2641 lines
69 KiB
C++
2641 lines
69 KiB
C++
// output.cc -- manage the output file for gold
|
|
|
|
// Copyright 2006, 2007 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#include "gold.h"
|
|
|
|
#include <cstdlib>
|
|
#include <cerrno>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <algorithm>
|
|
#include "libiberty.h" // for unlink_if_ordinary()
|
|
|
|
#include "parameters.h"
|
|
#include "object.h"
|
|
#include "symtab.h"
|
|
#include "reloc.h"
|
|
#include "merge.h"
|
|
#include "output.h"
|
|
|
|
// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
|
|
#ifndef MAP_ANONYMOUS
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
namespace gold
|
|
{
|
|
|
|
// Output_data variables.
|
|
|
|
bool Output_data::allocated_sizes_are_fixed;
|
|
|
|
// Output_data methods.
|
|
|
|
Output_data::~Output_data()
|
|
{
|
|
}
|
|
|
|
// Return the default alignment for the target size.
|
|
|
|
uint64_t
|
|
Output_data::default_alignment()
|
|
{
|
|
return Output_data::default_alignment_for_size(parameters->get_size());
|
|
}
|
|
|
|
// Return the default alignment for a size--32 or 64.
|
|
|
|
uint64_t
|
|
Output_data::default_alignment_for_size(int size)
|
|
{
|
|
if (size == 32)
|
|
return 4;
|
|
else if (size == 64)
|
|
return 8;
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Output_section_header methods. This currently assumes that the
|
|
// segment and section lists are complete at construction time.
|
|
|
|
Output_section_headers::Output_section_headers(
|
|
const Layout* layout,
|
|
const Layout::Segment_list* segment_list,
|
|
const Layout::Section_list* unattached_section_list,
|
|
const Stringpool* secnamepool)
|
|
: layout_(layout),
|
|
segment_list_(segment_list),
|
|
unattached_section_list_(unattached_section_list),
|
|
secnamepool_(secnamepool)
|
|
{
|
|
// Count all the sections. Start with 1 for the null section.
|
|
off_t count = 1;
|
|
for (Layout::Segment_list::const_iterator p = segment_list->begin();
|
|
p != segment_list->end();
|
|
++p)
|
|
if ((*p)->type() == elfcpp::PT_LOAD)
|
|
count += (*p)->output_section_count();
|
|
count += unattached_section_list->size();
|
|
|
|
const int size = parameters->get_size();
|
|
int shdr_size;
|
|
if (size == 32)
|
|
shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
|
else if (size == 64)
|
|
shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
|
|
else
|
|
gold_unreachable();
|
|
|
|
this->set_data_size(count * shdr_size);
|
|
}
|
|
|
|
// Write out the section headers.
|
|
|
|
void
|
|
Output_section_headers::do_write(Output_file* of)
|
|
{
|
|
if (parameters->get_size() == 32)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
this->do_sized_write<32, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
this->do_sized_write<32, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else if (parameters->get_size() == 64)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
this->do_sized_write<64, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
this->do_sized_write<64, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_section_headers::do_sized_write(Output_file* of)
|
|
{
|
|
off_t all_shdrs_size = this->data_size();
|
|
unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
|
|
|
|
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
|
|
unsigned char* v = view;
|
|
|
|
{
|
|
typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
oshdr.put_sh_name(0);
|
|
oshdr.put_sh_type(elfcpp::SHT_NULL);
|
|
oshdr.put_sh_flags(0);
|
|
oshdr.put_sh_addr(0);
|
|
oshdr.put_sh_offset(0);
|
|
oshdr.put_sh_size(0);
|
|
oshdr.put_sh_link(0);
|
|
oshdr.put_sh_info(0);
|
|
oshdr.put_sh_addralign(0);
|
|
oshdr.put_sh_entsize(0);
|
|
}
|
|
|
|
v += shdr_size;
|
|
|
|
unsigned shndx = 1;
|
|
for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
|
|
p != this->segment_list_->end();
|
|
++p)
|
|
v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
|
|
this->layout_, this->secnamepool_, v, &shndx
|
|
SELECT_SIZE_ENDIAN(size, big_endian));
|
|
for (Layout::Section_list::const_iterator p =
|
|
this->unattached_section_list_->begin();
|
|
p != this->unattached_section_list_->end();
|
|
++p)
|
|
{
|
|
gold_assert(shndx == (*p)->out_shndx());
|
|
elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
(*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
|
|
v += shdr_size;
|
|
++shndx;
|
|
}
|
|
|
|
of->write_output_view(this->offset(), all_shdrs_size, view);
|
|
}
|
|
|
|
// Output_segment_header methods.
|
|
|
|
Output_segment_headers::Output_segment_headers(
|
|
const Layout::Segment_list& segment_list)
|
|
: segment_list_(segment_list)
|
|
{
|
|
const int size = parameters->get_size();
|
|
int phdr_size;
|
|
if (size == 32)
|
|
phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
|
|
else if (size == 64)
|
|
phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
|
|
else
|
|
gold_unreachable();
|
|
|
|
this->set_data_size(segment_list.size() * phdr_size);
|
|
}
|
|
|
|
void
|
|
Output_segment_headers::do_write(Output_file* of)
|
|
{
|
|
if (parameters->get_size() == 32)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
this->do_sized_write<32, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
this->do_sized_write<32, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else if (parameters->get_size() == 64)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
this->do_sized_write<64, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
this->do_sized_write<64, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_segment_headers::do_sized_write(Output_file* of)
|
|
{
|
|
const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
|
|
off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
|
|
unsigned char* view = of->get_output_view(this->offset(),
|
|
all_phdrs_size);
|
|
unsigned char* v = view;
|
|
for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
|
|
p != this->segment_list_.end();
|
|
++p)
|
|
{
|
|
elfcpp::Phdr_write<size, big_endian> ophdr(v);
|
|
(*p)->write_header(&ophdr);
|
|
v += phdr_size;
|
|
}
|
|
|
|
of->write_output_view(this->offset(), all_phdrs_size, view);
|
|
}
|
|
|
|
// Output_file_header methods.
|
|
|
|
Output_file_header::Output_file_header(const Target* target,
|
|
const Symbol_table* symtab,
|
|
const Output_segment_headers* osh)
|
|
: target_(target),
|
|
symtab_(symtab),
|
|
segment_header_(osh),
|
|
section_header_(NULL),
|
|
shstrtab_(NULL)
|
|
{
|
|
const int size = parameters->get_size();
|
|
int ehdr_size;
|
|
if (size == 32)
|
|
ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
|
|
else if (size == 64)
|
|
ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
|
|
else
|
|
gold_unreachable();
|
|
|
|
this->set_data_size(ehdr_size);
|
|
}
|
|
|
|
// Set the section table information for a file header.
|
|
|
|
void
|
|
Output_file_header::set_section_info(const Output_section_headers* shdrs,
|
|
const Output_section* shstrtab)
|
|
{
|
|
this->section_header_ = shdrs;
|
|
this->shstrtab_ = shstrtab;
|
|
}
|
|
|
|
// Write out the file header.
|
|
|
|
void
|
|
Output_file_header::do_write(Output_file* of)
|
|
{
|
|
gold_assert(this->offset() == 0);
|
|
|
|
if (parameters->get_size() == 32)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
this->do_sized_write<32, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
this->do_sized_write<32, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else if (parameters->get_size() == 64)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
this->do_sized_write<64, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
this->do_sized_write<64, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Write out the file header with appropriate size and endianess.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_file_header::do_sized_write(Output_file* of)
|
|
{
|
|
gold_assert(this->offset() == 0);
|
|
|
|
int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
|
|
unsigned char* view = of->get_output_view(0, ehdr_size);
|
|
elfcpp::Ehdr_write<size, big_endian> oehdr(view);
|
|
|
|
unsigned char e_ident[elfcpp::EI_NIDENT];
|
|
memset(e_ident, 0, elfcpp::EI_NIDENT);
|
|
e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
|
|
e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
|
|
e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
|
|
e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
|
|
if (size == 32)
|
|
e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
|
|
else if (size == 64)
|
|
e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
|
|
else
|
|
gold_unreachable();
|
|
e_ident[elfcpp::EI_DATA] = (big_endian
|
|
? elfcpp::ELFDATA2MSB
|
|
: elfcpp::ELFDATA2LSB);
|
|
e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
|
|
// FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
|
|
oehdr.put_e_ident(e_ident);
|
|
|
|
elfcpp::ET e_type;
|
|
if (parameters->output_is_object())
|
|
e_type = elfcpp::ET_REL;
|
|
else if (parameters->output_is_shared())
|
|
e_type = elfcpp::ET_DYN;
|
|
else
|
|
e_type = elfcpp::ET_EXEC;
|
|
oehdr.put_e_type(e_type);
|
|
|
|
oehdr.put_e_machine(this->target_->machine_code());
|
|
oehdr.put_e_version(elfcpp::EV_CURRENT);
|
|
|
|
// FIXME: Need to support -e, and target specific entry symbol.
|
|
Symbol* sym = this->symtab_->lookup("_start");
|
|
typename Sized_symbol<size>::Value_type v;
|
|
if (sym == NULL)
|
|
v = 0;
|
|
else
|
|
{
|
|
Sized_symbol<size>* ssym;
|
|
ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
|
|
sym SELECT_SIZE(size));
|
|
v = ssym->value();
|
|
}
|
|
oehdr.put_e_entry(v);
|
|
|
|
oehdr.put_e_phoff(this->segment_header_->offset());
|
|
oehdr.put_e_shoff(this->section_header_->offset());
|
|
|
|
// FIXME: The target needs to set the flags.
|
|
oehdr.put_e_flags(0);
|
|
|
|
oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
|
|
oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
|
|
oehdr.put_e_phnum(this->segment_header_->data_size()
|
|
/ elfcpp::Elf_sizes<size>::phdr_size);
|
|
oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
|
|
oehdr.put_e_shnum(this->section_header_->data_size()
|
|
/ elfcpp::Elf_sizes<size>::shdr_size);
|
|
oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
|
|
|
|
of->write_output_view(0, ehdr_size, view);
|
|
}
|
|
|
|
// Output_data_const methods.
|
|
|
|
void
|
|
Output_data_const::do_write(Output_file* of)
|
|
{
|
|
of->write(this->offset(), this->data_.data(), this->data_.size());
|
|
}
|
|
|
|
// Output_data_const_buffer methods.
|
|
|
|
void
|
|
Output_data_const_buffer::do_write(Output_file* of)
|
|
{
|
|
of->write(this->offset(), this->p_, this->data_size());
|
|
}
|
|
|
|
// Output_section_data methods.
|
|
|
|
// Record the output section, and set the entry size and such.
|
|
|
|
void
|
|
Output_section_data::set_output_section(Output_section* os)
|
|
{
|
|
gold_assert(this->output_section_ == NULL);
|
|
this->output_section_ = os;
|
|
this->do_adjust_output_section(os);
|
|
}
|
|
|
|
// Return the section index of the output section.
|
|
|
|
unsigned int
|
|
Output_section_data::do_out_shndx() const
|
|
{
|
|
gold_assert(this->output_section_ != NULL);
|
|
return this->output_section_->out_shndx();
|
|
}
|
|
|
|
// Output_data_strtab methods.
|
|
|
|
// Set the final data size.
|
|
|
|
void
|
|
Output_data_strtab::set_final_data_size()
|
|
{
|
|
this->strtab_->set_string_offsets();
|
|
this->set_data_size(this->strtab_->get_strtab_size());
|
|
}
|
|
|
|
// Write out a string table.
|
|
|
|
void
|
|
Output_data_strtab::do_write(Output_file* of)
|
|
{
|
|
this->strtab_->write(of, this->offset());
|
|
}
|
|
|
|
// Output_reloc methods.
|
|
|
|
// A reloc against a global symbol.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Symbol* gsym,
|
|
unsigned int type,
|
|
Output_data* od,
|
|
Address address,
|
|
bool is_relative)
|
|
: address_(address), local_sym_index_(GSYM_CODE), type_(type),
|
|
is_relative_(is_relative), shndx_(INVALID_CODE)
|
|
{
|
|
this->u1_.gsym = gsym;
|
|
this->u2_.od = od;
|
|
if (dynamic && !is_relative)
|
|
gsym->set_needs_dynsym_entry();
|
|
}
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Symbol* gsym,
|
|
unsigned int type,
|
|
Relobj* relobj,
|
|
unsigned int shndx,
|
|
Address address,
|
|
bool is_relative)
|
|
: address_(address), local_sym_index_(GSYM_CODE), type_(type),
|
|
is_relative_(is_relative), shndx_(shndx)
|
|
{
|
|
gold_assert(shndx != INVALID_CODE);
|
|
this->u1_.gsym = gsym;
|
|
this->u2_.relobj = relobj;
|
|
if (dynamic && !is_relative)
|
|
gsym->set_needs_dynsym_entry();
|
|
}
|
|
|
|
// A reloc against a local symbol.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index,
|
|
unsigned int type,
|
|
Output_data* od,
|
|
Address address,
|
|
bool is_relative)
|
|
: address_(address), local_sym_index_(local_sym_index), type_(type),
|
|
is_relative_(is_relative), shndx_(INVALID_CODE)
|
|
{
|
|
gold_assert(local_sym_index != GSYM_CODE
|
|
&& local_sym_index != INVALID_CODE);
|
|
this->u1_.relobj = relobj;
|
|
this->u2_.od = od;
|
|
if (dynamic && !is_relative)
|
|
relobj->set_needs_output_dynsym_entry(local_sym_index);
|
|
}
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index,
|
|
unsigned int type,
|
|
unsigned int shndx,
|
|
Address address,
|
|
bool is_relative)
|
|
: address_(address), local_sym_index_(local_sym_index), type_(type),
|
|
is_relative_(is_relative), shndx_(shndx)
|
|
{
|
|
gold_assert(local_sym_index != GSYM_CODE
|
|
&& local_sym_index != INVALID_CODE);
|
|
gold_assert(shndx != INVALID_CODE);
|
|
this->u1_.relobj = relobj;
|
|
this->u2_.relobj = relobj;
|
|
if (dynamic && !is_relative)
|
|
relobj->set_needs_output_dynsym_entry(local_sym_index);
|
|
}
|
|
|
|
// A reloc against the STT_SECTION symbol of an output section.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Output_section* os,
|
|
unsigned int type,
|
|
Output_data* od,
|
|
Address address)
|
|
: address_(address), local_sym_index_(SECTION_CODE), type_(type),
|
|
is_relative_(false), shndx_(INVALID_CODE)
|
|
{
|
|
this->u1_.os = os;
|
|
this->u2_.od = od;
|
|
if (dynamic)
|
|
os->set_needs_dynsym_index();
|
|
}
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Output_section* os,
|
|
unsigned int type,
|
|
Relobj* relobj,
|
|
unsigned int shndx,
|
|
Address address)
|
|
: address_(address), local_sym_index_(SECTION_CODE), type_(type),
|
|
is_relative_(false), shndx_(shndx)
|
|
{
|
|
gold_assert(shndx != INVALID_CODE);
|
|
this->u1_.os = os;
|
|
this->u2_.relobj = relobj;
|
|
if (dynamic)
|
|
os->set_needs_dynsym_index();
|
|
}
|
|
|
|
// Get the symbol index of a relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
unsigned int
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
|
|
const
|
|
{
|
|
unsigned int index;
|
|
switch (this->local_sym_index_)
|
|
{
|
|
case INVALID_CODE:
|
|
gold_unreachable();
|
|
|
|
case GSYM_CODE:
|
|
if (this->u1_.gsym == NULL)
|
|
index = 0;
|
|
else if (dynamic)
|
|
index = this->u1_.gsym->dynsym_index();
|
|
else
|
|
index = this->u1_.gsym->symtab_index();
|
|
break;
|
|
|
|
case SECTION_CODE:
|
|
if (dynamic)
|
|
index = this->u1_.os->dynsym_index();
|
|
else
|
|
index = this->u1_.os->symtab_index();
|
|
break;
|
|
|
|
case 0:
|
|
// Relocations without symbols use a symbol index of 0.
|
|
index = 0;
|
|
break;
|
|
|
|
default:
|
|
if (dynamic)
|
|
index = this->u1_.relobj->dynsym_index(this->local_sym_index_);
|
|
else
|
|
index = this->u1_.relobj->symtab_index(this->local_sym_index_);
|
|
break;
|
|
}
|
|
gold_assert(index != -1U);
|
|
return index;
|
|
}
|
|
|
|
// Write out the offset and info fields of a Rel or Rela relocation
|
|
// entry.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
template<typename Write_rel>
|
|
void
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
|
|
Write_rel* wr) const
|
|
{
|
|
Address address = this->address_;
|
|
if (this->shndx_ != INVALID_CODE)
|
|
{
|
|
section_offset_type off;
|
|
Output_section* os = this->u2_.relobj->output_section(this->shndx_,
|
|
&off);
|
|
gold_assert(os != NULL);
|
|
if (off != -1)
|
|
address += os->address() + off;
|
|
else
|
|
{
|
|
address = os->output_address(this->u2_.relobj, this->shndx_,
|
|
address);
|
|
gold_assert(address != -1U);
|
|
}
|
|
}
|
|
else if (this->u2_.od != NULL)
|
|
address += this->u2_.od->address();
|
|
wr->put_r_offset(address);
|
|
unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
|
|
wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
|
|
}
|
|
|
|
// Write out a Rel relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
|
|
unsigned char* pov) const
|
|
{
|
|
elfcpp::Rel_write<size, big_endian> orel(pov);
|
|
this->write_rel(&orel);
|
|
}
|
|
|
|
// Get the value of the symbol referred to by a Rel relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
typename elfcpp::Elf_types<size>::Elf_Addr
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
|
|
{
|
|
if (this->local_sym_index_ == GSYM_CODE)
|
|
{
|
|
const Sized_symbol<size>* sym;
|
|
sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
|
|
return sym->value();
|
|
}
|
|
gold_assert(this->local_sym_index_ != SECTION_CODE
|
|
&& this->local_sym_index_ != INVALID_CODE);
|
|
const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
|
|
return relobj->local_symbol_value(this->local_sym_index_);
|
|
}
|
|
|
|
// Write out a Rela relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
|
|
unsigned char* pov) const
|
|
{
|
|
elfcpp::Rela_write<size, big_endian> orel(pov);
|
|
this->rel_.write_rel(&orel);
|
|
Addend addend = this->addend_;
|
|
if (rel_.is_relative())
|
|
addend += rel_.symbol_value();
|
|
orel.put_r_addend(addend);
|
|
}
|
|
|
|
// Output_data_reloc_base methods.
|
|
|
|
// Adjust the output section.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_data_reloc_base<sh_type, dynamic, size, big_endian>
|
|
::do_adjust_output_section(Output_section* os)
|
|
{
|
|
if (sh_type == elfcpp::SHT_REL)
|
|
os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
|
|
else if (sh_type == elfcpp::SHT_RELA)
|
|
os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
|
|
else
|
|
gold_unreachable();
|
|
if (dynamic)
|
|
os->set_should_link_to_dynsym();
|
|
else
|
|
os->set_should_link_to_symtab();
|
|
}
|
|
|
|
// Write out relocation data.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
|
|
Output_file* of)
|
|
{
|
|
const off_t off = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(off, oview_size);
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Relocs::const_iterator p = this->relocs_.begin();
|
|
p != this->relocs_.end();
|
|
++p)
|
|
{
|
|
p->write(pov);
|
|
pov += reloc_size;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(off, oview_size, oview);
|
|
|
|
// We no longer need the relocation entries.
|
|
this->relocs_.clear();
|
|
}
|
|
|
|
// Output_data_got::Got_entry methods.
|
|
|
|
// Write out the entry.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
|
|
{
|
|
Valtype val = 0;
|
|
|
|
switch (this->local_sym_index_)
|
|
{
|
|
case GSYM_CODE:
|
|
{
|
|
// If the symbol is resolved locally, we need to write out the
|
|
// link-time value, which will be relocated dynamically by a
|
|
// RELATIVE relocation.
|
|
Symbol* gsym = this->u_.gsym;
|
|
Sized_symbol<size>* sgsym;
|
|
// This cast is a bit ugly. We don't want to put a
|
|
// virtual method in Symbol, because we want Symbol to be
|
|
// as small as possible.
|
|
sgsym = static_cast<Sized_symbol<size>*>(gsym);
|
|
val = sgsym->value();
|
|
}
|
|
break;
|
|
|
|
case CONSTANT_CODE:
|
|
val = this->u_.constant;
|
|
break;
|
|
|
|
default:
|
|
val = this->u_.object->local_symbol_value(this->local_sym_index_);
|
|
break;
|
|
}
|
|
|
|
elfcpp::Swap<size, big_endian>::writeval(pov, val);
|
|
}
|
|
|
|
// Output_data_got methods.
|
|
|
|
// Add an entry for a global symbol to the GOT. This returns true if
|
|
// this is a new GOT entry, false if the symbol already had a GOT
|
|
// entry.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Output_data_got<size, big_endian>::add_global(Symbol* gsym)
|
|
{
|
|
if (gsym->has_got_offset())
|
|
return false;
|
|
|
|
this->entries_.push_back(Got_entry(gsym));
|
|
this->set_got_size();
|
|
gsym->set_got_offset(this->last_got_offset());
|
|
return true;
|
|
}
|
|
|
|
// Add an entry for a global symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_with_rel(
|
|
Symbol* gsym,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (gsym->has_got_offset())
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_got_offset(got_offset);
|
|
rel_dyn->add_global(gsym, r_type, this, got_offset);
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_with_rela(
|
|
Symbol* gsym,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (gsym->has_got_offset())
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_got_offset(got_offset);
|
|
rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
|
|
}
|
|
|
|
// Add an entry for a local symbol to the GOT. This returns true if
|
|
// this is a new GOT entry, false if the symbol already has a GOT
|
|
// entry.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Output_data_got<size, big_endian>::add_local(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx)
|
|
{
|
|
if (object->local_has_got_offset(symndx))
|
|
return false;
|
|
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
this->set_got_size();
|
|
object->set_local_got_offset(symndx, this->last_got_offset());
|
|
return true;
|
|
}
|
|
|
|
// Add an entry for a local symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_with_rel(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (object->local_has_got_offset(symndx))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_got_offset(symndx, got_offset);
|
|
rel_dyn->add_local(object, symndx, r_type, this, got_offset);
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_with_rela(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (object->local_has_got_offset(symndx))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_got_offset(symndx, got_offset);
|
|
rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
|
|
}
|
|
|
|
// Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
|
|
// In a pair of entries, the first value in the pair will be used for the
|
|
// module index, and the second value will be used for the dtv-relative
|
|
// offset. This returns true if this is a new GOT entry, false if the symbol
|
|
// already has a GOT entry.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
|
|
{
|
|
if (gsym->has_tls_got_offset(need_pair))
|
|
return false;
|
|
|
|
this->entries_.push_back(Got_entry(gsym));
|
|
gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
|
|
if (need_pair)
|
|
this->entries_.push_back(Got_entry(gsym));
|
|
this->set_got_size();
|
|
return true;
|
|
}
|
|
|
|
// Add an entry for a global TLS symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_tls_with_rel(
|
|
Symbol* gsym,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (gsym->has_tls_got_offset(false))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_tls_got_offset(got_offset, false);
|
|
rel_dyn->add_global(gsym, r_type, this, got_offset);
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_tls_with_rela(
|
|
Symbol* gsym,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (gsym->has_tls_got_offset(false))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_tls_got_offset(got_offset, false);
|
|
rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
|
|
}
|
|
|
|
// Add a pair of entries for a global TLS symbol to the GOT, and add
|
|
// dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_tls_with_rel(
|
|
Symbol* gsym,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int mod_r_type,
|
|
unsigned int dtv_r_type)
|
|
{
|
|
if (gsym->has_tls_got_offset(true))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_tls_got_offset(got_offset, true);
|
|
rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
got_offset = this->last_got_offset();
|
|
rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_tls_with_rela(
|
|
Symbol* gsym,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int mod_r_type,
|
|
unsigned int dtv_r_type)
|
|
{
|
|
if (gsym->has_tls_got_offset(true))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_tls_got_offset(got_offset, true);
|
|
rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
got_offset = this->last_got_offset();
|
|
rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
|
|
}
|
|
|
|
// Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
|
|
// In a pair of entries, the first value in the pair will be used for the
|
|
// module index, and the second value will be used for the dtv-relative
|
|
// offset. This returns true if this is a new GOT entry, false if the symbol
|
|
// already has a GOT entry.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Output_data_got<size, big_endian>::add_local_tls(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
bool need_pair)
|
|
{
|
|
if (object->local_has_tls_got_offset(symndx, need_pair))
|
|
return false;
|
|
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
|
|
if (need_pair)
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
this->set_got_size();
|
|
return true;
|
|
}
|
|
|
|
// Add an entry (or pair of entries) for a local TLS symbol to the GOT,
|
|
// and add a dynamic relocation of type R_TYPE for the first GOT entry.
|
|
// Because this is a local symbol, the first GOT entry can be relocated
|
|
// relative to a section symbol, and the second GOT entry will have an
|
|
// dtv-relative value that can be computed at link time.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_tls_with_rel(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int shndx,
|
|
bool need_pair,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (object->local_has_tls_got_offset(symndx, need_pair))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_tls_got_offset(symndx, got_offset, need_pair);
|
|
section_offset_type off;
|
|
Output_section* os = object->output_section(shndx, &off);
|
|
rel_dyn->add_output_section(os, r_type, this, got_offset);
|
|
|
|
// The second entry of the pair will be statically initialized
|
|
// with the TLS offset of the symbol.
|
|
if (need_pair)
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
|
|
this->set_got_size();
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_tls_with_rela(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int shndx,
|
|
bool need_pair,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (object->local_has_tls_got_offset(symndx, need_pair))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_tls_got_offset(symndx, got_offset, need_pair);
|
|
section_offset_type off;
|
|
Output_section* os = object->output_section(shndx, &off);
|
|
rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
|
|
|
|
// The second entry of the pair will be statically initialized
|
|
// with the TLS offset of the symbol.
|
|
if (need_pair)
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
|
|
this->set_got_size();
|
|
}
|
|
|
|
// Write out the GOT.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::do_write(Output_file* of)
|
|
{
|
|
const int add = size / 8;
|
|
|
|
const off_t off = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(off, oview_size);
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Got_entries::const_iterator p = this->entries_.begin();
|
|
p != this->entries_.end();
|
|
++p)
|
|
{
|
|
p->write(pov);
|
|
pov += add;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(off, oview_size, oview);
|
|
|
|
// We no longer need the GOT entries.
|
|
this->entries_.clear();
|
|
}
|
|
|
|
// Output_data_dynamic::Dynamic_entry methods.
|
|
|
|
// Write out the entry.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_dynamic::Dynamic_entry::write(
|
|
unsigned char* pov,
|
|
const Stringpool* pool
|
|
ACCEPT_SIZE_ENDIAN) const
|
|
{
|
|
typename elfcpp::Elf_types<size>::Elf_WXword val;
|
|
switch (this->classification_)
|
|
{
|
|
case DYNAMIC_NUMBER:
|
|
val = this->u_.val;
|
|
break;
|
|
|
|
case DYNAMIC_SECTION_ADDRESS:
|
|
val = this->u_.od->address();
|
|
break;
|
|
|
|
case DYNAMIC_SECTION_SIZE:
|
|
val = this->u_.od->data_size();
|
|
break;
|
|
|
|
case DYNAMIC_SYMBOL:
|
|
{
|
|
const Sized_symbol<size>* s =
|
|
static_cast<const Sized_symbol<size>*>(this->u_.sym);
|
|
val = s->value();
|
|
}
|
|
break;
|
|
|
|
case DYNAMIC_STRING:
|
|
val = pool->get_offset(this->u_.str);
|
|
break;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
elfcpp::Dyn_write<size, big_endian> dw(pov);
|
|
dw.put_d_tag(this->tag_);
|
|
dw.put_d_val(val);
|
|
}
|
|
|
|
// Output_data_dynamic methods.
|
|
|
|
// Adjust the output section to set the entry size.
|
|
|
|
void
|
|
Output_data_dynamic::do_adjust_output_section(Output_section* os)
|
|
{
|
|
if (parameters->get_size() == 32)
|
|
os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
|
|
else if (parameters->get_size() == 64)
|
|
os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Set the final data size.
|
|
|
|
void
|
|
Output_data_dynamic::set_final_data_size()
|
|
{
|
|
// Add the terminating entry.
|
|
this->add_constant(elfcpp::DT_NULL, 0);
|
|
|
|
int dyn_size;
|
|
if (parameters->get_size() == 32)
|
|
dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
|
|
else if (parameters->get_size() == 64)
|
|
dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
|
|
else
|
|
gold_unreachable();
|
|
this->set_data_size(this->entries_.size() * dyn_size);
|
|
}
|
|
|
|
// Write out the dynamic entries.
|
|
|
|
void
|
|
Output_data_dynamic::do_write(Output_file* of)
|
|
{
|
|
if (parameters->get_size() == 32)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
this->sized_write<32, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
this->sized_write<32, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else if (parameters->get_size() == 64)
|
|
{
|
|
if (parameters->is_big_endian())
|
|
{
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
this->sized_write<64, true>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
this->sized_write<64, false>(of);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_dynamic::sized_write(Output_file* of)
|
|
{
|
|
const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
|
|
|
|
const off_t offset = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
|
|
p != this->entries_.end();
|
|
++p)
|
|
{
|
|
p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
|
|
pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
|
|
pov += dyn_size;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(offset, oview_size, oview);
|
|
|
|
// We no longer need the dynamic entries.
|
|
this->entries_.clear();
|
|
}
|
|
|
|
// Output_section::Input_section methods.
|
|
|
|
// Return the data size. For an input section we store the size here.
|
|
// For an Output_section_data, we have to ask it for the size.
|
|
|
|
off_t
|
|
Output_section::Input_section::data_size() const
|
|
{
|
|
if (this->is_input_section())
|
|
return this->u1_.data_size;
|
|
else
|
|
return this->u2_.posd->data_size();
|
|
}
|
|
|
|
// Set the address and file offset.
|
|
|
|
void
|
|
Output_section::Input_section::set_address_and_file_offset(
|
|
uint64_t address,
|
|
off_t file_offset,
|
|
off_t section_file_offset)
|
|
{
|
|
if (this->is_input_section())
|
|
this->u2_.object->set_section_offset(this->shndx_,
|
|
file_offset - section_file_offset);
|
|
else
|
|
this->u2_.posd->set_address_and_file_offset(address, file_offset);
|
|
}
|
|
|
|
// Finalize the data size.
|
|
|
|
void
|
|
Output_section::Input_section::finalize_data_size()
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->finalize_data_size();
|
|
}
|
|
|
|
// Try to turn an input offset into an output offset. We want to
|
|
// return the output offset relative to the start of this
|
|
// Input_section in the output section.
|
|
|
|
inline bool
|
|
Output_section::Input_section::output_offset(
|
|
const Relobj* object,
|
|
unsigned int shndx,
|
|
section_offset_type offset,
|
|
section_offset_type *poutput) const
|
|
{
|
|
if (!this->is_input_section())
|
|
return this->u2_.posd->output_offset(object, shndx, offset, poutput);
|
|
else
|
|
{
|
|
if (this->shndx_ != shndx || this->u2_.object != object)
|
|
return false;
|
|
*poutput = offset;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Return whether this is the merge section for the input section
|
|
// SHNDX in OBJECT.
|
|
|
|
inline bool
|
|
Output_section::Input_section::is_merge_section_for(const Relobj* object,
|
|
unsigned int shndx) const
|
|
{
|
|
if (this->is_input_section())
|
|
return false;
|
|
return this->u2_.posd->is_merge_section_for(object, shndx);
|
|
}
|
|
|
|
// Write out the data. We don't have to do anything for an input
|
|
// section--they are handled via Object::relocate--but this is where
|
|
// we write out the data for an Output_section_data.
|
|
|
|
void
|
|
Output_section::Input_section::write(Output_file* of)
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->write(of);
|
|
}
|
|
|
|
// Write the data to a buffer. As for write(), we don't have to do
|
|
// anything for an input section.
|
|
|
|
void
|
|
Output_section::Input_section::write_to_buffer(unsigned char* buffer)
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->write_to_buffer(buffer);
|
|
}
|
|
|
|
// Output_section methods.
|
|
|
|
// Construct an Output_section. NAME will point into a Stringpool.
|
|
|
|
Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
|
|
elfcpp::Elf_Xword flags)
|
|
: name_(name),
|
|
addralign_(0),
|
|
entsize_(0),
|
|
link_section_(NULL),
|
|
link_(0),
|
|
info_section_(NULL),
|
|
info_(0),
|
|
type_(type),
|
|
flags_(flags),
|
|
out_shndx_(-1U),
|
|
symtab_index_(0),
|
|
dynsym_index_(0),
|
|
input_sections_(),
|
|
first_input_offset_(0),
|
|
fills_(),
|
|
postprocessing_buffer_(NULL),
|
|
needs_symtab_index_(false),
|
|
needs_dynsym_index_(false),
|
|
should_link_to_symtab_(false),
|
|
should_link_to_dynsym_(false),
|
|
after_input_sections_(false),
|
|
requires_postprocessing_(false),
|
|
tls_offset_(0)
|
|
{
|
|
// An unallocated section has no address. Forcing this means that
|
|
// we don't need special treatment for symbols defined in debug
|
|
// sections.
|
|
if ((flags & elfcpp::SHF_ALLOC) == 0)
|
|
this->set_address(0);
|
|
}
|
|
|
|
Output_section::~Output_section()
|
|
{
|
|
}
|
|
|
|
// Set the entry size.
|
|
|
|
void
|
|
Output_section::set_entsize(uint64_t v)
|
|
{
|
|
if (this->entsize_ == 0)
|
|
this->entsize_ = v;
|
|
else
|
|
gold_assert(this->entsize_ == v);
|
|
}
|
|
|
|
// Add the input section SHNDX, with header SHDR, named SECNAME, in
|
|
// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
|
|
// relocation section which applies to this section, or 0 if none, or
|
|
// -1U if more than one. Return the offset of the input section
|
|
// within the output section. Return -1 if the input section will
|
|
// receive special handling. In the normal case we don't always keep
|
|
// track of input sections for an Output_section. Instead, each
|
|
// Object keeps track of the Output_section for each of its input
|
|
// sections.
|
|
|
|
template<int size, bool big_endian>
|
|
off_t
|
|
Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<size, big_endian>& shdr,
|
|
unsigned int reloc_shndx)
|
|
{
|
|
elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
|
|
if ((addralign & (addralign - 1)) != 0)
|
|
{
|
|
object->error(_("invalid alignment %lu for section \"%s\""),
|
|
static_cast<unsigned long>(addralign), secname);
|
|
addralign = 1;
|
|
}
|
|
|
|
if (addralign > this->addralign_)
|
|
this->addralign_ = addralign;
|
|
|
|
typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
|
|
uint64_t entsize = shdr.get_sh_entsize();
|
|
|
|
// .debug_str is a mergeable string section, but is not always so
|
|
// marked by compilers. Mark manually here so we can optimize.
|
|
if (strcmp(secname, ".debug_str") == 0)
|
|
{
|
|
sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
|
|
entsize = 1;
|
|
}
|
|
|
|
// If this is a SHF_MERGE section, we pass all the input sections to
|
|
// a Output_data_merge. We don't try to handle relocations for such
|
|
// a section.
|
|
if ((sh_flags & elfcpp::SHF_MERGE) != 0
|
|
&& reloc_shndx == 0)
|
|
{
|
|
if (this->add_merge_input_section(object, shndx, sh_flags,
|
|
entsize, addralign))
|
|
{
|
|
// Tell the relocation routines that they need to call the
|
|
// output_offset method to determine the final address.
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
off_t offset_in_section = this->current_data_size_for_child();
|
|
off_t aligned_offset_in_section = align_address(offset_in_section,
|
|
addralign);
|
|
|
|
if (aligned_offset_in_section > offset_in_section
|
|
&& (sh_flags & elfcpp::SHF_EXECINSTR) != 0
|
|
&& object->target()->has_code_fill())
|
|
{
|
|
// We need to add some fill data. Using fill_list_ when
|
|
// possible is an optimization, since we will often have fill
|
|
// sections without input sections.
|
|
off_t fill_len = aligned_offset_in_section - offset_in_section;
|
|
if (this->input_sections_.empty())
|
|
this->fills_.push_back(Fill(offset_in_section, fill_len));
|
|
else
|
|
{
|
|
// FIXME: When relaxing, the size needs to adjust to
|
|
// maintain a constant alignment.
|
|
std::string fill_data(object->target()->code_fill(fill_len));
|
|
Output_data_const* odc = new Output_data_const(fill_data, 1);
|
|
this->input_sections_.push_back(Input_section(odc));
|
|
}
|
|
}
|
|
|
|
this->set_current_data_size_for_child(aligned_offset_in_section
|
|
+ shdr.get_sh_size());
|
|
|
|
// We need to keep track of this section if we are already keeping
|
|
// track of sections, or if we are relaxing. FIXME: Add test for
|
|
// relaxing.
|
|
if (!this->input_sections_.empty())
|
|
this->input_sections_.push_back(Input_section(object, shndx,
|
|
shdr.get_sh_size(),
|
|
addralign));
|
|
|
|
return aligned_offset_in_section;
|
|
}
|
|
|
|
// Add arbitrary data to an output section.
|
|
|
|
void
|
|
Output_section::add_output_section_data(Output_section_data* posd)
|
|
{
|
|
Input_section inp(posd);
|
|
this->add_output_section_data(&inp);
|
|
}
|
|
|
|
// Add arbitrary data to an output section by Input_section.
|
|
|
|
void
|
|
Output_section::add_output_section_data(Input_section* inp)
|
|
{
|
|
if (this->input_sections_.empty())
|
|
this->first_input_offset_ = this->current_data_size_for_child();
|
|
|
|
this->input_sections_.push_back(*inp);
|
|
|
|
uint64_t addralign = inp->addralign();
|
|
if (addralign > this->addralign_)
|
|
this->addralign_ = addralign;
|
|
|
|
inp->set_output_section(this);
|
|
}
|
|
|
|
// Add a merge section to an output section.
|
|
|
|
void
|
|
Output_section::add_output_merge_section(Output_section_data* posd,
|
|
bool is_string, uint64_t entsize)
|
|
{
|
|
Input_section inp(posd, is_string, entsize);
|
|
this->add_output_section_data(&inp);
|
|
}
|
|
|
|
// Add an input section to a SHF_MERGE section.
|
|
|
|
bool
|
|
Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
|
|
uint64_t flags, uint64_t entsize,
|
|
uint64_t addralign)
|
|
{
|
|
bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
|
|
|
|
// We only merge strings if the alignment is not more than the
|
|
// character size. This could be handled, but it's unusual.
|
|
if (is_string && addralign > entsize)
|
|
return false;
|
|
|
|
Input_section_list::iterator p;
|
|
for (p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
if (p->is_merge_section(is_string, entsize, addralign))
|
|
{
|
|
p->add_input_section(object, shndx);
|
|
return true;
|
|
}
|
|
|
|
// We handle the actual constant merging in Output_merge_data or
|
|
// Output_merge_string_data.
|
|
Output_section_data* posd;
|
|
if (!is_string)
|
|
posd = new Output_merge_data(entsize, addralign);
|
|
else
|
|
{
|
|
switch (entsize)
|
|
{
|
|
case 1:
|
|
posd = new Output_merge_string<char>(addralign);
|
|
break;
|
|
case 2:
|
|
posd = new Output_merge_string<uint16_t>(addralign);
|
|
break;
|
|
case 4:
|
|
posd = new Output_merge_string<uint32_t>(addralign);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
this->add_output_merge_section(posd, is_string, entsize);
|
|
posd->add_input_section(object, shndx);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Given an address OFFSET relative to the start of input section
|
|
// SHNDX in OBJECT, return whether this address is being included in
|
|
// the final link. This should only be called if SHNDX in OBJECT has
|
|
// a special mapping.
|
|
|
|
bool
|
|
Output_section::is_input_address_mapped(const Relobj* object,
|
|
unsigned int shndx,
|
|
off_t offset) const
|
|
{
|
|
gold_assert(object->is_section_specially_mapped(shndx));
|
|
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
section_offset_type output_offset;
|
|
if (p->output_offset(object, shndx, offset, &output_offset))
|
|
return output_offset != -1;
|
|
}
|
|
|
|
// By default we assume that the address is mapped. This should
|
|
// only be called after we have passed all sections to Layout. At
|
|
// that point we should know what we are discarding.
|
|
return true;
|
|
}
|
|
|
|
// Given an address OFFSET relative to the start of input section
|
|
// SHNDX in object OBJECT, return the output offset relative to the
|
|
// start of the input section in the output section. This should only
|
|
// be called if SHNDX in OBJECT has a special mapping.
|
|
|
|
section_offset_type
|
|
Output_section::output_offset(const Relobj* object, unsigned int shndx,
|
|
section_offset_type offset) const
|
|
{
|
|
gold_assert(object->is_section_specially_mapped(shndx));
|
|
// This can only be called meaningfully when layout is complete.
|
|
gold_assert(Output_data::is_layout_complete());
|
|
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
section_offset_type output_offset;
|
|
if (p->output_offset(object, shndx, offset, &output_offset))
|
|
return output_offset;
|
|
}
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Return the output virtual address of OFFSET relative to the start
|
|
// of input section SHNDX in object OBJECT.
|
|
|
|
uint64_t
|
|
Output_section::output_address(const Relobj* object, unsigned int shndx,
|
|
off_t offset) const
|
|
{
|
|
gold_assert(object->is_section_specially_mapped(shndx));
|
|
|
|
uint64_t addr = this->address() + this->first_input_offset_;
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
addr = align_address(addr, p->addralign());
|
|
section_offset_type output_offset;
|
|
if (p->output_offset(object, shndx, offset, &output_offset))
|
|
{
|
|
if (output_offset == -1)
|
|
return -1U;
|
|
return addr + output_offset;
|
|
}
|
|
addr += p->data_size();
|
|
}
|
|
|
|
// If we get here, it means that we don't know the mapping for this
|
|
// input section. This might happen in principle if
|
|
// add_input_section were called before add_output_section_data.
|
|
// But it should never actually happen.
|
|
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Return the output address of the start of the merged section for
|
|
// input section SHNDX in object OBJECT.
|
|
|
|
uint64_t
|
|
Output_section::starting_output_address(const Relobj* object,
|
|
unsigned int shndx) const
|
|
{
|
|
gold_assert(object->is_section_specially_mapped(shndx));
|
|
|
|
uint64_t addr = this->address() + this->first_input_offset_;
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
addr = align_address(addr, p->addralign());
|
|
|
|
// It would be nice if we could use the existing output_offset
|
|
// method to get the output offset of input offset 0.
|
|
// Unfortunately we don't know for sure that input offset 0 is
|
|
// mapped at all.
|
|
if (p->is_merge_section_for(object, shndx))
|
|
return addr;
|
|
|
|
addr += p->data_size();
|
|
}
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Set the data size of an Output_section. This is where we handle
|
|
// setting the addresses of any Output_section_data objects.
|
|
|
|
void
|
|
Output_section::set_final_data_size()
|
|
{
|
|
if (this->input_sections_.empty())
|
|
{
|
|
this->set_data_size(this->current_data_size_for_child());
|
|
return;
|
|
}
|
|
|
|
uint64_t address = this->address();
|
|
off_t startoff = this->offset();
|
|
off_t off = startoff + this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off = align_address(off, p->addralign());
|
|
p->set_address_and_file_offset(address + (off - startoff), off,
|
|
startoff);
|
|
off += p->data_size();
|
|
}
|
|
|
|
this->set_data_size(off - startoff);
|
|
}
|
|
|
|
// Set the TLS offset. Called only for SHT_TLS sections.
|
|
|
|
void
|
|
Output_section::do_set_tls_offset(uint64_t tls_base)
|
|
{
|
|
this->tls_offset_ = this->address() - tls_base;
|
|
}
|
|
|
|
// Write the section header to *OSHDR.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_section::write_header(const Layout* layout,
|
|
const Stringpool* secnamepool,
|
|
elfcpp::Shdr_write<size, big_endian>* oshdr) const
|
|
{
|
|
oshdr->put_sh_name(secnamepool->get_offset(this->name_));
|
|
oshdr->put_sh_type(this->type_);
|
|
oshdr->put_sh_flags(this->flags_);
|
|
oshdr->put_sh_addr(this->address());
|
|
oshdr->put_sh_offset(this->offset());
|
|
oshdr->put_sh_size(this->data_size());
|
|
if (this->link_section_ != NULL)
|
|
oshdr->put_sh_link(this->link_section_->out_shndx());
|
|
else if (this->should_link_to_symtab_)
|
|
oshdr->put_sh_link(layout->symtab_section()->out_shndx());
|
|
else if (this->should_link_to_dynsym_)
|
|
oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
|
|
else
|
|
oshdr->put_sh_link(this->link_);
|
|
if (this->info_section_ != NULL)
|
|
oshdr->put_sh_info(this->info_section_->out_shndx());
|
|
else
|
|
oshdr->put_sh_info(this->info_);
|
|
oshdr->put_sh_addralign(this->addralign_);
|
|
oshdr->put_sh_entsize(this->entsize_);
|
|
}
|
|
|
|
// Write out the data. For input sections the data is written out by
|
|
// Object::relocate, but we have to handle Output_section_data objects
|
|
// here.
|
|
|
|
void
|
|
Output_section::do_write(Output_file* of)
|
|
{
|
|
gold_assert(!this->requires_postprocessing());
|
|
|
|
off_t output_section_file_offset = this->offset();
|
|
for (Fill_list::iterator p = this->fills_.begin();
|
|
p != this->fills_.end();
|
|
++p)
|
|
{
|
|
std::string fill_data(of->target()->code_fill(p->length()));
|
|
of->write(output_section_file_offset + p->section_offset(),
|
|
fill_data.data(), fill_data.size());
|
|
}
|
|
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
p->write(of);
|
|
}
|
|
|
|
// If a section requires postprocessing, create the buffer to use.
|
|
|
|
void
|
|
Output_section::create_postprocessing_buffer()
|
|
{
|
|
gold_assert(this->requires_postprocessing());
|
|
gold_assert(this->postprocessing_buffer_ == NULL);
|
|
|
|
if (!this->input_sections_.empty())
|
|
{
|
|
off_t off = this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off = align_address(off, p->addralign());
|
|
p->finalize_data_size();
|
|
off += p->data_size();
|
|
}
|
|
this->set_current_data_size_for_child(off);
|
|
}
|
|
|
|
off_t buffer_size = this->current_data_size_for_child();
|
|
this->postprocessing_buffer_ = new unsigned char[buffer_size];
|
|
}
|
|
|
|
// Write all the data of an Output_section into the postprocessing
|
|
// buffer. This is used for sections which require postprocessing,
|
|
// such as compression. Input sections are handled by
|
|
// Object::Relocate.
|
|
|
|
void
|
|
Output_section::write_to_postprocessing_buffer()
|
|
{
|
|
gold_assert(this->requires_postprocessing());
|
|
|
|
Target* target = parameters->target();
|
|
unsigned char* buffer = this->postprocessing_buffer();
|
|
for (Fill_list::iterator p = this->fills_.begin();
|
|
p != this->fills_.end();
|
|
++p)
|
|
{
|
|
std::string fill_data(target->code_fill(p->length()));
|
|
memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
|
|
}
|
|
|
|
off_t off = this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off = align_address(off, p->addralign());
|
|
p->write_to_buffer(buffer + off);
|
|
off += p->data_size();
|
|
}
|
|
}
|
|
|
|
// Print stats for merge sections to stderr.
|
|
|
|
void
|
|
Output_section::print_merge_stats()
|
|
{
|
|
Input_section_list::iterator p;
|
|
for (p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
p->print_merge_stats(this->name_);
|
|
}
|
|
|
|
// Output segment methods.
|
|
|
|
Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
|
|
: output_data_(),
|
|
output_bss_(),
|
|
vaddr_(0),
|
|
paddr_(0),
|
|
memsz_(0),
|
|
align_(0),
|
|
offset_(0),
|
|
filesz_(0),
|
|
type_(type),
|
|
flags_(flags),
|
|
is_align_known_(false)
|
|
{
|
|
}
|
|
|
|
// Add an Output_section to an Output_segment.
|
|
|
|
void
|
|
Output_segment::add_output_section(Output_section* os,
|
|
elfcpp::Elf_Word seg_flags,
|
|
bool front)
|
|
{
|
|
gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
|
|
gold_assert(!this->is_align_known_);
|
|
|
|
// Update the segment flags.
|
|
this->flags_ |= seg_flags;
|
|
|
|
Output_segment::Output_data_list* pdl;
|
|
if (os->type() == elfcpp::SHT_NOBITS)
|
|
pdl = &this->output_bss_;
|
|
else
|
|
pdl = &this->output_data_;
|
|
|
|
// So that PT_NOTE segments will work correctly, we need to ensure
|
|
// that all SHT_NOTE sections are adjacent. This will normally
|
|
// happen automatically, because all the SHT_NOTE input sections
|
|
// will wind up in the same output section. However, it is possible
|
|
// for multiple SHT_NOTE input sections to have different section
|
|
// flags, and thus be in different output sections, but for the
|
|
// different section flags to map into the same segment flags and
|
|
// thus the same output segment.
|
|
|
|
// Note that while there may be many input sections in an output
|
|
// section, there are normally only a few output sections in an
|
|
// output segment. This loop is expected to be fast.
|
|
|
|
if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
|
|
{
|
|
Output_segment::Output_data_list::iterator p = pdl->end();
|
|
do
|
|
{
|
|
--p;
|
|
if ((*p)->is_section_type(elfcpp::SHT_NOTE))
|
|
{
|
|
// We don't worry about the FRONT parameter.
|
|
++p;
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
while (p != pdl->begin());
|
|
}
|
|
|
|
// Similarly, so that PT_TLS segments will work, we need to group
|
|
// SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
|
|
// case: we group the SHF_TLS/SHT_NOBITS sections right after the
|
|
// SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
|
|
// correctly. SHF_TLS sections get added to both a PT_LOAD segment
|
|
// and the PT_TLS segment -- we do this grouping only for the
|
|
// PT_LOAD segment.
|
|
if (this->type_ != elfcpp::PT_TLS
|
|
&& (os->flags() & elfcpp::SHF_TLS) != 0
|
|
&& !this->output_data_.empty())
|
|
{
|
|
pdl = &this->output_data_;
|
|
bool nobits = os->type() == elfcpp::SHT_NOBITS;
|
|
bool sawtls = false;
|
|
Output_segment::Output_data_list::iterator p = pdl->end();
|
|
do
|
|
{
|
|
--p;
|
|
bool insert;
|
|
if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
|
|
{
|
|
sawtls = true;
|
|
// Put a NOBITS section after the first TLS section.
|
|
// But a PROGBITS section after the first TLS/PROGBITS
|
|
// section.
|
|
insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
|
|
}
|
|
else
|
|
{
|
|
// If we've gone past the TLS sections, but we've seen a
|
|
// TLS section, then we need to insert this section now.
|
|
insert = sawtls;
|
|
}
|
|
|
|
if (insert)
|
|
{
|
|
// We don't worry about the FRONT parameter.
|
|
++p;
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
while (p != pdl->begin());
|
|
|
|
// There are no TLS sections yet; put this one at the requested
|
|
// location in the section list.
|
|
}
|
|
|
|
if (front)
|
|
pdl->push_front(os);
|
|
else
|
|
pdl->push_back(os);
|
|
}
|
|
|
|
// Add an Output_data (which is not an Output_section) to the start of
|
|
// a segment.
|
|
|
|
void
|
|
Output_segment::add_initial_output_data(Output_data* od)
|
|
{
|
|
gold_assert(!this->is_align_known_);
|
|
this->output_data_.push_front(od);
|
|
}
|
|
|
|
// Return the maximum alignment of the Output_data in Output_segment.
|
|
// Once we compute this, we prohibit new sections from being added.
|
|
|
|
uint64_t
|
|
Output_segment::addralign()
|
|
{
|
|
if (!this->is_align_known_)
|
|
{
|
|
uint64_t addralign;
|
|
|
|
addralign = Output_segment::maximum_alignment(&this->output_data_);
|
|
if (addralign > this->align_)
|
|
this->align_ = addralign;
|
|
|
|
addralign = Output_segment::maximum_alignment(&this->output_bss_);
|
|
if (addralign > this->align_)
|
|
this->align_ = addralign;
|
|
|
|
this->is_align_known_ = true;
|
|
}
|
|
|
|
return this->align_;
|
|
}
|
|
|
|
// Return the maximum alignment of a list of Output_data.
|
|
|
|
uint64_t
|
|
Output_segment::maximum_alignment(const Output_data_list* pdl)
|
|
{
|
|
uint64_t ret = 0;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
uint64_t addralign = (*p)->addralign();
|
|
if (addralign > ret)
|
|
ret = addralign;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Return the number of dynamic relocs applied to this segment.
|
|
|
|
unsigned int
|
|
Output_segment::dynamic_reloc_count() const
|
|
{
|
|
return (this->dynamic_reloc_count_list(&this->output_data_)
|
|
+ this->dynamic_reloc_count_list(&this->output_bss_));
|
|
}
|
|
|
|
// Return the number of dynamic relocs applied to an Output_data_list.
|
|
|
|
unsigned int
|
|
Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
|
|
{
|
|
unsigned int count = 0;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
count += (*p)->dynamic_reloc_count();
|
|
return count;
|
|
}
|
|
|
|
// Set the section addresses for an Output_segment. ADDR is the
|
|
// address and *POFF is the file offset. Set the section indexes
|
|
// starting with *PSHNDX. Return the address of the immediately
|
|
// following segment. Update *POFF and *PSHNDX.
|
|
|
|
uint64_t
|
|
Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
|
|
unsigned int* pshndx)
|
|
{
|
|
gold_assert(this->type_ == elfcpp::PT_LOAD);
|
|
|
|
this->vaddr_ = addr;
|
|
this->paddr_ = addr;
|
|
|
|
off_t orig_off = *poff;
|
|
this->offset_ = orig_off;
|
|
|
|
*poff = align_address(*poff, this->addralign());
|
|
|
|
addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
|
|
pshndx);
|
|
this->filesz_ = *poff - orig_off;
|
|
|
|
off_t off = *poff;
|
|
|
|
uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
|
|
poff, pshndx);
|
|
this->memsz_ = *poff - orig_off;
|
|
|
|
// Ignore the file offset adjustments made by the BSS Output_data
|
|
// objects.
|
|
*poff = off;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Set the addresses and file offsets in a list of Output_data
|
|
// structures.
|
|
|
|
uint64_t
|
|
Output_segment::set_section_list_addresses(Output_data_list* pdl,
|
|
uint64_t addr, off_t* poff,
|
|
unsigned int* pshndx)
|
|
{
|
|
off_t startoff = *poff;
|
|
|
|
off_t off = startoff;
|
|
for (Output_data_list::iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
off = align_address(off, (*p)->addralign());
|
|
(*p)->set_address_and_file_offset(addr + (off - startoff), off);
|
|
|
|
// Unless this is a PT_TLS segment, we want to ignore the size
|
|
// of a SHF_TLS/SHT_NOBITS section. Such a section does not
|
|
// affect the size of a PT_LOAD segment.
|
|
if (this->type_ == elfcpp::PT_TLS
|
|
|| !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
|
|
|| !(*p)->is_section_type(elfcpp::SHT_NOBITS))
|
|
off += (*p)->data_size();
|
|
|
|
if ((*p)->is_section())
|
|
{
|
|
(*p)->set_out_shndx(*pshndx);
|
|
++*pshndx;
|
|
}
|
|
}
|
|
|
|
*poff = off;
|
|
return addr + (off - startoff);
|
|
}
|
|
|
|
// For a non-PT_LOAD segment, set the offset from the sections, if
|
|
// any.
|
|
|
|
void
|
|
Output_segment::set_offset()
|
|
{
|
|
gold_assert(this->type_ != elfcpp::PT_LOAD);
|
|
|
|
if (this->output_data_.empty() && this->output_bss_.empty())
|
|
{
|
|
this->vaddr_ = 0;
|
|
this->paddr_ = 0;
|
|
this->memsz_ = 0;
|
|
this->align_ = 0;
|
|
this->offset_ = 0;
|
|
this->filesz_ = 0;
|
|
return;
|
|
}
|
|
|
|
const Output_data* first;
|
|
if (this->output_data_.empty())
|
|
first = this->output_bss_.front();
|
|
else
|
|
first = this->output_data_.front();
|
|
this->vaddr_ = first->address();
|
|
this->paddr_ = this->vaddr_;
|
|
this->offset_ = first->offset();
|
|
|
|
if (this->output_data_.empty())
|
|
this->filesz_ = 0;
|
|
else
|
|
{
|
|
const Output_data* last_data = this->output_data_.back();
|
|
this->filesz_ = (last_data->address()
|
|
+ last_data->data_size()
|
|
- this->vaddr_);
|
|
}
|
|
|
|
const Output_data* last;
|
|
if (this->output_bss_.empty())
|
|
last = this->output_data_.back();
|
|
else
|
|
last = this->output_bss_.back();
|
|
this->memsz_ = (last->address()
|
|
+ last->data_size()
|
|
- this->vaddr_);
|
|
}
|
|
|
|
// Set the TLS offsets of the sections in the PT_TLS segment.
|
|
|
|
void
|
|
Output_segment::set_tls_offsets()
|
|
{
|
|
gold_assert(this->type_ == elfcpp::PT_TLS);
|
|
|
|
for (Output_data_list::iterator p = this->output_data_.begin();
|
|
p != this->output_data_.end();
|
|
++p)
|
|
(*p)->set_tls_offset(this->vaddr_);
|
|
|
|
for (Output_data_list::iterator p = this->output_bss_.begin();
|
|
p != this->output_bss_.end();
|
|
++p)
|
|
(*p)->set_tls_offset(this->vaddr_);
|
|
}
|
|
|
|
// Return the number of Output_sections in an Output_segment.
|
|
|
|
unsigned int
|
|
Output_segment::output_section_count() const
|
|
{
|
|
return (this->output_section_count_list(&this->output_data_)
|
|
+ this->output_section_count_list(&this->output_bss_));
|
|
}
|
|
|
|
// Return the number of Output_sections in an Output_data_list.
|
|
|
|
unsigned int
|
|
Output_segment::output_section_count_list(const Output_data_list* pdl) const
|
|
{
|
|
unsigned int count = 0;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if ((*p)->is_section())
|
|
++count;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// Write the segment data into *OPHDR.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
|
|
{
|
|
ophdr->put_p_type(this->type_);
|
|
ophdr->put_p_offset(this->offset_);
|
|
ophdr->put_p_vaddr(this->vaddr_);
|
|
ophdr->put_p_paddr(this->paddr_);
|
|
ophdr->put_p_filesz(this->filesz_);
|
|
ophdr->put_p_memsz(this->memsz_);
|
|
ophdr->put_p_flags(this->flags_);
|
|
ophdr->put_p_align(this->addralign());
|
|
}
|
|
|
|
// Write the section headers into V.
|
|
|
|
template<int size, bool big_endian>
|
|
unsigned char*
|
|
Output_segment::write_section_headers(const Layout* layout,
|
|
const Stringpool* secnamepool,
|
|
unsigned char* v,
|
|
unsigned int *pshndx
|
|
ACCEPT_SIZE_ENDIAN) const
|
|
{
|
|
// Every section that is attached to a segment must be attached to a
|
|
// PT_LOAD segment, so we only write out section headers for PT_LOAD
|
|
// segments.
|
|
if (this->type_ != elfcpp::PT_LOAD)
|
|
return v;
|
|
|
|
v = this->write_section_headers_list
|
|
SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
|
|
layout, secnamepool, &this->output_data_, v, pshndx
|
|
SELECT_SIZE_ENDIAN(size, big_endian));
|
|
v = this->write_section_headers_list
|
|
SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
|
|
layout, secnamepool, &this->output_bss_, v, pshndx
|
|
SELECT_SIZE_ENDIAN(size, big_endian));
|
|
return v;
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
unsigned char*
|
|
Output_segment::write_section_headers_list(const Layout* layout,
|
|
const Stringpool* secnamepool,
|
|
const Output_data_list* pdl,
|
|
unsigned char* v,
|
|
unsigned int* pshndx
|
|
ACCEPT_SIZE_ENDIAN) const
|
|
{
|
|
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if ((*p)->is_section())
|
|
{
|
|
const Output_section* ps = static_cast<const Output_section*>(*p);
|
|
gold_assert(*pshndx == ps->out_shndx());
|
|
elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
ps->write_header(layout, secnamepool, &oshdr);
|
|
v += shdr_size;
|
|
++*pshndx;
|
|
}
|
|
}
|
|
return v;
|
|
}
|
|
|
|
// Output_file methods.
|
|
|
|
Output_file::Output_file(const General_options& options, Target* target)
|
|
: options_(options),
|
|
target_(target),
|
|
name_(options.output_file_name()),
|
|
o_(-1),
|
|
file_size_(0),
|
|
base_(NULL),
|
|
map_is_anonymous_(false)
|
|
{
|
|
}
|
|
|
|
// Open the output file.
|
|
|
|
void
|
|
Output_file::open(off_t file_size)
|
|
{
|
|
this->file_size_ = file_size;
|
|
|
|
// Unlink the file first; otherwise the open() may fail if the file
|
|
// is busy (e.g. it's an executable that's currently being executed).
|
|
//
|
|
// However, the linker may be part of a system where a zero-length
|
|
// file is created for it to write to, with tight permissions (gcc
|
|
// 2.95 did something like this). Unlinking the file would work
|
|
// around those permission controls, so we only unlink if the file
|
|
// has a non-zero size. We also unlink only regular files to avoid
|
|
// trouble with directories/etc.
|
|
//
|
|
// If we fail, continue; this command is merely a best-effort attempt
|
|
// to improve the odds for open().
|
|
|
|
// We let the name "-" mean "stdout"
|
|
if (strcmp(this->name_, "-") == 0)
|
|
this->o_ = STDOUT_FILENO;
|
|
else
|
|
{
|
|
struct stat s;
|
|
if (::stat(this->name_, &s) == 0 && s.st_size != 0)
|
|
unlink_if_ordinary(this->name_);
|
|
|
|
int mode = parameters->output_is_object() ? 0666 : 0777;
|
|
int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
|
|
if (o < 0)
|
|
gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
|
|
this->o_ = o;
|
|
}
|
|
|
|
this->map();
|
|
}
|
|
|
|
// Resize the output file.
|
|
|
|
void
|
|
Output_file::resize(off_t file_size)
|
|
{
|
|
// If the mmap is mapping an anonymous memory buffer, this is easy:
|
|
// just mremap to the new size. If it's mapping to a file, we want
|
|
// to unmap to flush to the file, then remap after growing the file.
|
|
if (this->map_is_anonymous_)
|
|
{
|
|
void* base = ::mremap(this->base_, this->file_size_, file_size,
|
|
MREMAP_MAYMOVE);
|
|
if (base == MAP_FAILED)
|
|
gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
|
|
this->base_ = static_cast<unsigned char*>(base);
|
|
this->file_size_ = file_size;
|
|
}
|
|
else
|
|
{
|
|
this->unmap();
|
|
this->file_size_ = file_size;
|
|
this->map();
|
|
}
|
|
}
|
|
|
|
// Map the file into memory.
|
|
|
|
void
|
|
Output_file::map()
|
|
{
|
|
const int o = this->o_;
|
|
|
|
// If the output file is not a regular file, don't try to mmap it;
|
|
// instead, we'll mmap a block of memory (an anonymous buffer), and
|
|
// then later write the buffer to the file.
|
|
void* base;
|
|
struct stat statbuf;
|
|
if (o == STDOUT_FILENO || o == STDERR_FILENO
|
|
|| ::fstat(o, &statbuf) != 0
|
|
|| !S_ISREG(statbuf.st_mode))
|
|
{
|
|
this->map_is_anonymous_ = true;
|
|
base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
}
|
|
else
|
|
{
|
|
// Write out one byte to make the file the right size.
|
|
if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
|
|
gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
|
|
char b = 0;
|
|
if (::write(o, &b, 1) != 1)
|
|
gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
|
|
|
|
// Map the file into memory.
|
|
this->map_is_anonymous_ = false;
|
|
base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED, o, 0);
|
|
}
|
|
if (base == MAP_FAILED)
|
|
gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
|
|
this->base_ = static_cast<unsigned char*>(base);
|
|
}
|
|
|
|
// Unmap the file from memory.
|
|
|
|
void
|
|
Output_file::unmap()
|
|
{
|
|
if (::munmap(this->base_, this->file_size_) < 0)
|
|
gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
|
|
this->base_ = NULL;
|
|
}
|
|
|
|
// Close the output file.
|
|
|
|
void
|
|
Output_file::close()
|
|
{
|
|
// If the map isn't file-backed, we need to write it now.
|
|
if (this->map_is_anonymous_)
|
|
{
|
|
size_t bytes_to_write = this->file_size_;
|
|
while (bytes_to_write > 0)
|
|
{
|
|
ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
|
|
if (bytes_written == 0)
|
|
gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
|
|
else if (bytes_written < 0)
|
|
gold_error(_("%s: write: %s"), this->name_, strerror(errno));
|
|
else
|
|
bytes_to_write -= bytes_written;
|
|
}
|
|
}
|
|
this->unmap();
|
|
|
|
// We don't close stdout or stderr
|
|
if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
|
|
if (::close(this->o_) < 0)
|
|
gold_error(_("%s: close: %s"), this->name_, strerror(errno));
|
|
this->o_ = -1;
|
|
}
|
|
|
|
// Instantiate the templates we need. We could use the configure
|
|
// script to restrict this to only the ones for implemented targets.
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<32, false>(
|
|
Sized_relobj<32, false>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<32, false>& shdr,
|
|
unsigned int reloc_shndx);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<32, true>(
|
|
Sized_relobj<32, true>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<32, true>& shdr,
|
|
unsigned int reloc_shndx);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<64, false>(
|
|
Sized_relobj<64, false>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<64, false>& shdr,
|
|
unsigned int reloc_shndx);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<64, true>(
|
|
Sized_relobj<64, true>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<64, true>& shdr,
|
|
unsigned int reloc_shndx);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_got<32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_got<32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_got<64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_got<64, true>;
|
|
#endif
|
|
|
|
} // End namespace gold.
|