binutils-gdb/gdb/block.c
David Carlton 5c4e30cabe 2003-09-11 David Carlton <carlton@kealia.com>
* gdbtypes.h: Add TYPE_CODE_NAMESPACE.
	* gdbtypes.c (init_type): Handle TYPE_CODE_NAMESPACE.
	(recursive_dump_type): Ditto.
	* printcmd.c (print_formatted): Ditto.
	* typeprint.c (print_type_scalar): Ditto.
	* c-typeprint.c (c_type_print_varspec_prefix): Ditto.
	(c_type_print_varspec_suffix, c_type_print_base): Ditto.
	* cp-support.h: Declare cp_check_possible_namespace_symbols,
	maint_cplus_cmd_list.
	* cp-support.c: Make maint_cplus_cmd_list extern.
	* cp-namespace.c: Include objfiles.h, gdbtypes.h, dictionary.h,
	command.h.
	(lookup_symbol_file): Look in possible namespace blocks when
	appropriate.
	(initialize_namespace_symtab): New.
	(get_possible_namespace_block, free_namespace_block)
	(check_possible_namespace_symbols)
	(check_possible_namespace_symbols_loop)
	(check_one_possible_namespace_symbol)
	(lookup_possible_namespace_symbol, maintenance_cplus_namespace)
	(_initialize_cp_namespace): Ditto.
	* block.h: Declare allocate_block.
	* block.c (allocate_block): New.
	* jv-lang.c (get_java_class_symtab): Allocate blocks via
	allocate_block.
	* symfile.h: Update declaration of add_psymbol_to_list.
	* symfile.c (add_psymbol_to_list): Return the partial symbol in
	question.
	* dwarf2read.c (dwarf2_build_psymtabs_hard): Add argument to
	scan_partial_symbols_call.
	(scan_partial_symbols): Add NAMESPACE argument; update calls to
	helper functions.
	(add_partial_symbol): If necessary, scan mangled names for names
	of namespaces.
	(add_partial_namespace): Add NAMESPACE argument; generate partial
	symbols associated  to namespaces.
	(add_partial_enumeration): Add NAMESPACE argument.
	(new_symbol): Allow namespace syms.
	(read_namespace): Generate namespace syms.
	* objfiles.h: Add opaque declaration of struct symtab.
	(struct objfile): Add cp_namespace_symtab member.
	* objfiles.c (allocate_objfile): Set
	objfile->cp_namespace_symtab.
	* Makefile.in (cp-namespace.o): Depend on objfiles_h, gdbtypes_h,
	dictionary_h, command_h.

2003-09-11  David Carlton  <carlton@kealia.com>

	* gdb.c++/namespace.exp: Add tests for namespace types.
	* gdb.c++/maint.exp (test_help): Test 'help maint cp namespace'.
	(test_namespace): New.
2003-09-11 19:49:20 +00:00

296 lines
8.0 KiB
C

/* Block-related functions for the GNU debugger, GDB.
Copyright 2003 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "block.h"
#include "symtab.h"
#include "symfile.h"
#include "gdb_obstack.h"
#include "cp-support.h"
/* This is used by struct block to store namespace-related info for
C++ files, namely using declarations and the current namespace in
scope. */
struct block_namespace_info
{
const char *scope;
struct using_direct *using;
};
static void block_initialize_namespace (struct block *block,
struct obstack *obstack);
/* Return Nonzero if block a is lexically nested within block b,
or if a and b have the same pc range.
Return zero otherwise. */
int
contained_in (const struct block *a, const struct block *b)
{
if (!a || !b)
return 0;
return BLOCK_START (a) >= BLOCK_START (b)
&& BLOCK_END (a) <= BLOCK_END (b);
}
/* Return the symbol for the function which contains a specified
lexical block, described by a struct block BL. */
struct symbol *
block_function (const struct block *bl)
{
while (BLOCK_FUNCTION (bl) == 0 && BLOCK_SUPERBLOCK (bl) != 0)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value and section, or 0 if there is none.
PINDEX is a pointer to the index value of the block. If PINDEX
is NULL, we don't pass this information back to the caller. */
struct blockvector *
blockvector_for_pc_sect (CORE_ADDR pc, struct sec *section,
int *pindex, struct symtab *symtab)
{
struct block *b;
int bot, top, half;
struct blockvector *bl;
if (symtab == 0) /* if no symtab specified by caller */
{
/* First search all symtabs for one whose file contains our pc */
symtab = find_pc_sect_symtab (pc, section);
if (symtab == 0)
return 0;
}
bl = BLOCKVECTOR (symtab);
b = BLOCKVECTOR_BLOCK (bl, 0);
/* Then search that symtab for the smallest block that wins. */
/* Use binary search to find the last block that starts before PC. */
bot = 0;
top = BLOCKVECTOR_NBLOCKS (bl);
while (top - bot > 1)
{
half = (top - bot + 1) >> 1;
b = BLOCKVECTOR_BLOCK (bl, bot + half);
if (BLOCK_START (b) <= pc)
bot += half;
else
top = bot + half;
}
/* Now search backward for a block that ends after PC. */
while (bot >= 0)
{
b = BLOCKVECTOR_BLOCK (bl, bot);
if (BLOCK_END (b) > pc)
{
if (pindex)
*pindex = bot;
return bl;
}
bot--;
}
return 0;
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value, or 0 if there is none.
Backward compatibility, no section. */
struct blockvector *
blockvector_for_pc (CORE_ADDR pc, int *pindex)
{
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
pindex, NULL);
}
/* Return the innermost lexical block containing the specified pc value
in the specified section, or 0 if there is none. */
struct block *
block_for_pc_sect (CORE_ADDR pc, struct sec *section)
{
struct blockvector *bl;
int index;
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
if (bl)
return BLOCKVECTOR_BLOCK (bl, index);
return 0;
}
/* Return the innermost lexical block containing the specified pc value,
or 0 if there is none. Backward compatibility, no section. */
struct block *
block_for_pc (CORE_ADDR pc)
{
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}
/* Now come some functions designed to deal with C++ namespace issues.
The accessors are safe to use even in the non-C++ case. */
/* This returns the namespace that BLOCK is enclosed in, or "" if it
isn't enclosed in a namespace at all. This travels the chain of
superblocks looking for a scope, if necessary. */
const char *
block_scope (const struct block *block)
{
for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
{
if (BLOCK_NAMESPACE (block) != NULL
&& BLOCK_NAMESPACE (block)->scope != NULL)
return BLOCK_NAMESPACE (block)->scope;
}
return "";
}
/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
OBSTACK. (It won't make a copy of SCOPE, however, so that already
has to be allocated correctly.) */
void
block_set_scope (struct block *block, const char *scope,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->scope = scope;
}
/* This returns the first using directives associated to BLOCK, if
any. */
/* FIXME: carlton/2003-04-23: This uses the fact that we currently
only have using directives in static blocks, because we only
generate using directives from anonymous namespaces. Eventually,
when we support using directives everywhere, we'll want to replace
this by some iterator functions. */
struct using_direct *
block_using (const struct block *block)
{
const struct block *static_block = block_static_block (block);
if (static_block == NULL
|| BLOCK_NAMESPACE (static_block) == NULL)
return NULL;
else
return BLOCK_NAMESPACE (static_block)->using;
}
/* Set BLOCK's using member to USING; if needed, allocate memory via
OBSTACK. (It won't make a copy of USING, however, so that already
has to be allocated correctly.) */
void
block_set_using (struct block *block,
struct using_direct *using,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->using = using;
}
/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
ititialize its members to zero. */
static void
block_initialize_namespace (struct block *block, struct obstack *obstack)
{
if (BLOCK_NAMESPACE (block) == NULL)
{
BLOCK_NAMESPACE (block)
= obstack_alloc (obstack, sizeof (struct block_namespace_info));
BLOCK_NAMESPACE (block)->scope = NULL;
BLOCK_NAMESPACE (block)->using = NULL;
}
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL or if block is a global block. */
const struct block *
block_static_block (const struct block *block)
{
if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL. */
const struct block *
block_global_block (const struct block *block)
{
if (block == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (block) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Allocate a block on OBSTACK, and initialize its elements to
zero/NULL. This is useful for creating "dummy" blocks that don't
correspond to actual source files.
Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
valid value. If you really don't want the block to have a
dictionary, then you should subsequently set its BLOCK_DICT to
dict_create_linear (obstack, NULL). */
struct block *
allocate_block (struct obstack *obstack)
{
struct block *bl = obstack_alloc (obstack, sizeof (struct block));
BLOCK_START (bl) = 0;
BLOCK_END (bl) = 0;
BLOCK_FUNCTION (bl) = NULL;
BLOCK_SUPERBLOCK (bl) = NULL;
BLOCK_DICT (bl) = NULL;
BLOCK_NAMESPACE (bl) = NULL;
BLOCK_GCC_COMPILED (bl) = 0;
return bl;
}