965 lines
26 KiB
C
965 lines
26 KiB
C
/* Target-dependent code for Renesas M32R, for GDB.
|
|
|
|
Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "osabi.h"
|
|
#include "language.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "trad-frame.h"
|
|
#include "dis-asm.h"
|
|
|
|
#include "gdb_assert.h"
|
|
|
|
#include "m32r-tdep.h"
|
|
|
|
/* Local functions */
|
|
|
|
extern void _initialize_m32r_tdep (void);
|
|
|
|
static CORE_ADDR
|
|
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
/* Align to the size of an instruction (so that they can safely be
|
|
pushed onto the stack. */
|
|
return sp & ~3;
|
|
}
|
|
|
|
|
|
/* Breakpoints
|
|
|
|
The little endian mode of M32R is unique. In most of architectures,
|
|
two 16-bit instructions, A and B, are placed as the following:
|
|
|
|
Big endian:
|
|
A0 A1 B0 B1
|
|
|
|
Little endian:
|
|
A1 A0 B1 B0
|
|
|
|
In M32R, they are placed like this:
|
|
|
|
Big endian:
|
|
A0 A1 B0 B1
|
|
|
|
Little endian:
|
|
B1 B0 A1 A0
|
|
|
|
This is because M32R always fetches instructions in 32-bit.
|
|
|
|
The following functions take care of this behavior. */
|
|
|
|
static int
|
|
m32r_memory_insert_breakpoint (struct bp_target_info *bp_tgt)
|
|
{
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
|
int val;
|
|
gdb_byte buf[4];
|
|
gdb_byte *contents_cache = bp_tgt->shadow_contents;
|
|
gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
|
|
|
|
/* Save the memory contents. */
|
|
val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
|
|
if (val != 0)
|
|
return val; /* return error */
|
|
|
|
bp_tgt->placed_size = bp_tgt->shadow_len = 4;
|
|
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
|
if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if ((addr & 3) == 0)
|
|
{
|
|
buf[0] = bp_entry[0];
|
|
buf[1] = bp_entry[1];
|
|
buf[2] = contents_cache[2] & 0x7f;
|
|
buf[3] = contents_cache[3];
|
|
}
|
|
else
|
|
{
|
|
buf[0] = contents_cache[0];
|
|
buf[1] = contents_cache[1];
|
|
buf[2] = bp_entry[0];
|
|
buf[3] = bp_entry[1];
|
|
}
|
|
}
|
|
else /* little-endian */
|
|
{
|
|
if ((addr & 3) == 0)
|
|
{
|
|
buf[0] = contents_cache[0];
|
|
buf[1] = contents_cache[1] & 0x7f;
|
|
buf[2] = bp_entry[1];
|
|
buf[3] = bp_entry[0];
|
|
}
|
|
else
|
|
{
|
|
buf[0] = bp_entry[1];
|
|
buf[1] = bp_entry[0];
|
|
buf[2] = contents_cache[2];
|
|
buf[3] = contents_cache[3];
|
|
}
|
|
}
|
|
|
|
/* Write the breakpoint. */
|
|
val = target_write_memory (addr & 0xfffffffc, buf, 4);
|
|
return val;
|
|
}
|
|
|
|
static int
|
|
m32r_memory_remove_breakpoint (struct bp_target_info *bp_tgt)
|
|
{
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
|
int val;
|
|
gdb_byte buf[4];
|
|
gdb_byte *contents_cache = bp_tgt->shadow_contents;
|
|
|
|
buf[0] = contents_cache[0];
|
|
buf[1] = contents_cache[1];
|
|
buf[2] = contents_cache[2];
|
|
buf[3] = contents_cache[3];
|
|
|
|
/* Remove parallel bit. */
|
|
if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
|
|
buf[2] &= 0x7f;
|
|
}
|
|
else /* little-endian */
|
|
{
|
|
if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
|
|
buf[1] &= 0x7f;
|
|
}
|
|
|
|
/* Write contents. */
|
|
val = target_write_memory (addr & 0xfffffffc, buf, 4);
|
|
return val;
|
|
}
|
|
|
|
static const gdb_byte *
|
|
m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
|
|
static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
|
|
gdb_byte *bp;
|
|
|
|
/* Determine appropriate breakpoint. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if ((*pcptr & 3) == 0)
|
|
{
|
|
bp = be_bp_entry;
|
|
*lenptr = 4;
|
|
}
|
|
else
|
|
{
|
|
bp = be_bp_entry;
|
|
*lenptr = 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((*pcptr & 3) == 0)
|
|
{
|
|
bp = le_bp_entry;
|
|
*lenptr = 4;
|
|
}
|
|
else
|
|
{
|
|
bp = le_bp_entry + 2;
|
|
*lenptr = 2;
|
|
}
|
|
}
|
|
|
|
return bp;
|
|
}
|
|
|
|
|
|
char *m32r_register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
|
|
"psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
|
|
"evb"
|
|
};
|
|
|
|
static const char *
|
|
m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= M32R_NUM_REGS)
|
|
return NULL;
|
|
return m32r_register_names[reg_nr];
|
|
}
|
|
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
|
|
static struct type *
|
|
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr == M32R_PC_REGNUM)
|
|
return builtin_type_void_func_ptr;
|
|
else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
|
|
return builtin_type_void_data_ptr;
|
|
else
|
|
return builtin_type_int32;
|
|
}
|
|
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
|
|
Things always get returned in RET1_REGNUM, RET2_REGNUM. */
|
|
|
|
static void
|
|
m32r_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
CORE_ADDR regval;
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
|
|
regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
|
|
|
|
if (len > 4)
|
|
{
|
|
regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4);
|
|
regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
|
|
}
|
|
}
|
|
|
|
/* This is required by skip_prologue. The results of decoding a prologue
|
|
should be cached because this thrashing is getting nuts. */
|
|
|
|
static int
|
|
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
|
|
CORE_ADDR *pl_endptr, unsigned long *framelength)
|
|
{
|
|
unsigned long framesize;
|
|
int insn;
|
|
int op1;
|
|
CORE_ADDR after_prologue = 0;
|
|
CORE_ADDR after_push = 0;
|
|
CORE_ADDR after_stack_adjust = 0;
|
|
CORE_ADDR current_pc;
|
|
LONGEST return_value;
|
|
|
|
framesize = 0;
|
|
after_prologue = 0;
|
|
|
|
for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
|
|
{
|
|
/* Check if current pc's location is readable. */
|
|
if (!safe_read_memory_integer (current_pc, 2, &return_value))
|
|
return -1;
|
|
|
|
insn = read_memory_unsigned_integer (current_pc, 2);
|
|
|
|
if (insn == 0x0000)
|
|
break;
|
|
|
|
/* If this is a 32 bit instruction, we dont want to examine its
|
|
immediate data as though it were an instruction */
|
|
if (current_pc & 0x02)
|
|
{
|
|
/* decode this instruction further */
|
|
insn &= 0x7fff;
|
|
}
|
|
else
|
|
{
|
|
if (insn & 0x8000)
|
|
{
|
|
if (current_pc == scan_limit)
|
|
scan_limit += 2; /* extend the search */
|
|
|
|
current_pc += 2; /* skip the immediate data */
|
|
|
|
/* Check if current pc's location is readable. */
|
|
if (!safe_read_memory_integer (current_pc, 2, &return_value))
|
|
return -1;
|
|
|
|
if (insn == 0x8faf) /* add3 sp, sp, xxxx */
|
|
/* add 16 bit sign-extended offset */
|
|
{
|
|
framesize +=
|
|
-((short) read_memory_unsigned_integer (current_pc, 2));
|
|
}
|
|
else
|
|
{
|
|
if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
|
|
&& safe_read_memory_integer (current_pc + 2, 2,
|
|
&return_value)
|
|
&& read_memory_unsigned_integer (current_pc + 2,
|
|
2) == 0x0f24)
|
|
/* subtract 24 bit sign-extended negative-offset */
|
|
{
|
|
insn = read_memory_unsigned_integer (current_pc - 2, 4);
|
|
if (insn & 0x00800000) /* sign extend */
|
|
insn |= 0xff000000; /* negative */
|
|
else
|
|
insn &= 0x00ffffff; /* positive */
|
|
framesize += insn;
|
|
}
|
|
}
|
|
after_push = current_pc + 2;
|
|
continue;
|
|
}
|
|
}
|
|
op1 = insn & 0xf000; /* isolate just the first nibble */
|
|
|
|
if ((insn & 0xf0ff) == 0x207f)
|
|
{ /* st reg, @-sp */
|
|
int regno;
|
|
framesize += 4;
|
|
regno = ((insn >> 8) & 0xf);
|
|
after_prologue = 0;
|
|
continue;
|
|
}
|
|
if ((insn >> 8) == 0x4f) /* addi sp, xx */
|
|
/* add 8 bit sign-extended offset */
|
|
{
|
|
int stack_adjust = (signed char) (insn & 0xff);
|
|
|
|
/* there are probably two of these stack adjustments:
|
|
1) A negative one in the prologue, and
|
|
2) A positive one in the epilogue.
|
|
We are only interested in the first one. */
|
|
|
|
if (stack_adjust < 0)
|
|
{
|
|
framesize -= stack_adjust;
|
|
after_prologue = 0;
|
|
/* A frameless function may have no "mv fp, sp".
|
|
In that case, this is the end of the prologue. */
|
|
after_stack_adjust = current_pc + 2;
|
|
}
|
|
continue;
|
|
}
|
|
if (insn == 0x1d8f)
|
|
{ /* mv fp, sp */
|
|
after_prologue = current_pc + 2;
|
|
break; /* end of stack adjustments */
|
|
}
|
|
|
|
/* Nop looks like a branch, continue explicitly */
|
|
if (insn == 0x7000)
|
|
{
|
|
after_prologue = current_pc + 2;
|
|
continue; /* nop occurs between pushes */
|
|
}
|
|
/* End of prolog if any of these are trap instructions */
|
|
if ((insn & 0xfff0) == 0x10f0)
|
|
{
|
|
after_prologue = current_pc;
|
|
break;
|
|
}
|
|
/* End of prolog if any of these are branch instructions */
|
|
if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
|
|
{
|
|
after_prologue = current_pc;
|
|
continue;
|
|
}
|
|
/* Some of the branch instructions are mixed with other types */
|
|
if (op1 == 0x1000)
|
|
{
|
|
int subop = insn & 0x0ff0;
|
|
if ((subop == 0x0ec0) || (subop == 0x0fc0))
|
|
{
|
|
after_prologue = current_pc;
|
|
continue; /* jmp , jl */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (framelength)
|
|
*framelength = framesize;
|
|
|
|
if (current_pc >= scan_limit)
|
|
{
|
|
if (pl_endptr)
|
|
{
|
|
if (after_stack_adjust != 0)
|
|
/* We did not find a "mv fp,sp", but we DID find
|
|
a stack_adjust. Is it safe to use that as the
|
|
end of the prologue? I just don't know. */
|
|
{
|
|
*pl_endptr = after_stack_adjust;
|
|
}
|
|
else if (after_push != 0)
|
|
/* We did not find a "mv fp,sp", but we DID find
|
|
a push. Is it safe to use that as the
|
|
end of the prologue? I just don't know. */
|
|
{
|
|
*pl_endptr = after_push;
|
|
}
|
|
else
|
|
/* We reached the end of the loop without finding the end
|
|
of the prologue. No way to win -- we should report failure.
|
|
The way we do that is to return the original start_pc.
|
|
GDB will set a breakpoint at the start of the function (etc.) */
|
|
*pl_endptr = start_pc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (after_prologue == 0)
|
|
after_prologue = current_pc;
|
|
|
|
if (pl_endptr)
|
|
*pl_endptr = after_prologue;
|
|
|
|
return 0;
|
|
} /* decode_prologue */
|
|
|
|
/* Function: skip_prologue
|
|
Find end of function prologue */
|
|
|
|
#define DEFAULT_SEARCH_LIMIT 128
|
|
|
|
CORE_ADDR
|
|
m32r_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, func_end;
|
|
struct symtab_and_line sal;
|
|
LONGEST return_value;
|
|
|
|
/* See what the symbol table says */
|
|
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
if (sal.line != 0 && sal.end <= func_end)
|
|
{
|
|
func_end = sal.end;
|
|
}
|
|
else
|
|
/* Either there's no line info, or the line after the prologue is after
|
|
the end of the function. In this case, there probably isn't a
|
|
prologue. */
|
|
{
|
|
func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
|
|
}
|
|
}
|
|
else
|
|
func_end = pc + DEFAULT_SEARCH_LIMIT;
|
|
|
|
/* If pc's location is not readable, just quit. */
|
|
if (!safe_read_memory_integer (pc, 4, &return_value))
|
|
return pc;
|
|
|
|
/* Find the end of prologue. */
|
|
if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
|
|
return pc;
|
|
|
|
return sal.end;
|
|
}
|
|
|
|
struct m32r_unwind_cache
|
|
{
|
|
/* The previous frame's inner most stack address. Used as this
|
|
frame ID's stack_addr. */
|
|
CORE_ADDR prev_sp;
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
|
CORE_ADDR base;
|
|
int size;
|
|
/* How far the SP and r13 (FP) have been offset from the start of
|
|
the stack frame (as defined by the previous frame's stack
|
|
pointer). */
|
|
LONGEST sp_offset;
|
|
LONGEST r13_offset;
|
|
int uses_frame;
|
|
/* Table indicating the location of each and every register. */
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
|
the saved registers of frame described by FRAME_INFO. This
|
|
includes special registers such as pc and fp saved in special ways
|
|
in the stack frame. sp is even more special: the address we return
|
|
for it IS the sp for the next frame. */
|
|
|
|
static struct m32r_unwind_cache *
|
|
m32r_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR pc, scan_limit;
|
|
ULONGEST prev_sp;
|
|
ULONGEST this_base;
|
|
unsigned long op, op2;
|
|
int i;
|
|
struct m32r_unwind_cache *info;
|
|
|
|
|
|
if ((*this_prologue_cache))
|
|
return (*this_prologue_cache);
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
|
|
(*this_prologue_cache) = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
info->size = 0;
|
|
info->sp_offset = 0;
|
|
info->uses_frame = 0;
|
|
|
|
scan_limit = frame_pc_unwind (next_frame);
|
|
for (pc = frame_func_unwind (next_frame, NORMAL_FRAME);
|
|
pc > 0 && pc < scan_limit; pc += 2)
|
|
{
|
|
if ((pc & 2) == 0)
|
|
{
|
|
op = get_frame_memory_unsigned (next_frame, pc, 4);
|
|
if ((op & 0x80000000) == 0x80000000)
|
|
{
|
|
/* 32-bit instruction */
|
|
if ((op & 0xffff0000) == 0x8faf0000)
|
|
{
|
|
/* add3 sp,sp,xxxx */
|
|
short n = op & 0xffff;
|
|
info->sp_offset += n;
|
|
}
|
|
else if (((op >> 8) == 0xe4)
|
|
&& get_frame_memory_unsigned (next_frame, pc + 2,
|
|
2) == 0x0f24)
|
|
{
|
|
/* ld24 r4, xxxxxx; sub sp, r4 */
|
|
unsigned long n = op & 0xffffff;
|
|
info->sp_offset += n;
|
|
pc += 2; /* skip sub instruction */
|
|
}
|
|
|
|
if (pc == scan_limit)
|
|
scan_limit += 2; /* extend the search */
|
|
pc += 2; /* skip the immediate data */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* 16-bit instructions */
|
|
op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
|
|
if ((op & 0xf0ff) == 0x207f)
|
|
{
|
|
/* st rn, @-sp */
|
|
int regno = ((op >> 8) & 0xf);
|
|
info->sp_offset -= 4;
|
|
info->saved_regs[regno].addr = info->sp_offset;
|
|
}
|
|
else if ((op & 0xff00) == 0x4f00)
|
|
{
|
|
/* addi sp, xx */
|
|
int n = (signed char) (op & 0xff);
|
|
info->sp_offset += n;
|
|
}
|
|
else if (op == 0x1d8f)
|
|
{
|
|
/* mv fp, sp */
|
|
info->uses_frame = 1;
|
|
info->r13_offset = info->sp_offset;
|
|
break; /* end of stack adjustments */
|
|
}
|
|
else if ((op & 0xfff0) == 0x10f0)
|
|
{
|
|
/* end of prologue if this is a trap instruction */
|
|
break; /* end of stack adjustments */
|
|
}
|
|
}
|
|
|
|
info->size = -info->sp_offset;
|
|
|
|
/* Compute the previous frame's stack pointer (which is also the
|
|
frame's ID's stack address), and this frame's base pointer. */
|
|
if (info->uses_frame)
|
|
{
|
|
/* The SP was moved to the FP. This indicates that a new frame
|
|
was created. Get THIS frame's FP value by unwinding it from
|
|
the next frame. */
|
|
this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
|
|
/* The FP points at the last saved register. Adjust the FP back
|
|
to before the first saved register giving the SP. */
|
|
prev_sp = this_base + info->size;
|
|
}
|
|
else
|
|
{
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
|
stack space added back. */
|
|
this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
|
|
prev_sp = this_base + info->size;
|
|
}
|
|
|
|
/* Convert that SP/BASE into real addresses. */
|
|
info->prev_sp = prev_sp;
|
|
info->base = this_base;
|
|
|
|
/* Adjust all the saved registers so that they contain addresses and
|
|
not offsets. */
|
|
for (i = 0; i < gdbarch_num_regs (get_frame_arch (next_frame)) - 1; i++)
|
|
if (trad_frame_addr_p (info->saved_regs, i))
|
|
info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
|
|
|
|
/* The call instruction moves the caller's PC in the callee's LR.
|
|
Since this is an unwind, do the reverse. Copy the location of LR
|
|
into PC (the address / regnum) so that a request for PC will be
|
|
converted into a request for the LR. */
|
|
info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
|
|
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
|
value. */
|
|
trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
|
|
|
|
return info;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m32r_read_pc (struct regcache *regcache)
|
|
{
|
|
ULONGEST pc;
|
|
regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
|
|
return pc;
|
|
}
|
|
|
|
static void
|
|
m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
int stack_offset, stack_alloc;
|
|
int argreg = ARG1_REGNUM;
|
|
int argnum;
|
|
struct type *type;
|
|
enum type_code typecode;
|
|
CORE_ADDR regval;
|
|
gdb_byte *val;
|
|
gdb_byte valbuf[MAX_REGISTER_SIZE];
|
|
int len;
|
|
int odd_sized_struct;
|
|
|
|
/* first force sp to a 4-byte alignment */
|
|
sp = sp & ~3;
|
|
|
|
/* Set the return address. For the m32r, the return breakpoint is
|
|
always at BP_ADDR. */
|
|
regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
|
|
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
|
Both adjust the register count and store that value. */
|
|
if (struct_return)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
|
|
argreg++;
|
|
}
|
|
|
|
/* Now make sure there's space on the stack */
|
|
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
|
stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
|
|
sp -= stack_alloc; /* make room on stack for args */
|
|
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = value_type (args[argnum]);
|
|
typecode = TYPE_CODE (type);
|
|
len = TYPE_LENGTH (type);
|
|
|
|
memset (valbuf, 0, sizeof (valbuf));
|
|
|
|
/* Passes structures that do not fit in 2 registers by reference. */
|
|
if (len > 8
|
|
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
|
{
|
|
store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
|
|
typecode = TYPE_CODE_PTR;
|
|
len = 4;
|
|
val = valbuf;
|
|
}
|
|
else if (len < 4)
|
|
{
|
|
/* value gets right-justified in the register or stack word */
|
|
memcpy (valbuf + (register_size (gdbarch, argreg) - len),
|
|
(gdb_byte *) value_contents (args[argnum]), len);
|
|
val = valbuf;
|
|
}
|
|
else
|
|
val = (gdb_byte *) value_contents (args[argnum]);
|
|
|
|
while (len > 0)
|
|
{
|
|
if (argreg > ARGN_REGNUM)
|
|
{
|
|
/* must go on the stack */
|
|
write_memory (sp + stack_offset, val, 4);
|
|
stack_offset += 4;
|
|
}
|
|
else if (argreg <= ARGN_REGNUM)
|
|
{
|
|
/* there's room in a register */
|
|
regval =
|
|
extract_unsigned_integer (val,
|
|
register_size (gdbarch, argreg));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
|
}
|
|
|
|
/* Store the value 4 bytes at a time. This means that things
|
|
larger than 4 bytes may go partly in registers and partly
|
|
on the stack. */
|
|
len -= register_size (gdbarch, argreg);
|
|
val += register_size (gdbarch, argreg);
|
|
}
|
|
}
|
|
|
|
/* Finally, update the SP register. */
|
|
regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
static void
|
|
m32r_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *dst)
|
|
{
|
|
bfd_byte *valbuf = dst;
|
|
int len = TYPE_LENGTH (type);
|
|
ULONGEST tmp;
|
|
|
|
/* By using store_unsigned_integer we avoid having to do
|
|
anything special for small big-endian values. */
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
|
|
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
|
|
|
|
/* Ignore return values more than 8 bytes in size because the m32r
|
|
returns anything more than 8 bytes in the stack. */
|
|
if (len > 4)
|
|
{
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
|
|
store_unsigned_integer (valbuf + len - 4, 4, tmp);
|
|
}
|
|
}
|
|
|
|
enum return_value_convention
|
|
m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf)
|
|
{
|
|
if (TYPE_LENGTH (valtype) > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else
|
|
{
|
|
if (readbuf != NULL)
|
|
m32r_extract_return_value (valtype, regcache, readbuf);
|
|
if (writebuf != NULL)
|
|
m32r_store_return_value (valtype, regcache, writebuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static CORE_ADDR
|
|
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
|
m32r_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
struct m32r_unwind_cache *info
|
|
= m32r_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
CORE_ADDR base;
|
|
CORE_ADDR func;
|
|
struct minimal_symbol *msym_stack;
|
|
struct frame_id id;
|
|
|
|
/* The FUNC is easy. */
|
|
func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
|
|
|
/* Check if the stack is empty. */
|
|
msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
|
|
if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
|
|
return;
|
|
|
|
/* Hopefully the prologue analysis either correctly determined the
|
|
frame's base (which is the SP from the previous frame), or set
|
|
that base to "NULL". */
|
|
base = info->prev_sp;
|
|
if (base == 0)
|
|
return;
|
|
|
|
id = frame_id_build (base, func);
|
|
(*this_id) = id;
|
|
}
|
|
|
|
static void
|
|
m32r_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, gdb_byte *bufferp)
|
|
{
|
|
struct m32r_unwind_cache *info
|
|
= m32r_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
static const struct frame_unwind m32r_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
m32r_frame_this_id,
|
|
m32r_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
m32r_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &m32r_frame_unwind;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct m32r_unwind_cache *info
|
|
= m32r_frame_unwind_cache (next_frame, this_cache);
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base m32r_frame_base = {
|
|
&m32r_frame_unwind,
|
|
m32r_frame_base_address,
|
|
m32r_frame_base_address,
|
|
m32r_frame_base_address
|
|
};
|
|
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
|
breakpoint. */
|
|
|
|
static struct frame_id
|
|
m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
|
|
frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
|
|
static gdbarch_init_ftype m32r_gdbarch_init;
|
|
|
|
static struct gdbarch *
|
|
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
|
|
/* If there is already a candidate, use it. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* Allocate space for the new architecture. */
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
set_gdbarch_read_pc (gdbarch, m32r_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, m32r_write_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
|
|
|
|
set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
|
|
set_gdbarch_register_name (gdbarch, m32r_register_name);
|
|
set_gdbarch_register_type (gdbarch, m32r_register_type);
|
|
|
|
set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, m32r_return_value);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
|
|
set_gdbarch_memory_insert_breakpoint (gdbarch,
|
|
m32r_memory_insert_breakpoint);
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
|
m32r_memory_remove_breakpoint);
|
|
|
|
set_gdbarch_frame_align (gdbarch, m32r_frame_align);
|
|
|
|
frame_base_set_default (gdbarch, &m32r_frame_base);
|
|
|
|
/* Methods for saving / extracting a dummy frame's ID. The ID's
|
|
stack address must match the SP value returned by
|
|
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
|
|
set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
|
|
|
|
/* Return the unwound PC value. */
|
|
set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_m32r);
|
|
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
/* Hook in the default unwinders. */
|
|
frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
|
|
|
|
/* Support simple overlay manager. */
|
|
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_m32r_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
|
|
}
|