_section_data_build* got;
// We have 2 different types of plt entry here, normal and ifunc.
// For normal plt, the offset begins with first_plt_entry_offset(20), and the
// 1st entry offset would be 20, the second 32, third 44 ... etc.
// For ifunc plt, the offset begins with 0. So the first offset would 0,
// second 12, third 24 ... etc.
// IFunc plt entries *always* come after *normal* plt entries.
// Notice, when computing the plt address of a certain symbol, "plt_address +
// plt_offset" is no longer correct. Use target->plt_address_for_global() or
// target->plt_address_for_local() instead.
int begin_offset = 0;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
entry_count = &this->irelative_count_;
got = this->got_irelative_;
// For irelative plt entries, offset is relative to the end of normal plt
// entries, so it starts from 0.
begin_offset = 0;
// Record symbol information.
this->insert_irelative_data(
IRelative_data(symtab->get_sized_symbol<32>(gsym)));
}
else
{
entry_count = &this->count_;
got = this->got_plt_;
// Note that for normal plt entries, when setting the PLT offset we skip
// the initial reserved PLT entry.
begin_offset = this->first_plt_entry_offset();
}
gsym->set_plt_offset(begin_offset
+ (*entry_count) * this->get_plt_entry_size());
++(*entry_count);
section_offset_type got_offset = got->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry (this will be changed by the dynamic linker, normally
// lazily when the function is called).
got->set_current_data_size(got_offset + 4);
// Every PLT entry needs a reloc.
this->add_relocation(symtab, layout, gsym, got_offset);
// Note that we don't need to save the symbol. The contents of the
// PLT are independent of which symbols are used. The symbols only
// appear in the relocations.
}
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
// the PLT offset.
template<bool big_endian>
unsigned int
Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index)
{
this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
// Notice, when computingthe plt entry address, "plt_address + plt_offset" is
// no longer correct. Use target->plt_address_for_local() instead.
unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
++this->irelative_count_;
section_offset_type got_offset = this->got_irelative_->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry.
this->got_irelative_->set_current_data_size(got_offset + 4);
// Every PLT entry needs a reloc.
Reloc_section* rel = this->rel_irelative(symtab, layout);
rel->add_symbolless_local_addend(relobj, local_sym_index,
elfcpp::R_ARM_IRELATIVE,
this->got_irelative_, got_offset);
return plt_offset;
}
// Add the relocation for a PLT entry.
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_relocation(
Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
{
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rel = this->rel_irelative(symtab, layout);
rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
this->got_irelative_, got_offset);
}
else
{
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
got_offset);
}
}
// Create the irelative relocation data.
template<bool big_endian>
typename Output_data_plt_arm<big_endian>::Reloc_section*
Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
Layout* layout)
{
if (this->irelative_rel_ == NULL)
{
// Since irelative relocations goes into 'rel.dyn', we delegate the
// creation of irelative_rel_ to where rel_dyn section gets created.
Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
this->irelative_rel_ = arm_target->rel_irelative_section(layout);
// Make sure we have a place for the TLSDESC relocations, in
// case we see any later on.
// this->rel_tlsdesc(layout);
if (parameters->doing_static_link())
{
// A statically linked executable will only have a .rel.plt section to
// hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
// will use these symbols to locate the IRELATIVE relocs at program
// startup time.
symtab->define_in_output_data("__rel_iplt_start", NULL,
Symbol_table::PREDEFINED,
this->irelative_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, false, true);
symtab->define_in_output_data("__rel_iplt_end", NULL,
Symbol_table::PREDEFINED,
this->irelative_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, true);
}
}
return this->irelative_rel_;
}
// Return the PLT address for a global symbol.
template<bool big_endian>
uint32_t
Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
{
uint64_t begin_offset = 0;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
begin_offset = (this->first_plt_entry_offset() +
this->count_ * this->get_plt_entry_size());
}
return this->address() + begin_offset + gsym->plt_offset();
}
// Return the PLT address for a local symbol. These are always
// IRELATIVE relocs.
template<bool big_endian>
uint32_t
Output_data_plt_arm<big_endian>::address_for_local(
const Relobj* object,
unsigned int r_sym) const
{
return (this->address()
+ this->first_plt_entry_offset()
+ this->count_ * this->get_plt_entry_size()
+ object->local_plt_offset(r_sym));
}
template<bool big_endian>
class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
{
public:
Output_data_plt_arm_standard(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
{ }
protected:
// Return the offset of the first non-reserved PLT entry.
virtual unsigned int
do_first_plt_entry_offset() const
{ return sizeof(first_plt_entry); }
virtual void
do_fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address);
private:
// Template for the first PLT entry.
static const uint32_t first_plt_entry[5];
};
// ARM PLTs.
// FIXME: This is not very flexible. Right now this has only been tested
// on armv5te. If we are to support additional architecture features like
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
{
0xe52de004, // str lr, [sp, #-4]!
0xe59fe004, // ldr lr, [pc, #4]
0xe08fe00e, // add lr, pc, lr
0xe5bef008, // ldr pc, [lr, #8]!
0x00000000, // &GOT[0] - .
};
template<bool big_endian>
void
Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address)
{
// Write first PLT entry. All but the last word are constants.
const size_t num_first_plt_words = (sizeof(first_plt_entry)
/ sizeof(first_plt_entry[0]));
for (size_t i = 0; i < num_first_plt_words - 1; i++)
{
if (parameters->options().be8())
{
elfcpp::Swap<32, false>::writeval(pov + i * 4,
first_plt_entry[i]);
}
else
{
elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
first_plt_entry[i]);
}
}
// Last word in first PLT entry is &GOT[0] - .
elfcpp::Swap<32, big_endian>::writeval(pov + 16,
got_address - (plt_address + 16));
}
// Subsequent entries in the PLT.
// This class generates short (12-byte) entries, for displacements up to 2^28.
template<bool big_endian>
class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
{
public:
Output_data_plt_arm_short(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
{ }
protected:
// Return the size of a PLT entry.
virtual unsigned int
do_get_plt_entry_size() const
{ return sizeof(plt_entry); }
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset);
private:
// Template for subsequent PLT entries.
static const uint32_t plt_entry[3];
};
template<bool big_endian>
const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
{
0xe28fc600, // add ip, pc, #0xNN00000
0xe28cca00, // add ip, ip, #0xNN000
0xe5bcf000, // ldr pc, [ip, #0xNNN]!
};
template<bool big_endian>
void
Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{
int32_t offset = ((got_address + got_offset)
- (plt_address + plt_offset + 8));
if (offset < 0 || offset > 0x0fffffff)
gold_error(_("PLT offset too large, try linking with --long-plt"));
uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
if (parameters->options().be8())
{
elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
}
else
{
elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
}
}
// This class generates long (16-byte) entries, for arbitrary displacements.
template<bool big_endian>
class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
{
public:
Output_data_plt_arm_long(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
{ }
protected:
// Return the size of a PLT entry.
virtual unsigned int
do_get_plt_entry_size() const
{ return sizeof(plt_entry); }
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset);
private:
// Template for subsequent PLT entries.
static const uint32_t plt_entry[4];
};
template<bool big_endian>
const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
{
0xe28fc200, // add ip, pc, #0xN0000000
0xe28cc600, // add ip, ip, #0xNN00000
0xe28cca00, // add ip, ip, #0xNN000
0xe5bcf000, // ldr pc, [ip, #0xNNN]!
};
template<bool big_endian>
void
Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{
int32_t offset = ((got_address + got_offset)
- (plt_address + plt_offset + 8));
uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
if (parameters->options().be8())
{
elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
}
else
{
elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
}
}
// Write out the PLT. This uses the hand-coded instructions above,
// and adjusts them as needed. This is all specified by the arm ELF
// Processor Supplement.
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
const off_t got_file_offset = this->got_plt_->offset();
gold_assert(got_file_offset + this->got_plt_->data_size()
== this->got_irelative_->offset());
const section_size_type got_size =
convert_to_section_size_type(this->got_plt_->data_size()
+ this->got_irelative_->data_size());
unsigned char* const got_view = of->get_output_view(got_file_offset,
got_size);
unsigned char* pov = oview;
Arm_address plt_address = this->address();
Arm_address got_address = this->got_plt_->address();
// Write first PLT entry.
this->fill_first_plt_entry(pov, got_address, plt_address);
pov += this->first_plt_entry_offset();
unsigned char* got_pov = got_view;
memset(got_pov, 0, 12);
got_pov += 12;
unsigned int plt_offset = this->first_plt_entry_offset();
unsigned int got_offset = 12;
const unsigned int count = this->count_ + this->irelative_count_;
gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
for (unsigned int i = 0;
i < count;
++i,
pov += this->get_plt_entry_size(),
got_pov += 4,
plt_offset += this->get_plt_entry_size(),
got_offset += 4)
{
// Set and adjust the PLT entry itself.
this->fill_plt_entry(pov, got_address, plt_address,
got_offset, plt_offset);
Arm_address value;
if (i < this->count_)
{
// For non-irelative got entries, the value is the beginning of plt.
value = plt_address;
}
else
{
// For irelative got entries, the value is the (global/local) symbol
// address.
const IRelative_data& idata =
this->irelative_data_vec_[i - this->count_];
if (idata.symbol_is_global_)
{
// Set the entry in the GOT for irelative symbols. The content is
// the address of the ifunc, not the address of plt start.
const Sized_symbol<32>* sized_symbol = idata.u_.global;
gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
value = sized_symbol->value();
}
else
{
value = idata.u_.local.relobj->local_symbol_value(
idata.u_.local.index, 0);
}
}
elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
}
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
of->write_output_view(offset, oview_size, oview);
of->write_output_view(got_file_offset, got_size, got_view);
}
// Create a PLT entry for a global symbol.
template<bool big_endian>
void
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
Symbol* gsym)
{
if (gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
this->plt_->add_entry(symtab, layout, gsym);
}
// Create the PLT section.
template<bool big_endian>
void
Target_arm<big_endian>::make_plt_section(
Symbol_table* symtab, Layout* layout)
{
if (this->plt_ == NULL)
{
// Create the GOT section first.
this->got_section(symtab, layout);
// GOT for irelatives is create along with got.plt.
gold_assert(this->got_ != NULL
&& this->got_plt_ != NULL
&& this->got_irelative_ != NULL);
this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
this->got_irelative_);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->plt_, ORDER_PLT, false);
symtab->define_in_output_data("$a", NULL,
Symbol_table::PREDEFINED,
this->plt_,
0, 0, elfcpp::STT_NOTYPE,
elfcpp::STB_LOCAL,
elfcpp::STV_DEFAULT, 0,
false, false);
}
}
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
template<bool big_endian>
void
Target_arm<big_endian>::make_local_ifunc_plt_entry(
Symbol_table* symtab, Layout* layout,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index)
{
if (relobj->local_has_plt_offset(local_sym_index))
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
relobj,
local_sym_index);
relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
// Return the number of entries in the PLT.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::plt_entry_count() const
{
if (this->plt_ == NULL)
return 0;
return this->plt_->entry_count();
}
// Return the offset of the first non-reserved PLT entry.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::first_plt_entry_offset() const
{
return this->plt_->first_plt_entry_offset();
}
// Return the size of each PLT entry.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::plt_entry_size() const
{
return this->plt_->get_plt_entry_size();
}
// Get the section to use for TLS_DESC relocations.
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
{
return this->plt_section()->rel_tls_desc(layout);
}
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
template<bool big_endian>
void
Target_arm<big_endian>::define_tls_base_symbol(
Symbol_table* symtab,
Layout* layout)
{
if (this->tls_base_symbol_defined_)
return;
Output_segment* tls_segment = layout->tls_segment();
if (tls_segment != NULL)
{
bool is_exec = parameters->options().output_is_executable();
symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
Symbol_table::PREDEFINED,
tls_segment, 0, 0,
elfcpp::STT_TLS,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
(is_exec
? Symbol::SEGMENT_END
: Symbol::SEGMENT_START),
true);
}
this->tls_base_symbol_defined_ = true;
}
// Create a GOT entry for the TLS module index.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::got_mod_index_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object)
{
if (this->got_mod_index_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
unsigned int got_offset;
if (!parameters->doing_static_link())
{
got_offset = got->add_constant(0);
Reloc_section* rel_dyn = this->rel_dyn_section(layout);
rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
got_offset);
}
else
{
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
got_offset = got->add_constant(1);
}
got->add_constant(0);
this->got_mod_index_offset_ = got_offset;
}
return this->got_mod_index_offset_;
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
template<bool big_endian>
tls::Tls_optimization
Target_arm<big_endian>::optimize_tls_reloc(bool, int)
{
// FIXME: Currently we do not do any TLS optimization.
return tls::TLSOPT_NONE;
}
// Get the Reference_flags for a particular relocation.
template<bool big_endian>
int
Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
// No symbol reference.
return 0;
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
case elfcpp::R_ARM_ABS32_NOI:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_THM_PC8:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
case elfcpp::R_ARM_THM_PC12:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_MOVW_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL:
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_GOTOFF12:
case elfcpp::R_ARM_SBREL31:
return Symbol::RELATIVE_REF;
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// R_ARM_PREL31 is not used to relocate call/jump instructions but
// in unwind tables. It may point to functions via PLTs.
// So we treat it like call/jump relocations above.
case elfcpp::R_ARM_PREL31:
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
// Absolute in GOT.
return Symbol::ABSOLUTE_REF;
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
return Symbol::TLS_REF;
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_RELATIVE:
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
// Not expected. We will give an error later.
return 0;
}
}
// Report an unsupported relocation against a local symbol.
template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_local(
Sized_relobj_file<32, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error. The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// read-only. But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.
template<bool big_endian>
void
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
unsigned int r_type)
{
switch (r_type)
{
// These are the relocation types supported by glibc for ARM.
case elfcpp::R_ARM_RELATIVE:
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS32_NOI:
case elfcpp::R_ARM_IRELATIVE:
case elfcpp::R_ARM_PC24:
// FIXME: The following 3 types are not supported by Android's dynamic
// linker.
case elfcpp::R_ARM_TLS_DTPMOD32:
case elfcpp::R_ARM_TLS_DTPOFF32:
case elfcpp::R_ARM_TLS_TPOFF32:
return;
default:
{
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
const Arm_reloc_property* reloc_property =
arm_reloc_property_table->get_reloc_property(r_type);
gold_assert(reloc_property != NULL);
object->error(_("requires unsupported dynamic reloc %s; "
"recompile with -fPIC"),
reloc_property->name().c_str());
this->issued_non_pic_error_ = true;
return;
}
case elfcpp::R_ARM_NONE:
gold_unreachable();
}
}
// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.
template<bool big_endian>
bool
Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
Sized_relobj_file<32, big_endian>* object,
unsigned int r_type)
{
int flags = Scan::get_reference_flags(r_type);
if (flags & Symbol::TLS_REF)
{
gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
object->name().c_str(), r_type);
return false;
}
return flags != 0;
}
// Scan a relocation for a local symbol.
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.
template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
Layout* layout,
Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<32, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
r_type = target->get_real_reloc_type(r_type);
// A local STT_GNU_IFUNC symbol may require a PLT entry.
bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
}
switch (r_type)
{
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
break;
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS32_NOI:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location. The relocation applied at link time will
// apply the link-time value, so we flag the location with
// an R_ARM_RELATIVE relocation so the dynamic loader can
// relocate it easily.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
// If we are to add more other reloc types than R_ARM_ABS32,
// we need to add check_non_pic(object, r_type) here.
rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
output_section, data_shndx,
reloc.get_r_offset(), is_ifunc);
}
break;
case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location. Because the addend needs to remain in the
// data section, we need to be careful not to apply this
// relocation statically.
if (parameters->options().output_is_position_independent())
{
check_non_pic(object, r_type);
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (lsym.get_st_type() != elfcpp::STT_SECTION)
rel_dyn->add_local(object, r_sym, r_type, output_section,
data_shndx, reloc.get_r_offset());
else
{
gold_assert(lsym.get_st_value() == 0);
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx,
&is_ordinary);
if (!is_ordinary)
object->error(_("section symbol %u has bad shndx %u"),
r_sym, shndx);
else
rel_dyn->add_local_section(object, shndx,
r_type, output_section,
data_shndx, reloc.get_r_offset());
}
}
break;
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_PC8:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_SBREL31:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
case elfcpp::R_ARM_THM_PC12:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_MOVW_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// We don't need to do anything for a relative addressing relocation
// against a local symbol if it does not reference the GOT.
break;
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_GOTOFF12:
// We need a GOT section:
target->got_section(symtab, layout);
break;
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_PREL:
{
// The symbol requires a GOT entry.
Arm_output_data_got<big_endian>* got =
target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
{
// If we are generating a shared object, we need to add a
// dynamic RELATIVE relocation for this symbol's GOT entry.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
rel_dyn->add_local_relative(
object, r_sym, elfcpp::R_ARM_RELATIVE, got,
object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
}
}
}
break;
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
// This should have been mapped to another type already.
// Fall through.
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_RELATIVE:
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
// These are initial TLS relocs, which are expected when
// linking.
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
{
bool output_is_shared = parameters->options().shared();
const tls::Tls_optimization optimized_type
= Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
r_type);
switch (r_type)
{
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
if (!is_ordinary)
{
object->error(_("local symbol %u has bad shndx %u"),
r_sym, shndx);
break;
}
if (!parameters->doing_static_link())
got->add_local_pair_with_rel(object, r_sym, shndx,
GOT_TYPE_TLS_PAIR,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_DTPMOD32);
else
got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
object, r_sym);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
break;
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym =
elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (!parameters->doing_static_link())
got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_TPOFF32);
else if (!object->local_has_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET))
{
got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
unsigned int got_offset =
object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
got->add_static_reloc(got_offset,
elfcpp::R_ARM_TLS_TPOFF32, object,
r_sym);
}
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LE32: // Local-exec
layout->set_has_static_tls();
if (output_is_shared)
{
// We need to create a dynamic relocation.
gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
output_section, data_shndx,
reloc.get_r_offset());
}
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
unsupported_reloc_local(object, r_type);
break;
}
}
// Report an unsupported relocation against a global symbol.
template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_global(
Sized_relobj_file<32, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_SBREL31:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// All the relocations above are branches except SBREL31 and PREL31.
return false;
default:
// Be conservative and assume this is a function pointer.
return true;
}
}
template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
Symbol_table*,
Layout*,
Target_arm<big_endian>* target,
Sized_relobj_file<32, big_endian>*,
unsigned int,
Output_section*,
const elfcpp::Rel<32, big_endian>&,
unsigned int r_type,
const elfcpp::Sym<32, big_endian>&)
{
r_type = target->get_real_reloc_type(r_type);
return possible_function_pointer_reloc(r_type);
}
template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
Symbol_table*,
Layout*,
Target_arm<big_endian>* target,
Sized_relobj_file<32, big_endian>*,
unsigned int,
Output_section*,
const elfcpp::Rel<32, big_endian>&,
unsigned int r_type,
Symbol* gsym)
{
// GOT is not a function.
if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
return false;
r_type = target->get_real_reloc_type(r_type);
return possible_function_pointer_reloc(r_type);
}
// Scan a relocation for a global symbol.
template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
Layout* layout,
Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym)
{
// A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
// section. We check here to avoid creating a dynamic reloc against
// _GLOBAL_OFFSET_TABLE_.
if (!target->has_got_section()
&& strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
target->got_section(symtab, layout);
// A STT_GNU_IFUNC symbol may require a PLT entry.
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& this->reloc_needs_plt_for_ifunc(object, r_type))
target->make_plt_entry(symtab, layout, gsym);
r_type = target->get_real_reloc_type(r_type);
switch (r_type)
{
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
break;
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
case elfcpp::R_ARM_ABS32_NOI:
// Absolute addressing relocations.
{
// Make a PLT entry if necessary.
if (this->symbol_needs_plt_entry(gsym))
{
target->make_plt_entry(symtab, layout, gsym);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (!parameters->options().output_is_position_independent()
&& gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if ((r_type == elfcpp::R_ARM_ABS32
|| r_type == elfcpp::R_ARM_ABS32_NOI)
&& gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false)
&& !gsym->is_from_dynobj()
&& !gsym->is_undefined()
&& !gsym->is_preemptible())
{
// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
// symbol. This makes a function address in a PIE executable
// match the address in a shared library that it links against.
Reloc_section* rel_irelative =
target->rel_irelative_section(layout);
unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
rel_irelative->add_symbolless_global_addend(
gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset());
}
else if ((r_type == elfcpp::R_ARM_ABS32
|| r_type == elfcpp::R_ARM_ABS32_NOI)
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
output_section, object,
data_shndx, reloc.get_r_offset());
}
else
{
check_non_pic(object, r_type);
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset());
}
}
}
break;
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_GOTOFF12:
// We need a GOT section.
target->got_section(symtab, layout);
break;
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_THM_PC8:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
case elfcpp::R_ARM_THM_PC12:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_MOVW_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL:
// Relative addressing relocations.
{
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (parameters->options().output_is_executable()
&& target->may_need_copy_reloc(gsym))
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else
{
check_non_pic(object, r_type);
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset());
}
}
}
break;
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_SBREL31:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// All the relocation above are branches except for the PREL31 ones.
// A PREL31 relocation can point to a personality function in a shared
// library. In that case we want to use a PLT because we want to
// call the personality routine and the dynamic linkers we care about
// do not support dynamic PREL31 relocations. An REL31 relocation may
// point to a function whose unwinding behaviour is being described but
// we will not mistakenly generate a PLT for that because we should use
// a local section symbol.
// If the symbol is fully resolved, this is just a relative
// local reloc. Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
break;
// If building a shared library, we can also skip the PLT entry
// if the symbol is defined in the output file and is protected
// or hidden.
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible())
break;
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
{
// The symbol requires a GOT entry.
Arm_output_data_got<big_endian>* got =
target->got_section(symtab, layout);
if (gsym->final_value_is_known())
{
// For a STT_GNU_IFUNC symbol we want the PLT address.
if (gsym->type() == elfcpp::STT_GNU_IFUNC)
got->add_global_plt(gsym, GOT_TYPE_STANDARD);
else
got->add_global(gsym, GOT_TYPE_STANDARD);
}
else
{
// If this symbol is not fully resolved, we need to add a
// GOT entry with a dynamic relocation.
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible()
|| (gsym->visibility() == elfcpp::STV_PROTECTED
&& parameters->options().shared())
|| (gsym->type() == elfcpp::STT_GNU_IFUNC
&& parameters->options().output_is_position_independent()))
got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
rel_dyn, elfcpp::R_ARM_GLOB_DAT);
else
{
// For a STT_GNU_IFUNC symbol we want to write the PLT
// offset into the GOT, so that function pointer
// comparisons work correctly.
bool is_new;
if (gsym->type() != elfcpp::STT_GNU_IFUNC)
is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
else
{
is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
// Tell the dynamic linker to use the PLT address
// when resolving relocations.
if (gsym->is_from_dynobj()
&& !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
if (is_new)
rel_dyn->add_global_relative(
gsym, elfcpp::R_ARM_RELATIVE, got,
gsym->got_offset(GOT_TYPE_STANDARD));
}
}
}
break;
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
// These should have been mapped to other types already.
// Fall through.
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_RELATIVE:
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
// These are initial tls relocs, which are expected when
// linking.
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
{
const bool is_final = gsym->final_value_is_known();
const tls::Tls_optimization optimized_type
= Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
if (!parameters->doing_static_link())
got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_DTPMOD32,
elfcpp::R_ARM_TLS_DTPOFF32);
else
got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
break;
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
if (!parameters->doing_static_link())
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_TPOFF32);
else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
{
got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
unsigned int got_offset =
gsym->got_offset(GOT_TYPE_TLS_OFFSET);
got->add_static_reloc(got_offset,
elfcpp::R_ARM_TLS_TPOFF32, gsym);
}
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LE32: // Local-exec
layout->set_has_static_tls();
if (parameters->options().shared())
{
// We need to create a dynamic relocation.
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
output_section, object,
data_shndx, reloc.get_r_offset());
}
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
unsupported_reloc_global(object, r_type, gsym);
break;
}
}
// Process relocations for gc.
template<bool big_endian>
void
Target_arm<big_endian>::gc_process_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_arm<big_endian> Arm;
typedef typename Target_arm<big_endian>::Scan Scan;
gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Scan relocations for a section.
template<bool big_endian>
void
Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
if (sh_type == elfcpp::SHT_RELA)
{
gold_error(_("%s: unsupported RELA reloc section"),
object->name().c_str());
return;
}
gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Finalize the sections.
template<bool big_endian>
void
Target_arm<big_endian>::do_finalize_sections(
Layout* layout,
const Input_objects* input_objects,
Symbol_table*)
{
bool merged_any_attributes = false;
// Merge processor-specific flags.
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*p);
if (arm_relobj->merge_flags_and_attributes())
{
this->merge_processor_specific_flags(
arm_relobj->name(),
arm_relobj->processor_specific_flags());
this->merge_object_attributes(arm_relobj->name().c_str(),
arm_relobj->attributes_section_data());
merged_any_attributes = true;
}
}
for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
p != input_objects->dynobj_end();
++p)
{
Arm_dynobj<big_endian>* arm_dynobj =
Arm_dynobj<big_endian>::as_arm_dynobj(*p);
this->merge_processor_specific_flags(
arm_dynobj->name(),
arm_dynobj->processor_specific_flags());
this->merge_object_attributes(arm_dynobj->name().c_str(),
arm_dynobj->attributes_section_data());
merged_any_attributes = true;
}
// Create an empty uninitialized attribute section if we still don't have it
// at this moment. This happens if there is no attributes sections in all
// inputs.
if (this->attributes_section_data_ == NULL)
this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
const Object_attribute* cpu_arch_attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
// Check if we need to use Cortex-A8 workaround.
if (parameters->options().user_set_fix_cortex_a8())
this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
else
{
// If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
// Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
// profile.
const Object_attribute* cpu_arch_profile_attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
this->fix_cortex_a8_ =
(cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
&& (cpu_arch_profile_attr->int_value() == 'A'
|| cpu_arch_profile_attr->int_value() == 0));
}
// Check if we can use V4BX interworking.
// The V4BX interworking stub contains BX instruction,
// which is not specified for some profiles.
if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
&& !this->may_use_v4t_interworking())
gold_error(_("unable to provide V4BX reloc interworking fix up; "
"the target profile does not support BX instruction"));
// Fill in some more dynamic tags.
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL
: this->plt_->rel_plt());
layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
this->rel_dyn_, true, false);
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit(this->rel_dyn_section(layout));
// Handle the .ARM.exidx section.
Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
if (!parameters->options().relocatable())
{
if (exidx_section != NULL
&& exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
{
// For the ARM target, we need to add a PT_ARM_EXIDX segment for
// the .ARM.exidx section.
if (!layout->script_options()->saw_phdrs_clause())
{
gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
0)
== NULL);
Output_segment* exidx_segment =
layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
exidx_segment->add_output_section_to_nonload(exidx_section,
elfcpp::PF_R);
}
}
}
// Create an .ARM.attributes section if we have merged any attributes
// from inputs.
if (merged_any_attributes)
{
Output_attributes_section_data* attributes_section =
new Output_attributes_section_data(*this->attributes_section_data_);
layout->add_output_section_data(".ARM.attributes",
elfcpp::SHT_ARM_ATTRIBUTES, 0,
attributes_section, ORDER_INVALID,
false);
}
// Fix up links in section EXIDX headers.
for (Layout::Section_list::const_iterator p = layout->section_list().begin();
p != layout->section_list().end();
++p)
if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
{
Arm_output_section<big_endian>* os =
Arm_output_section<big_endian>::as_arm_output_section(*p);
os->set_exidx_section_link();
}
}
// Return whether a direct absolute static relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation other than R_ARM_RELATIVE, the addend
// of the relocation is carried in the data, and we must not
// apply the static relocation.
template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
const Sized_symbol<32>* gsym,
unsigned int r_type,
bool is_32bit,
Output_section* output_section)
{
// If the output section is not allocated, then we didn't call
// scan_relocs, we didn't create a dynamic reloc, and we must apply
// the reloc here.
if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
return true;
int ref_flags = Scan::get_reference_flags(r_type);
// For local symbols, we will have created a non-RELATIVE dynamic
// relocation only if (a) the output is position independent,
// (b) the relocation is absolute (not pc- or segment-relative), and
// (c) the relocation is not 32 bits wide.
if (gsym == NULL)
return !(parameters->options().output_is_position_independent()
&& (ref_flags & Symbol::ABSOLUTE_REF)
&& !is_32bit);
// For global symbols, we use the same helper routines used in the
// scan pass. If we did not create a dynamic relocation, or if we
// created a RELATIVE dynamic relocation, we should apply the static
// relocation.
bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
&& gsym->can_use_relative_reloc(ref_flags
& Symbol::FUNCTION_CALL);
return !has_dyn || is_rel;
}
// Perform a relocation.
template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::relocate(
const Relocate_info<32, big_endian>* relinfo,
unsigned int,
Target_arm* target,
Output_section* output_section,
size_t relnum,
const unsigned char* preloc,
const Sized_symbol<32>* gsym,
const Symbol_value<32>* psymval,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
if (view == NULL)
return true;
typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
const elfcpp::Rel<32, big_endian> rel(preloc);
unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
r_type = target->get_real_reloc_type(r_type);
const Arm_reloc_property* reloc_property =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
if (reloc_property == NULL)
{
std::string reloc_name =
arm_reloc_property_table->reloc_name_in_error_message(r_type);
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
_("cannot relocate %s in object file"),
reloc_name.c_str());
return true;
}
const Arm_relobj<big_endian>* object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
// If the final branch target of a relocation is THUMB instruction, this
// is 1. Otherwise it is 0.
Arm_address thumb_bit = 0;
Symbol_value<32> symval;
bool is_weakly_undefined_without_plt = false;
bool have_got_offset = false;
unsigned int got_offset = 0;
// If the relocation uses the GOT entry of a symbol instead of the symbol
// itself, we don't care about whether the symbol is defined or what kind
// of symbol it is.
if (reloc_property->uses_got_entry())
{
// Get the GOT offset.
// The GOT pointer points to the end of the GOT section.
// We need to subtract the size of the GOT section to get
// the actual offset to use in the relocation.
// TODO: We should move GOT offset computing code in TLS relocations
// to here.
switch (r_type)
{
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_PREL:
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
- target->got_size());
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
gold_assert(object->local_has_got_offset(r_sym,
GOT_TYPE_STANDARD));
got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
- target->got_size());
}
have_got_offset = true;
break;
default:
break;
}
}
else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
{
if (gsym != NULL)
{
// This is a global symbol. Determine if we use PLT and if the
// final target is THUMB.
if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
{
// This uses a PLT, change the symbol value.
symval.set_output_value(target->plt_address_for_global(gsym));
psymval = &symval;
}
else if (gsym->is_weak_undefined())
{
// This is a weakly undefined symbol and we do not use PLT
// for this relocation. A branch targeting this symbol will
// be converted into an NOP.
is_weakly_undefined_without_plt = true;
}
else if (gsym->is_undefined() && reloc_property->uses_symbol())
{
// This relocation uses the symbol value but the symbol is
// undefined. Exit early and have the caller reporting an
// error.
return true;
}
else
{
// Set thumb bit if symbol:
// -Has type STT_ARM_TFUNC or
// -Has type STT_FUNC, is defined and with LSB in value set.
thumb_bit =
(((gsym->type() == elfcpp::STT_ARM_TFUNC)
|| (gsym->type() == elfcpp::STT_FUNC
&& !gsym->is_undefined()
&& ((psymval->value(object, 0) & 1) != 0)))
? 1
: 0);
}
}
else
{
// This is a local symbol. Determine if the final target is THUMB.
// We saved this information when all the local symbols were read.
elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
{
symval.set_output_value(
target->plt_address_for_local(object, r_sym));
psymval = &symval;
}
}
}
else
{
// This is a fake relocation synthesized for a stub. It does not have
// a real symbol. We just look at the LSB of the symbol value to
// determine if the target is THUMB or not.
thumb_bit = ((psymval->value(object, 0) & 1) != 0);
}
// Strip LSB if this points to a THUMB target.
if (thumb_bit != 0
&& reloc_property->uses_thumb_bit()
&& ((psymval->value(object, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval->value(object, 0) & ~static_cast<Arm_address>(1);
symval.set_output_value(stripped_value);
psymval = &symval;
}
// To look up relocation stubs, we need to pass the symbol table index of
// a local symbol.
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
// Get the addressing origin of the output segment defining the
// symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
Arm_address sym_origin = 0;
if (reloc_property->uses_symbol_base())
{
if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
// R_ARM_BASE_ABS with the NULL symbol will give the
// absolute address of the GOT origin (GOT_ORG) (see ARM IHI
// 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
sym_origin = target->got_plt_section()->address();
else if (gsym == NULL)
sym_origin = 0;
else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
sym_origin = gsym->output_segment()->vaddr();
else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
sym_origin = gsym->output_data()->address();
// TODO: Assumes the segment base to be zero for the global symbols
// till the proper support for the segment-base-relative addressing
// will be implemented. This is consistent with GNU ld.
}
// For relative addressing relocation, find out the relative address base.
Arm_address relative_address_base = 0;
switch(reloc_property->relative_address_base())
{
case Arm_reloc_property::RAB_NONE:
// Relocations with relative address bases RAB_TLS and RAB_tp are
// handled by relocate_tls. So we do not need to do anything here.
case Arm_reloc_property::RAB_TLS:
case Arm_reloc_property::RAB_tp:
break;
case Arm_reloc_property::RAB_B_S:
relative_address_base = sym_origin;
break;
case Arm_reloc_property::RAB_GOT_ORG:
relative_address_base = target->got_plt_section()->address();
break;
case Arm_reloc_property::RAB_P:
relative_address_base = address;
break;
case Arm_reloc_property::RAB_Pa:
relative_address_base = address & 0xfffffffcU;
break;
default:
gold_unreachable();
}
typename Arm_relocate_functions::Status reloc_status =
Arm_relocate_functions::STATUS_OKAY;
bool check_overflow = reloc_property->checks_overflow();
switch (r_type)
{
case elfcpp::R_ARM_NONE:
break;
case elfcpp::R_ARM_ABS8:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
break;
case elfcpp::R_ARM_ABS12:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
break;
case elfcpp::R_ARM_ABS16:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
break;
case elfcpp::R_ARM_ABS32:
if (should_apply_static_reloc(gsym, r_type, true, output_section))
reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
thumb_bit);
break;
case elfcpp::R_ARM_ABS32_NOI:
if (should_apply_static_reloc(gsym, r_type, true, output_section))
// No thumb bit for this relocation: (S + A)
reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
0);
break;
case elfcpp::R_ARM_MOVW_ABS_NC:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::movw(view, object, psymval,
0, thumb_bit,
check_overflow);
break;
case elfcpp::R_ARM_MOVT_ABS:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
break;
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
0, thumb_bit, false);
break;
case elfcpp::R_ARM_THM_MOVT_ABS:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::thm_movt(view, object,
psymval, 0);
break;
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVW_BREL:
reloc_status =
Arm_relocate_functions::movw(view, object, psymval,
relative_address_base, thumb_bit,
check_overflow);
break;
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_MOVT_BREL:
reloc_status =
Arm_relocate_functions::movt(view, object, psymval,
relative_address_base);
break;
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL:
reloc_status =
Arm_relocate_functions::thm_movw(view, object, psymval,
relative_address_base,
thumb_bit, check_overflow);
break;
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVT_BREL:
reloc_status =
Arm_relocate_functions::thm_movt(view, object, psymval,
relative_address_base);
break;
case elfcpp::R_ARM_REL32:
reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
address, thumb_bit);
break;
case elfcpp::R_ARM_THM_ABS5:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
break;
// Thumb long branches.
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_THM_JUMP24:
reloc_status =
Arm_relocate_functions::thumb_branch_common(
r_type, relinfo, view, gsym, object, r_sym, psymval, address,
thumb_bit, is_weakly_undefined_without_plt);
break;
case elfcpp::R_ARM_GOTOFF32:
{
Arm_address got_origin;
got_origin = target->got_plt_section()->address();
reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
got_origin, thumb_bit);
}
break;
case elfcpp::R_ARM_BASE_PREL:
gold_assert(gsym != NULL);
reloc_status =
Arm_relocate_functions::base_prel(view, sym_origin, address);
break;
case elfcpp::R_ARM_BASE_ABS:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
break;
case elfcpp::R_ARM_GOT_BREL:
gold_assert(have_got_offset);
reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
break;
case elfcpp::R_ARM_GOT_PREL:
gold_assert(have_got_offset);
// Get the address origin for GOT PLT, which is allocated right
// after the GOT section, to calculate an absolute address of
// the symbol GOT entry (got_origin + got_offset).
Arm_address got_origin;
got_origin = target->got_plt_section()->address();
reloc_status = Arm_relocate_functions::got_prel(view,
got_origin + got_offset,
address);
break;
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_XPC25:
gold_assert(gsym == NULL
|| gsym->has_plt_offset()
|| gsym->final_value_is_known()
|| (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()));
reloc_status =
Arm_relocate_functions::arm_branch_common(
r_type, relinfo, view, gsym, object, r_sym, psymval, address,
thumb_bit, is_weakly_undefined_without_plt);
break;
case elfcpp::R_ARM_THM_JUMP19:
reloc_status =
Arm_relocate_functions::thm_jump19(view, object, psymval, address,
thumb_bit);
break;
case elfcpp::R_ARM_THM_JUMP6:
reloc_status =
Arm_relocate_functions::thm_jump6(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_JUMP8:
reloc_status =
Arm_relocate_functions::thm_jump8(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_JUMP11:
reloc_status =
Arm_relocate_functions::thm_jump11(view, object, psymval, address);
break;
case elfcpp::R_ARM_PREL31:
reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
address, thumb_bit);
break;
case elfcpp::R_ARM_V4BX:
if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
{
const bool is_v4bx_interworking =
(target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
reloc_status =
Arm_relocate_functions::v4bx(relinfo, view, object, address,
is_v4bx_interworking);
}
break;
case elfcpp::R_ARM_THM_PC8:
reloc_status =
Arm_relocate_functions::thm_pc8(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_PC12:
reloc_status =
Arm_relocate_functions::thm_pc12(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
reloc_status =
Arm_relocate_functions::thm_alu11(view, object, psymval, address,
thumb_bit);
break;
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_alu(view, object, psymval,
reloc_property->group_index(),
relative_address_base,
thumb_bit, check_overflow);
break;
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
reloc_property->group_index(),
relative_address_base);
break;
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
reloc_property->group_index(),
relative_address_base);
break;
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
reloc_property->group_index(),
relative_address_base);
break;
// These are initial tls relocs, which are expected when
// linking.
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
reloc_status =
this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
view, address, view_size);
break;
// The known and unknown unsupported and/or deprecated relocations.
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
// Just silently leave the method. We should get an appropriate error
// message in the scan methods.
break;
}
// Report any errors.
switch (reloc_status)
{
case Arm_relocate_functions::STATUS_OKAY:
break;
case Arm_relocate_functions::STATUS_OVERFLOW:
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
_("relocation overflow in %s"),
reloc_property->name().c_str());
break;
case Arm_relocate_functions::STATUS_BAD_RELOC:
gold_error_at_location(
relinfo,
relnum,
rel.get_r_offset(),
_("unexpected opcode while processing relocation %s"),
reloc_property->name().c_str());
break;
default:
gold_unreachable();
}
return true;
}
// Perform a TLS relocation.
template<bool big_endian>
inline typename Arm_relocate_functions<big_endian>::Status
Target_arm<big_endian>::Relocate::relocate_tls(
const Relocate_info<32, big_endian>* relinfo,
Target_arm<big_endian>* target,
size_t relnum,
const elfcpp::Rel<32, big_endian>& rel,
unsigned int r_type,
const Sized_symbol<32>* gsym,
const Symbol_value<32>* psymval,
unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr address,
section_size_type /*view_size*/ )
{
typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
typedef Relocate_functions<32, big_endian> RelocFuncs;
Output_segment* tls_segment = relinfo->layout->tls_segment();
const Sized_relobj_file<32, big_endian>* object = relinfo->object;
elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
const bool is_final = (gsym == NULL
? !parameters->options().shared()
: gsym->final_value_is_known());
const tls::Tls_optimization optimized_type
= Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
{
unsigned int got_type = GOT_TYPE_TLS_PAIR;
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type) - target->got_size();
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset = (object->local_got_offset(r_sym, got_type)
- target->got_size());
}
if (optimized_type == tls::TLSOPT_NONE)
{
Arm_address got_entry =
target->got_plt_section()->address() + got_offset;
// Relocate the field with the PC relative offset of the pair of
// GOT entries.
RelocFuncs::pcrel32_unaligned(view, got_entry, address);
return ArmRelocFuncs::STATUS_OKAY;
}
}
break;
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the module index.
unsigned int got_offset;
got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
- target->got_size());
Arm_address got_entry =
target->got_plt_section()->address() + got_offset;
// Relocate the field with the PC relative offset of the pair of
// GOT entries.
RelocFuncs::pcrel32_unaligned(view, got_entry, address);
return ArmRelocFuncs::STATUS_OKAY;
}
break;
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
RelocFuncs::rel32_unaligned(view, value);
return ArmRelocFuncs::STATUS_OKAY;
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the tp-relative offset of the symbol.
unsigned int got_type = GOT_TYPE_TLS_OFFSET;
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset = object->local_got_offset(r_sym, got_type);
}
// All GOT offsets are relative to the end of the GOT.
got_offset -= target->got_size();
Arm_address got_entry =
target->got_plt_section()->address() + got_offset;
// Relocate the field with the PC relative offset of the GOT entry.
RelocFuncs::pcrel32_unaligned(view, got_entry, address);
return ArmRelocFuncs::STATUS_OKAY;
}
break;
case elfcpp::R_ARM_TLS_LE32: // Local-exec
// If we're creating a shared library, a dynamic relocation will
// have been created for this location, so do not apply it now.
if (!parameters->options().shared())
{
gold_assert(tls_segment != NULL);
// $tp points to the TCB, which is followed by the TLS, so we
// need to add TCB size to the offset.
Arm_address aligned_tcb_size =
align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
}
return ArmRelocFuncs::STATUS_OKAY;
default:
gold_unreachable();
}
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
_("unsupported reloc %u"),
r_type);
return ArmRelocFuncs::STATUS_BAD_RELOC;
}
// Relocate section data.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_section(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Arm_address address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
gold_assert(sh_type == elfcpp::SHT_REL);
// See if we are relocating a relaxed input section. If so, the view
// covers the whole output section and we need to adjust accordingly.
if (needs_special_offset_handling)
{
const Output_relaxed_input_section* poris =
output_section->find_relaxed_input_section(relinfo->object,
relinfo->data_shndx);
if (poris != NULL)
{
Arm_address section_address = poris->address();
section_size_type section_size = poris->data_size();
gold_assert((section_address >= address)
&& ((section_address + section_size)
<= (address + view_size)));
off_t offset = section_address - address;
view += offset;
address += offset;
view_size = section_size;
}
}
gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
gold::Default_comdat_behavior, Classify_reloc>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
// Return the size of a relocation while scanning during a relocatable
// link.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
unsigned int r_type,
Relobj* object)
{
Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
r_type = arm_target->get_real_reloc_type(r_type);
const Arm_reloc_property* arp =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
if (arp != NULL)
return arp->size();
else
{
std::string reloc_name =
arm_reloc_property_table->reloc_name_in_error_message(r_type);
gold_error(_("%s: unexpected %s in object file"),
object->name().c_str(), reloc_name.c_str());
return 0;
}
}
// Scan the relocs during a relocatable link.
template<bool big_endian>
void
Target_arm<big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
Scan_relocatable_relocs;
gold_assert(sh_type == elfcpp::SHT_REL);
gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Scan the relocs for --emit-relocs.
template<bool big_endian>
void
Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr)
{
typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
Classify_reloc;
typedef gold::Default_emit_relocs_strategy<Classify_reloc>
Emit_relocs_strategy;
gold_assert(sh_type == elfcpp::SHT_REL);
gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_syms,
rr);
}
// Emit relocations for a section.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_relocs(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
unsigned char* view,
Arm_address view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
gold_assert(sh_type == elfcpp::SHT_REL);
gold::relocate_relocs<32, big_endian, Classify_reloc>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
// Perform target-specific processing in a relocatable link. This is
// only used if we use the relocation strategy RELOC_SPECIAL.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_special_relocatable(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* preloc_in,
size_t relnum,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type,
unsigned char* preloc_out)
{
// We can only handle REL type relocation sections.
gold_assert(sh_type == elfcpp::SHT_REL);
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
Reltype_write;
const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
const Arm_relobj<big_endian>* object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
const unsigned int local_count = object->local_symbol_count();
Reltype reloc(preloc_in);
Reltype_write reloc_write(preloc_out);
elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
const Arm_reloc_property* arp =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
gold_assert(arp != NULL);
// Get the new symbol index.
// We only use RELOC_SPECIAL strategy in local relocations.
gold_assert(r_sym < local_count);
// We are adjusting a section symbol. We need to find
// the symbol table index of the section symbol for
// the output section corresponding to input section
// in which this symbol is defined.
bool is_ordinary;
unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
gold_assert(is_ordinary);
Output_section* os = object->output_section(shndx);
gold_assert(os != NULL);
gold_assert(os->needs_symtab_index());
unsigned int new_symndx = os->symtab_index();
// Get the new offset--the location in the output section where
// this relocation should be applied.
Arm_address offset = reloc.get_r_offset();
Arm_address new_offset;
if (offset_in_output_section != invalid_address)
new_offset = offset + offset_in_output_section;
else
{
section_offset_type sot_offset =
convert_types<section_offset_type, Arm_address>(offset);
section_offset_type new_sot_offset =
output_section->output_offset(object, relinfo->data_shndx,
sot_offset);
gold_assert(new_sot_offset != -1);
new_offset = new_sot_offset;
}
// In an object file, r_offset is an offset within the section.
// In an executable or dynamic object, generated by
// --emit-relocs, r_offset is an absolute address.
if (!parameters->options().relocatable())
{
new_offset += view_address;
if (offset_in_output_section != invalid_address)
new_offset -= offset_in_output_section;
}
reloc_write.put_r_offset(new_offset);
reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
// Handle the reloc addend.
// The relocation uses a section symbol in the input file.
// We are adjusting it to use a section symbol in the output
// file. The input section symbol refers to some address in
// the input section. We need the relocation in the output
// file to refer to that same address. This adjustment to
// the addend is the same calculation we use for a simple
// absolute relocation for the input section symbol.
const Symbol_value<32>* psymval = object->local_symbol(r_sym);
// Handle THUMB bit.
Symbol_value<32> symval;
Arm_address thumb_bit =
object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
if (thumb_bit != 0
&& arp->uses_thumb_bit()
&& ((psymval->value(object, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval->value(object, 0) & ~static_cast<Arm_address>(1);
symval.set_output_value(stripped_value);
psymval = &symval;
}
unsigned char* paddend = view + offset;
typename Arm_relocate_functions<big_endian>::Status reloc_status =
Arm_relocate_functions<big_endian>::STATUS_OKAY;
switch (r_type)
{
case elfcpp::R_ARM_ABS8:
reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
psymval);
break;
case elfcpp::R_ARM_ABS12:
reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
psymval);
break;
case elfcpp::R_ARM_ABS16:
reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
psymval);
break;
case elfcpp::R_ARM_THM_ABS5:
reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
object,
psymval);
break;
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVW_BREL:
reloc_status = Arm_relocate_functions<big_endian>::movw(
paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
break;
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL:
reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
break;
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_THM_JUMP24:
reloc_status =
Arm_relocate_functions<big_endian>::thumb_branch_common(
r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
false);
break;
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_XPC25:
reloc_status =
Arm_relocate_functions<big_endian>::arm_branch_common(
r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
false);
break;
case elfcpp::R_ARM_THM_JUMP19:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
psymval, 0, thumb_bit);
break;
case elfcpp::R_ARM_THM_JUMP6:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_JUMP8:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_JUMP11:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_PREL31:
reloc_status =
Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
thumb_bit);
break;
case elfcpp::R_ARM_THM_PC8:
reloc_status =
Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_PC12:
reloc_status =
Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
reloc_status =
Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
0, thumb_bit);
break;
// These relocation truncate relocation results so we cannot handle them
// in a relocatable link.
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVT_ABS:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
gold_error(_("cannot handle %s in a relocatable link"),
arp->name().c_str());
break;
default:
gold_unreachable();
}
// Report any errors.
switch (reloc_status)
{
case Arm_relocate_functions<big_endian>::STATUS_OKAY:
break;
case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
_("relocation overflow in %s"),
arp->name().c_str());
break;
case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
_("unexpected opcode while processing relocation %s"),
arp->name().c_str());
break;
default:
gold_unreachable();
}
}
// Return the value to use for a dynamic symbol which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<bool big_endian>
uint64_t
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
return this->plt_address_for_global(gsym);
}
// Map platform-specific relocs to real relocs
//
template<bool big_endian>
unsigned int
Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const
{
switch (r_type)
{
case elfcpp::R_ARM_TARGET1:
return this->target1_reloc_;
case elfcpp::R_ARM_TARGET2:
return this->target2_reloc_;
default:
return r_type;
}
}
// Whether if two EABI versions V1 and V2 are compatible.
template<bool big_endian>
bool
Target_arm<big_endian>::are_eabi_versions_compatible(
elfcpp::Elf_Word v1,
elfcpp::Elf_Word v2)
{
// v4 and v5 are the same spec before and after it was released,
// so allow mixing them.
if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
|| (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
|| (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
return true;
return v1 == v2;
}
// Combine FLAGS from an input object called NAME and the processor-specific
// flags in the ELF header of the output. Much of this is adapted from the
// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
// in bfd/elf32-arm.c.
template<bool big_endian>
void
Target_arm<big_endian>::merge_processor_specific_flags(
const std::string& name,
elfcpp::Elf_Word flags)
{
if (this->are_processor_specific_flags_set())
{
elfcpp::Elf_Word out_flags = this->processor_specific_flags();
// Nothing to merge if flags equal to those in output.
if (flags == out_flags)
return;
// Complain about various flag mismatches.
elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
if (!this->are_eabi_versions_compatible(version1, version2)
&& parameters->options().warn_mismatch())
gold_error(_("Source object %s has EABI version %d but output has "
"EABI version %d."),
name.c_str(),
(flags & elfcpp::EF_ARM_EABIMASK) >> 24,
(out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
}
else
{
// If the input is the default architecture and had the default
// flags then do not bother setting the flags for the output
// architecture, instead allow future merges to do this. If no
// future merges ever set these flags then they will retain their
// uninitialised values, which surprise surprise, correspond
// to the default values.
if (flags == 0)
return;
// This is the first time, just copy the flags.
// We only copy the EABI version for now.
this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
}
}
// Adjust ELF file header.
template<bool big_endian>
void
Target_arm<big_endian>::do_adjust_elf_header(
unsigned char* view,
int len)
{
gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
elfcpp::Ehdr<32, big_endian> ehdr(view);
elfcpp::Elf_Word flags = this->processor_specific_flags();
unsigned char e_ident[elfcpp::EI_NIDENT];
memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
if (elfcpp::arm_eabi_version(flags)
== elfcpp::EF_ARM_EABI_UNKNOWN)
e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
else
e_ident[elfcpp::EI_OSABI] = 0;
e_ident[elfcpp::EI_ABIVERSION] = 0;
// Do EF_ARM_BE8 adjustment.
if (parameters->options().be8() && !big_endian)
gold_error("BE8 images only valid in big-endian mode.");
if (parameters->options().be8())
{
flags |= elfcpp::EF_ARM_BE8;
this->set_processor_specific_flags(flags);
}
// If we're working in EABI_VER5, set the hard/soft float ABI flags
// as appropriate.
if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
{
elfcpp::Elf_Half type = ehdr.get_e_type();
if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
{
Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
else
flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
this->set_processor_specific_flags(flags);
}
}
elfcpp::Ehdr_write<32, big_endian> oehdr(view);
oehdr.put_e_ident(e_ident);
oehdr.put_e_flags(this->processor_specific_flags());
}
// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<32, big_endian> to store ARM specific information.
// Hence we need to have our own ELF object creation.
template<bool big_endian>
Object*
Target_arm<big_endian>::do_make_elf_object(
const std::string& name,
Input_file* input_file,
off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
{
int et = ehdr.get_e_type();
// ET_EXEC files are valid input for --just-symbols/-R,
// and we treat them as relocatable objects.
if (et == elfcpp::ET_REL
|| (et == elfcpp::ET_EXEC && input_file->just_symbols()))
{
Arm_relobj<big_endian>* obj =
new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else if (et == elfcpp::ET_DYN)
{
Sized_dynobj<32, big_endian>* obj =
new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else
{
gold_error(_("%s: unsupported ELF file type %d"),
name.c_str(), et);
return NULL;
}
}
// Read the architecture from the Tag_also_compatible_with attribute, if any.
// Returns -1 if no architecture could be read.
// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
template<bool big_endian>
int
Target_arm<big_endian>::get_secondary_compatible_arch(
const Attributes_section_data* pasd)
{
const Object_attribute* known_attributes =
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
// Note: the tag and its argument below are uleb128 values, though
// currently-defined values fit in one byte for each.
const std::string& sv =
known_attributes[elfcpp::Tag_also_compatible_with].string_value();
if (sv.size() == 2
&& sv.data()[0] == elfcpp::Tag_CPU_arch
&& (sv.data()[1] & 128) != 128)
return sv.data()[1];
// This tag is "safely ignorable", so don't complain if it looks funny.
return -1;
}
// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
// The tag is removed if ARCH is -1.
// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
template<bool big_endian>
void
Target_arm<big_endian>::set_secondary_compatible_arch(
Attributes_section_data* pasd,
int arch)
{
Object_attribute* known_attributes =
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
if (arch == -1)
{
known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
return;
}
// Note: the tag and its argument below are uleb128 values, though
// currently-defined values fit in one byte for each.
char sv[3];
sv[0] = elfcpp::Tag_CPU_arch;
gold_assert(arch != 0);
sv[1] = arch;
sv[2] = '\0';
known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
}
// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
// into account.
// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
template<bool big_endian>
int
Target_arm<big_endian>::tag_cpu_arch_combine(
const char* name,
int oldtag,
int* secondary_compat_out,
int newtag,
int secondary_compat)
{
#define T(X) elfcpp::TAG_CPU_ARCH_##X
static const int v6t2[] =
{
T(V6T2), // PRE_V4.
T(V6T2), // V4.
T(V6T2), // V4T.
T(V6T2), // V5T.
T(V6T2), // V5TE.
T(V6T2), // V5TEJ.
T(V6T2), // V6.
T(V7), // V6KZ.
T(V6T2) // V6T2.
};
static const int v6k[] =
{
T(V6K), // PRE_V4.
T(V6K), // V4.
T(V6K), // V4T.
T(V6K), // V5T.
T(V6K), // V5TE.
T(V6K), // V5TEJ.
T(V6K), // V6.
T(V6KZ), // V6KZ.
T(V7), // V6T2.
T(V6K) // V6K.
};
static const int v7[] =
{
T(V7), // PRE_V4.
T(V7), // V4.
T(V7), // V4T.
T(V7), // V5T.
T(V7), // V5TE.
T(V7), // V5TEJ.
T(V7), // V6.
T(V7), // V6KZ.
T(V7), // V6T2.
T(V7), // V6K.
T(V7) // V7.
};
static const int v6_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V6K), // V4T.
T(V6K), // V5T.
T(V6K), // V5TE.
T(V6K), // V5TEJ.
T(V6K), // V6.
T(V6KZ), // V6KZ.
T(V7), // V6T2.
T(V6K), // V6K.
T(V7), // V7.
T(V6_M) // V6_M.
};
static const int v6s_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V6K), // V4T.
T(V6K), // V5T.
T(V6K), // V5TE.
T(V6K), // V5TEJ.
T(V6K), // V6.
T(V6KZ), // V6KZ.
T(V7), // V6T2.
T(V6K), // V6K.
T(V7), // V7.
T(V6S_M), // V6_M.
T(V6S_M) // V6S_M.
};
static const int v7e_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V7E_M), // V4T.
T(V7E_M), // V5T.
T(V7E_M), // V5TE.
T(V7E_M), // V5TEJ.
T(V7E_M), // V6.
T(V7E_M), // V6KZ.
T(V7E_M), // V6T2.
T(V7E_M), // V6K.
T(V7E_M), // V7.
T(V7E_M), // V6_M.
T(V7E_M), // V6S_M.
T(V7E_M) // V7E_M.
};
static const int v8[] =
{
T(V8), // PRE_V4.
T(V8), // V4.
T(V8), // V4T.
T(V8), // V5T.
T(V8), // V5TE.
T(V8), // V5TEJ.
T(V8), // V6.
T(V8), // V6KZ.
T(V8), // V6T2.
T(V8), // V6K.
T(V8), // V7.
T(V8), // V6_M.
T(V8), // V6S_M.
T(V8), // V7E_M.
T(V8) // V8.
};
static const int v4t_plus_v6_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V4T), // V4T.
T(V5T), // V5T.
T(V5TE), // V5TE.
T(V5TEJ), // V5TEJ.
T(V6), // V6.
T(V6KZ), // V6KZ.
T(V6T2), // V6T2.
T(V6K), // V6K.
T(V7), // V7.
T(V6_M), // V6_M.
T(V6S_M), // V6S_M.
T(V7E_M), // V7E_M.
T(V8), // V8.
T(V4T_PLUS_V6_M) // V4T plus V6_M.
};
static const int* comb[] =
{
v6t2,
v6k,
v7,
v6_m,
v6s_m,
v7e_m,
v8,
// Pseudo-architecture.
v4t_plus_v6_m
};
// Check we've not got a higher architecture than we know about.
if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
{
gold_error(_("%s: unknown CPU architecture"), name);
return -1;
}
// Override old tag if we have a Tag_also_compatible_with on the output.
if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
|| (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
oldtag = T(V4T_PLUS_V6_M);
// And override the new tag if we have a Tag_also_compatible_with on the
// input.
if ((newtag == T(V6_M) && secondary_compat == T(V4T))
|| (newtag == T(V4T) && secondary_compat == T(V6_M)))
newtag = T(V4T_PLUS_V6_M);
// Architectures before V6KZ add features monotonically.
int tagh = std::max(oldtag, newtag);
if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
return tagh;
int tagl = std::min(oldtag, newtag);
int result = comb[tagh - T(V6T2)][tagl];
// Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
// as the canonical version.
if (result == T(V4T_PLUS_V6_M))
{
result = T(V4T);
*secondary_compat_out = T(V6_M);
}
else
*secondary_compat_out = -1;
if (result == -1)
{
gold_error(_("%s: conflicting CPU architectures %d/%d"),
name, oldtag, newtag);
return -1;
}
return result;
#undef T
}
// Helper to print AEABI enum tag value.
template<bool big_endian>
std::string
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
{
static const char* aeabi_enum_names[] =
{ "", "variable-size", "32-bit", "" };
const size_t aeabi_enum_names_size =
sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
if (value < aeabi_enum_names_size)
return std::string(aeabi_enum_names[value]);
else
{
char buffer[100];
sprintf(buffer, "<unknown value %u>", value);
return std::string(buffer);
}
}
// Return the string value to store in TAG_CPU_name.
template<bool big_endian>
std::string
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
{
static const char* name_table[] = {
// These aren't real CPU names, but we can't guess
// that from the architecture version alone.
"Pre v4",
"ARM v4",
"ARM v4T",
"ARM v5T",
"ARM v5TE",
"ARM v5TEJ",
"ARM v6",
"ARM v6KZ",
"ARM v6T2",
"ARM v6K",
"ARM v7",
"ARM v6-M",
"ARM v6S-M",
"ARM v7E-M",
"ARM v8"
};
const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
if (value < name_table_size)
return std::string(name_table[value]);
else
{
char buffer[100];
sprintf(buffer, "<unknown CPU value %u>", value);
return std::string(buffer);
}
}
// Query attributes object to see if integer divide instructions may be
// present in an object.
template<bool big_endian>
bool
Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
const Object_attribute* div_attr)
{
switch (div_attr->int_value())
{
case 0:
// Integer divide allowed if instruction contained in
// archetecture.
if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
return true;
else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
return true;
else
return false;
case 1:
// Integer divide explicitly prohibited.
return false;
default:
// Unrecognised case - treat as allowing divide everywhere.
case 2:
// Integer divide allowed in ARM state.
return true;
}
}
// Query attributes object to see if integer divide instructions are
// forbidden to be in the object. This is not the inverse of
// attributes_accept_div.
template<bool big_endian>
bool
Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
{
return div_attr->int_value() == 1;
}
// Merge object attributes from input file called NAME with those of the
// output. The input object attributes are in the object pointed by PASD.
template<bool big_endian>
void
Target_arm<big_endian>::merge_object_attributes(
const char* name,
const Attributes_section_data* pasd)
{
// Return if there is no attributes section data.
if (pasd == NULL)
return;
// If output has no object attributes, just copy.
const int vendor = Object_attribute::OBJ_ATTR_PROC;
if (this->attributes_section_data_ == NULL)
{
this->attributes_section_data_ = new Attributes_section_data(*pasd);
Object_attribute* out_attr =
this->attributes_section_data_->known_attributes(vendor);
// We do not output objects with Tag_MPextension_use_legacy - we move
// the attribute's value to Tag_MPextension_use. */
if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
{
if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
&& out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
!= out_attr[elfcpp::Tag_MPextension_use].int_value())
{
gold_error(_("%s has both the current and legacy "
"Tag_MPextension_use attributes"),
name);
}
out_attr[elfcpp::Tag_MPextension_use] =
out_attr[elfcpp::Tag_MPextension_use_legacy];
out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
}
return;
}
const Object_attribute* in_attr = pasd->known_attributes(vendor);
Object_attribute* out_attr =
this->attributes_section_data_->known_attributes(vendor);
// This needs to happen before Tag_ABI_FP_number_model is merged. */
if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
!= out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
{
// Ignore mismatches if the object doesn't use floating point. */
if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
== elfcpp::AEABI_FP_number_model_none
|| (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
!= elfcpp::AEABI_FP_number_model_none
&& out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
== elfcpp::AEABI_VFP_args_compatible))
out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
!= elfcpp::AEABI_FP_number_model_none
&& in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
!= elfcpp::AEABI_VFP_args_compatible
&& parameters->options().warn_mismatch())
gold_error(_("%s uses VFP register arguments, output does not"),
name);
}
for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
{
// Merge this attribute with existing attributes.
switch (i)
{
case elfcpp::Tag_CPU_raw_name:
case elfcpp::Tag_CPU_name:
// These are merged after Tag_CPU_arch.
break;
case elfcpp::Tag_ABI_optimization_goals:
case elfcpp::Tag_ABI_FP_optimization_goals:
// Use the first value seen.
break;
case elfcpp::Tag_CPU_arch:
{
unsigned int saved_out_attr = out_attr->int_value();
// Merge Tag_CPU_arch and Tag_also_compatible_with.
int secondary_compat =
this->get_secondary_compatible_arch(pasd);
int secondary_compat_out =
this->get_secondary_compatible_arch(
this->attributes_section_data_);
out_attr[i].set_int_value(
tag_cpu_arch_combine(name, out_attr[i].int_value(),
&secondary_compat_out,
in_attr[i].int_value(),
secondary_compat));
this->set_secondary_compatible_arch(this->attributes_section_data_,
secondary_compat_out);
// Merge Tag_CPU_name and Tag_CPU_raw_name.
if (out_attr[i].int_value() == saved_out_attr)
; // Leave the names alone.
else if (out_attr[i].int_value() == in_attr[i].int_value())
{
// The output architecture has been changed to match the
// input architecture. Use the input names.
out_attr[elfcpp::Tag_CPU_name].set_string_value(
in_attr[elfcpp::Tag_CPU_name].string_value());
out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
in_attr[elfcpp::Tag_CPU_raw_name].string_value());
}
else
{
out_attr[elfcpp::Tag_CPU_name].set_string_value("");
out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
}
// If we still don't have a value for Tag_CPU_name,
// make one up now. Tag_CPU_raw_name remains blank.
if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
{
const std::string cpu_name =
this->tag_cpu_name_value(out_attr[i].int_value());
// FIXME: If we see an unknown CPU, this will be set
// to "<unknown CPU n>", where n is the attribute value.
// This is different from BFD, which leaves the name alone.
out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
}
}
break;
case elfcpp::Tag_ARM_ISA_use:
case elfcpp::Tag_THUMB_ISA_use:
case elfcpp::Tag_WMMX_arch:
case elfcpp::Tag_Advanced_SIMD_arch:
// ??? Do Advanced_SIMD (NEON) and WMMX conflict?
case elfcpp::Tag_ABI_FP_rounding:
case elfcpp::Tag_ABI_FP_exceptions:
case elfcpp::Tag_ABI_FP_user_exceptions:
case elfcpp::Tag_ABI_FP_number_model:
case elfcpp::Tag_VFP_HP_extension:
case elfcpp::Tag_CPU_unaligned_access:
case elfcpp::Tag_T2EE_use:
case elfcpp::Tag_Virtualization_use:
case elfcpp::Tag_MPextension_use:
// Use the largest value specified.
if (in_attr[i].int_value() > out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_align8_preserved:
case elfcpp::Tag_ABI_PCS_RO_data:
// Use the smallest value specified.
if (in_attr[i].int_value() < out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_align8_needed:
if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
&& (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
|| (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
== 0)))
{
// This error message should be enabled once all non-conforming
// binaries in the toolchain have had the attributes set
// properly.
// gold_error(_("output 8-byte data alignment conflicts with %s"),
// name);
}
// Fall through.
case elfcpp::Tag_ABI_FP_denormal:
case elfcpp::Tag_ABI_PCS_GOT_use:
{
// These tags have 0 = don't care, 1 = strong requirement,
// 2 = weak requirement.
static const int order_021[3] = {0, 2, 1};
// Use the "greatest" from the sequence 0, 2, 1, or the largest
// value if greater than 2 (for future-proofing).
if ((in_attr[i].int_value() > 2
&& in_attr[i].int_value() > out_attr[i].int_value())
|| (in_attr[i].int_value() <= 2
&& out_attr[i].int_value() <= 2
&& (order_021[in_attr[i].int_value()]
> order_021[out_attr[i].int_value()])))
out_attr[i].set_int_value(in_attr[i].int_value());
}
break;
case elfcpp::Tag_CPU_arch_profile:
if (out_attr[i].int_value() != in_attr[i].int_value())
{
// 0 will merge with anything.
// 'A' and 'S' merge to 'A'.
// 'R' and 'S' merge to 'R'.
// 'M' and 'A|R|S' is an error.
if (out_attr[i].int_value() == 0
|| (out_attr[i].int_value() == 'S'
&& (in_attr[i].int_value() == 'A'
|| in_attr[i].int_value() == 'R')))
out_attr[i].set_int_value(in_attr[i].int_value());
else if (in_attr[i].int_value() == 0
|| (in_attr[i].int_value() == 'S'
&& (out_attr[i].int_value() == 'A'
|| out_attr[i].int_value() == 'R')))
; // Do nothing.
else if (parameters->options().warn_mismatch())
{
gold_error
(_("conflicting architecture profiles %c/%c"),
in_attr[i].int_value() ? in_attr[i].int_value() : '0',
out_attr[i].int_value() ? out_attr[i].int_value() : '0');
}
}
break;
case elfcpp::Tag_VFP_arch:
{
static const struct
{
int ver;
int regs;
} vfp_versions[7] =
{
{0, 0},
{1, 16},
{2, 16},
{3, 32},
{3, 16},
{4, 32},
{4, 16}
};
// Values greater than 6 aren't defined, so just pick the
// biggest.
if (in_attr[i].int_value() > 6
&& in_attr[i].int_value() > out_attr[i].int_value())
{
*out_attr = *in_attr;
break;
}
// The output uses the superset of input features
// (ISA version) and registers.
int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
vfp_versions[out_attr[i].int_value()].ver);
int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
vfp_versions[out_attr[i].int_value()].regs);
// This assumes all possible supersets are also a valid
// options.
int newval;
for (newval = 6; newval > 0; newval--)
{
if (regs == vfp_versions[newval].regs
&& ver == vfp_versions[newval].ver)
break;
}
out_attr[i].set_int_value(newval);
}
break;
case elfcpp::Tag_PCS_config:
if (out_attr[i].int_value() == 0)
out_attr[i].set_int_value(in_attr[i].int_value());
else if (in_attr[i].int_value() != 0
&& out_attr[i].int_value() != 0
&& parameters->options().warn_mismatch())
{
// It's sometimes ok to mix different configs, so this is only
// a warning.
gold_warning(_("%s: conflicting platform configuration"), name);
}
break;
case elfcpp::Tag_ABI_PCS_R9_use:
if (in_attr[i].int_value() != out_attr[i].int_value()
&& out_attr[i].int_value() != elfcpp::AEABI_R9_unused
&& in_attr[i].int_value() != elfcpp::AEABI_R9_unused
&& parameters->options().warn_mismatch())
{
gold_error(_("%s: conflicting use of R9"), name);
}
if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_PCS_RW_data:
if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
&& (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
!= elfcpp::AEABI_R9_SB)
&& (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
!= elfcpp::AEABI_R9_unused)
&& parameters->options().warn_mismatch())
{
gold_error(_("%s: SB relative addressing conflicts with use "
"of R9"),
name);
}
// Use the smallest value specified.
if (in_attr[i].int_value() < out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_PCS_wchar_t:
if (out_attr[i].int_value()
&& in_attr[i].int_value()
&& out_attr[i].int_value() != in_attr[i].int_value()
&& parameters->options().warn_mismatch()
&& parameters->options().wchar_size_warning())
{
gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
"use %u-byte wchar_t; use of wchar_t values "
"across objects may fail"),
name, in_attr[i].int_value(),
out_attr[i].int_value());
}
else if (in_attr[i].int_value() && !out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_enum_size:
if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
{
if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
|| out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
{
// The existing object is compatible with anything.
// Use whatever requirements the new object has.
out_attr[i].set_int_value(in_attr[i].int_value());
}
else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
&& out_attr[i].int_value() != in_attr[i].int_value()
&& parameters->options().warn_mismatch()
&& parameters->options().enum_size_warning())
{
unsigned int in_value = in_attr[i].int_value();
unsigned int out_value = out_attr[i].int_value();
gold_warning(_("%s uses %s enums yet the output is to use "
"%s enums; use of enum values across objects "
"may fail"),
name,
this->aeabi_enum_name(in_value).c_str(),
this->aeabi_enum_name(out_value).c_str());
}
}
break;
case elfcpp::Tag_ABI_VFP_args:
// Already done.
break;
case elfcpp::Tag_ABI_WMMX_args:
if (in_attr[i].int_value() != out_attr[i].int_value()
&& parameters->options().warn_mismatch())
{
gold_error(_("%s uses iWMMXt register arguments, output does "
"not"),
name);
}
break;
case Object_attribute::Tag_compatibility:
// Merged in target-independent code.
break;
case elfcpp::Tag_ABI_HardFP_use:
// 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
|| (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
out_attr[i].set_int_value(3);
else if (in_attr[i].int_value() > out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_FP_16bit_format:
if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
{
if (in_attr[i].int_value() != out_attr[i].int_value()
&& parameters->options().warn_mismatch())
gold_error(_("fp16 format mismatch between %s and output"),
name);
}
if (in_attr[i].int_value() != 0)
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_DIV_use:
{
// A value of zero on input means that the divide
// instruction may be used if available in the base
// architecture as specified via Tag_CPU_arch and
// Tag_CPU_arch_profile. A value of 1 means that the user
// did not want divide instructions. A value of 2
// explicitly means that divide instructions were allowed
// in ARM and Thumb state.
int arch = this->
get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
int_value();
int profile = this->
get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
int_value();
if (in_attr[i].int_value() == out_attr[i].int_value())
{
// Do nothing.
}
else if (attributes_forbid_div(&in_attr[i])
&& !attributes_accept_div(arch, profile, &out_attr[i]))
out_attr[i].set_int_value(1);
else if (attributes_forbid_div(&out_attr[i])
&& attributes_accept_div(arch, profile, &in_attr[i]))
out_attr[i].set_int_value(in_attr[i].int_value());
else if (in_attr[i].int_value() == 2)
out_attr[i].set_int_value(in_attr[i].int_value());
}
break;
case elfcpp::Tag_MPextension_use_legacy:
// We don't output objects with Tag_MPextension_use_legacy - we
// move the value to Tag_MPextension_use.
if (in_attr[i].int_value() != 0
&& in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
{
if (in_attr[elfcpp::Tag_MPextension_use].int_value()
!= in_attr[i].int_value())
{
gold_error(_("%s has has both the current and legacy "
"Tag_MPextension_use attributes"),
name);
}
}
if (in_attr[i].int_value()
> out_attr[elfcpp::Tag_MPextension_use].int_value())
out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
break;
case elfcpp::Tag_nodefaults:
// This tag is set if it exists, but the value is unused (and is
// typically zero). We don't actually need to do anything here -
// the merge happens automatically when the type flags are merged
// below.
break;
case elfcpp::Tag_also_compatible_with:
// Already done in Tag_CPU_arch.
break;
case elfcpp::Tag_conformance:
// Keep the attribute if it matches. Throw it away otherwise.
// No attribute means no claim to conform.
if (in_attr[i].string_value() != out_attr[i].string_value())
out_attr[i].set_string_value("");
break;
default:
{
const char* err_object = NULL;
// The "known_obj_attributes" table does contain some undefined
// attributes. Ensure that there are unused.
if (out_attr[i].int_value() != 0
|| out_attr[i].string_value() != "")
err_object = "output";
else if (in_attr[i].int_value() != 0
|| in_attr[i].string_value() != "")
err_object = name;
if (err_object != NULL
&& parameters->options().warn_mismatch())
{
// Attribute numbers >=64 (mod 128) can be safely ignored.
if ((i & 127) < 64)
gold_error(_("%s: unknown mandatory EABI object attribute "
"%d"),
err_object, i);
else
gold_warning(_("%s: unknown EABI object attribute %d"),
err_object, i);
}
// Only pass on attributes that match in both inputs.
if (!in_attr[i].matches(out_attr[i]))
{
out_attr[i].set_int_value(0);
out_attr[i].set_string_value("");
}
}
}
// If out_attr was copied from in_attr then it won't have a type yet.
if (in_attr[i].type() && !out_attr[i].type())
out_attr[i].set_type(in_attr[i].type());
}
// Merge Tag_compatibility attributes and any common GNU ones.
this->attributes_section_data_->merge(name, pasd);
// Check for any attributes not known on ARM.
typedef Vendor_object_attributes::Other_attributes Other_attributes;
const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
Other_attributes::const_iterator in_iter = in_other_attributes->begin();
Other_attributes* out_other_attributes =
this->attributes_section_data_->other_attributes(vendor);
Other_attributes::iterator out_iter = out_other_attributes->begin();
while (in_iter != in_other_attributes->end()
|| out_iter != out_other_attributes->end())
{
const char* err_object = NULL;
int err_tag = 0;
// The tags for each list are in numerical order.
// If the tags are equal, then merge.
if (out_iter != out_other_attributes->end()
&& (in_iter == in_other_attributes->end()
|| in_iter->first > out_iter->first))
{
// This attribute only exists in output. We can't merge, and we
// don't know what the tag means, so delete it.
err_object = "output";
err_tag = out_iter->first;
int saved_tag = out_iter->first;
delete out_iter->second;
out_other_attributes->erase(out_iter);
out_iter = out_other_attributes->upper_bound(saved_tag);
}
else if (in_iter != in_other_attributes->end()
&& (out_iter != out_other_attributes->end()
|| in_iter->first < out_iter->first))
{
// This attribute only exists in input. We can't merge, and we
// don't know what the tag means, so ignore it.
err_object = name;
err_tag = in_iter->first;
++in_iter;
}
else // The tags are equal.
{
// As present, all attributes in the list are unknown, and
// therefore can't be merged meaningfully.
err_object = "output";
err_tag = out_iter->first;
// Only pass on attributes that match in both inputs.
if (!in_iter->second->matches(*(out_iter->second)))
{
// No match. Delete the attribute.
int saved_tag = out_iter->first;
delete out_iter->second;
out_other_attributes->erase(out_iter);
out_iter = out_other_attributes->upper_bound(saved_tag);
}
else
{
// Matched. Keep the attribute and move to the next.
++out_iter;
++in_iter;
}
}
if (err_object && parameters->options().warn_mismatch())
{
// Attribute numbers >=64 (mod 128) can be safely ignored. */
if ((err_tag & 127) < 64)
{
gold_error(_("%s: unknown mandatory EABI object attribute %d"),
err_object, err_tag);
}
else
{
gold_warning(_("%s: unknown EABI object attribute %d"),
err_object, err_tag);
}
}
}
}
// Stub-generation methods for Target_arm.
// Make a new Arm_input_section object.
template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::new_arm_input_section(
Relobj* relobj,
unsigned int shndx)
{
Section_id sid(relobj, shndx);
Arm_input_section<big_endian>* arm_input_section =
new Arm_input_section<big_endian>(relobj, shndx);
arm_input_section->init();
// Register new Arm_input_section in map for look-up.
std::pair<typename Arm_input_section_map::iterator, bool> ins =
this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
// Make sure that it we have not created another Arm_input_section
// for this input section already.
gold_assert(ins.second);
return arm_input_section;
}
// Find the Arm_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.
template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::find_arm_input_section(
Relobj* relobj,
unsigned int shndx) const
{
Section_id sid(relobj, shndx);
typename Arm_input_section_map::const_iterator p =
this->arm_input_section_map_.find(sid);
return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
}
// Make a new stub table.
template<bool big_endian>
Stub_table<big_endian>*
Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
{
Stub_table<big_endian>* stub_table =
new Stub_table<big_endian>(owner);
this->stub_tables_.push_back(stub_table);
stub_table->set_address(owner->address() + owner->data_size());
stub_table->set_file_offset(owner->offset() + owner->data_size());
stub_table->finalize_data_size();
return stub_table;
}
// Scan a relocation for stub generation.
template<bool big_endian>
void
Target_arm<big_endian>::scan_reloc_for_stub(
const Relocate_info<32, big_endian>* relinfo,
unsigned int r_type,
const Sized_symbol<32>* gsym,
unsigned int r_sym,
const Symbol_value<32>* psymval,
elfcpp::Elf_types<32>::Elf_Swxword addend,
Arm_address address)
{
const Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
bool target_is_thumb;
Symbol_value<32> symval;
if (gsym != NULL)
{
// This is a global symbol. Determine if we use PLT and if the
// final target is THUMB.
if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
{
// This uses a PLT, change the symbol value.
symval.set_output_value(this->plt_address_for_global(gsym));
psymval = &symval;
target_is_thumb = false;
}
else if (gsym->is_undefined())
// There is no need to generate a stub symbol is undefined.
return;
else
{
target_is_thumb =
((gsym->type() == elfcpp::STT_ARM_TFUNC)
|| (gsym->type() == elfcpp::STT_FUNC
&& !gsym->is_undefined()
&& ((psymval->value(arm_relobj, 0) & 1) != 0)));
}
}
else
{
// This is a local symbol. Determine if the final target is THUMB.
target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
}
// Strip LSB if this points to a THUMB target.
const Arm_reloc_property* reloc_property =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
gold_assert(reloc_property != NULL);
if (target_is_thumb
&& reloc_property->uses_thumb_bit()
&& ((psymval->value(arm_relobj, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
symval.set_output_value(stripped_value);
psymval = &symval;
}
// Get the symbol value.
Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
// Owing to pipelining, the PC relative branches below actually skip
// two instructions when the branch offset is 0.
Arm_address destination;
switch (r_type)
{
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_PLT32:
// ARM branches.
destination = value + addend + 8;
break;
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_JUMP19:
// THUMB branches.
destination = value + addend + 4;
break;
default:
gold_unreachable();
}
Reloc_stub* stub = NULL;
Stub_type stub_type =
Reloc_stub::stub_type_for_reloc(r_type, address, destination,
target_is_thumb);
if (stub_type != arm_stub_none)
{
// Try looking up an existing stub from a stub table.
Stub_table<big_endian>* stub_table =
arm_relobj->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
// Locate stub by destination.
Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
// Create a stub if there is not one already
stub = stub_table->find_reloc_stub(stub_key);
if (stub == NULL)
{
// create a new stub and add it to stub table.
stub = this->stub_factory().make_reloc_stub(stub_type);
stub_table->add_reloc_stub(stub, stub_key);
}
// Record the destination address.
stub->set_destination_address(destination
| (target_is_thumb ? 1 : 0));
}
// For Cortex-A8, we need to record a relocation at 4K page boundary.
if (this->fix_cortex_a8_
&& (r_type == elfcpp::R_ARM_THM_JUMP24
|| r_type == elfcpp::R_ARM_THM_JUMP19
|| r_type == elfcpp::R_ARM_THM_CALL
|| r_type == elfcpp::R_ARM_THM_XPC22)
&& (address & 0xfffU) == 0xffeU)
{
// Found a candidate. Note we haven't checked the destination is
// within 4K here: if we do so (and don't create a record) we can't
// tell that a branch should have been relocated when scanning later.
this->cortex_a8_relocs_info_[address] =
new Cortex_a8_reloc(stub, r_type,
destination | (target_is_thumb ? 1 : 0));
}
}
// This function scans a relocation sections for stub generation.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.
// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
// SHT_REL or SHT_RELA.
// PRELOCS points to the relocation data. RELOC_COUNT is the number
// of relocs. OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.
// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size. These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.
template<bool big_endian>
template<int sh_type>
void inline
Target_arm<big_endian>::scan_reloc_section_for_stubs(
const Relocate_info<32, big_endian>* relinfo,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
const unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type)
{
typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
const int reloc_size =
Reloc_types<sh_type, 32, big_endian>::reloc_size;
Arm_relobj<big_endian>* arm_object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
unsigned int local_count = arm_object->local_symbol_count();
gold::Default_comdat_behavior default_comdat_behavior;
Comdat_behavior comdat_behavior = CB_UNDETERMINED;
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Reltype reloc(prelocs);
typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
r_type = this->get_real_reloc_type(r_type);
// Only a few relocation types need stubs.
if ((r_type != elfcpp::R_ARM_CALL)
&& (r_type != elfcpp::R_ARM_JUMP24)
&& (r_type != elfcpp::R_ARM_PLT32)
&& (r_type != elfcpp::R_ARM_THM_CALL)
&& (r_type != elfcpp::R_ARM_THM_XPC22)
&& (r_type != elfcpp::R_ARM_THM_JUMP24)
&& (r_type != elfcpp::R_ARM_THM_JUMP19)
&& (r_type != elfcpp::R_ARM_V4BX))
continue;
section_offset_type offset =
convert_to_section_size_type(reloc.get_r_offset());
if (needs_special_offset_handling)
{
offset = output_section->output_offset(relinfo->object,
relinfo->data_shndx,
offset);
if (offset == -1)
continue;
}
// Create a v4bx stub if --fix-v4bx-interworking is used.
if (r_type == elfcpp::R_ARM_V4BX)
{
if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
{
// Get the BX instruction.
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
const Valtype* wv =
reinterpret_cast<const Valtype*>(view + offset);
elfcpp::Elf_types<32>::Elf_Swxword insn =
elfcpp::Swap<32, big_endian>::readval(wv);
const uint32_t reg = (insn & 0xf);
if (reg < 0xf)
{
// Try looking up an existing stub from a stub table.
Stub_table<big_endian>* stub_table =
arm_object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
if (stub_table->find_arm_v4bx_stub(reg) == NULL)
{
// create a new stub and add it to stub table.
Arm_v4bx_stub* stub =
this->stub_factory().make_arm_v4bx_stub(reg);
gold_assert(stub != NULL);
stub_table->add_arm_v4bx_stub(stub);
}
}
}
continue;
}
// Get the addend.
Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
elfcpp::Elf_types<32>::Elf_Swxword addend =
stub_addend_reader(r_type, view + offset, reloc);
const Sized_symbol<32>* sym;
Symbol_value<32> symval;
const Symbol_value<32> *psymval;
bool is_defined_in_discarded_section;
unsigned int shndx;
if (r_sym < local_count)
{
sym = NULL;
psymval = arm_object->local_symbol(r_sym);
// If the local symbol belongs to a section we are discarding,
// and that section is a debug section, try to find the
// corresponding kept section and map this symbol to its
// counterpart in the kept section. The symbol must not
// correspond to a section we are folding.
bool is_ordinary;
shndx = psymval->input_shndx(&is_ordinary);
is_defined_in_discarded_section =
(is_ordinary
&& shndx != elfcpp::SHN_UNDEF
&& !arm_object->is_section_included(shndx)
&& !relinfo->symtab->is_section_folded(arm_object, shndx));
// We need to compute the would-be final value of this local
// symbol.
if (!is_defined_in_discarded_section)
{
typedef Sized_relobj_file<32, big_endian> ObjType;
typename ObjType::Compute_final_local_value_status status =
arm_object->compute_final_local_value(r_sym, psymval, &symval,
relinfo->symtab);
if (status == ObjType::CFLV_OK)
{
// Currently we cannot handle a branch to a target in
// a merged section. If this is the case, issue an error
// and also free the merge symbol value.
if (!symval.has_output_value())
{
const std::string& section_name =
arm_object->section_name(shndx);
arm_object->error(_("cannot handle branch to local %u "
"in a merged section %s"),
r_sym, section_name.c_str());
}
psymval = &symval;
}
else
{
// We cannot determine the final value.
continue;
}
}
}
else
{
const Symbol* gsym;
gsym = arm_object->global_symbol(r_sym);
gold_assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = relinfo->symtab->resolve_forwards(gsym);
sym = static_cast<const Sized_symbol<32>*>(gsym);
if (sym->has_symtab_index() && sym->symtab_index() != -1U)
symval.set_output_symtab_index(sym->symtab_index());
else
symval.set_no_output_symtab_entry();
// We need to compute the would-be final value of this global
// symbol.
const Symbol_table* symtab = relinfo->symtab;
const Sized_symbol<32>* sized_symbol =
symtab->get_sized_symbol<32>(gsym);
Symbol_table::Compute_final_value_status status;
Arm_address value =
symtab->compute_final_value<32>(sized_symbol, &status);
// Skip this if the symbol has not output section.
if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
continue;
symval.set_output_value(value);
if (gsym->type() == elfcpp::STT_TLS)
symval.set_is_tls_symbol();
else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
symval.set_is_ifunc_symbol();
psymval = &symval;
is_defined_in_discarded_section =
(gsym->is_defined_in_discarded_section()
&& gsym->is_undefined());
shndx = 0;
}
Symbol_value<32> symval2;
if (is_defined_in_discarded_section)
{
if (comdat_behavior == CB_UNDETERMINED)
{
std::string name = arm_object->section_name(relinfo->data_shndx);
comdat_behavior = default_comdat_behavior.get(name.c_str());
}
if (comdat_behavior == CB_PRETEND)
{
// FIXME: This case does not work for global symbols.
// We have no place to store the original section index.
// Fortunately this does not matter for comdat sections,
// only for sections explicitly discarded by a linker
// script.
bool found;
typename elfcpp::Elf_types<32>::Elf_Addr value =
arm_object->map_to_kept_section(shndx, &found);
if (found)
symval2.set_output_value(value + psymval->input_value());
else
symval2.set_output_value(0);
}
else
{
if (comdat_behavior == CB_WARNING)
gold_warning_at_location(relinfo, i, offset,
_("relocation refers to discarded "
"section"));
symval2.set_output_value(0);
}
symval2.set_no_output_symtab_entry();
psymval = &symval2;
}
// If symbol is a section symbol, we don't know the actual type of
// destination. Give up.
if (psymval->is_section_symbol())
continue;
this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
addend, view_address + offset);
}
}
// Scan an input section for stub generation.
template<bool big_endian>
void
Target_arm<big_endian>::scan_section_for_stubs(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
const unsigned char* view,
Arm_address view_address,
section_size_type view_size)
{
if (sh_type == elfcpp::SHT_REL)
this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
relinfo,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
view_address,
view_size);
else if (sh_type == elfcpp::SHT_RELA)
// We do not support RELA type relocations yet. This is provided for
// completeness.
this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
relinfo,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
view_address,
view_size);
else
gold_unreachable();
}
// Group input sections for stub generation.
//
// We group input sections in an output section so that the total size,
// including any padding space due to alignment is smaller than GROUP_SIZE
// unless the only input section in group is bigger than GROUP_SIZE already.
// Then an ARM stub table is created to follow the last input section
// in group. For each group an ARM stub table is created an is placed
// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
// extend the group after the stub table.
template<bool big_endian>
void
Target_arm<big_endian>::group_sections(
Layout* layout,
section_size_type group_size,
bool stubs_always_after_branch,
const Task* task)
{
// Group input sections and insert stub table
Layout::Section_list section_list;
layout->get_executable_sections(&section_list);
for (Layout::Section_list::const_iterator p = section_list.begin();
p != section_list.end();
++p)
{
Arm_output_section<big_endian>* output_section =
Arm_output_section<big_endian>::as_arm_output_section(*p);
output_section->group_sections(group_size, stubs_always_after_branch,
this, task);
}
}
// Relaxation hook. This is where we do stub generation.
template<bool big_endian>
bool
Target_arm<big_endian>::do_relax(
int pass,
const Input_objects* input_objects,
Symbol_table* symtab,
Layout* layout,
const Task* task)
{
// No need to generate stubs if this is a relocatable link.
gold_assert(!parameters->options().relocatable());
// If this is the first pass, we need to group input sections into
// stub groups.
bool done_exidx_fixup = false;
typedef typename Stub_table_list::iterator Stub_table_iterator;
if (pass == 1)
{
// Determine the stub group size. The group size is the absolute
// value of the parameter --stub-group-size. If --stub-group-size
// is passed a negative value, we restrict stubs to be always after
// the stubbed branches.
int32_t stub_group_size_param =
parameters->options().stub_group_size();
bool stubs_always_after_branch = stub_group_size_param < 0;
section_size_type stub_group_size = abs(stub_group_size_param);
if (stub_group_size == 1)
{
// Default value.
// Thumb branch range is +-4MB has to be used as the default
// maximum size (a given section can contain both ARM and Thumb
// code, so the worst case has to be taken into account). If we are
// fixing cortex-a8 errata, the branch range has to be even smaller,
// since wide conditional branch has a range of +-1MB only.
//
// This value is 48K less than that, which allows for 4096
// 12-byte stubs. If we exceed that, then we will fail to link.
// The user will have to relink with an explicit group size
// option.
stub_group_size = 4145152;
}
// The Cortex-A8 erratum fix depends on stubs not being in the same 4K
// page as the first half of a 32-bit branch straddling two 4K pages.
// This is a crude way of enforcing that. In addition, long conditional
// branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
// erratum, limit the group size to (1M - 12k) to avoid unreachable
// cortex-A8 stubs from long conditional branches.
if (this->fix_cortex_a8_)
{
stubs_always_after_branch = true;
const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
}
group_sections(layout, stub_group_size, stubs_always_after_branch, task);
// Also fix .ARM.exidx section coverage.
Arm_output_section<big_endian>* exidx_output_section = NULL;
for (Layout::Section_list::const_iterator p =
layout->section_list().begin();
p != layout->section_list().end();
++p)
if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
{
if (exidx_output_section == NULL)
exidx_output_section =
Arm_output_section<big_endian>::as_arm_output_section(*p);
else
// We cannot handle this now.
gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
"non-relocatable link"),
exidx_output_section->name(),
(*p)->name());
}
if (exidx_output_section != NULL)
{
this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
symtab, task);
done_exidx_fixup = true;
}
}
else
{
// If this is not the first pass, addresses and file offsets have
// been reset at this point, set them here.
for (Stub_table_iterator sp = this->stub_tables_.begin();
sp != this->stub_tables_.end();
++sp)
{
Arm_input_section<big_endian>* owner = (*sp)->owner();
off_t off = align_address(owner->original_size(),
(*sp)->addralign());
(*sp)->set_address_and_file_offset(owner->address() + off,
owner->offset() + off);
}
}
// The Cortex-A8 stubs are sensitive to layout of code sections. At the
// beginning of each relaxation pass, just blow away all the stubs.
// Alternatively, we could selectively remove only the stubs and reloc
// information for code sections that have moved since the last pass.
// That would require more book-keeping.
if (this->fix_cortex_a8_)
{
// Clear all Cortex-A8 reloc information.
for (typename Cortex_a8_relocs_info::const_iterator p =
this->cortex_a8_relocs_info_.begin();
p != this->cortex_a8_relocs_info_.end();
++p)
delete p->second;
this->cortex_a8_relocs_info_.clear();
// Remove all Cortex-A8 stubs.
for (Stub_table_iterator sp = this->stub_tables_.begin();
sp != this->stub_tables_.end();
++sp)
(*sp)->remove_all_cortex_a8_stubs();
}
// Scan relocs for relocation stubs
for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
op != input_objects->relobj_end();
++op)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*op);
// Lock the object so we can read from it. This is only called
// single-threaded from Layout::finalize, so it is OK to lock.
Task_lock_obj<Object> tl(task, arm_relobj);
arm_relobj->scan_sections_for_stubs(this, symtab, layout);
}
// Check all stub tables to see if any of them have their data sizes
// or addresses alignments changed. These are the only things that
// matter.
bool any_stub_table_changed = false;
Unordered_set<const Output_section*> sections_needing_adjustment;
for (Stub_table_iterator sp = this->stub_tables_.begin();
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
++sp)
{
if ((*sp)->update_data_size_and_addralign())
{
// Update data size of stub table owner.
Arm_input_section<big_endian>* owner = (*sp)->owner();
uint64_t address = owner->address();
off_t offset = owner->offset();
owner->reset_address_and_file_offset();
owner->set_address_and_file_offset(address, offset);
sections_needing_adjustment.insert(owner->output_section());
any_stub_table_changed = true;
}
}
// Output_section_data::output_section() returns a const pointer but we
// need to update output sections, so we record all output sections needing
// update above and scan the sections here to find out what sections need
// to be updated.
for (Layout::Section_list::const_iterator p = layout->section_list().begin();
p != layout->section_list().end();
++p)
{
if (sections_needing_adjustment.find(*p)
!= sections_needing_adjustment.end())
(*p)->set_section_offsets_need_adjustment();
}
// Stop relaxation if no EXIDX fix-up and no stub table change.
bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
// Finalize the stubs in the last relaxation pass.
if (!continue_relaxation)
{
for (Stub_table_iterator sp = this->stub_tables_.begin();
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
++sp)
(*sp)->finalize_stubs();
// Update output local symbol counts of objects if necessary.
for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
op != input_objects->relobj_end();
++op)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*op);
// Update output local symbol counts. We need to discard local
// symbols defined in parts of input sections that are discarded by
// relaxation.
if (arm_relobj->output_local_symbol_count_needs_update())
{
// We need to lock the object's file to update it.
Task_lock_obj<Object> tl(task, arm_relobj);
arm_relobj->update_output_local_symbol_count();
}
}
}
return continue_relaxation;
}
// Relocate a stub.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_stub(
Stub* stub,
const Relocate_info<32, big_endian>* relinfo,
Output_section* output_section,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
Relocate relocate;
const Stub_template* stub_template = stub->stub_template();
for (size_t i = 0; i < stub_template->reloc_count(); i++)
{
size_t reloc_insn_index = stub_template->reloc_insn_index(i);
const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
unsigned int r_type = insn->r_type();
section_size_type reloc_offset = stub_template->reloc_offset(i);
section_size_type reloc_size = insn->size();
gold_assert(reloc_offset + reloc_size <= view_size);
// This is the address of the stub destination.
Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
Symbol_value<32> symval;
symval.set_output_value(target);
// Synthesize a fake reloc just in case. We don't have a symbol so
// we use 0.
unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
memset(reloc_buffer, 0, sizeof(reloc_buffer));
elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
reloc_write.put_r_offset(reloc_offset);
reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
this->fake_relnum_for_stubs, reloc_buffer,
NULL, &symval, view + reloc_offset,
address + reloc_offset, reloc_size);
}
}
// Determine whether an object attribute tag takes an integer, a
// string or both.
template<bool big_endian>
int
Target_arm<big_endian>::do_attribute_arg_type(int tag) const
{
if (tag == Object_attribute::Tag_compatibility)
return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
| Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
else if (tag == elfcpp::Tag_nodefaults)
return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
| Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
else if (tag < 32)
return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
else
return ((tag & 1) != 0
? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
: Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
}
// Reorder attributes.
//
// The ABI defines that Tag_conformance should be emitted first, and that
// Tag_nodefaults should be second (if either is defined). This sets those
// two positions, and bumps up the position of all the remaining tags to
// compensate.
template<bool big_endian>
int
Target_arm<big_endian>::do_attributes_order(int num) const
{
// Reorder the known object attributes in output. We want to move
// Tag_conformance to position 4 and Tag_conformance to position 5
// and shift everything between 4 .. Tag_conformance - 1 to make room.
if (num == 4)
return elfcpp::Tag_conformance;
if (num == 5)
return elfcpp::Tag_nodefaults;
if ((num - 2) < elfcpp::Tag_nodefaults)
return num - 2;
if ((num - 1) < elfcpp::Tag_conformance)
return num - 1;
return num;
}
// Scan a span of THUMB code for Cortex-A8 erratum.
template<bool big_endian>
void
Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
Arm_relobj<big_endian>* arm_relobj,
unsigned int shndx,
section_size_type span_start,
section_size_type span_end,
const unsigned char* view,
Arm_address address)
{
// Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
//
// The opcode is BLX.W, BL.W, B.W, Bcc.W
// The branch target is in the same 4KB region as the
// first half of the branch.
// The instruction before the branch is a 32-bit
// length non-branch instruction.
section_size_type i = span_start;
bool last_was_32bit = false;
bool last_was_branch = false;
while (i < span_end)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
bool is_blx = false, is_b = false;
bool is_bl = false, is_bcc = false;
bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
if (insn_32bit)
{
// Load the rest of the insn (in manual-friendly order).
insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
// Encoding T4: B<c>.W.
is_b = (insn & 0xf800d000U) == 0xf0009000U;
// Encoding T1: BL<c>.W.
is_bl = (insn & 0xf800d000U) == 0xf000d000U;
// Encoding T2: BLX<c>.W.
is_blx = (insn & 0xf800d000U) == 0xf000c000U;
// Encoding T3: B<c>.W (not permitted in IT block).
is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
&& (insn & 0x07f00000U) != 0x03800000U);
}
bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
// If this instruction is a 32-bit THUMB branch that crosses a 4K
// page boundary and it follows 32-bit non-branch instruction,
// we need to work around.
if (is_32bit_branch
&& ((address + i) & 0xfffU) == 0xffeU
&& last_was_32bit
&& !last_was_branch)
{
// Check to see if there is a relocation stub for this branch.
bool force_target_arm = false;
bool force_target_thumb = false;
const Cortex_a8_reloc* cortex_a8_reloc = NULL;
Cortex_a8_relocs_info::const_iterator p =
this->cortex_a8_relocs_info_.find(address + i);
if (p != this->cortex_a8_relocs_info_.end())
{
cortex_a8_reloc = p->second;
bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
&& !target_is_thumb)
force_target_arm = true;
else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
&& target_is_thumb)
force_target_thumb = true;
}
off_t offset;
Stub_type stub_type = arm_stub_none;
// Check if we have an offending branch instruction.
uint16_t upper_insn = (insn >> 16) & 0xffffU;
uint16_t lower_insn = insn & 0xffffU;
typedef class Arm_relocate_functions<big_endian> RelocFuncs;
if (cortex_a8_reloc != NULL
&& cortex_a8_reloc->reloc_stub() != NULL)
// We've already made a stub for this instruction, e.g.
// it's a long branch or a Thumb->ARM stub. Assume that
// stub will suffice to work around the A8 erratum (see
// setting of always_after_branch above).
;
else if (is_bcc)
{
offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
lower_insn);
stub_type = arm_stub_a8_veneer_b_cond;
}
else if (is_b || is_bl || is_blx)
{
offset = RelocFuncs::thumb32_branch_offset(upper_insn,
lower_insn);
if (is_blx)
offset &= ~3;
stub_type = (is_blx
? arm_stub_a8_veneer_blx
: (is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b));
}
if (stub_type != arm_stub_none)
{
Arm_address pc_for_insn = address + i + 4;
// The original instruction is a BL, but the target is
// an ARM instruction. If we were not making a stub,
// the BL would have been converted to a BLX. Use the
// BLX stub instead in that case.
if (this->may_use_v5t_interworking() && force_target_arm
&& stub_type == arm_stub_a8_veneer_bl)
{
stub_type = arm_stub_a8_veneer_blx;
is_blx = true;
is_bl = false;
}
// Conversely, if the original instruction was
// BLX but the target is Thumb mode, use the BL stub.
else if (force_target_thumb
&& stub_type == arm_stub_a8_veneer_blx)
{
stub_type = arm_stub_a8_veneer_bl;
is_blx = false;
is_bl = true;
}
if (is_blx)
pc_for_insn &= ~3;
// If we found a relocation, use the proper destination,
// not the offset in the (unrelocated) instruction.
// Note this is always done if we switched the stub type above.
if (cortex_a8_reloc != NULL)
offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
// Add a new stub if destination address in in the same page.
if (((address + i) & ~0xfffU) == (target & ~0xfffU))
{
Cortex_a8_stub* stub =
this->stub_factory_.make_cortex_a8_stub(stub_type,
arm_relobj, shndx,
address + i,
target, insn);
Stub_table<big_endian>* stub_table =
arm_relobj->stub_table(shndx);
gold_assert(stub_table != NULL);
stub_table->add_cortex_a8_stub(address + i, stub);
}
}
}
i += insn_32bit ? 4 : 2;
last_was_32bit = insn_32bit;
last_was_branch = is_32bit_branch;
}
}
// Apply the Cortex-A8 workaround.
template<bool big_endian>
void
Target_arm<big_endian>::apply_cortex_a8_workaround(
const Cortex_a8_stub* stub,
Arm_address stub_address,
unsigned char* insn_view,
Arm_address insn_address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
off_t branch_offset = stub_address - (insn_address + 4);
typedef class Arm_relocate_functions<big_endian> RelocFuncs;
switch (stub->stub_template()->type())
{
case arm_stub_a8_veneer_b_cond:
// For a conditional branch, we re-write it to be an unconditional
// branch to the stub. We use the THUMB-2 encoding here.
upper_insn = 0xf000U;
lower_insn = 0xb800U;
// Fall through
case arm_stub_a8_veneer_b:
case arm_stub_a8_veneer_bl:
case arm_stub_a8_veneer_blx:
if ((lower_insn & 0x5000U) == 0x4000U)
// For a BLX instruction, make sure that the relocation is
// rounded up to a word boundary. This follows the semantics of
// the instruction which specifies that bit 1 of the target
// address will come from bit 1 of the base address.
branch_offset = (branch_offset + 2) & ~3;
// Put BRANCH_OFFSET back into the insn.
gold_assert(!Bits<25>::has_overflow32(branch_offset));
upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
break;
default:
gold_unreachable();
}
// Put the relocated value back in the object file:
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
}
// Target selector for ARM. Note this is never instantiated directly.
// It's only used in Target_selector_arm_nacl, below.
template<bool big_endian>
class Target_selector_arm : public Target_selector
{
public:
Target_selector_arm()
: Target_selector(elfcpp::EM_ARM, 32, big_endian,
(big_endian ? "elf32-bigarm" : "elf32-littlearm"),
(big_endian ? "armelfb" : "armelf"))
{ }
Target*
do_instantiate_target()
{ return new Target_arm<big_endian>(); }
};
// Fix .ARM.exidx section coverage.
template<bool big_endian>
void
Target_arm<big_endian>::fix_exidx_coverage(
Layout* layout,
const Input_objects* input_objects,
Arm_output_section<big_endian>* exidx_section,
Symbol_table* symtab,
const Task* task)
{
// We need to look at all the input sections in output in ascending
// order of of output address. We do that by building a sorted list
// of output sections by addresses. Then we looks at the output sections
// in order. The input sections in an output section are already sorted
// by addresses within the output section.
typedef std::set<Output_section*, output_section_address_less_than>
Sorted_output_section_list;
Sorted_output_section_list sorted_output_sections;
// Find out all the output sections of input sections pointed by
// EXIDX input sections.
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*p);
std::vector<unsigned int> shndx_list;
arm_relobj->get_exidx_shndx_list(&shndx_list);
for (size_t i = 0; i < shndx_list.size(); ++i)
{
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
gold_assert(exidx_input_section != NULL);
if (!exidx_input_section->has_errors())
{
unsigned int text_shndx = exidx_input_section->link();
Output_section* os = arm_relobj->output_section(text_shndx);
if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
sorted_output_sections.insert(os);
}
}
}
// Go over the output sections in ascending order of output addresses.
typedef typename Arm_output_section<big_endian>::Text_section_list
Text_section_list;
Text_section_list sorted_text_sections;
for (typename Sorted_output_section_list::iterator p =
sorted_output_sections.begin();
p != sorted_output_sections.end();
++p)
{
Arm_output_section<big_endian>* arm_output_section =
Arm_output_section<big_endian>::as_arm_output_section(*p);
arm_output_section->append_text_sections_to_list(&sorted_text_sections);
}
exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
merge_exidx_entries(), task);
}
template<bool big_endian>
void
Target_arm<big_endian>::do_define_standard_symbols(
Symbol_table* symtab,
Layout* layout)
{
// Handle the .ARM.exidx section.
Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
if (exidx_section != NULL)
{
// Create __exidx_start and __exidx_end symbols.
symtab->define_in_output_data("__exidx_start",
NULL, // version
Symbol_table::PREDEFINED,
exidx_section,
0, // value
0, // symsize
elfcpp::STT_NOTYPE,
elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN,
0, // nonvis
false, // offset_is_from_end
true); // only_if_ref
symtab->define_in_output_data("__exidx_end",
NULL, // version
Symbol_table::PREDEFINED,
exidx_section,
0, // value
0, // symsize
elfcpp::STT_NOTYPE,
elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN,
0, // nonvis
true, // offset_is_from_end
true); // only_if_ref
}
else
{
// Define __exidx_start and __exidx_end even when .ARM.exidx
// section is missing to match ld's behaviour.
symtab->define_as_constant("__exidx_start", NULL,
Symbol_table::PREDEFINED,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
true, false);
symtab->define_as_constant("__exidx_end", NULL,
Symbol_table::PREDEFINED,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
true, false);
}
}
// NaCl variant. It uses different PLT contents.
template<bool big_endian>
class Output_data_plt_arm_nacl;
template<bool big_endian>
class Target_arm_nacl : public Target_arm<big_endian>
{
public:
Target_arm_nacl()
: Target_arm<big_endian>(&arm_nacl_info)
{ }
protected:
virtual Output_data_plt_arm<big_endian>*
do_make_data_plt(
Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
{ return new Output_data_plt_arm_nacl<big_endian>(
layout, got, got_plt, got_irelative); }
private:
static const Target::Target_info arm_nacl_info;
};
template<bool big_endian>
const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
{
32, // size
big_endian, // is_big_endian
elfcpp::EM_ARM, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib/ld-nacl-arm.so.1", // dynamic_linker
0x20000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
true, // isolate_execinstr
0x10000000, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
".ARM.attributes", // attributes_section
"aeabi", // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
template<bool big_endian>
class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
{
public:
Output_data_plt_arm_nacl(
Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
{ }
protected:
// Return the offset of the first non-reserved PLT entry.
virtual unsigned int
do_first_plt_entry_offset() const
{ return sizeof(first_plt_entry); }
// Return the size of a PLT entry.
virtual unsigned int
do_get_plt_entry_size() const
{ return sizeof(plt_entry); }
virtual void
do_fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address);
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset);
private:
inline uint32_t arm_movw_immediate(uint32_t value)
{
return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
}
inline uint32_t arm_movt_immediate(uint32_t value)
{
return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
}
// Template for the first PLT entry.
static const uint32_t first_plt_entry[16];
// Template for subsequent PLT entries.
static const uint32_t plt_entry[4];
};
// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
{
// First bundle:
0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
0xe08cc00f, // add ip, ip, pc
0xe52dc008, // str ip, [sp, #-8]!
// Second bundle:
0xe3ccc103, // bic ip, ip, #0xc0000000
0xe59cc000, // ldr ip, [ip]
0xe3ccc13f, // bic ip, ip, #0xc000000f
0xe12fff1c, // bx ip
// Third bundle:
0xe320f000, // nop
0xe320f000, // nop
0xe320f000, // nop
// .Lplt_tail:
0xe50dc004, // str ip, [sp, #-4]
// Fourth bundle:
0xe3ccc103, // bic ip, ip, #0xc0000000
0xe59cc000, // ldr ip, [ip]
0xe3ccc13f, // bic ip, ip, #0xc000000f
0xe12fff1c, // bx ip
};
template<bool big_endian>
void
Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address)
{
// Write first PLT entry. All but first two words are constants.
const size_t num_first_plt_words = (sizeof(first_plt_entry)
/ sizeof(first_plt_entry[0]));
int32_t got_displacement = got_address + 8 - (plt_address + 16);
elfcpp::Swap<32, big_endian>::writeval
(pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
elfcpp::Swap<32, big_endian>::writeval
(pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
for (size_t i = 2; i < num_first_plt_words; ++i)
elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
}
// Subsequent entries in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
{
0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
0xe08cc00f, // add ip, ip, pc
0xea000000, // b .Lplt_tail
};
template<bool big_endian>
void
Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{
// Calculate the displacement between the PLT slot and the
// common tail that's part of the special initial PLT slot.
int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
- (plt_address + plt_offset
+ sizeof(plt_entry) + sizeof(uint32_t)));
gold_assert((tail_displacement & 3) == 0);
tail_displacement >>= 2;
gold_assert ((tail_displacement & 0xff000000) == 0
|| (-tail_displacement & 0xff000000) == 0);
// Calculate the displacement between the PLT slot and the entry
// in the GOT. The offset accounts for the value produced by
// adding to pc in the penultimate instruction of the PLT stub.
const int32_t got_displacement = (got_address + got_offset
- (plt_address + sizeof(plt_entry)));
elfcpp::Swap<32, big_endian>::writeval
(pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
elfcpp::Swap<32, big_endian>::writeval
(pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
elfcpp::Swap<32, big_endian>::writeval
(pov + 8, plt_entry[2]);
elfcpp::Swap<32, big_endian>::writeval
(pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
}
// Target selectors.
template<bool big_endian>
class Target_selector_arm_nacl
: public Target_selector_nacl<Target_selector_arm<big_endian>,
Target_arm_nacl<big_endian> >
{
public:
Target_selector_arm_nacl()
: Target_selector_nacl<Target_selector_arm<big_endian>,
Target_arm_nacl<big_endian> >(
"arm",
big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
big_endian ? "armelfb_nacl" : "armelf_nacl")
{ }
};
Target_selector_arm_nacl<false> target_selector_arm;
Target_selector_arm_nacl<true> target_selector_armbe;
} // End anonymous namespace.