binutils-gdb/gdb/m88k-tdep.c
2002-07-24 23:51:36 +00:00

662 lines
28 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// OBSOLETE /* Target-machine dependent code for Motorola 88000 series, for GDB.
// OBSOLETE
// OBSOLETE Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
// OBSOLETE 2000, 2001, 2002 Free Software Foundation, Inc.
// OBSOLETE
// OBSOLETE This file is part of GDB.
// OBSOLETE
// OBSOLETE This program is free software; you can redistribute it and/or modify
// OBSOLETE it under the terms of the GNU General Public License as published by
// OBSOLETE the Free Software Foundation; either version 2 of the License, or
// OBSOLETE (at your option) any later version.
// OBSOLETE
// OBSOLETE This program is distributed in the hope that it will be useful,
// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// OBSOLETE GNU General Public License for more details.
// OBSOLETE
// OBSOLETE You should have received a copy of the GNU General Public License
// OBSOLETE along with this program; if not, write to the Free Software
// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE Boston, MA 02111-1307, USA. */
// OBSOLETE
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "symtab.h"
// OBSOLETE #include "setjmp.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE
// OBSOLETE /* Size of an instruction */
// OBSOLETE #define BYTES_PER_88K_INSN 4
// OBSOLETE
// OBSOLETE void frame_find_saved_regs ();
// OBSOLETE
// OBSOLETE /* Is this target an m88110? Otherwise assume m88100. This has
// OBSOLETE relevance for the ways in which we screw with instruction pointers. */
// OBSOLETE
// OBSOLETE int target_is_m88110 = 0;
// OBSOLETE
// OBSOLETE void
// OBSOLETE m88k_target_write_pc (CORE_ADDR pc, ptid_t ptid)
// OBSOLETE {
// OBSOLETE /* According to the MC88100 RISC Microprocessor User's Manual,
// OBSOLETE section 6.4.3.1.2:
// OBSOLETE
// OBSOLETE ... can be made to return to a particular instruction by placing
// OBSOLETE a valid instruction address in the SNIP and the next sequential
// OBSOLETE instruction address in the SFIP (with V bits set and E bits
// OBSOLETE clear). The rte resumes execution at the instruction pointed to
// OBSOLETE by the SNIP, then the SFIP.
// OBSOLETE
// OBSOLETE The E bit is the least significant bit (bit 0). The V (valid)
// OBSOLETE bit is bit 1. This is why we logical or 2 into the values we are
// OBSOLETE writing below. It turns out that SXIP plays no role when
// OBSOLETE returning from an exception so nothing special has to be done
// OBSOLETE with it. We could even (presumably) give it a totally bogus
// OBSOLETE value.
// OBSOLETE
// OBSOLETE -- Kevin Buettner */
// OBSOLETE
// OBSOLETE write_register_pid (SXIP_REGNUM, pc, ptid);
// OBSOLETE write_register_pid (SNIP_REGNUM, (pc | 2), ptid);
// OBSOLETE write_register_pid (SFIP_REGNUM, (pc | 2) + 4, ptid);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* The type of a register. */
// OBSOLETE struct type *
// OBSOLETE m88k_register_type (int regnum)
// OBSOLETE {
// OBSOLETE if (regnum >= XFP_REGNUM)
// OBSOLETE return builtin_type_m88110_ext;
// OBSOLETE else if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
// OBSOLETE return builtin_type_void_func_ptr;
// OBSOLETE else
// OBSOLETE return builtin_type_int32;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* The m88k kernel aligns all instructions on 4-byte boundaries. The
// OBSOLETE kernel also uses the least significant two bits for its own hocus
// OBSOLETE pocus. When gdb receives an address from the kernel, it needs to
// OBSOLETE preserve those right-most two bits, but gdb also needs to be careful
// OBSOLETE to realize that those two bits are not really a part of the address
// OBSOLETE of an instruction. Shrug. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m88k_addr_bits_remove (CORE_ADDR addr)
// OBSOLETE {
// OBSOLETE return ((addr) & ~3);
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Given a GDB frame, determine the address of the calling function's frame.
// OBSOLETE This will be used to create a new GDB frame struct, and then
// OBSOLETE INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
// OBSOLETE
// OBSOLETE For us, the frame address is its stack pointer value, so we look up
// OBSOLETE the function prologue to determine the caller's sp value, and return it. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE frame_chain (struct frame_info *thisframe)
// OBSOLETE {
// OBSOLETE
// OBSOLETE frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
// OBSOLETE /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
// OBSOLETE the ADDRESS, of SP_REGNUM. It also depends on the cache of
// OBSOLETE frame_find_saved_regs results. */
// OBSOLETE if (thisframe->fsr->regs[SP_REGNUM])
// OBSOLETE return thisframe->fsr->regs[SP_REGNUM];
// OBSOLETE else
// OBSOLETE return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
// OBSOLETE }
// OBSOLETE
// OBSOLETE int
// OBSOLETE frameless_function_invocation (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE
// OBSOLETE frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
// OBSOLETE /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
// OBSOLETE the ADDRESS, of SP_REGNUM. It also depends on the cache of
// OBSOLETE frame_find_saved_regs results. */
// OBSOLETE if (frame->fsr->regs[SP_REGNUM])
// OBSOLETE return 0; /* Frameful -- return addr saved somewhere */
// OBSOLETE else
// OBSOLETE return 1; /* Frameless -- no saved return address */
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE init_extra_frame_info (int fromleaf, struct frame_info *frame)
// OBSOLETE {
// OBSOLETE frame->fsr = 0; /* Not yet allocated */
// OBSOLETE frame->args_pointer = 0; /* Unknown */
// OBSOLETE frame->locals_pointer = 0; /* Unknown */
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Examine an m88k function prologue, recording the addresses at which
// OBSOLETE registers are saved explicitly by the prologue code, and returning
// OBSOLETE the address of the first instruction after the prologue (but not
// OBSOLETE after the instruction at address LIMIT, as explained below).
// OBSOLETE
// OBSOLETE LIMIT places an upper bound on addresses of the instructions to be
// OBSOLETE examined. If the prologue code scan reaches LIMIT, the scan is
// OBSOLETE aborted and LIMIT is returned. This is used, when examining the
// OBSOLETE prologue for the current frame, to keep examine_prologue () from
// OBSOLETE claiming that a given register has been saved when in fact the
// OBSOLETE instruction that saves it has not yet been executed. LIMIT is used
// OBSOLETE at other times to stop the scan when we hit code after the true
// OBSOLETE function prologue (e.g. for the first source line) which might
// OBSOLETE otherwise be mistaken for function prologue.
// OBSOLETE
// OBSOLETE The format of the function prologue matched by this routine is
// OBSOLETE derived from examination of the source to gcc 1.95, particularly
// OBSOLETE the routine output_prologue () in config/out-m88k.c.
// OBSOLETE
// OBSOLETE subu r31,r31,n # stack pointer update
// OBSOLETE
// OBSOLETE (st rn,r31,offset)? # save incoming regs
// OBSOLETE (st.d rn,r31,offset)?
// OBSOLETE
// OBSOLETE (addu r30,r31,n)? # frame pointer update
// OBSOLETE
// OBSOLETE (pic sequence)? # PIC code prologue
// OBSOLETE
// OBSOLETE (or rn,rm,0)? # Move parameters to other regs
// OBSOLETE */
// OBSOLETE
// OBSOLETE /* Macros for extracting fields from instructions. */
// OBSOLETE
// OBSOLETE #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
// OBSOLETE #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
// OBSOLETE #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
// OBSOLETE #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
// OBSOLETE #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
// OBSOLETE #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
// OBSOLETE
// OBSOLETE /*
// OBSOLETE * prologue_insn_tbl is a table of instructions which may comprise a
// OBSOLETE * function prologue. Associated with each table entry (corresponding
// OBSOLETE * to a single instruction or group of instructions), is an action.
// OBSOLETE * This action is used by examine_prologue (below) to determine
// OBSOLETE * the state of certain machine registers and where the stack frame lives.
// OBSOLETE */
// OBSOLETE
// OBSOLETE enum prologue_insn_action
// OBSOLETE {
// OBSOLETE PIA_SKIP, /* don't care what the instruction does */
// OBSOLETE PIA_NOTE_ST, /* note register stored and where */
// OBSOLETE PIA_NOTE_STD, /* note pair of registers stored and where */
// OBSOLETE PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
// OBSOLETE PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
// OBSOLETE PIA_NOTE_PROLOGUE_END, /* no more prologue */
// OBSOLETE };
// OBSOLETE
// OBSOLETE struct prologue_insns
// OBSOLETE {
// OBSOLETE unsigned long insn;
// OBSOLETE unsigned long mask;
// OBSOLETE enum prologue_insn_action action;
// OBSOLETE };
// OBSOLETE
// OBSOLETE struct prologue_insns prologue_insn_tbl[] =
// OBSOLETE {
// OBSOLETE /* Various register move instructions */
// OBSOLETE {0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */
// OBSOLETE {0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */
// OBSOLETE {0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */
// OBSOLETE
// OBSOLETE /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
// OBSOLETE {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
// OBSOLETE
// OBSOLETE /* Frame pointer assignment: "addu r30, r31, n" */
// OBSOLETE {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
// OBSOLETE
// OBSOLETE /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
// OBSOLETE {0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */
// OBSOLETE {0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */
// OBSOLETE
// OBSOLETE /* Instructions needed for setting up r25 for pic code. */
// OBSOLETE {0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */
// OBSOLETE {0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */
// OBSOLETE {0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */
// OBSOLETE {0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */
// OBSOLETE
// OBSOLETE /* Various branch or jump instructions which have a delay slot -- these
// OBSOLETE do not form part of the prologue, but the instruction in the delay
// OBSOLETE slot might be a store instruction which should be noted. */
// OBSOLETE {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
// OBSOLETE /* br.n, bsr.n, bb0.n, or bb1.n */
// OBSOLETE {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */
// OBSOLETE {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */
// OBSOLETE
// OBSOLETE };
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
// OBSOLETE is not the address of a valid instruction, the address of the next
// OBSOLETE instruction beyond ADDR otherwise. *PWORD1 receives the first word
// OBSOLETE of the instruction. */
// OBSOLETE
// OBSOLETE #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
// OBSOLETE (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
// OBSOLETE
// OBSOLETE /* Read the m88k instruction at 'memaddr' and return the address of
// OBSOLETE the next instruction after that, or 0 if 'memaddr' is not the
// OBSOLETE address of a valid instruction. The instruction
// OBSOLETE is stored at 'pword1'. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE next_insn (CORE_ADDR memaddr, unsigned long *pword1)
// OBSOLETE {
// OBSOLETE *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
// OBSOLETE return memaddr + BYTES_PER_88K_INSN;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Read a register from frames called by us (or from the hardware regs). */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE read_next_frame_reg (struct frame_info *frame, int regno)
// OBSOLETE {
// OBSOLETE for (; frame; frame = frame->next)
// OBSOLETE {
// OBSOLETE if (regno == SP_REGNUM)
// OBSOLETE return FRAME_FP (frame);
// OBSOLETE else if (frame->fsr->regs[regno])
// OBSOLETE return read_memory_integer (frame->fsr->regs[regno], 4);
// OBSOLETE }
// OBSOLETE return read_register (regno);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Examine the prologue of a function. `ip' points to the first instruction.
// OBSOLETE `limit' is the limit of the prologue (e.g. the addr of the first
// OBSOLETE linenumber, or perhaps the program counter if we're stepping through).
// OBSOLETE `frame_sp' is the stack pointer value in use in this frame.
// OBSOLETE `fsr' is a pointer to a frame_saved_regs structure into which we put
// OBSOLETE info about the registers saved by this frame.
// OBSOLETE `fi' is a struct frame_info pointer; we fill in various fields in it
// OBSOLETE to reflect the offsets of the arg pointer and the locals pointer. */
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
// OBSOLETE CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
// OBSOLETE struct frame_info *fi)
// OBSOLETE {
// OBSOLETE register CORE_ADDR next_ip;
// OBSOLETE register int src;
// OBSOLETE unsigned long insn;
// OBSOLETE int size, offset;
// OBSOLETE char must_adjust[32]; /* If set, must adjust offsets in fsr */
// OBSOLETE int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
// OBSOLETE int fp_offset = -1; /* -1 means not set */
// OBSOLETE CORE_ADDR frame_fp;
// OBSOLETE CORE_ADDR prologue_end = 0;
// OBSOLETE
// OBSOLETE memset (must_adjust, '\0', sizeof (must_adjust));
// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
// OBSOLETE
// OBSOLETE while (next_ip)
// OBSOLETE {
// OBSOLETE struct prologue_insns *pip;
// OBSOLETE
// OBSOLETE for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
// OBSOLETE if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
// OBSOLETE goto end_of_prologue_found; /* not a prologue insn */
// OBSOLETE
// OBSOLETE switch (pip->action)
// OBSOLETE {
// OBSOLETE case PIA_NOTE_ST:
// OBSOLETE case PIA_NOTE_STD:
// OBSOLETE if (sp_offset != -1)
// OBSOLETE {
// OBSOLETE src = ST_SRC (insn);
// OBSOLETE offset = ST_OFFSET (insn);
// OBSOLETE must_adjust[src] = 1;
// OBSOLETE fsr->regs[src++] = offset; /* Will be adjusted later */
// OBSOLETE if (pip->action == PIA_NOTE_STD && src < 32)
// OBSOLETE {
// OBSOLETE offset += 4;
// OBSOLETE must_adjust[src] = 1;
// OBSOLETE fsr->regs[src++] = offset;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE goto end_of_prologue_found;
// OBSOLETE break;
// OBSOLETE case PIA_NOTE_SP_ADJUSTMENT:
// OBSOLETE if (sp_offset == -1)
// OBSOLETE sp_offset = -SUBU_OFFSET (insn);
// OBSOLETE else
// OBSOLETE goto end_of_prologue_found;
// OBSOLETE break;
// OBSOLETE case PIA_NOTE_FP_ASSIGNMENT:
// OBSOLETE if (fp_offset == -1)
// OBSOLETE fp_offset = ADDU_OFFSET (insn);
// OBSOLETE else
// OBSOLETE goto end_of_prologue_found;
// OBSOLETE break;
// OBSOLETE case PIA_NOTE_PROLOGUE_END:
// OBSOLETE if (!prologue_end)
// OBSOLETE prologue_end = ip;
// OBSOLETE break;
// OBSOLETE case PIA_SKIP:
// OBSOLETE default:
// OBSOLETE /* Do nothing */
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE
// OBSOLETE ip = next_ip;
// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
// OBSOLETE }
// OBSOLETE
// OBSOLETE end_of_prologue_found:
// OBSOLETE
// OBSOLETE if (prologue_end)
// OBSOLETE ip = prologue_end;
// OBSOLETE
// OBSOLETE /* We're done with the prologue. If we don't care about the stack
// OBSOLETE frame itself, just return. (Note that fsr->regs has been trashed,
// OBSOLETE but the one caller who calls with fi==0 passes a dummy there.) */
// OBSOLETE
// OBSOLETE if (fi == 0)
// OBSOLETE return ip;
// OBSOLETE
// OBSOLETE /*
// OBSOLETE OK, now we have:
// OBSOLETE
// OBSOLETE sp_offset original (before any alloca calls) displacement of SP
// OBSOLETE (will be negative).
// OBSOLETE
// OBSOLETE fp_offset displacement from original SP to the FP for this frame
// OBSOLETE or -1.
// OBSOLETE
// OBSOLETE fsr->regs[0..31] displacement from original SP to the stack
// OBSOLETE location where reg[0..31] is stored.
// OBSOLETE
// OBSOLETE must_adjust[0..31] set if corresponding offset was set.
// OBSOLETE
// OBSOLETE If alloca has been called between the function prologue and the current
// OBSOLETE IP, then the current SP (frame_sp) will not be the original SP as set by
// OBSOLETE the function prologue. If the current SP is not the original SP, then the
// OBSOLETE compiler will have allocated an FP for this frame, fp_offset will be set,
// OBSOLETE and we can use it to calculate the original SP.
// OBSOLETE
// OBSOLETE Then, we figure out where the arguments and locals are, and relocate the
// OBSOLETE offsets in fsr->regs to absolute addresses. */
// OBSOLETE
// OBSOLETE if (fp_offset != -1)
// OBSOLETE {
// OBSOLETE /* We have a frame pointer, so get it, and base our calc's on it. */
// OBSOLETE frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
// OBSOLETE frame_sp = frame_fp - fp_offset;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* We have no frame pointer, therefore frame_sp is still the same value
// OBSOLETE as set by prologue. But where is the frame itself? */
// OBSOLETE if (must_adjust[SRP_REGNUM])
// OBSOLETE {
// OBSOLETE /* Function header saved SRP (r1), the return address. Frame starts
// OBSOLETE 4 bytes down from where it was saved. */
// OBSOLETE frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
// OBSOLETE fi->locals_pointer = frame_fp;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* Function header didn't save SRP (r1), so we are in a leaf fn or
// OBSOLETE are otherwise confused. */
// OBSOLETE frame_fp = -1;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* The locals are relative to the FP (whether it exists as an allocated
// OBSOLETE register, or just as an assumed offset from the SP) */
// OBSOLETE fi->locals_pointer = frame_fp;
// OBSOLETE
// OBSOLETE /* The arguments are just above the SP as it was before we adjusted it
// OBSOLETE on entry. */
// OBSOLETE fi->args_pointer = frame_sp - sp_offset;
// OBSOLETE
// OBSOLETE /* Now that we know the SP value used by the prologue, we know where
// OBSOLETE it saved all the registers. */
// OBSOLETE for (src = 0; src < 32; src++)
// OBSOLETE if (must_adjust[src])
// OBSOLETE fsr->regs[src] += frame_sp;
// OBSOLETE
// OBSOLETE /* The saved value of the SP is always known. */
// OBSOLETE /* (we hope...) */
// OBSOLETE if (fsr->regs[SP_REGNUM] != 0
// OBSOLETE && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
// OBSOLETE fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
// OBSOLETE fsr->regs[SP_REGNUM],
// OBSOLETE frame_sp - sp_offset, sp_offset);
// OBSOLETE
// OBSOLETE fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
// OBSOLETE
// OBSOLETE return (ip);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Given an ip value corresponding to the start of a function,
// OBSOLETE return the ip of the first instruction after the function
// OBSOLETE prologue. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m88k_skip_prologue (CORE_ADDR ip)
// OBSOLETE {
// OBSOLETE struct frame_saved_regs saved_regs_dummy;
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE CORE_ADDR limit;
// OBSOLETE
// OBSOLETE sal = find_pc_line (ip, 0);
// OBSOLETE limit = (sal.end) ? sal.end : 0xffffffff;
// OBSOLETE
// OBSOLETE return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
// OBSOLETE (struct frame_info *) 0));
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Put here the code to store, into a struct frame_saved_regs,
// OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO.
// OBSOLETE This includes special registers such as pc and fp saved in special
// OBSOLETE ways in the stack frame. sp is even more special:
// OBSOLETE the address we return for it IS the sp for the next frame.
// OBSOLETE
// OBSOLETE We cache the result of doing this in the frame_obstack, since it is
// OBSOLETE fairly expensive. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE register struct frame_saved_regs *cache_fsr;
// OBSOLETE CORE_ADDR ip;
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE CORE_ADDR limit;
// OBSOLETE
// OBSOLETE if (!fi->fsr)
// OBSOLETE {
// OBSOLETE cache_fsr = (struct frame_saved_regs *)
// OBSOLETE frame_obstack_alloc (sizeof (struct frame_saved_regs));
// OBSOLETE memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
// OBSOLETE fi->fsr = cache_fsr;
// OBSOLETE
// OBSOLETE /* Find the start and end of the function prologue. If the PC
// OBSOLETE is in the function prologue, we only consider the part that
// OBSOLETE has executed already. In the case where the PC is not in
// OBSOLETE the function prologue, we set limit to two instructions beyond
// OBSOLETE where the prologue ends in case if any of the prologue instructions
// OBSOLETE were moved into a delay slot of a branch instruction. */
// OBSOLETE
// OBSOLETE ip = get_pc_function_start (fi->pc);
// OBSOLETE sal = find_pc_line (ip, 0);
// OBSOLETE limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
// OBSOLETE : fi->pc;
// OBSOLETE
// OBSOLETE /* This will fill in fields in *fi as well as in cache_fsr. */
// OBSOLETE #ifdef SIGTRAMP_FRAME_FIXUP
// OBSOLETE if (fi->signal_handler_caller)
// OBSOLETE SIGTRAMP_FRAME_FIXUP (fi->frame);
// OBSOLETE #endif
// OBSOLETE examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
// OBSOLETE #ifdef SIGTRAMP_SP_FIXUP
// OBSOLETE if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
// OBSOLETE SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
// OBSOLETE #endif
// OBSOLETE }
// OBSOLETE
// OBSOLETE if (fsr)
// OBSOLETE *fsr = *fi->fsr;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Return the address of the locals block for the frame
// OBSOLETE described by FI. Returns 0 if the address is unknown.
// OBSOLETE NOTE! Frame locals are referred to by negative offsets from the
// OBSOLETE argument pointer, so this is the same as frame_args_address(). */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE frame_locals_address (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE struct frame_saved_regs fsr;
// OBSOLETE
// OBSOLETE if (fi->args_pointer) /* Cached value is likely there. */
// OBSOLETE return fi->args_pointer;
// OBSOLETE
// OBSOLETE /* Nope, generate it. */
// OBSOLETE
// OBSOLETE get_frame_saved_regs (fi, &fsr);
// OBSOLETE
// OBSOLETE return fi->args_pointer;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Return the address of the argument block for the frame
// OBSOLETE described by FI. Returns 0 if the address is unknown. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE frame_args_address (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE struct frame_saved_regs fsr;
// OBSOLETE
// OBSOLETE if (fi->args_pointer) /* Cached value is likely there. */
// OBSOLETE return fi->args_pointer;
// OBSOLETE
// OBSOLETE /* Nope, generate it. */
// OBSOLETE
// OBSOLETE get_frame_saved_regs (fi, &fsr);
// OBSOLETE
// OBSOLETE return fi->args_pointer;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Return the saved PC from this frame.
// OBSOLETE
// OBSOLETE If the frame has a memory copy of SRP_REGNUM, use that. If not,
// OBSOLETE just use the register SRP_REGNUM itself. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE frame_saved_pc (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE return read_next_frame_reg (frame, SRP_REGNUM);
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE #define DUMMY_FRAME_SIZE 192
// OBSOLETE
// OBSOLETE static void
// OBSOLETE write_word (CORE_ADDR sp, ULONGEST word)
// OBSOLETE {
// OBSOLETE register int len = REGISTER_SIZE;
// OBSOLETE char buffer[MAX_REGISTER_RAW_SIZE];
// OBSOLETE
// OBSOLETE store_unsigned_integer (buffer, len, word);
// OBSOLETE write_memory (sp, buffer, len);
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE m88k_push_dummy_frame (void)
// OBSOLETE {
// OBSOLETE register CORE_ADDR sp = read_register (SP_REGNUM);
// OBSOLETE register int rn;
// OBSOLETE int offset;
// OBSOLETE
// OBSOLETE sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
// OBSOLETE
// OBSOLETE for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
// OBSOLETE write_word (sp + offset, read_register (rn));
// OBSOLETE
// OBSOLETE write_word (sp + offset, read_register (SXIP_REGNUM));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_word (sp + offset, read_register (SNIP_REGNUM));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_word (sp + offset, read_register (SFIP_REGNUM));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_word (sp + offset, read_register (PSR_REGNUM));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_word (sp + offset, read_register (FPSR_REGNUM));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_word (sp + offset, read_register (FPCR_REGNUM));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_register (SP_REGNUM, sp);
// OBSOLETE write_register (ACTUAL_FP_REGNUM, sp);
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE pop_frame (void)
// OBSOLETE {
// OBSOLETE register struct frame_info *frame = get_current_frame ();
// OBSOLETE register int regnum;
// OBSOLETE struct frame_saved_regs fsr;
// OBSOLETE
// OBSOLETE get_frame_saved_regs (frame, &fsr);
// OBSOLETE
// OBSOLETE if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
// OBSOLETE {
// OBSOLETE /* FIXME: I think get_frame_saved_regs should be handling this so
// OBSOLETE that we can deal with the saved registers properly (e.g. frame
// OBSOLETE 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
// OBSOLETE register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
// OBSOLETE int offset;
// OBSOLETE
// OBSOLETE for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
// OBSOLETE (void) write_register (regnum, read_memory_integer (sp + offset, 4));
// OBSOLETE
// OBSOLETE write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE offset += 4;
// OBSOLETE
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE for (regnum = FP_REGNUM; regnum > 0; regnum--)
// OBSOLETE if (fsr.regs[regnum])
// OBSOLETE write_register (regnum,
// OBSOLETE read_memory_integer (fsr.regs[regnum], 4));
// OBSOLETE write_pc (frame_saved_pc (frame));
// OBSOLETE }
// OBSOLETE reinit_frame_cache ();
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE _initialize_m88k_tdep (void)
// OBSOLETE {
// OBSOLETE tm_print_insn = print_insn_m88k;
// OBSOLETE }