binutils-gdb/gdb/m32r-stub.c

1719 lines
66 KiB
C

// OBSOLETE /****************************************************************************
// OBSOLETE
// OBSOLETE THIS SOFTWARE IS NOT COPYRIGHTED
// OBSOLETE
// OBSOLETE HP offers the following for use in the public domain. HP makes no
// OBSOLETE warranty with regard to the software or it's performance and the
// OBSOLETE user accepts the software "AS IS" with all faults.
// OBSOLETE
// OBSOLETE HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
// OBSOLETE TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OBSOLETE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
// OBSOLETE
// OBSOLETE ****************************************************************************/
// OBSOLETE
// OBSOLETE /****************************************************************************
// OBSOLETE * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
// OBSOLETE *
// OBSOLETE * Module name: remcom.c $
// OBSOLETE * Revision: 1.34 $
// OBSOLETE * Date: 91/03/09 12:29:49 $
// OBSOLETE * Contributor: Lake Stevens Instrument Division$
// OBSOLETE *
// OBSOLETE * Description: low level support for gdb debugger. $
// OBSOLETE *
// OBSOLETE * Considerations: only works on target hardware $
// OBSOLETE *
// OBSOLETE * Written by: Glenn Engel $
// OBSOLETE * ModuleState: Experimental $
// OBSOLETE *
// OBSOLETE * NOTES: See Below $
// OBSOLETE *
// OBSOLETE * Modified for M32R by Michael Snyder, Cygnus Support.
// OBSOLETE *
// OBSOLETE * To enable debugger support, two things need to happen. One, a
// OBSOLETE * call to set_debug_traps() is necessary in order to allow any breakpoints
// OBSOLETE * or error conditions to be properly intercepted and reported to gdb.
// OBSOLETE * Two, a breakpoint needs to be generated to begin communication. This
// OBSOLETE * is most easily accomplished by a call to breakpoint(). Breakpoint()
// OBSOLETE * simulates a breakpoint by executing a trap #1.
// OBSOLETE *
// OBSOLETE * The external function exceptionHandler() is
// OBSOLETE * used to attach a specific handler to a specific M32R vector number.
// OBSOLETE * It should use the same privilege level it runs at. It should
// OBSOLETE * install it as an interrupt gate so that interrupts are masked
// OBSOLETE * while the handler runs.
// OBSOLETE *
// OBSOLETE * Because gdb will sometimes write to the stack area to execute function
// OBSOLETE * calls, this program cannot rely on using the supervisor stack so it
// OBSOLETE * uses it's own stack area reserved in the int array remcomStack.
// OBSOLETE *
// OBSOLETE *************
// OBSOLETE *
// OBSOLETE * The following gdb commands are supported:
// OBSOLETE *
// OBSOLETE * command function Return value
// OBSOLETE *
// OBSOLETE * g return the value of the CPU registers hex data or ENN
// OBSOLETE * G set the value of the CPU registers OK or ENN
// OBSOLETE *
// OBSOLETE * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
// OBSOLETE * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
// OBSOLETE * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
// OBSOLETE * AA..AA
// OBSOLETE *
// OBSOLETE * c Resume at current address SNN ( signal NN)
// OBSOLETE * cAA..AA Continue at address AA..AA SNN
// OBSOLETE *
// OBSOLETE * s Step one instruction SNN
// OBSOLETE * sAA..AA Step one instruction from AA..AA SNN
// OBSOLETE *
// OBSOLETE * k kill
// OBSOLETE *
// OBSOLETE * ? What was the last sigval ? SNN (signal NN)
// OBSOLETE *
// OBSOLETE * All commands and responses are sent with a packet which includes a
// OBSOLETE * checksum. A packet consists of
// OBSOLETE *
// OBSOLETE * $<packet info>#<checksum>.
// OBSOLETE *
// OBSOLETE * where
// OBSOLETE * <packet info> :: <characters representing the command or response>
// OBSOLETE * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
// OBSOLETE *
// OBSOLETE * When a packet is received, it is first acknowledged with either '+' or '-'.
// OBSOLETE * '+' indicates a successful transfer. '-' indicates a failed transfer.
// OBSOLETE *
// OBSOLETE * Example:
// OBSOLETE *
// OBSOLETE * Host: Reply:
// OBSOLETE * $m0,10#2a +$00010203040506070809101112131415#42
// OBSOLETE *
// OBSOLETE ****************************************************************************/
// OBSOLETE
// OBSOLETE
// OBSOLETE /************************************************************************
// OBSOLETE *
// OBSOLETE * external low-level support routines
// OBSOLETE */
// OBSOLETE extern void putDebugChar(); /* write a single character */
// OBSOLETE extern int getDebugChar(); /* read and return a single char */
// OBSOLETE extern void exceptionHandler(); /* assign an exception handler */
// OBSOLETE
// OBSOLETE /*****************************************************************************
// OBSOLETE * BUFMAX defines the maximum number of characters in inbound/outbound buffers
// OBSOLETE * at least NUMREGBYTES*2 are needed for register packets
// OBSOLETE */
// OBSOLETE #define BUFMAX 400
// OBSOLETE
// OBSOLETE static char initialized; /* boolean flag. != 0 means we've been initialized */
// OBSOLETE
// OBSOLETE int remote_debug;
// OBSOLETE /* debug > 0 prints ill-formed commands in valid packets & checksum errors */
// OBSOLETE
// OBSOLETE static const unsigned char hexchars[]="0123456789abcdef";
// OBSOLETE
// OBSOLETE #define NUMREGS 24
// OBSOLETE
// OBSOLETE /* Number of bytes of registers. */
// OBSOLETE #define NUMREGBYTES (NUMREGS * 4)
// OBSOLETE enum regnames { R0, R1, R2, R3, R4, R5, R6, R7,
// OBSOLETE R8, R9, R10, R11, R12, R13, R14, R15,
// OBSOLETE PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH };
// OBSOLETE
// OBSOLETE enum SYS_calls {
// OBSOLETE SYS_null,
// OBSOLETE SYS_exit,
// OBSOLETE SYS_open,
// OBSOLETE SYS_close,
// OBSOLETE SYS_read,
// OBSOLETE SYS_write,
// OBSOLETE SYS_lseek,
// OBSOLETE SYS_unlink,
// OBSOLETE SYS_getpid,
// OBSOLETE SYS_kill,
// OBSOLETE SYS_fstat,
// OBSOLETE SYS_sbrk,
// OBSOLETE SYS_fork,
// OBSOLETE SYS_execve,
// OBSOLETE SYS_wait4,
// OBSOLETE SYS_link,
// OBSOLETE SYS_chdir,
// OBSOLETE SYS_stat,
// OBSOLETE SYS_utime,
// OBSOLETE SYS_chown,
// OBSOLETE SYS_chmod,
// OBSOLETE SYS_time,
// OBSOLETE SYS_pipe };
// OBSOLETE
// OBSOLETE static int registers[NUMREGS];
// OBSOLETE
// OBSOLETE #define STACKSIZE 8096
// OBSOLETE static unsigned char remcomInBuffer[BUFMAX];
// OBSOLETE static unsigned char remcomOutBuffer[BUFMAX];
// OBSOLETE static int remcomStack[STACKSIZE/sizeof(int)];
// OBSOLETE static int* stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
// OBSOLETE
// OBSOLETE static unsigned int save_vectors[18]; /* previous exception vectors */
// OBSOLETE
// OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an error. */
// OBSOLETE static volatile int mem_err = 0;
// OBSOLETE
// OBSOLETE /* Store the vector number here (since GDB only gets the signal
// OBSOLETE number through the usual means, and that's not very specific). */
// OBSOLETE int gdb_m32r_vector = -1;
// OBSOLETE
// OBSOLETE #if 0
// OBSOLETE #include "syscall.h" /* for SYS_exit, SYS_write etc. */
// OBSOLETE #endif
// OBSOLETE
// OBSOLETE /* Global entry points:
// OBSOLETE */
// OBSOLETE
// OBSOLETE extern void handle_exception(int);
// OBSOLETE extern void set_debug_traps(void);
// OBSOLETE extern void breakpoint(void);
// OBSOLETE
// OBSOLETE /* Local functions:
// OBSOLETE */
// OBSOLETE
// OBSOLETE static int computeSignal(int);
// OBSOLETE static void putpacket(unsigned char *);
// OBSOLETE static unsigned char *getpacket(void);
// OBSOLETE
// OBSOLETE static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int);
// OBSOLETE static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int);
// OBSOLETE static int hexToInt(unsigned char **, int *);
// OBSOLETE static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int);
// OBSOLETE static void stash_registers(void);
// OBSOLETE static void restore_registers(void);
// OBSOLETE static int prepare_to_step(int);
// OBSOLETE static int finish_from_step(void);
// OBSOLETE static unsigned long crc32 (unsigned char *, int, unsigned long);
// OBSOLETE
// OBSOLETE static void gdb_error(char *, char *);
// OBSOLETE static int gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int);
// OBSOLETE
// OBSOLETE static unsigned char *strcpy (unsigned char *, const unsigned char *);
// OBSOLETE static int strlen (const unsigned char *);
// OBSOLETE
// OBSOLETE /*
// OBSOLETE * This function does all command procesing for interfacing to gdb.
// OBSOLETE */
// OBSOLETE
// OBSOLETE void
// OBSOLETE handle_exception(int exceptionVector)
// OBSOLETE {
// OBSOLETE int sigval, stepping;
// OBSOLETE int addr, length, i;
// OBSOLETE unsigned char * ptr;
// OBSOLETE unsigned char buf[16];
// OBSOLETE int binary;
// OBSOLETE
// OBSOLETE /* Do not call finish_from_step() if this is not a trap #1
// OBSOLETE * (breakpoint trap). Without this check, the finish_from_step()
// OBSOLETE * might interpret a system call trap as a single step trap. This
// OBSOLETE * can happen if: the stub receives 's' and exits, but an interrupt
// OBSOLETE * was pending; the interrupt is now handled and causes the stub to
// OBSOLETE * be reentered because some function makes a system call.
// OBSOLETE */
// OBSOLETE if (exceptionVector == 1) /* Trap exception? */
// OBSOLETE if (!finish_from_step()) /* Go see if stepping state needs update. */
// OBSOLETE return; /* "false step": let the target continue */
// OBSOLETE
// OBSOLETE gdb_m32r_vector = exceptionVector;
// OBSOLETE
// OBSOLETE if (remote_debug)
// OBSOLETE {
// OBSOLETE mem2hex((unsigned char *) &exceptionVector, buf, 4, 0);
// OBSOLETE gdb_error("Handle exception %s, ", buf);
// OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
// OBSOLETE gdb_error("PC == 0x%s\n", buf);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* reply to host that an exception has occurred */
// OBSOLETE sigval = computeSignal( exceptionVector );
// OBSOLETE
// OBSOLETE ptr = remcomOutBuffer;
// OBSOLETE
// OBSOLETE *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
// OBSOLETE *ptr++ = hexchars[sigval >> 4];
// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[PC >> 4];
// OBSOLETE *ptr++ = hexchars[PC & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0); /* PC */
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[R13 >> 4];
// OBSOLETE *ptr++ = hexchars[R13 & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0); /* FP */
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[R15 >> 4];
// OBSOLETE *ptr++ = hexchars[R15 & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0); /* SP */
// OBSOLETE *ptr++ = ';';
// OBSOLETE *ptr++ = 0;
// OBSOLETE
// OBSOLETE if (exceptionVector == 0) /* simulated SYS call stuff */
// OBSOLETE {
// OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
// OBSOLETE switch (registers[R0]) {
// OBSOLETE case SYS_exit:
// OBSOLETE gdb_error("Target program has exited at %s\n", buf);
// OBSOLETE ptr = remcomOutBuffer;
// OBSOLETE *ptr++ = 'W';
// OBSOLETE sigval = registers[R1] & 0xff;
// OBSOLETE *ptr++ = hexchars[sigval >> 4];
// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
// OBSOLETE *ptr++ = 0;
// OBSOLETE break;
// OBSOLETE case SYS_open:
// OBSOLETE gdb_error("Target attempts SYS_open call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_close:
// OBSOLETE gdb_error("Target attempts SYS_close call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_read:
// OBSOLETE gdb_error("Target attempts SYS_read call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_write:
// OBSOLETE if (registers[R1] == 1 || /* write to stdout */
// OBSOLETE registers[R1] == 2) /* write to stderr */
// OBSOLETE { /* (we can do that) */
// OBSOLETE registers[R0] = gdb_write((void *) registers[R2], registers[R3]);
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE gdb_error("Target attempts SYS_write call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_lseek:
// OBSOLETE gdb_error("Target attempts SYS_lseek call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_unlink:
// OBSOLETE gdb_error("Target attempts SYS_unlink call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_getpid:
// OBSOLETE gdb_error("Target attempts SYS_getpid call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_kill:
// OBSOLETE gdb_error("Target attempts SYS_kill call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE case SYS_fstat:
// OBSOLETE gdb_error("Target attempts SYS_fstat call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE default:
// OBSOLETE gdb_error("Target attempts unknown SYS call at %s\n", buf);
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE putpacket(remcomOutBuffer);
// OBSOLETE
// OBSOLETE stepping = 0;
// OBSOLETE
// OBSOLETE while (1==1) {
// OBSOLETE remcomOutBuffer[0] = 0;
// OBSOLETE ptr = getpacket();
// OBSOLETE binary = 0;
// OBSOLETE switch (*ptr++) {
// OBSOLETE default: /* Unknown code. Return an empty reply message. */
// OBSOLETE break;
// OBSOLETE case 'R':
// OBSOLETE if (hexToInt (&ptr, &addr))
// OBSOLETE registers[PC] = addr;
// OBSOLETE strcpy(remcomOutBuffer, "OK");
// OBSOLETE break;
// OBSOLETE case '!':
// OBSOLETE strcpy(remcomOutBuffer, "OK");
// OBSOLETE break;
// OBSOLETE case 'X': /* XAA..AA,LLLL:<binary data>#cs */
// OBSOLETE binary = 1;
// OBSOLETE case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
// OBSOLETE /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
// OBSOLETE {
// OBSOLETE if (hexToInt(&ptr,&addr))
// OBSOLETE if (*(ptr++) == ',')
// OBSOLETE if (hexToInt(&ptr,&length))
// OBSOLETE if (*(ptr++) == ':')
// OBSOLETE {
// OBSOLETE mem_err = 0;
// OBSOLETE if (binary)
// OBSOLETE bin2mem (ptr, (unsigned char *) addr, length, 1);
// OBSOLETE else
// OBSOLETE hex2mem(ptr, (unsigned char*) addr, length, 1);
// OBSOLETE if (mem_err) {
// OBSOLETE strcpy (remcomOutBuffer, "E03");
// OBSOLETE gdb_error ("memory fault", "");
// OBSOLETE } else {
// OBSOLETE strcpy(remcomOutBuffer,"OK");
// OBSOLETE }
// OBSOLETE ptr = 0;
// OBSOLETE }
// OBSOLETE if (ptr)
// OBSOLETE {
// OBSOLETE strcpy(remcomOutBuffer,"E02");
// OBSOLETE }
// OBSOLETE }
// OBSOLETE break;
// OBSOLETE case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
// OBSOLETE /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
// OBSOLETE if (hexToInt(&ptr,&addr))
// OBSOLETE if (*(ptr++) == ',')
// OBSOLETE if (hexToInt(&ptr,&length))
// OBSOLETE {
// OBSOLETE ptr = 0;
// OBSOLETE mem_err = 0;
// OBSOLETE mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1);
// OBSOLETE if (mem_err) {
// OBSOLETE strcpy (remcomOutBuffer, "E03");
// OBSOLETE gdb_error ("memory fault", "");
// OBSOLETE }
// OBSOLETE }
// OBSOLETE if (ptr)
// OBSOLETE {
// OBSOLETE strcpy(remcomOutBuffer,"E01");
// OBSOLETE }
// OBSOLETE break;
// OBSOLETE case '?':
// OBSOLETE remcomOutBuffer[0] = 'S';
// OBSOLETE remcomOutBuffer[1] = hexchars[sigval >> 4];
// OBSOLETE remcomOutBuffer[2] = hexchars[sigval % 16];
// OBSOLETE remcomOutBuffer[3] = 0;
// OBSOLETE break;
// OBSOLETE case 'd':
// OBSOLETE remote_debug = !(remote_debug); /* toggle debug flag */
// OBSOLETE break;
// OBSOLETE case 'g': /* return the value of the CPU registers */
// OBSOLETE mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0);
// OBSOLETE break;
// OBSOLETE case 'P': /* set the value of a single CPU register - return OK */
// OBSOLETE {
// OBSOLETE int regno;
// OBSOLETE
// OBSOLETE if (hexToInt (&ptr, &regno) && *ptr++ == '=')
// OBSOLETE if (regno >= 0 && regno < NUMREGS)
// OBSOLETE {
// OBSOLETE int stackmode;
// OBSOLETE
// OBSOLETE hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
// OBSOLETE /*
// OBSOLETE * Since we just changed a single CPU register, let's
// OBSOLETE * make sure to keep the several stack pointers consistant.
// OBSOLETE */
// OBSOLETE stackmode = registers[PSW] & 0x80;
// OBSOLETE if (regno == R15) /* stack pointer changed */
// OBSOLETE { /* need to change SPI or SPU */
// OBSOLETE if (stackmode == 0)
// OBSOLETE registers[SPI] = registers[R15];
// OBSOLETE else
// OBSOLETE registers[SPU] = registers[R15];
// OBSOLETE }
// OBSOLETE else if (regno == SPU) /* "user" stack pointer changed */
// OBSOLETE {
// OBSOLETE if (stackmode != 0) /* stack in user mode: copy SP */
// OBSOLETE registers[R15] = registers[SPU];
// OBSOLETE }
// OBSOLETE else if (regno == SPI) /* "interrupt" stack pointer changed */
// OBSOLETE {
// OBSOLETE if (stackmode == 0) /* stack in interrupt mode: copy SP */
// OBSOLETE registers[R15] = registers[SPI];
// OBSOLETE }
// OBSOLETE else if (regno == PSW) /* stack mode may have changed! */
// OBSOLETE { /* force SP to either SPU or SPI */
// OBSOLETE if (stackmode == 0) /* stack in user mode */
// OBSOLETE registers[R15] = registers[SPI];
// OBSOLETE else /* stack in interrupt mode */
// OBSOLETE registers[R15] = registers[SPU];
// OBSOLETE }
// OBSOLETE strcpy (remcomOutBuffer, "OK");
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE strcpy (remcomOutBuffer, "E01");
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE case 'G': /* set the value of the CPU registers - return OK */
// OBSOLETE hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0);
// OBSOLETE strcpy(remcomOutBuffer,"OK");
// OBSOLETE break;
// OBSOLETE case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
// OBSOLETE stepping = 1;
// OBSOLETE case 'c': /* cAA..AA Continue from address AA..AA(optional) */
// OBSOLETE /* try to read optional parameter, pc unchanged if no parm */
// OBSOLETE if (hexToInt(&ptr,&addr))
// OBSOLETE registers[ PC ] = addr;
// OBSOLETE
// OBSOLETE if (stepping) /* single-stepping */
// OBSOLETE {
// OBSOLETE if (!prepare_to_step(0)) /* set up for single-step */
// OBSOLETE {
// OBSOLETE /* prepare_to_step has already emulated the target insn:
// OBSOLETE Send SIGTRAP to gdb, don't resume the target at all. */
// OBSOLETE ptr = remcomOutBuffer;
// OBSOLETE *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
// OBSOLETE *ptr++ = '0';
// OBSOLETE *ptr++ = '5';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[PC >> 4]; /* send PC */
// OBSOLETE *ptr++ = hexchars[PC & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[R13 >> 4]; /* send FP */
// OBSOLETE *ptr++ = hexchars[R13 & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[R15 >> 4]; /* send SP */
// OBSOLETE *ptr++ = hexchars[R15 & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE *ptr++ = 0;
// OBSOLETE
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else /* continuing, not single-stepping */
// OBSOLETE {
// OBSOLETE /* OK, about to do a "continue". First check to see if the
// OBSOLETE target pc is on an odd boundary (second instruction in the
// OBSOLETE word). If so, we must do a single-step first, because
// OBSOLETE ya can't jump or return back to an odd boundary! */
// OBSOLETE if ((registers[PC] & 2) != 0)
// OBSOLETE prepare_to_step(1);
// OBSOLETE }
// OBSOLETE
// OBSOLETE return;
// OBSOLETE
// OBSOLETE case 'D': /* Detach */
// OBSOLETE #if 0
// OBSOLETE /* I am interpreting this to mean, release the board from control
// OBSOLETE by the remote stub. To do this, I am restoring the original
// OBSOLETE (or at least previous) exception vectors.
// OBSOLETE */
// OBSOLETE for (i = 0; i < 18; i++)
// OBSOLETE exceptionHandler (i, save_vectors[i]);
// OBSOLETE putpacket ("OK");
// OBSOLETE return; /* continue the inferior */
// OBSOLETE #else
// OBSOLETE strcpy(remcomOutBuffer,"OK");
// OBSOLETE break;
// OBSOLETE #endif
// OBSOLETE case 'q':
// OBSOLETE if (*ptr++ == 'C' &&
// OBSOLETE *ptr++ == 'R' &&
// OBSOLETE *ptr++ == 'C' &&
// OBSOLETE *ptr++ == ':')
// OBSOLETE {
// OBSOLETE unsigned long start, len, our_crc;
// OBSOLETE
// OBSOLETE if (hexToInt (&ptr, (int *) &start) &&
// OBSOLETE *ptr++ == ',' &&
// OBSOLETE hexToInt (&ptr, (int *) &len))
// OBSOLETE {
// OBSOLETE remcomOutBuffer[0] = 'C';
// OBSOLETE our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
// OBSOLETE mem2hex ((char *) &our_crc,
// OBSOLETE &remcomOutBuffer[1],
// OBSOLETE sizeof (long),
// OBSOLETE 0);
// OBSOLETE } /* else do nothing */
// OBSOLETE } /* else do nothing */
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'k': /* kill the program */
// OBSOLETE continue;
// OBSOLETE } /* switch */
// OBSOLETE
// OBSOLETE /* reply to the request */
// OBSOLETE putpacket(remcomOutBuffer);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* qCRC support */
// OBSOLETE
// OBSOLETE /* Table used by the crc32 function to calcuate the checksum. */
// OBSOLETE static unsigned long crc32_table[256] = {0, 0};
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE crc32 (unsigned char *buf, int len, unsigned long crc)
// OBSOLETE {
// OBSOLETE if (! crc32_table[1])
// OBSOLETE {
// OBSOLETE /* Initialize the CRC table and the decoding table. */
// OBSOLETE int i, j;
// OBSOLETE unsigned long c;
// OBSOLETE
// OBSOLETE for (i = 0; i < 256; i++)
// OBSOLETE {
// OBSOLETE for (c = i << 24, j = 8; j > 0; --j)
// OBSOLETE c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
// OBSOLETE crc32_table[i] = c;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE while (len--)
// OBSOLETE {
// OBSOLETE crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
// OBSOLETE buf++;
// OBSOLETE }
// OBSOLETE return crc;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE hex (unsigned char ch)
// OBSOLETE {
// OBSOLETE if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10);
// OBSOLETE if ((ch >= '0') && (ch <= '9')) return (ch-'0');
// OBSOLETE if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10);
// OBSOLETE return (-1);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* scan for the sequence $<data>#<checksum> */
// OBSOLETE
// OBSOLETE unsigned char *
// OBSOLETE getpacket (void)
// OBSOLETE {
// OBSOLETE unsigned char *buffer = &remcomInBuffer[0];
// OBSOLETE unsigned char checksum;
// OBSOLETE unsigned char xmitcsum;
// OBSOLETE int count;
// OBSOLETE char ch;
// OBSOLETE
// OBSOLETE while (1)
// OBSOLETE {
// OBSOLETE /* wait around for the start character, ignore all other characters */
// OBSOLETE while ((ch = getDebugChar ()) != '$')
// OBSOLETE ;
// OBSOLETE
// OBSOLETE retry:
// OBSOLETE checksum = 0;
// OBSOLETE xmitcsum = -1;
// OBSOLETE count = 0;
// OBSOLETE
// OBSOLETE /* now, read until a # or end of buffer is found */
// OBSOLETE while (count < BUFMAX)
// OBSOLETE {
// OBSOLETE ch = getDebugChar ();
// OBSOLETE if (ch == '$')
// OBSOLETE goto retry;
// OBSOLETE if (ch == '#')
// OBSOLETE break;
// OBSOLETE checksum = checksum + ch;
// OBSOLETE buffer[count] = ch;
// OBSOLETE count = count + 1;
// OBSOLETE }
// OBSOLETE buffer[count] = 0;
// OBSOLETE
// OBSOLETE if (ch == '#')
// OBSOLETE {
// OBSOLETE ch = getDebugChar ();
// OBSOLETE xmitcsum = hex (ch) << 4;
// OBSOLETE ch = getDebugChar ();
// OBSOLETE xmitcsum += hex (ch);
// OBSOLETE
// OBSOLETE if (checksum != xmitcsum)
// OBSOLETE {
// OBSOLETE if (remote_debug)
// OBSOLETE {
// OBSOLETE unsigned char buf[16];
// OBSOLETE
// OBSOLETE mem2hex((unsigned char *) &checksum, buf, 4, 0);
// OBSOLETE gdb_error("Bad checksum: my count = %s, ", buf);
// OBSOLETE mem2hex((unsigned char *) &xmitcsum, buf, 4, 0);
// OBSOLETE gdb_error("sent count = %s\n", buf);
// OBSOLETE gdb_error(" -- Bad buffer: \"%s\"\n", buffer);
// OBSOLETE }
// OBSOLETE putDebugChar ('-'); /* failed checksum */
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE putDebugChar ('+'); /* successful transfer */
// OBSOLETE
// OBSOLETE /* if a sequence char is present, reply the sequence ID */
// OBSOLETE if (buffer[2] == ':')
// OBSOLETE {
// OBSOLETE putDebugChar (buffer[0]);
// OBSOLETE putDebugChar (buffer[1]);
// OBSOLETE
// OBSOLETE return &buffer[3];
// OBSOLETE }
// OBSOLETE
// OBSOLETE return &buffer[0];
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* send the packet in buffer. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE putpacket (unsigned char *buffer)
// OBSOLETE {
// OBSOLETE unsigned char checksum;
// OBSOLETE int count;
// OBSOLETE char ch;
// OBSOLETE
// OBSOLETE /* $<packet info>#<checksum>. */
// OBSOLETE do {
// OBSOLETE putDebugChar('$');
// OBSOLETE checksum = 0;
// OBSOLETE count = 0;
// OBSOLETE
// OBSOLETE while (ch=buffer[count]) {
// OBSOLETE putDebugChar(ch);
// OBSOLETE checksum += ch;
// OBSOLETE count += 1;
// OBSOLETE }
// OBSOLETE putDebugChar('#');
// OBSOLETE putDebugChar(hexchars[checksum >> 4]);
// OBSOLETE putDebugChar(hexchars[checksum % 16]);
// OBSOLETE } while (getDebugChar() != '+');
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Address of a routine to RTE to if we get a memory fault. */
// OBSOLETE
// OBSOLETE static void (*volatile mem_fault_routine)() = 0;
// OBSOLETE
// OBSOLETE static void
// OBSOLETE set_mem_err (void)
// OBSOLETE {
// OBSOLETE mem_err = 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Check the address for safe access ranges. As currently defined,
// OBSOLETE this routine will reject the "expansion bus" address range(s).
// OBSOLETE To make those ranges useable, someone must implement code to detect
// OBSOLETE whether there's anything connected to the expansion bus. */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE mem_safe (unsigned char *addr)
// OBSOLETE {
// OBSOLETE #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
// OBSOLETE #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
// OBSOLETE #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
// OBSOLETE #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
// OBSOLETE
// OBSOLETE if (addr < BAD_RANGE_ONE_START) return 1; /* safe */
// OBSOLETE if (addr < BAD_RANGE_ONE_END) return 0; /* unsafe */
// OBSOLETE if (addr < BAD_RANGE_TWO_START) return 1; /* safe */
// OBSOLETE if (addr < BAD_RANGE_TWO_END) return 0; /* unsafe */
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* These are separate functions so that they are so short and sweet
// OBSOLETE that the compiler won't save any registers (if there is a fault
// OBSOLETE to mem_fault, they won't get restored, so there better not be any
// OBSOLETE saved). */
// OBSOLETE static int
// OBSOLETE get_char (unsigned char *addr)
// OBSOLETE {
// OBSOLETE #if 1
// OBSOLETE if (mem_fault_routine && !mem_safe(addr))
// OBSOLETE {
// OBSOLETE mem_fault_routine ();
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE #endif
// OBSOLETE return *addr;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE set_char (unsigned char *addr, unsigned char val)
// OBSOLETE {
// OBSOLETE #if 1
// OBSOLETE if (mem_fault_routine && !mem_safe (addr))
// OBSOLETE {
// OBSOLETE mem_fault_routine ();
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE #endif
// OBSOLETE *addr = val;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf.
// OBSOLETE Return a pointer to the last char put in buf (null).
// OBSOLETE If MAY_FAULT is non-zero, then we should set mem_err in response to
// OBSOLETE a fault; if zero treat a fault like any other fault in the stub. */
// OBSOLETE
// OBSOLETE static unsigned char *
// OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE unsigned char ch;
// OBSOLETE
// OBSOLETE if (may_fault)
// OBSOLETE mem_fault_routine = set_mem_err;
// OBSOLETE for (i=0;i<count;i++) {
// OBSOLETE ch = get_char (mem++);
// OBSOLETE if (may_fault && mem_err)
// OBSOLETE return (buf);
// OBSOLETE *buf++ = hexchars[ch >> 4];
// OBSOLETE *buf++ = hexchars[ch % 16];
// OBSOLETE }
// OBSOLETE *buf = 0;
// OBSOLETE if (may_fault)
// OBSOLETE mem_fault_routine = 0;
// OBSOLETE return(buf);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert the hex array pointed to by buf into binary to be placed in mem.
// OBSOLETE Return a pointer to the character AFTER the last byte written. */
// OBSOLETE
// OBSOLETE static unsigned char*
// OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE unsigned char ch;
// OBSOLETE
// OBSOLETE if (may_fault)
// OBSOLETE mem_fault_routine = set_mem_err;
// OBSOLETE for (i=0;i<count;i++) {
// OBSOLETE ch = hex(*buf++) << 4;
// OBSOLETE ch = ch + hex(*buf++);
// OBSOLETE set_char (mem++, ch);
// OBSOLETE if (may_fault && mem_err)
// OBSOLETE return (mem);
// OBSOLETE }
// OBSOLETE if (may_fault)
// OBSOLETE mem_fault_routine = 0;
// OBSOLETE return(mem);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert the binary stream in BUF to memory.
// OBSOLETE
// OBSOLETE Gdb will escape $, #, and the escape char (0x7d).
// OBSOLETE COUNT is the total number of bytes to write into
// OBSOLETE memory. */
// OBSOLETE static unsigned char *
// OBSOLETE bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE unsigned char ch;
// OBSOLETE
// OBSOLETE if (may_fault)
// OBSOLETE mem_fault_routine = set_mem_err;
// OBSOLETE for (i = 0; i < count; i++)
// OBSOLETE {
// OBSOLETE /* Check for any escaped characters. Be paranoid and
// OBSOLETE only unescape chars that should be escaped. */
// OBSOLETE if (*buf == 0x7d)
// OBSOLETE {
// OBSOLETE switch (*(buf+1))
// OBSOLETE {
// OBSOLETE case 0x3: /* # */
// OBSOLETE case 0x4: /* $ */
// OBSOLETE case 0x5d: /* escape char */
// OBSOLETE buf++;
// OBSOLETE *buf |= 0x20;
// OBSOLETE break;
// OBSOLETE default:
// OBSOLETE /* nothing */
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE set_char (mem++, *buf++);
// OBSOLETE
// OBSOLETE if (may_fault && mem_err)
// OBSOLETE return mem;
// OBSOLETE }
// OBSOLETE
// OBSOLETE if (may_fault)
// OBSOLETE mem_fault_routine = 0;
// OBSOLETE return mem;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* this function takes the m32r exception vector and attempts to
// OBSOLETE translate this number into a unix compatible signal value */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE computeSignal (int exceptionVector)
// OBSOLETE {
// OBSOLETE int sigval;
// OBSOLETE switch (exceptionVector) {
// OBSOLETE case 0 : sigval = 23; break; /* I/O trap */
// OBSOLETE case 1 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 2 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 3 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 4 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 5 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 6 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 7 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 8 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 9 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 10 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 11 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 12 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 13 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 14 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 15 : sigval = 5; break; /* breakpoint */
// OBSOLETE case 16 : sigval = 10; break; /* BUS ERROR (alignment) */
// OBSOLETE case 17 : sigval = 2; break; /* INTerrupt */
// OBSOLETE default : sigval = 7; break; /* "software generated" */
// OBSOLETE }
// OBSOLETE return (sigval);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /**********************************************/
// OBSOLETE /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
// OBSOLETE /* RETURN NUMBER OF CHARS PROCESSED */
// OBSOLETE /**********************************************/
// OBSOLETE static int
// OBSOLETE hexToInt (unsigned char **ptr, int *intValue)
// OBSOLETE {
// OBSOLETE int numChars = 0;
// OBSOLETE int hexValue;
// OBSOLETE
// OBSOLETE *intValue = 0;
// OBSOLETE while (**ptr)
// OBSOLETE {
// OBSOLETE hexValue = hex(**ptr);
// OBSOLETE if (hexValue >=0)
// OBSOLETE {
// OBSOLETE *intValue = (*intValue <<4) | hexValue;
// OBSOLETE numChars ++;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE break;
// OBSOLETE (*ptr)++;
// OBSOLETE }
// OBSOLETE return (numChars);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /*
// OBSOLETE Table of branch instructions:
// OBSOLETE
// OBSOLETE 10B6 RTE return from trap or exception
// OBSOLETE 1FCr JMP jump
// OBSOLETE 1ECr JL jump and link
// OBSOLETE 7Fxx BRA branch
// OBSOLETE FFxxxxxx BRA branch (long)
// OBSOLETE B09rxxxx BNEZ branch not-equal-zero
// OBSOLETE Br1rxxxx BNE branch not-equal
// OBSOLETE 7Dxx BNC branch not-condition
// OBSOLETE FDxxxxxx BNC branch not-condition (long)
// OBSOLETE B0Arxxxx BLTZ branch less-than-zero
// OBSOLETE B0Crxxxx BLEZ branch less-equal-zero
// OBSOLETE 7Exx BL branch and link
// OBSOLETE FExxxxxx BL branch and link (long)
// OBSOLETE B0Drxxxx BGTZ branch greater-than-zero
// OBSOLETE B0Brxxxx BGEZ branch greater-equal-zero
// OBSOLETE B08rxxxx BEQZ branch equal-zero
// OBSOLETE Br0rxxxx BEQ branch equal
// OBSOLETE 7Cxx BC branch condition
// OBSOLETE FCxxxxxx BC branch condition (long)
// OBSOLETE */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE isShortBranch (unsigned char *instr)
// OBSOLETE {
// OBSOLETE unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
// OBSOLETE
// OBSOLETE if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
// OBSOLETE return 1; /* return from trap or exception */
// OBSOLETE
// OBSOLETE if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
// OBSOLETE if ((instr[1] & 0xF0) == 0xC0)
// OBSOLETE return 2; /* jump thru a register */
// OBSOLETE
// OBSOLETE if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
// OBSOLETE instr0 == 0x7E || instr0 == 0x7F)
// OBSOLETE return 3; /* eight bit PC offset */
// OBSOLETE
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE isLongBranch (unsigned char *instr)
// OBSOLETE {
// OBSOLETE if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
// OBSOLETE instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
// OBSOLETE return 4;
// OBSOLETE if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
// OBSOLETE {
// OBSOLETE if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
// OBSOLETE (instr[1] & 0xF0) == 0x10)
// OBSOLETE return 5;
// OBSOLETE if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
// OBSOLETE if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
// OBSOLETE (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
// OBSOLETE (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
// OBSOLETE return 6;
// OBSOLETE }
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
// OBSOLETE then it's a 2-byte instruction, else it's a 4-byte instruction. */
// OBSOLETE
// OBSOLETE #define INSTRUCTION_SIZE(addr) \
// OBSOLETE ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
// OBSOLETE
// OBSOLETE static int
// OBSOLETE isBranch (unsigned char *instr)
// OBSOLETE {
// OBSOLETE if (INSTRUCTION_SIZE(instr) == 2)
// OBSOLETE return isShortBranch(instr);
// OBSOLETE else
// OBSOLETE return isLongBranch(instr);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE willBranch (unsigned char *instr, int branchCode)
// OBSOLETE {
// OBSOLETE switch (branchCode)
// OBSOLETE {
// OBSOLETE case 0: return 0; /* not a branch */
// OBSOLETE case 1: return 1; /* RTE */
// OBSOLETE case 2: return 1; /* JL or JMP */
// OBSOLETE case 3: /* BC, BNC, BL, BRA (short) */
// OBSOLETE case 4: /* BC, BNC, BL, BRA (long) */
// OBSOLETE switch (instr[0] & 0x0F)
// OBSOLETE {
// OBSOLETE case 0xC: /* Branch if Condition Register */
// OBSOLETE return (registers[CBR] != 0);
// OBSOLETE case 0xD: /* Branch if NOT Condition Register */
// OBSOLETE return (registers[CBR] == 0);
// OBSOLETE case 0xE: /* Branch and Link */
// OBSOLETE case 0xF: /* Branch (unconditional) */
// OBSOLETE return 1;
// OBSOLETE default: /* oops? */
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE case 5: /* BNE, BEQ */
// OBSOLETE switch (instr[1] & 0xF0)
// OBSOLETE {
// OBSOLETE case 0x00: /* Branch if r1 equal to r2 */
// OBSOLETE return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
// OBSOLETE case 0x10: /* Branch if r1 NOT equal to r2 */
// OBSOLETE return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
// OBSOLETE default: /* oops? */
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
// OBSOLETE switch (instr[1] & 0xF0)
// OBSOLETE {
// OBSOLETE case 0x80: /* Branch if reg equal to zero */
// OBSOLETE return (registers[instr[1] & 0x0F] == 0);
// OBSOLETE case 0x90: /* Branch if reg NOT equal to zero */
// OBSOLETE return (registers[instr[1] & 0x0F] != 0);
// OBSOLETE case 0xA0: /* Branch if reg less than zero */
// OBSOLETE return (registers[instr[1] & 0x0F] < 0);
// OBSOLETE case 0xB0: /* Branch if reg greater or equal to zero */
// OBSOLETE return (registers[instr[1] & 0x0F] >= 0);
// OBSOLETE case 0xC0: /* Branch if reg less than or equal to zero */
// OBSOLETE return (registers[instr[1] & 0x0F] <= 0);
// OBSOLETE case 0xD0: /* Branch if reg greater than zero */
// OBSOLETE return (registers[instr[1] & 0x0F] > 0);
// OBSOLETE default: /* oops? */
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE default: /* oops? */
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE branchDestination (unsigned char *instr, int branchCode)
// OBSOLETE {
// OBSOLETE switch (branchCode) {
// OBSOLETE default:
// OBSOLETE case 0: /* not a branch */
// OBSOLETE return 0;
// OBSOLETE case 1: /* RTE */
// OBSOLETE return registers[BPC] & ~3; /* pop BPC into PC */
// OBSOLETE case 2: /* JL or JMP */
// OBSOLETE return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
// OBSOLETE case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
// OBSOLETE return (((int) instr) & ~3) + ((char) instr[1] << 2);
// OBSOLETE case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
// OBSOLETE return ((int) instr +
// OBSOLETE ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2));
// OBSOLETE case 5: /* BNE, BEQ (16-bit relative offset) */
// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
// OBSOLETE return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* An explanatory note: in the last three return expressions, I have
// OBSOLETE cast the most-significant byte of the return offset to char.
// OBSOLETE What this accomplishes is sign extension. If the other
// OBSOLETE less-significant bytes were signed as well, they would get sign
// OBSOLETE extended too and, if negative, their leading bits would clobber
// OBSOLETE the bits of the more-significant bytes ahead of them. There are
// OBSOLETE other ways I could have done this, but sign extension from
// OBSOLETE odd-sized integers is always a pain. */
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE branchSideEffects (unsigned char *instr, int branchCode)
// OBSOLETE {
// OBSOLETE switch (branchCode)
// OBSOLETE {
// OBSOLETE case 1: /* RTE */
// OBSOLETE return; /* I <THINK> this is already handled... */
// OBSOLETE case 2: /* JL (or JMP) */
// OBSOLETE case 3: /* BL (or BC, BNC, BRA) */
// OBSOLETE case 4:
// OBSOLETE if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
// OBSOLETE registers[R14] = (registers[PC] & ~3) + 4;
// OBSOLETE return;
// OBSOLETE default: /* any other branch has no side effects */
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE static struct STEPPING_CONTEXT {
// OBSOLETE int stepping; /* true when we've started a single-step */
// OBSOLETE unsigned long target_addr; /* the instr we're trying to execute */
// OBSOLETE unsigned long target_size; /* the size of the target instr */
// OBSOLETE unsigned long noop_addr; /* where we've inserted a no-op, if any */
// OBSOLETE unsigned long trap1_addr; /* the trap following the target instr */
// OBSOLETE unsigned long trap2_addr; /* the trap at a branch destination, if any */
// OBSOLETE unsigned short noop_save; /* instruction overwritten by our no-op */
// OBSOLETE unsigned short trap1_save; /* instruction overwritten by trap1 */
// OBSOLETE unsigned short trap2_save; /* instruction overwritten by trap2 */
// OBSOLETE unsigned short continue_p; /* true if NOT returning to gdb after step */
// OBSOLETE } stepping;
// OBSOLETE
// OBSOLETE /* Function: prepare_to_step
// OBSOLETE Called from handle_exception to prepare the user program to single-step.
// OBSOLETE Places a trap instruction after the target instruction, with special
// OBSOLETE extra handling for branch instructions and for instructions in the
// OBSOLETE second half-word of a word.
// OBSOLETE
// OBSOLETE Returns: True if we should actually execute the instruction;
// OBSOLETE False if we are going to emulate executing the instruction,
// OBSOLETE in which case we simply report to GDB that the instruction
// OBSOLETE has already been executed. */
// OBSOLETE
// OBSOLETE #define TRAP1 0x10f1; /* trap #1 instruction */
// OBSOLETE #define NOOP 0x7000; /* noop instruction */
// OBSOLETE
// OBSOLETE static unsigned short trap1 = TRAP1;
// OBSOLETE static unsigned short noop = NOOP;
// OBSOLETE
// OBSOLETE static int
// OBSOLETE prepare_to_step(continue_p)
// OBSOLETE int continue_p; /* if this isn't REALLY a single-step (see below) */
// OBSOLETE {
// OBSOLETE unsigned long pc = registers[PC];
// OBSOLETE int branchCode = isBranch((unsigned char *) pc);
// OBSOLETE unsigned char *p;
// OBSOLETE
// OBSOLETE /* zero out the stepping context
// OBSOLETE (paranoia -- it should already be zeroed) */
// OBSOLETE for (p = (unsigned char *) &stepping;
// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
// OBSOLETE p++)
// OBSOLETE *p = 0;
// OBSOLETE
// OBSOLETE if (branchCode != 0) /* next instruction is a branch */
// OBSOLETE {
// OBSOLETE branchSideEffects((unsigned char *) pc, branchCode);
// OBSOLETE if (willBranch((unsigned char *)pc, branchCode))
// OBSOLETE registers[PC] = branchDestination((unsigned char *) pc, branchCode);
// OBSOLETE else
// OBSOLETE registers[PC] = pc + INSTRUCTION_SIZE(pc);
// OBSOLETE return 0; /* branch "executed" -- just notify GDB */
// OBSOLETE }
// OBSOLETE else if (((int) pc & 2) != 0) /* "second-slot" instruction */
// OBSOLETE {
// OBSOLETE /* insert no-op before pc */
// OBSOLETE stepping.noop_addr = pc - 2;
// OBSOLETE stepping.noop_save = *(unsigned short *) stepping.noop_addr;
// OBSOLETE *(unsigned short *) stepping.noop_addr = noop;
// OBSOLETE /* insert trap after pc */
// OBSOLETE stepping.trap1_addr = pc + 2;
// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
// OBSOLETE }
// OBSOLETE else /* "first-slot" instruction */
// OBSOLETE {
// OBSOLETE /* insert trap after pc */
// OBSOLETE stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc);
// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
// OBSOLETE }
// OBSOLETE /* "continue_p" means that we are actually doing a continue, and not
// OBSOLETE being requested to single-step by GDB. Sometimes we have to do
// OBSOLETE one single-step before continuing, because the PC is on a half-word
// OBSOLETE boundary. There's no way to simply resume at such an address. */
// OBSOLETE stepping.continue_p = continue_p;
// OBSOLETE stepping.stepping = 1; /* starting a single-step */
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: finish_from_step
// OBSOLETE Called from handle_exception to finish up when the user program
// OBSOLETE returns from a single-step. Replaces the instructions that had
// OBSOLETE been overwritten by traps or no-ops,
// OBSOLETE
// OBSOLETE Returns: True if we should notify GDB that the target stopped.
// OBSOLETE False if we only single-stepped because we had to before we
// OBSOLETE could continue (ie. we were trying to continue at a
// OBSOLETE half-word boundary). In that case don't notify GDB:
// OBSOLETE just "continue continuing". */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE finish_from_step (void)
// OBSOLETE {
// OBSOLETE if (stepping.stepping) /* anything to do? */
// OBSOLETE {
// OBSOLETE int continue_p = stepping.continue_p;
// OBSOLETE unsigned char *p;
// OBSOLETE
// OBSOLETE if (stepping.noop_addr) /* replace instr "under" our no-op */
// OBSOLETE *(unsigned short *) stepping.noop_addr = stepping.noop_save;
// OBSOLETE if (stepping.trap1_addr) /* replace instr "under" our trap */
// OBSOLETE *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
// OBSOLETE if (stepping.trap2_addr) /* ditto our other trap, if any */
// OBSOLETE *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
// OBSOLETE
// OBSOLETE for (p = (unsigned char *) &stepping; /* zero out the stepping context */
// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
// OBSOLETE p++)
// OBSOLETE *p = 0;
// OBSOLETE
// OBSOLETE return !(continue_p);
// OBSOLETE }
// OBSOLETE else /* we didn't single-step, therefore this must be a legitimate stop */
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE struct PSWreg { /* separate out the bit flags in the PSW register */
// OBSOLETE int pad1 : 16;
// OBSOLETE int bsm : 1;
// OBSOLETE int bie : 1;
// OBSOLETE int pad2 : 5;
// OBSOLETE int bc : 1;
// OBSOLETE int sm : 1;
// OBSOLETE int ie : 1;
// OBSOLETE int pad3 : 5;
// OBSOLETE int c : 1;
// OBSOLETE } *psw;
// OBSOLETE
// OBSOLETE /* Upon entry the value for LR to save has been pushed.
// OBSOLETE We unpush that so that the value for the stack pointer saved is correct.
// OBSOLETE Upon entry, all other registers are assumed to have not been modified
// OBSOLETE since the interrupt/trap occured. */
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE stash_registers:
// OBSOLETE push r0
// OBSOLETE push r1
// OBSOLETE seth r1, #shigh(registers)
// OBSOLETE add3 r1, r1, #low(registers)
// OBSOLETE pop r0 ; r1
// OBSOLETE st r0, @(4,r1)
// OBSOLETE pop r0 ; r0
// OBSOLETE st r0, @r1
// OBSOLETE addi r1, #4 ; only add 4 as subsequent saves are `pre inc'
// OBSOLETE st r2, @+r1
// OBSOLETE st r3, @+r1
// OBSOLETE st r4, @+r1
// OBSOLETE st r5, @+r1
// OBSOLETE st r6, @+r1
// OBSOLETE st r7, @+r1
// OBSOLETE st r8, @+r1
// OBSOLETE st r9, @+r1
// OBSOLETE st r10, @+r1
// OBSOLETE st r11, @+r1
// OBSOLETE st r12, @+r1
// OBSOLETE st r13, @+r1 ; fp
// OBSOLETE pop r0 ; lr (r14)
// OBSOLETE st r0, @+r1
// OBSOLETE st sp, @+r1 ; sp contains right value at this point
// OBSOLETE mvfc r0, cr0
// OBSOLETE st r0, @+r1 ; cr0 == PSW
// OBSOLETE mvfc r0, cr1
// OBSOLETE st r0, @+r1 ; cr1 == CBR
// OBSOLETE mvfc r0, cr2
// OBSOLETE st r0, @+r1 ; cr2 == SPI
// OBSOLETE mvfc r0, cr3
// OBSOLETE st r0, @+r1 ; cr3 == SPU
// OBSOLETE mvfc r0, cr6
// OBSOLETE st r0, @+r1 ; cr6 == BPC
// OBSOLETE st r0, @+r1 ; PC == BPC
// OBSOLETE mvfaclo r0
// OBSOLETE st r0, @+r1 ; ACCL
// OBSOLETE mvfachi r0
// OBSOLETE st r0, @+r1 ; ACCH
// OBSOLETE jmp lr");
// OBSOLETE
// OBSOLETE /* C routine to clean up what stash_registers did.
// OBSOLETE It is called after calling stash_registers.
// OBSOLETE This is separate from stash_registers as we want to do this in C
// OBSOLETE but doing stash_registers in C isn't straightforward. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE cleanup_stash (void)
// OBSOLETE {
// OBSOLETE psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
// OBSOLETE psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
// OBSOLETE psw->ie = psw->bie;
// OBSOLETE psw->c = psw->bc;
// OBSOLETE registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
// OBSOLETE
// OBSOLETE #if 0 /* FIXME: Was in previous version. Necessary?
// OBSOLETE (Remember that we use the "rte" insn to return from the
// OBSOLETE trap/interrupt so the values of bsm, bie, bc are important. */
// OBSOLETE psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
// OBSOLETE #endif
// OBSOLETE
// OBSOLETE /* FIXME: Copied from previous version. This can probably be deleted
// OBSOLETE since methinks stash_registers has already done this. */
// OBSOLETE registers[PC] = registers[BPC]; /* pre-trap PC */
// OBSOLETE
// OBSOLETE /* FIXME: Copied from previous version. Necessary? */
// OBSOLETE if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
// OBSOLETE registers[SPU] = registers[R15];
// OBSOLETE else
// OBSOLETE registers[SPI] = registers[R15];
// OBSOLETE }
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE restore_and_return:
// OBSOLETE seth r0, #shigh(registers+8)
// OBSOLETE add3 r0, r0, #low(registers+8)
// OBSOLETE ld r2, @r0+ ; restore r2
// OBSOLETE ld r3, @r0+ ; restore r3
// OBSOLETE ld r4, @r0+ ; restore r4
// OBSOLETE ld r5, @r0+ ; restore r5
// OBSOLETE ld r6, @r0+ ; restore r6
// OBSOLETE ld r7, @r0+ ; restore r7
// OBSOLETE ld r8, @r0+ ; restore r8
// OBSOLETE ld r9, @r0+ ; restore r9
// OBSOLETE ld r10, @r0+ ; restore r10
// OBSOLETE ld r11, @r0+ ; restore r11
// OBSOLETE ld r12, @r0+ ; restore r12
// OBSOLETE ld r13, @r0+ ; restore r13
// OBSOLETE ld r14, @r0+ ; restore r14
// OBSOLETE ld r15, @r0+ ; restore r15
// OBSOLETE addi r0, #4 ; don't restore PSW (rte will do it)
// OBSOLETE ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)
// OBSOLETE mvtc r1, cr1
// OBSOLETE ld r1, @r0+ ; restore cr2 == SPI
// OBSOLETE mvtc r1, cr2
// OBSOLETE ld r1, @r0+ ; restore cr3 == SPU
// OBSOLETE mvtc r1, cr3
// OBSOLETE addi r0, #4 ; skip BPC
// OBSOLETE ld r1, @r0+ ; restore cr6 (BPC) == PC
// OBSOLETE mvtc r1, cr6
// OBSOLETE ld r1, @r0+ ; restore ACCL
// OBSOLETE mvtaclo r1
// OBSOLETE ld r1, @r0+ ; restore ACCH
// OBSOLETE mvtachi r1
// OBSOLETE seth r0, #shigh(registers)
// OBSOLETE add3 r0, r0, #low(registers)
// OBSOLETE ld r1, @(4,r0) ; restore r1
// OBSOLETE ld r0, @r0 ; restore r0
// OBSOLETE rte");
// OBSOLETE
// OBSOLETE /* General trap handler, called after the registers have been stashed.
// OBSOLETE NUM is the trap/exception number. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE process_exception (int num)
// OBSOLETE {
// OBSOLETE cleanup_stash ();
// OBSOLETE asm volatile ("
// OBSOLETE seth r1, #shigh(stackPtr)
// OBSOLETE add3 r1, r1, #low(stackPtr)
// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
// OBSOLETE mv r0, %0
// OBSOLETE bl handle_exception
// OBSOLETE bl restore_and_return"
// OBSOLETE : : "r" (num) : "r0", "r1");
// OBSOLETE }
// OBSOLETE
// OBSOLETE void _catchException0 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException0:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #0
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException1 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException1:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE bl cleanup_stash
// OBSOLETE seth r1, #shigh(stackPtr)
// OBSOLETE add3 r1, r1, #low(stackPtr)
// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
// OBSOLETE seth r1, #shigh(registers + 21*4) ; PC
// OBSOLETE add3 r1, r1, #low(registers + 21*4)
// OBSOLETE ld r0, @r1
// OBSOLETE addi r0, #-4 ; back up PC for breakpoint trap.
// OBSOLETE st r0, @r1 ; FIXME: what about bp in right slot?
// OBSOLETE ldi r0, #1
// OBSOLETE bl handle_exception
// OBSOLETE bl restore_and_return");
// OBSOLETE
// OBSOLETE void _catchException2 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException2:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #2
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException3 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException3:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #3
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException4 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException4:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #4
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException5 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException5:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #5
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException6 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException6:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #6
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException7 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException7:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #7
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException8 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException8:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #8
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException9 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException9:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #9
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException10 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException10:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #10
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException11 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException11:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #11
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException12 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException12:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #12
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException13 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException13:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #13
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException14 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException14:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #14
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException15 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException15:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #15
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException16 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException16:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #16
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE void _catchException17 ();
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE _catchException17:
// OBSOLETE push lr
// OBSOLETE bl stash_registers
// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
// OBSOLETE ldi r0, #17
// OBSOLETE bl process_exception");
// OBSOLETE
// OBSOLETE
// OBSOLETE /* this function is used to set up exception handlers for tracing and
// OBSOLETE breakpoints */
// OBSOLETE void
// OBSOLETE set_debug_traps (void)
// OBSOLETE {
// OBSOLETE /* extern void remcomHandler(); */
// OBSOLETE int i;
// OBSOLETE
// OBSOLETE for (i = 0; i < 18; i++) /* keep a copy of old vectors */
// OBSOLETE if (save_vectors[i] == 0) /* only copy them the first time */
// OBSOLETE save_vectors[i] = getExceptionHandler (i);
// OBSOLETE
// OBSOLETE stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
// OBSOLETE
// OBSOLETE exceptionHandler (0, _catchException0);
// OBSOLETE exceptionHandler (1, _catchException1);
// OBSOLETE exceptionHandler (2, _catchException2);
// OBSOLETE exceptionHandler (3, _catchException3);
// OBSOLETE exceptionHandler (4, _catchException4);
// OBSOLETE exceptionHandler (5, _catchException5);
// OBSOLETE exceptionHandler (6, _catchException6);
// OBSOLETE exceptionHandler (7, _catchException7);
// OBSOLETE exceptionHandler (8, _catchException8);
// OBSOLETE exceptionHandler (9, _catchException9);
// OBSOLETE exceptionHandler (10, _catchException10);
// OBSOLETE exceptionHandler (11, _catchException11);
// OBSOLETE exceptionHandler (12, _catchException12);
// OBSOLETE exceptionHandler (13, _catchException13);
// OBSOLETE exceptionHandler (14, _catchException14);
// OBSOLETE exceptionHandler (15, _catchException15);
// OBSOLETE exceptionHandler (16, _catchException16);
// OBSOLETE /* exceptionHandler (17, _catchException17); */
// OBSOLETE
// OBSOLETE initialized = 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* This function will generate a breakpoint exception. It is used at the
// OBSOLETE beginning of a program to sync up with a debugger and can be used
// OBSOLETE otherwise as a quick means to stop program execution and "break" into
// OBSOLETE the debugger. */
// OBSOLETE
// OBSOLETE #define BREAKPOINT() asm volatile (" trap #2");
// OBSOLETE
// OBSOLETE void
// OBSOLETE breakpoint (void)
// OBSOLETE {
// OBSOLETE if (initialized)
// OBSOLETE BREAKPOINT();
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* STDOUT section:
// OBSOLETE Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
// OBSOLETE Functions: gdb_putchar(char ch)
// OBSOLETE gdb_puts(char *str)
// OBSOLETE gdb_write(char *str, int len)
// OBSOLETE gdb_error(char *format, char *parm)
// OBSOLETE */
// OBSOLETE
// OBSOLETE /* Function: gdb_putchar(int)
// OBSOLETE Make gdb write a char to stdout.
// OBSOLETE Returns: the char */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE gdb_putchar (int ch)
// OBSOLETE {
// OBSOLETE char buf[4];
// OBSOLETE
// OBSOLETE buf[0] = 'O';
// OBSOLETE buf[1] = hexchars[ch >> 4];
// OBSOLETE buf[2] = hexchars[ch & 0x0F];
// OBSOLETE buf[3] = 0;
// OBSOLETE putpacket(buf);
// OBSOLETE return ch;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: gdb_write(char *, int)
// OBSOLETE Make gdb write n bytes to stdout (not assumed to be null-terminated).
// OBSOLETE Returns: number of bytes written */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE gdb_write (char *data, int len)
// OBSOLETE {
// OBSOLETE char *buf, *cpy;
// OBSOLETE int i;
// OBSOLETE
// OBSOLETE buf = remcomOutBuffer;
// OBSOLETE buf[0] = 'O';
// OBSOLETE i = 0;
// OBSOLETE while (i < len)
// OBSOLETE {
// OBSOLETE for (cpy = buf+1;
// OBSOLETE i < len && cpy < buf + sizeof(remcomOutBuffer) - 3;
// OBSOLETE i++)
// OBSOLETE {
// OBSOLETE *cpy++ = hexchars[data[i] >> 4];
// OBSOLETE *cpy++ = hexchars[data[i] & 0x0F];
// OBSOLETE }
// OBSOLETE *cpy = 0;
// OBSOLETE putpacket(buf);
// OBSOLETE }
// OBSOLETE return len;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: gdb_puts(char *)
// OBSOLETE Make gdb write a null-terminated string to stdout.
// OBSOLETE Returns: the length of the string */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE gdb_puts (char *str)
// OBSOLETE {
// OBSOLETE return gdb_write(str, strlen(str));
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: gdb_error(char *, char *)
// OBSOLETE Send an error message to gdb's stdout.
// OBSOLETE First string may have 1 (one) optional "%s" in it, which
// OBSOLETE will cause the optional second string to be inserted. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE gdb_error (char *format, char *parm)
// OBSOLETE {
// OBSOLETE char buf[400], *cpy;
// OBSOLETE int len;
// OBSOLETE
// OBSOLETE if (remote_debug)
// OBSOLETE {
// OBSOLETE if (format && *format)
// OBSOLETE len = strlen(format);
// OBSOLETE else
// OBSOLETE return; /* empty input */
// OBSOLETE
// OBSOLETE if (parm && *parm)
// OBSOLETE len += strlen(parm);
// OBSOLETE
// OBSOLETE for (cpy = buf; *format; )
// OBSOLETE {
// OBSOLETE if (format[0] == '%' && format[1] == 's') /* include second string */
// OBSOLETE {
// OBSOLETE format += 2; /* advance two chars instead of just one */
// OBSOLETE while (parm && *parm)
// OBSOLETE *cpy++ = *parm++;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE *cpy++ = *format++;
// OBSOLETE }
// OBSOLETE *cpy = '\0';
// OBSOLETE gdb_puts(buf);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE static unsigned char *
// OBSOLETE strcpy (unsigned char *dest, const unsigned char *src)
// OBSOLETE {
// OBSOLETE unsigned char *ret = dest;
// OBSOLETE
// OBSOLETE if (dest && src)
// OBSOLETE {
// OBSOLETE while (*src)
// OBSOLETE *dest++ = *src++;
// OBSOLETE *dest = 0;
// OBSOLETE }
// OBSOLETE return ret;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE strlen (const unsigned char *src)
// OBSOLETE {
// OBSOLETE int ret;
// OBSOLETE
// OBSOLETE for (ret = 0; *src; src++)
// OBSOLETE ret++;
// OBSOLETE
// OBSOLETE return ret;
// OBSOLETE }
// OBSOLETE
// OBSOLETE #if 0
// OBSOLETE void exit (code)
// OBSOLETE int code;
// OBSOLETE {
// OBSOLETE _exit (code);
// OBSOLETE }
// OBSOLETE
// OBSOLETE int atexit (void *p)
// OBSOLETE {
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE
// OBSOLETE void abort (void)
// OBSOLETE {
// OBSOLETE _exit (1);
// OBSOLETE }
// OBSOLETE #endif