31eef181bb
* mips-tdep.c (non_heuristic_proc_desc): Delete call to deprecated_pc_in_call_dummy.
6212 lines
201 KiB
C
6212 lines
201 KiB
C
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
|
|
|
|
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
|
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
|
|
Foundation, Inc.
|
|
|
|
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
|
|
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "value.h"
|
|
#include "gdbcmd.h"
|
|
#include "language.h"
|
|
#include "gdbcore.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "target.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "osabi.h"
|
|
#include "mips-tdep.h"
|
|
#include "block.h"
|
|
#include "reggroups.h"
|
|
#include "opcode/mips.h"
|
|
#include "elf/mips.h"
|
|
#include "elf-bfd.h"
|
|
#include "symcat.h"
|
|
#include "sim-regno.h"
|
|
#include "dis-asm.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "infcall.h"
|
|
|
|
static const struct objfile_data *mips_pdr_data;
|
|
|
|
static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
|
|
static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
|
|
|
|
/* A useful bit in the CP0 status register (PS_REGNUM). */
|
|
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
|
|
#define ST0_FR (1 << 26)
|
|
|
|
/* The sizes of floating point registers. */
|
|
|
|
enum
|
|
{
|
|
MIPS_FPU_SINGLE_REGSIZE = 4,
|
|
MIPS_FPU_DOUBLE_REGSIZE = 8
|
|
};
|
|
|
|
|
|
static const char *mips_abi_string;
|
|
|
|
static const char *mips_abi_strings[] = {
|
|
"auto",
|
|
"n32",
|
|
"o32",
|
|
"n64",
|
|
"o64",
|
|
"eabi32",
|
|
"eabi64",
|
|
NULL
|
|
};
|
|
|
|
struct frame_extra_info
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
int num_args;
|
|
};
|
|
|
|
/* Various MIPS ISA options (related to stack analysis) can be
|
|
overridden dynamically. Establish an enum/array for managing
|
|
them. */
|
|
|
|
static const char size_auto[] = "auto";
|
|
static const char size_32[] = "32";
|
|
static const char size_64[] = "64";
|
|
|
|
static const char *size_enums[] = {
|
|
size_auto,
|
|
size_32,
|
|
size_64,
|
|
0
|
|
};
|
|
|
|
/* Some MIPS boards don't support floating point while others only
|
|
support single-precision floating-point operations. */
|
|
|
|
enum mips_fpu_type
|
|
{
|
|
MIPS_FPU_DOUBLE, /* Full double precision floating point. */
|
|
MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
|
|
MIPS_FPU_NONE /* No floating point. */
|
|
};
|
|
|
|
#ifndef MIPS_DEFAULT_FPU_TYPE
|
|
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
|
|
#endif
|
|
static int mips_fpu_type_auto = 1;
|
|
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
|
|
|
|
static int mips_debug = 0;
|
|
|
|
/* MIPS specific per-architecture information */
|
|
struct gdbarch_tdep
|
|
{
|
|
/* from the elf header */
|
|
int elf_flags;
|
|
|
|
/* mips options */
|
|
enum mips_abi mips_abi;
|
|
enum mips_abi found_abi;
|
|
enum mips_fpu_type mips_fpu_type;
|
|
int mips_last_arg_regnum;
|
|
int mips_last_fp_arg_regnum;
|
|
int default_mask_address_p;
|
|
/* Is the target using 64-bit raw integer registers but only
|
|
storing a left-aligned 32-bit value in each? */
|
|
int mips64_transfers_32bit_regs_p;
|
|
/* Indexes for various registers. IRIX and embedded have
|
|
different values. This contains the "public" fields. Don't
|
|
add any that do not need to be public. */
|
|
const struct mips_regnum *regnum;
|
|
/* Register names table for the current register set. */
|
|
const char **mips_processor_reg_names;
|
|
};
|
|
|
|
const struct mips_regnum *
|
|
mips_regnum (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_tdep (gdbarch)->regnum;
|
|
}
|
|
|
|
static int
|
|
mips_fpa0_regnum (struct gdbarch *gdbarch)
|
|
{
|
|
return mips_regnum (gdbarch)->fp0 + 12;
|
|
}
|
|
|
|
#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
|
|
|| gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
|
|
|
|
#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
|
|
|
|
#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
|
|
|
|
#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
|
|
|
|
/* MIPS16 function addresses are odd (bit 0 is set). Here are some
|
|
functions to test, set, or clear bit 0 of addresses. */
|
|
|
|
static CORE_ADDR
|
|
is_mips16_addr (CORE_ADDR addr)
|
|
{
|
|
return ((addr) & 1);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
make_mips16_addr (CORE_ADDR addr)
|
|
{
|
|
return ((addr) | 1);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
unmake_mips16_addr (CORE_ADDR addr)
|
|
{
|
|
return ((addr) & ~1);
|
|
}
|
|
|
|
/* Return the contents of register REGNUM as a signed integer. */
|
|
|
|
static LONGEST
|
|
read_signed_register (int regnum)
|
|
{
|
|
void *buf = alloca (register_size (current_gdbarch, regnum));
|
|
deprecated_read_register_gen (regnum, buf);
|
|
return (extract_signed_integer
|
|
(buf, register_size (current_gdbarch, regnum)));
|
|
}
|
|
|
|
static LONGEST
|
|
read_signed_register_pid (int regnum, ptid_t ptid)
|
|
{
|
|
ptid_t save_ptid;
|
|
LONGEST retval;
|
|
|
|
if (ptid_equal (ptid, inferior_ptid))
|
|
return read_signed_register (regnum);
|
|
|
|
save_ptid = inferior_ptid;
|
|
|
|
inferior_ptid = ptid;
|
|
|
|
retval = read_signed_register (regnum);
|
|
|
|
inferior_ptid = save_ptid;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Return the MIPS ABI associated with GDBARCH. */
|
|
enum mips_abi
|
|
mips_abi (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_tdep (gdbarch)->mips_abi;
|
|
}
|
|
|
|
int
|
|
mips_isa_regsize (struct gdbarch *gdbarch)
|
|
{
|
|
return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
|
|
/ gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
|
|
}
|
|
|
|
/* Return the currently configured (or set) saved register size. */
|
|
|
|
static const char *mips_abi_regsize_string = size_auto;
|
|
|
|
static unsigned int
|
|
mips_abi_regsize (struct gdbarch *gdbarch)
|
|
{
|
|
if (mips_abi_regsize_string == size_auto)
|
|
switch (mips_abi (gdbarch))
|
|
{
|
|
case MIPS_ABI_EABI32:
|
|
case MIPS_ABI_O32:
|
|
return 4;
|
|
case MIPS_ABI_N32:
|
|
case MIPS_ABI_N64:
|
|
case MIPS_ABI_O64:
|
|
case MIPS_ABI_EABI64:
|
|
return 8;
|
|
case MIPS_ABI_UNKNOWN:
|
|
case MIPS_ABI_LAST:
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
|
}
|
|
else if (mips_abi_regsize_string == size_64)
|
|
return 8;
|
|
else /* if (mips_abi_regsize_string == size_32) */
|
|
return 4;
|
|
}
|
|
|
|
/* Functions for setting and testing a bit in a minimal symbol that
|
|
marks it as 16-bit function. The MSB of the minimal symbol's
|
|
"info" field is used for this purpose.
|
|
|
|
ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
|
|
i.e. refers to a 16-bit function, and sets a "special" bit in a
|
|
minimal symbol to mark it as a 16-bit function
|
|
|
|
MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
|
|
|
|
static void
|
|
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
|
|
{
|
|
if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
|
|
{
|
|
MSYMBOL_INFO (msym) = (char *)
|
|
(((long) MSYMBOL_INFO (msym)) | 0x80000000);
|
|
SYMBOL_VALUE_ADDRESS (msym) |= 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
msymbol_is_special (struct minimal_symbol *msym)
|
|
{
|
|
return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
|
|
}
|
|
|
|
/* XFER a value from the big/little/left end of the register.
|
|
Depending on the size of the value it might occupy the entire
|
|
register or just part of it. Make an allowance for this, aligning
|
|
things accordingly. */
|
|
|
|
static void
|
|
mips_xfer_register (struct regcache *regcache, int reg_num, int length,
|
|
enum bfd_endian endian, bfd_byte * in,
|
|
const bfd_byte * out, int buf_offset)
|
|
{
|
|
int reg_offset = 0;
|
|
gdb_assert (reg_num >= NUM_REGS);
|
|
/* Need to transfer the left or right part of the register, based on
|
|
the targets byte order. */
|
|
switch (endian)
|
|
{
|
|
case BFD_ENDIAN_BIG:
|
|
reg_offset = register_size (current_gdbarch, reg_num) - length;
|
|
break;
|
|
case BFD_ENDIAN_LITTLE:
|
|
reg_offset = 0;
|
|
break;
|
|
case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
|
|
reg_offset = 0;
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"xfer $%d, reg offset %d, buf offset %d, length %d, ",
|
|
reg_num, reg_offset, buf_offset, length);
|
|
if (mips_debug && out != NULL)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, "out ");
|
|
for (i = 0; i < length; i++)
|
|
fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
|
|
}
|
|
if (in != NULL)
|
|
regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
|
|
in + buf_offset);
|
|
if (out != NULL)
|
|
regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
|
|
out + buf_offset);
|
|
if (mips_debug && in != NULL)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, "in ");
|
|
for (i = 0; i < length; i++)
|
|
fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
|
|
compatiblity mode. A return value of 1 means that we have
|
|
physical 64-bit registers, but should treat them as 32-bit registers. */
|
|
|
|
static int
|
|
mips2_fp_compat (void)
|
|
{
|
|
/* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
|
|
meaningful. */
|
|
if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
|
|
4)
|
|
return 0;
|
|
|
|
#if 0
|
|
/* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
|
|
in all the places we deal with FP registers. PR gdb/413. */
|
|
/* Otherwise check the FR bit in the status register - it controls
|
|
the FP compatiblity mode. If it is clear we are in compatibility
|
|
mode. */
|
|
if ((read_register (PS_REGNUM) & ST0_FR) == 0)
|
|
return 1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The amount of space reserved on the stack for registers. This is
|
|
different to MIPS_ABI_REGSIZE as it determines the alignment of
|
|
data allocated after the registers have run out. */
|
|
|
|
static const char *mips_stack_argsize_string = size_auto;
|
|
|
|
static unsigned int
|
|
mips_stack_argsize (struct gdbarch *gdbarch)
|
|
{
|
|
if (mips_stack_argsize_string == size_auto)
|
|
return mips_abi_regsize (gdbarch);
|
|
else if (mips_stack_argsize_string == size_64)
|
|
return 8;
|
|
else /* if (mips_stack_argsize_string == size_32) */
|
|
return 4;
|
|
}
|
|
|
|
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
|
|
|
|
static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
|
|
struct frame_info *, int);
|
|
|
|
static CORE_ADDR heuristic_proc_start (CORE_ADDR);
|
|
|
|
static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
|
|
|
|
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
|
|
|
|
static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
|
|
struct frame_info *next_frame,
|
|
int cur_frame);
|
|
|
|
static CORE_ADDR after_prologue (CORE_ADDR pc,
|
|
mips_extra_func_info_t proc_desc);
|
|
|
|
static struct type *mips_float_register_type (void);
|
|
static struct type *mips_double_register_type (void);
|
|
|
|
/* The list of available "set mips " and "show mips " commands */
|
|
|
|
static struct cmd_list_element *setmipscmdlist = NULL;
|
|
static struct cmd_list_element *showmipscmdlist = NULL;
|
|
|
|
/* Integer registers 0 thru 31 are handled explicitly by
|
|
mips_register_name(). Processor specific registers 32 and above
|
|
are listed in the followign tables. */
|
|
|
|
enum
|
|
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
|
|
|
|
/* Generic MIPS. */
|
|
|
|
static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
|
|
"sr", "lo", "hi", "bad", "cause", "pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "" /*"fp" */ , "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
|
|
/* Names of IDT R3041 registers. */
|
|
|
|
static const char *mips_r3041_reg_names[] = {
|
|
"sr", "lo", "hi", "bad", "cause", "pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "", /*"fp" */ "",
|
|
"", "", "bus", "ccfg", "", "", "", "",
|
|
"", "", "port", "cmp", "", "", "epc", "prid",
|
|
};
|
|
|
|
/* Names of tx39 registers. */
|
|
|
|
static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
|
|
"sr", "lo", "hi", "bad", "cause", "pc",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "config", "cache", "debug", "depc", "epc", ""
|
|
};
|
|
|
|
/* Names of IRIX registers. */
|
|
static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"pc", "cause", "bad", "hi", "lo", "fsr", "fir"
|
|
};
|
|
|
|
|
|
/* Return the name of the register corresponding to REGNO. */
|
|
static const char *
|
|
mips_register_name (int regno)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
/* GPR names for all ABIs other than n32/n64. */
|
|
static char *mips_gpr_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
|
|
};
|
|
|
|
/* GPR names for n32 and n64 ABIs. */
|
|
static char *mips_n32_n64_gpr_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
|
|
};
|
|
|
|
enum mips_abi abi = mips_abi (current_gdbarch);
|
|
|
|
/* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
|
|
don't make the raw register names visible. */
|
|
int rawnum = regno % NUM_REGS;
|
|
if (regno < NUM_REGS)
|
|
return "";
|
|
|
|
/* The MIPS integer registers are always mapped from 0 to 31. The
|
|
names of the registers (which reflects the conventions regarding
|
|
register use) vary depending on the ABI. */
|
|
if (0 <= rawnum && rawnum < 32)
|
|
{
|
|
if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
|
|
return mips_n32_n64_gpr_names[rawnum];
|
|
else
|
|
return mips_gpr_names[rawnum];
|
|
}
|
|
else if (32 <= rawnum && rawnum < NUM_REGS)
|
|
{
|
|
gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
|
|
return tdep->mips_processor_reg_names[rawnum - 32];
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
"mips_register_name: bad register number %d", rawnum);
|
|
}
|
|
|
|
/* Return the groups that a MIPS register can be categorised into. */
|
|
|
|
static int
|
|
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *reggroup)
|
|
{
|
|
int vector_p;
|
|
int float_p;
|
|
int raw_p;
|
|
int rawnum = regnum % NUM_REGS;
|
|
int pseudo = regnum / NUM_REGS;
|
|
if (reggroup == all_reggroup)
|
|
return pseudo;
|
|
vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
|
|
float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
|
|
/* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
|
|
(gdbarch), as not all architectures are multi-arch. */
|
|
raw_p = rawnum < NUM_REGS;
|
|
if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
|
|
return 0;
|
|
if (reggroup == float_reggroup)
|
|
return float_p && pseudo;
|
|
if (reggroup == vector_reggroup)
|
|
return vector_p && pseudo;
|
|
if (reggroup == general_reggroup)
|
|
return (!vector_p && !float_p) && pseudo;
|
|
/* Save the pseudo registers. Need to make certain that any code
|
|
extracting register values from a saved register cache also uses
|
|
pseudo registers. */
|
|
if (reggroup == save_reggroup)
|
|
return raw_p && pseudo;
|
|
/* Restore the same pseudo register. */
|
|
if (reggroup == restore_reggroup)
|
|
return raw_p && pseudo;
|
|
return 0;
|
|
}
|
|
|
|
/* Map the symbol table registers which live in the range [1 *
|
|
NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
|
|
registers. Take care of alignment and size problems. */
|
|
|
|
static void
|
|
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int cookednum, void *buf)
|
|
{
|
|
int rawnum = cookednum % NUM_REGS;
|
|
gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
|
|
if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
|
|
regcache_raw_read (regcache, rawnum, buf);
|
|
else if (register_size (gdbarch, rawnum) >
|
|
register_size (gdbarch, cookednum))
|
|
{
|
|
if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
|
|
|| TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
|
|
else
|
|
regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, "bad register size");
|
|
}
|
|
|
|
static void
|
|
mips_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache, int cookednum,
|
|
const void *buf)
|
|
{
|
|
int rawnum = cookednum % NUM_REGS;
|
|
gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
|
|
if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
|
|
regcache_raw_write (regcache, rawnum, buf);
|
|
else if (register_size (gdbarch, rawnum) >
|
|
register_size (gdbarch, cookednum))
|
|
{
|
|
if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
|
|
|| TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
|
|
else
|
|
regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, "bad register size");
|
|
}
|
|
|
|
/* Table to translate MIPS16 register field to actual register number. */
|
|
static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
|
|
|
|
/* Heuristic_proc_start may hunt through the text section for a long
|
|
time across a 2400 baud serial line. Allows the user to limit this
|
|
search. */
|
|
|
|
static unsigned int heuristic_fence_post = 0;
|
|
|
|
#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
|
|
#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
|
|
#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
|
|
#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
|
|
#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
|
|
#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
|
|
#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
|
|
#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
|
|
#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
|
|
#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
|
|
/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
|
|
this will corrupt pdr.iline. Fortunately we don't use it. */
|
|
#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
|
|
#define _PROC_MAGIC_ 0x0F0F0F0F
|
|
#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
|
|
#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
|
|
|
|
struct linked_proc_info
|
|
{
|
|
struct mips_extra_func_info info;
|
|
struct linked_proc_info *next;
|
|
}
|
|
*linked_proc_desc_table = NULL;
|
|
|
|
/* Number of bytes of storage in the actual machine representation for
|
|
register N. NOTE: This defines the pseudo register type so need to
|
|
rebuild the architecture vector. */
|
|
|
|
static int mips64_transfers_32bit_regs_p = 0;
|
|
|
|
static void
|
|
set_mips64_transfers_32bit_regs (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
{
|
|
mips64_transfers_32bit_regs_p = 0;
|
|
error ("32-bit compatibility mode not supported");
|
|
}
|
|
}
|
|
|
|
/* Convert to/from a register and the corresponding memory value. */
|
|
|
|
static int
|
|
mips_convert_register_p (int regnum, struct type *type)
|
|
{
|
|
return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& register_size (current_gdbarch, regnum) == 4
|
|
&& (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
|
|
&& (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
|
|
&& TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
|
|
}
|
|
|
|
static void
|
|
mips_register_to_value (struct frame_info *frame, int regnum,
|
|
struct type *type, void *to)
|
|
{
|
|
get_frame_register (frame, regnum + 0, (char *) to + 4);
|
|
get_frame_register (frame, regnum + 1, (char *) to + 0);
|
|
}
|
|
|
|
static void
|
|
mips_value_to_register (struct frame_info *frame, int regnum,
|
|
struct type *type, const void *from)
|
|
{
|
|
put_frame_register (frame, regnum + 0, (const char *) from + 4);
|
|
put_frame_register (frame, regnum + 1, (const char *) from + 0);
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type of data in
|
|
register REG. */
|
|
|
|
static struct type *
|
|
mips_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
|
|
if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
|
|
&& (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
|
|
{
|
|
/* The floating-point registers raw, or cooked, always match
|
|
mips_isa_regsize(), and also map 1:1, byte for byte. */
|
|
switch (gdbarch_byte_order (gdbarch))
|
|
{
|
|
case BFD_ENDIAN_BIG:
|
|
if (mips_isa_regsize (gdbarch) == 4)
|
|
return builtin_type_ieee_single_big;
|
|
else
|
|
return builtin_type_ieee_double_big;
|
|
case BFD_ENDIAN_LITTLE:
|
|
if (mips_isa_regsize (gdbarch) == 4)
|
|
return builtin_type_ieee_single_little;
|
|
else
|
|
return builtin_type_ieee_double_little;
|
|
case BFD_ENDIAN_UNKNOWN:
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
|
}
|
|
}
|
|
else if (regnum < NUM_REGS)
|
|
{
|
|
/* The raw or ISA registers. These are all sized according to
|
|
the ISA regsize. */
|
|
if (mips_isa_regsize (gdbarch) == 4)
|
|
return builtin_type_int32;
|
|
else
|
|
return builtin_type_int64;
|
|
}
|
|
else
|
|
{
|
|
/* The cooked or ABI registers. These are sized according to
|
|
the ABI (with a few complications). */
|
|
if (regnum >= (NUM_REGS
|
|
+ mips_regnum (current_gdbarch)->fp_control_status)
|
|
&& regnum <= NUM_REGS + LAST_EMBED_REGNUM)
|
|
/* The pseudo/cooked view of the embedded registers is always
|
|
32-bit. The raw view is handled below. */
|
|
return builtin_type_int32;
|
|
else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
|
|
/* The target, while possibly using a 64-bit register buffer,
|
|
is only transfering 32-bits of each integer register.
|
|
Reflect this in the cooked/pseudo (ABI) register value. */
|
|
return builtin_type_int32;
|
|
else if (mips_abi_regsize (gdbarch) == 4)
|
|
/* The ABI is restricted to 32-bit registers (the ISA could be
|
|
32- or 64-bit). */
|
|
return builtin_type_int32;
|
|
else
|
|
/* 64-bit ABI. */
|
|
return builtin_type_int64;
|
|
}
|
|
}
|
|
|
|
/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
|
|
|
|
static CORE_ADDR
|
|
mips_read_sp (void)
|
|
{
|
|
return read_signed_register (SP_REGNUM);
|
|
}
|
|
|
|
/* Should the upper word of 64-bit addresses be zeroed? */
|
|
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
|
|
|
|
static int
|
|
mips_mask_address_p (struct gdbarch_tdep *tdep)
|
|
{
|
|
switch (mask_address_var)
|
|
{
|
|
case AUTO_BOOLEAN_TRUE:
|
|
return 1;
|
|
case AUTO_BOOLEAN_FALSE:
|
|
return 0;
|
|
break;
|
|
case AUTO_BOOLEAN_AUTO:
|
|
return tdep->default_mask_address_p;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
switch (mask_address_var)
|
|
{
|
|
case AUTO_BOOLEAN_TRUE:
|
|
printf_filtered ("The 32 bit mips address mask is enabled\n");
|
|
break;
|
|
case AUTO_BOOLEAN_FALSE:
|
|
printf_filtered ("The 32 bit mips address mask is disabled\n");
|
|
break;
|
|
case AUTO_BOOLEAN_AUTO:
|
|
printf_filtered
|
|
("The 32 bit address mask is set automatically. Currently %s\n",
|
|
mips_mask_address_p (tdep) ? "enabled" : "disabled");
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "show_mask_address: bad switch");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
|
|
|
|
static int
|
|
pc_is_mips16 (bfd_vma memaddr)
|
|
{
|
|
struct minimal_symbol *sym;
|
|
|
|
/* If bit 0 of the address is set, assume this is a MIPS16 address. */
|
|
if (is_mips16_addr (memaddr))
|
|
return 1;
|
|
|
|
/* A flag indicating that this is a MIPS16 function is stored by elfread.c in
|
|
the high bit of the info field. Use this to decide if the function is
|
|
MIPS16 or normal MIPS. */
|
|
sym = lookup_minimal_symbol_by_pc (memaddr);
|
|
if (sym)
|
|
return msymbol_is_special (sym);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* MIPS believes that the PC has a sign extended value. Perhaphs the
|
|
all registers should be sign extended for simplicity? */
|
|
|
|
static CORE_ADDR
|
|
mips_read_pc (ptid_t ptid)
|
|
{
|
|
return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_signed (next_frame,
|
|
NUM_REGS + mips_regnum (gdbarch)->pc);
|
|
}
|
|
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
|
breakpoint. */
|
|
|
|
static struct frame_id
|
|
mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + SP_REGNUM),
|
|
frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
static void
|
|
mips_write_pc (CORE_ADDR pc, ptid_t ptid)
|
|
{
|
|
write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
|
|
}
|
|
|
|
/* This returns the PC of the first inst after the prologue. If we can't
|
|
find the prologue, then return 0. */
|
|
|
|
static CORE_ADDR
|
|
after_prologue (CORE_ADDR pc, mips_extra_func_info_t proc_desc)
|
|
{
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
/* Pass cur_frame == 0 to find_proc_desc. We should not attempt
|
|
to read the stack pointer from the current machine state, because
|
|
the current machine state has nothing to do with the information
|
|
we need from the proc_desc; and the process may or may not exist
|
|
right now. */
|
|
if (!proc_desc)
|
|
proc_desc = find_proc_desc (pc, NULL, 0);
|
|
|
|
if (proc_desc)
|
|
{
|
|
/* If function is frameless, then we need to do it the hard way. I
|
|
strongly suspect that frameless always means prologueless... */
|
|
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
|
|
&& PROC_FRAME_OFFSET (proc_desc) == 0)
|
|
return 0;
|
|
}
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
return 0; /* Unknown */
|
|
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
if (sal.end < func_end)
|
|
return sal.end;
|
|
|
|
/* The line after the prologue is after the end of the function. In this
|
|
case, tell the caller to find the prologue the hard way. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Decode a MIPS32 instruction that saves a register in the stack, and
|
|
set the appropriate bit in the general register mask or float register mask
|
|
to indicate which register is saved. This is a helper function
|
|
for mips_find_saved_regs. */
|
|
|
|
static void
|
|
mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
|
|
unsigned long *float_mask)
|
|
{
|
|
int reg;
|
|
|
|
if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
|
|
|| (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
|
|
|| (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
|
|
{
|
|
/* It might be possible to use the instruction to
|
|
find the offset, rather than the code below which
|
|
is based on things being in a certain order in the
|
|
frame, but figuring out what the instruction's offset
|
|
is relative to might be a little tricky. */
|
|
reg = (inst & 0x001f0000) >> 16;
|
|
*gen_mask |= (1 << reg);
|
|
}
|
|
else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
|
|
|| (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
|
|
|| (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
|
|
|
|
{
|
|
reg = ((inst & 0x001f0000) >> 16);
|
|
*float_mask |= (1 << reg);
|
|
}
|
|
}
|
|
|
|
/* Decode a MIPS16 instruction that saves a register in the stack, and
|
|
set the appropriate bit in the general register or float register mask
|
|
to indicate which register is saved. This is a helper function
|
|
for mips_find_saved_regs. */
|
|
|
|
static void
|
|
mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
|
|
{
|
|
if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
|
|
{
|
|
int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
|
|
*gen_mask |= (1 << reg);
|
|
}
|
|
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
|
|
{
|
|
int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
*gen_mask |= (1 << reg);
|
|
}
|
|
else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
|
|
|| (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
|
|
*gen_mask |= (1 << RA_REGNUM);
|
|
}
|
|
|
|
|
|
/* Fetch and return instruction from the specified location. If the PC
|
|
is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
|
|
|
|
static t_inst
|
|
mips_fetch_instruction (CORE_ADDR addr)
|
|
{
|
|
char buf[MIPS_INSTLEN];
|
|
int instlen;
|
|
int status;
|
|
|
|
if (pc_is_mips16 (addr))
|
|
{
|
|
instlen = MIPS16_INSTLEN;
|
|
addr = unmake_mips16_addr (addr);
|
|
}
|
|
else
|
|
instlen = MIPS_INSTLEN;
|
|
status = read_memory_nobpt (addr, buf, instlen);
|
|
if (status)
|
|
memory_error (status, addr);
|
|
return extract_unsigned_integer (buf, instlen);
|
|
}
|
|
|
|
static ULONGEST
|
|
mips16_fetch_instruction (CORE_ADDR addr)
|
|
{
|
|
char buf[MIPS_INSTLEN];
|
|
int instlen;
|
|
int status;
|
|
|
|
instlen = MIPS16_INSTLEN;
|
|
addr = unmake_mips16_addr (addr);
|
|
status = read_memory_nobpt (addr, buf, instlen);
|
|
if (status)
|
|
memory_error (status, addr);
|
|
return extract_unsigned_integer (buf, instlen);
|
|
}
|
|
|
|
static ULONGEST
|
|
mips32_fetch_instruction (CORE_ADDR addr)
|
|
{
|
|
char buf[MIPS_INSTLEN];
|
|
int instlen;
|
|
int status;
|
|
instlen = MIPS_INSTLEN;
|
|
status = read_memory_nobpt (addr, buf, instlen);
|
|
if (status)
|
|
memory_error (status, addr);
|
|
return extract_unsigned_integer (buf, instlen);
|
|
}
|
|
|
|
|
|
/* These the fields of 32 bit mips instructions */
|
|
#define mips32_op(x) (x >> 26)
|
|
#define itype_op(x) (x >> 26)
|
|
#define itype_rs(x) ((x >> 21) & 0x1f)
|
|
#define itype_rt(x) ((x >> 16) & 0x1f)
|
|
#define itype_immediate(x) (x & 0xffff)
|
|
|
|
#define jtype_op(x) (x >> 26)
|
|
#define jtype_target(x) (x & 0x03ffffff)
|
|
|
|
#define rtype_op(x) (x >> 26)
|
|
#define rtype_rs(x) ((x >> 21) & 0x1f)
|
|
#define rtype_rt(x) ((x >> 16) & 0x1f)
|
|
#define rtype_rd(x) ((x >> 11) & 0x1f)
|
|
#define rtype_shamt(x) ((x >> 6) & 0x1f)
|
|
#define rtype_funct(x) (x & 0x3f)
|
|
|
|
static CORE_ADDR
|
|
mips32_relative_offset (unsigned long inst)
|
|
{
|
|
long x;
|
|
x = itype_immediate (inst);
|
|
if (x & 0x8000) /* sign bit set */
|
|
{
|
|
x |= 0xffff0000; /* sign extension */
|
|
}
|
|
x = x << 2;
|
|
return x;
|
|
}
|
|
|
|
/* Determine whate to set a single step breakpoint while considering
|
|
branch prediction */
|
|
static CORE_ADDR
|
|
mips32_next_pc (CORE_ADDR pc)
|
|
{
|
|
unsigned long inst;
|
|
int op;
|
|
inst = mips_fetch_instruction (pc);
|
|
if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
|
|
{
|
|
if (itype_op (inst) >> 2 == 5)
|
|
/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
|
|
{
|
|
op = (itype_op (inst) & 0x03);
|
|
switch (op)
|
|
{
|
|
case 0: /* BEQL */
|
|
goto equal_branch;
|
|
case 1: /* BNEL */
|
|
goto neq_branch;
|
|
case 2: /* BLEZL */
|
|
goto less_branch;
|
|
case 3: /* BGTZ */
|
|
goto greater_branch;
|
|
default:
|
|
pc += 4;
|
|
}
|
|
}
|
|
else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
|
|
/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
|
|
{
|
|
int tf = itype_rt (inst) & 0x01;
|
|
int cnum = itype_rt (inst) >> 2;
|
|
int fcrcs =
|
|
read_signed_register (mips_regnum (current_gdbarch)->
|
|
fp_control_status);
|
|
int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
|
|
|
|
if (((cond >> cnum) & 0x01) == tf)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
}
|
|
else
|
|
pc += 4; /* Not a branch, next instruction is easy */
|
|
}
|
|
else
|
|
{ /* This gets way messy */
|
|
|
|
/* Further subdivide into SPECIAL, REGIMM and other */
|
|
switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
|
|
{
|
|
case 0: /* SPECIAL */
|
|
op = rtype_funct (inst);
|
|
switch (op)
|
|
{
|
|
case 8: /* JR */
|
|
case 9: /* JALR */
|
|
/* Set PC to that address */
|
|
pc = read_signed_register (rtype_rs (inst));
|
|
break;
|
|
default:
|
|
pc += 4;
|
|
}
|
|
|
|
break; /* end SPECIAL */
|
|
case 1: /* REGIMM */
|
|
{
|
|
op = itype_rt (inst); /* branch condition */
|
|
switch (op)
|
|
{
|
|
case 0: /* BLTZ */
|
|
case 2: /* BLTZL */
|
|
case 16: /* BLTZAL */
|
|
case 18: /* BLTZALL */
|
|
less_branch:
|
|
if (read_signed_register (itype_rs (inst)) < 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8; /* after the delay slot */
|
|
break;
|
|
case 1: /* BGEZ */
|
|
case 3: /* BGEZL */
|
|
case 17: /* BGEZAL */
|
|
case 19: /* BGEZALL */
|
|
if (read_signed_register (itype_rs (inst)) >= 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8; /* after the delay slot */
|
|
break;
|
|
/* All of the other instructions in the REGIMM category */
|
|
default:
|
|
pc += 4;
|
|
}
|
|
}
|
|
break; /* end REGIMM */
|
|
case 2: /* J */
|
|
case 3: /* JAL */
|
|
{
|
|
unsigned long reg;
|
|
reg = jtype_target (inst) << 2;
|
|
/* Upper four bits get never changed... */
|
|
pc = reg + ((pc + 4) & 0xf0000000);
|
|
}
|
|
break;
|
|
/* FIXME case JALX : */
|
|
{
|
|
unsigned long reg;
|
|
reg = jtype_target (inst) << 2;
|
|
pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
|
|
/* Add 1 to indicate 16 bit mode - Invert ISA mode */
|
|
}
|
|
break; /* The new PC will be alternate mode */
|
|
case 4: /* BEQ, BEQL */
|
|
equal_branch:
|
|
if (read_signed_register (itype_rs (inst)) ==
|
|
read_signed_register (itype_rt (inst)))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 5: /* BNE, BNEL */
|
|
neq_branch:
|
|
if (read_signed_register (itype_rs (inst)) !=
|
|
read_signed_register (itype_rt (inst)))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 6: /* BLEZ, BLEZL */
|
|
if (read_signed_register (itype_rs (inst) <= 0))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 7:
|
|
default:
|
|
greater_branch: /* BGTZ, BGTZL */
|
|
if (read_signed_register (itype_rs (inst) > 0))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
} /* switch */
|
|
} /* else */
|
|
return pc;
|
|
} /* mips32_next_pc */
|
|
|
|
/* Decoding the next place to set a breakpoint is irregular for the
|
|
mips 16 variant, but fortunately, there fewer instructions. We have to cope
|
|
ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
|
|
We dont want to set a single step instruction on the extend instruction
|
|
either.
|
|
*/
|
|
|
|
/* Lots of mips16 instruction formats */
|
|
/* Predicting jumps requires itype,ritype,i8type
|
|
and their extensions extItype,extritype,extI8type
|
|
*/
|
|
enum mips16_inst_fmts
|
|
{
|
|
itype, /* 0 immediate 5,10 */
|
|
ritype, /* 1 5,3,8 */
|
|
rrtype, /* 2 5,3,3,5 */
|
|
rritype, /* 3 5,3,3,5 */
|
|
rrrtype, /* 4 5,3,3,3,2 */
|
|
rriatype, /* 5 5,3,3,1,4 */
|
|
shifttype, /* 6 5,3,3,3,2 */
|
|
i8type, /* 7 5,3,8 */
|
|
i8movtype, /* 8 5,3,3,5 */
|
|
i8mov32rtype, /* 9 5,3,5,3 */
|
|
i64type, /* 10 5,3,8 */
|
|
ri64type, /* 11 5,3,3,5 */
|
|
jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
|
|
exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
|
|
extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
|
|
extRRItype, /* 15 5,5,5,5,3,3,5 */
|
|
extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
|
|
EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
|
|
extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
|
|
extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
|
|
extRi64type, /* 20 5,6,5,5,3,3,5 */
|
|
extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
|
|
};
|
|
/* I am heaping all the fields of the formats into one structure and
|
|
then, only the fields which are involved in instruction extension */
|
|
struct upk_mips16
|
|
{
|
|
CORE_ADDR offset;
|
|
unsigned int regx; /* Function in i8 type */
|
|
unsigned int regy;
|
|
};
|
|
|
|
|
|
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
|
|
for the bits which make up the immediatate extension. */
|
|
|
|
static CORE_ADDR
|
|
extended_offset (unsigned int extension)
|
|
{
|
|
CORE_ADDR value;
|
|
value = (extension >> 21) & 0x3f; /* * extract 15:11 */
|
|
value = value << 6;
|
|
value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
|
|
value = value << 5;
|
|
value |= extension & 0x01f; /* extract 4:0 */
|
|
return value;
|
|
}
|
|
|
|
/* Only call this function if you know that this is an extendable
|
|
instruction, It wont malfunction, but why make excess remote memory references?
|
|
If the immediate operands get sign extended or somthing, do it after
|
|
the extension is performed.
|
|
*/
|
|
/* FIXME: Every one of these cases needs to worry about sign extension
|
|
when the offset is to be used in relative addressing */
|
|
|
|
|
|
static unsigned int
|
|
fetch_mips_16 (CORE_ADDR pc)
|
|
{
|
|
char buf[8];
|
|
pc &= 0xfffffffe; /* clear the low order bit */
|
|
target_read_memory (pc, buf, 2);
|
|
return extract_unsigned_integer (buf, 2);
|
|
}
|
|
|
|
static void
|
|
unpack_mips16 (CORE_ADDR pc,
|
|
unsigned int extension,
|
|
unsigned int inst,
|
|
enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
|
|
{
|
|
CORE_ADDR offset;
|
|
int regx;
|
|
int regy;
|
|
switch (insn_format)
|
|
{
|
|
case itype:
|
|
{
|
|
CORE_ADDR value;
|
|
if (extension)
|
|
{
|
|
value = extended_offset (extension);
|
|
value = value << 11; /* rom for the original value */
|
|
value |= inst & 0x7ff; /* eleven bits from instruction */
|
|
}
|
|
else
|
|
{
|
|
value = inst & 0x7ff;
|
|
/* FIXME : Consider sign extension */
|
|
}
|
|
offset = value;
|
|
regx = -1;
|
|
regy = -1;
|
|
}
|
|
break;
|
|
case ritype:
|
|
case i8type:
|
|
{ /* A register identifier and an offset */
|
|
/* Most of the fields are the same as I type but the
|
|
immediate value is of a different length */
|
|
CORE_ADDR value;
|
|
if (extension)
|
|
{
|
|
value = extended_offset (extension);
|
|
value = value << 8; /* from the original instruction */
|
|
value |= inst & 0xff; /* eleven bits from instruction */
|
|
regx = (extension >> 8) & 0x07; /* or i8 funct */
|
|
if (value & 0x4000) /* test the sign bit , bit 26 */
|
|
{
|
|
value &= ~0x3fff; /* remove the sign bit */
|
|
value = -value;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
value = inst & 0xff; /* 8 bits */
|
|
regx = (inst >> 8) & 0x07; /* or i8 funct */
|
|
/* FIXME: Do sign extension , this format needs it */
|
|
if (value & 0x80) /* THIS CONFUSES ME */
|
|
{
|
|
value &= 0xef; /* remove the sign bit */
|
|
value = -value;
|
|
}
|
|
}
|
|
offset = value;
|
|
regy = -1;
|
|
break;
|
|
}
|
|
case jalxtype:
|
|
{
|
|
unsigned long value;
|
|
unsigned int nexthalf;
|
|
value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
|
|
value = value << 16;
|
|
nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
|
|
value |= nexthalf;
|
|
offset = value;
|
|
regx = -1;
|
|
regy = -1;
|
|
break;
|
|
}
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
|
}
|
|
upk->offset = offset;
|
|
upk->regx = regx;
|
|
upk->regy = regy;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
add_offset_16 (CORE_ADDR pc, int offset)
|
|
{
|
|
return ((offset << 2) | ((pc + 2) & (0xf0000000)));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
extended_mips16_next_pc (CORE_ADDR pc,
|
|
unsigned int extension, unsigned int insn)
|
|
{
|
|
int op = (insn >> 11);
|
|
switch (op)
|
|
{
|
|
case 2: /* Branch */
|
|
{
|
|
CORE_ADDR offset;
|
|
struct upk_mips16 upk;
|
|
unpack_mips16 (pc, extension, insn, itype, &upk);
|
|
offset = upk.offset;
|
|
if (offset & 0x800)
|
|
{
|
|
offset &= 0xeff;
|
|
offset = -offset;
|
|
}
|
|
pc += (offset << 1) + 2;
|
|
break;
|
|
}
|
|
case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
|
|
{
|
|
struct upk_mips16 upk;
|
|
unpack_mips16 (pc, extension, insn, jalxtype, &upk);
|
|
pc = add_offset_16 (pc, upk.offset);
|
|
if ((insn >> 10) & 0x01) /* Exchange mode */
|
|
pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
|
|
else
|
|
pc |= 0x01;
|
|
break;
|
|
}
|
|
case 4: /* beqz */
|
|
{
|
|
struct upk_mips16 upk;
|
|
int reg;
|
|
unpack_mips16 (pc, extension, insn, ritype, &upk);
|
|
reg = read_signed_register (upk.regx);
|
|
if (reg == 0)
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 5: /* bnez */
|
|
{
|
|
struct upk_mips16 upk;
|
|
int reg;
|
|
unpack_mips16 (pc, extension, insn, ritype, &upk);
|
|
reg = read_signed_register (upk.regx);
|
|
if (reg != 0)
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 12: /* I8 Formats btez btnez */
|
|
{
|
|
struct upk_mips16 upk;
|
|
int reg;
|
|
unpack_mips16 (pc, extension, insn, i8type, &upk);
|
|
/* upk.regx contains the opcode */
|
|
reg = read_signed_register (24); /* Test register is 24 */
|
|
if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
|
|
|| ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
|
|
/* pc = add_offset_16(pc,upk.offset) ; */
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 29: /* RR Formats JR, JALR, JALR-RA */
|
|
{
|
|
struct upk_mips16 upk;
|
|
/* upk.fmt = rrtype; */
|
|
op = insn & 0x1f;
|
|
if (op == 0)
|
|
{
|
|
int reg;
|
|
upk.regx = (insn >> 8) & 0x07;
|
|
upk.regy = (insn >> 5) & 0x07;
|
|
switch (upk.regy)
|
|
{
|
|
case 0:
|
|
reg = upk.regx;
|
|
break;
|
|
case 1:
|
|
reg = 31;
|
|
break; /* Function return instruction */
|
|
case 2:
|
|
reg = upk.regx;
|
|
break;
|
|
default:
|
|
reg = 31;
|
|
break; /* BOGUS Guess */
|
|
}
|
|
pc = read_signed_register (reg);
|
|
}
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 30:
|
|
/* This is an instruction extension. Fetch the real instruction
|
|
(which follows the extension) and decode things based on
|
|
that. */
|
|
{
|
|
pc += 2;
|
|
pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
pc += 2;
|
|
break;
|
|
}
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips16_next_pc (CORE_ADDR pc)
|
|
{
|
|
unsigned int insn = fetch_mips_16 (pc);
|
|
return extended_mips16_next_pc (pc, 0, insn);
|
|
}
|
|
|
|
/* The mips_next_pc function supports single_step when the remote
|
|
target monitor or stub is not developed enough to do a single_step.
|
|
It works by decoding the current instruction and predicting where a
|
|
branch will go. This isnt hard because all the data is available.
|
|
The MIPS32 and MIPS16 variants are quite different */
|
|
CORE_ADDR
|
|
mips_next_pc (CORE_ADDR pc)
|
|
{
|
|
if (pc & 0x01)
|
|
return mips16_next_pc (pc);
|
|
else
|
|
return mips32_next_pc (pc);
|
|
}
|
|
|
|
struct mips_frame_cache
|
|
{
|
|
CORE_ADDR base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
|
|
static struct mips_frame_cache *
|
|
mips_mdebug_frame_cache (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
struct mips_frame_cache *cache;
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
/* r0 bit means kernel trap */
|
|
int kernel_trap;
|
|
/* What registers have been saved? Bitmasks. */
|
|
unsigned long gen_mask, float_mask;
|
|
|
|
if ((*this_cache) != NULL)
|
|
return (*this_cache);
|
|
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
|
|
(*this_cache) = cache;
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
/* Get the mdebug proc descriptor. */
|
|
proc_desc = find_proc_desc (frame_pc_unwind (next_frame), next_frame, 1);
|
|
if (proc_desc == NULL)
|
|
/* I'm not sure how/whether this can happen. Normally when we
|
|
can't find a proc_desc, we "synthesize" one using
|
|
heuristic_proc_desc and set the saved_regs right away. */
|
|
return cache;
|
|
|
|
/* Extract the frame's base. */
|
|
cache->base = (frame_unwind_register_signed (next_frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
|
|
+ PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
|
|
|
|
kernel_trap = PROC_REG_MASK (proc_desc) & 1;
|
|
gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
|
|
float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
|
|
|
|
/* In any frame other than the innermost or a frame interrupted by a
|
|
signal, we assume that all registers have been saved. This
|
|
assumes that all register saves in a function happen before the
|
|
first function call. */
|
|
if (in_prologue (frame_pc_unwind (next_frame), PROC_LOW_ADDR (proc_desc))
|
|
/* Not sure exactly what kernel_trap means, but if it means the
|
|
kernel saves the registers without a prologue doing it, we
|
|
better not examine the prologue to see whether registers
|
|
have been saved yet. */
|
|
&& !kernel_trap)
|
|
{
|
|
/* We need to figure out whether the registers that the
|
|
proc_desc claims are saved have been saved yet. */
|
|
|
|
CORE_ADDR addr;
|
|
|
|
/* Bitmasks; set if we have found a save for the register. */
|
|
unsigned long gen_save_found = 0;
|
|
unsigned long float_save_found = 0;
|
|
int mips16;
|
|
|
|
/* If the address is odd, assume this is MIPS16 code. */
|
|
addr = PROC_LOW_ADDR (proc_desc);
|
|
mips16 = pc_is_mips16 (addr);
|
|
|
|
/* Scan through this function's instructions preceding the
|
|
current PC, and look for those that save registers. */
|
|
while (addr < frame_pc_unwind (next_frame))
|
|
{
|
|
if (mips16)
|
|
{
|
|
mips16_decode_reg_save (mips16_fetch_instruction (addr),
|
|
&gen_save_found);
|
|
addr += MIPS16_INSTLEN;
|
|
}
|
|
else
|
|
{
|
|
mips32_decode_reg_save (mips32_fetch_instruction (addr),
|
|
&gen_save_found, &float_save_found);
|
|
addr += MIPS_INSTLEN;
|
|
}
|
|
}
|
|
gen_mask = gen_save_found;
|
|
float_mask = float_save_found;
|
|
}
|
|
|
|
/* Fill in the offsets for the registers which gen_mask says were
|
|
saved. */
|
|
{
|
|
CORE_ADDR reg_position = (cache->base
|
|
+ PROC_REG_OFFSET (proc_desc));
|
|
int ireg;
|
|
for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
|
|
if (gen_mask & 0x80000000)
|
|
{
|
|
cache->saved_regs[NUM_REGS + ireg].addr = reg_position;
|
|
reg_position -= mips_abi_regsize (gdbarch);
|
|
}
|
|
}
|
|
|
|
/* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
|
|
order of that normally used by gcc. Therefore, we have to fetch
|
|
the first instruction of the function, and if it's an entry
|
|
instruction that saves $s0 or $s1, correct their saved addresses. */
|
|
if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
|
|
{
|
|
ULONGEST inst = mips16_fetch_instruction (PROC_LOW_ADDR (proc_desc));
|
|
if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
|
|
/* entry */
|
|
{
|
|
int reg;
|
|
int sreg_count = (inst >> 6) & 3;
|
|
|
|
/* Check if the ra register was pushed on the stack. */
|
|
CORE_ADDR reg_position = (cache->base
|
|
+ PROC_REG_OFFSET (proc_desc));
|
|
if (inst & 0x20)
|
|
reg_position -= mips_abi_regsize (gdbarch);
|
|
|
|
/* Check if the s0 and s1 registers were pushed on the
|
|
stack. */
|
|
/* NOTE: cagney/2004-02-08: Huh? This is doing no such
|
|
check. */
|
|
for (reg = 16; reg < sreg_count + 16; reg++)
|
|
{
|
|
cache->saved_regs[NUM_REGS + reg].addr = reg_position;
|
|
reg_position -= mips_abi_regsize (gdbarch);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in the offsets for the registers which float_mask says were
|
|
saved. */
|
|
{
|
|
CORE_ADDR reg_position = (cache->base
|
|
+ PROC_FREG_OFFSET (proc_desc));
|
|
int ireg;
|
|
/* Fill in the offsets for the float registers which float_mask
|
|
says were saved. */
|
|
for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
|
|
if (float_mask & 0x80000000)
|
|
{
|
|
if (mips_abi_regsize (gdbarch) == 4
|
|
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
/* On a big endian 32 bit ABI, floating point registers
|
|
are paired to form doubles such that the most
|
|
significant part is in $f[N+1] and the least
|
|
significant in $f[N] vis: $f[N+1] ||| $f[N]. The
|
|
registers are also spilled as a pair and stored as a
|
|
double.
|
|
|
|
When little-endian the least significant part is
|
|
stored first leading to the memory order $f[N] and
|
|
then $f[N+1].
|
|
|
|
Unfortunately, when big-endian the most significant
|
|
part of the double is stored first, and the least
|
|
significant is stored second. This leads to the
|
|
registers being ordered in memory as firt $f[N+1] and
|
|
then $f[N].
|
|
|
|
For the big-endian case make certain that the
|
|
addresses point at the correct (swapped) locations
|
|
$f[N] and $f[N+1] pair (keep in mind that
|
|
reg_position is decremented each time through the
|
|
loop). */
|
|
if ((ireg & 1))
|
|
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
|
|
.addr = reg_position - mips_abi_regsize (gdbarch);
|
|
else
|
|
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
|
|
.addr = reg_position + mips_abi_regsize (gdbarch);
|
|
}
|
|
else
|
|
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
|
|
.addr = reg_position;
|
|
reg_position -= mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
|
|
= cache->saved_regs[NUM_REGS + RA_REGNUM];
|
|
}
|
|
|
|
/* SP_REGNUM, contains the value and not the address. */
|
|
trad_frame_set_value (cache->saved_regs, NUM_REGS + SP_REGNUM, cache->base);
|
|
|
|
return (*this_cache);
|
|
}
|
|
|
|
static void
|
|
mips_mdebug_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame,
|
|
this_cache);
|
|
(*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
|
|
}
|
|
|
|
static void
|
|
mips_mdebug_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *valuep)
|
|
{
|
|
struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame,
|
|
this_cache);
|
|
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
|
}
|
|
|
|
static const struct frame_unwind mips_mdebug_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
mips_mdebug_frame_this_id,
|
|
mips_mdebug_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
mips_mdebug_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &mips_mdebug_frame_unwind;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_mdebug_frame_base_address (struct frame_info *next_frame,
|
|
void **this_cache)
|
|
{
|
|
struct mips_frame_cache *info = mips_mdebug_frame_cache (next_frame,
|
|
this_cache);
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base mips_mdebug_frame_base = {
|
|
&mips_mdebug_frame_unwind,
|
|
mips_mdebug_frame_base_address,
|
|
mips_mdebug_frame_base_address,
|
|
mips_mdebug_frame_base_address
|
|
};
|
|
|
|
static const struct frame_base *
|
|
mips_mdebug_frame_base_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &mips_mdebug_frame_base;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
read_next_frame_reg (struct frame_info *fi, int regno)
|
|
{
|
|
/* Always a pseudo. */
|
|
gdb_assert (regno >= NUM_REGS);
|
|
if (fi == NULL)
|
|
{
|
|
LONGEST val;
|
|
regcache_cooked_read_signed (current_regcache, regno, &val);
|
|
return val;
|
|
}
|
|
else if ((regno % NUM_REGS) == SP_REGNUM)
|
|
/* The SP_REGNUM is special, its value is stored in saved_regs.
|
|
In fact, it is so special that it can even only be fetched
|
|
using a raw register number! Once this code as been converted
|
|
to frame-unwind the problem goes away. */
|
|
return frame_unwind_register_signed (fi, regno % NUM_REGS);
|
|
else
|
|
return frame_unwind_register_signed (fi, regno);
|
|
|
|
}
|
|
|
|
/* mips_addr_bits_remove - remove useless address bits */
|
|
|
|
static CORE_ADDR
|
|
mips_addr_bits_remove (CORE_ADDR addr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
|
|
/* This hack is a work-around for existing boards using PMON, the
|
|
simulator, and any other 64-bit targets that doesn't have true
|
|
64-bit addressing. On these targets, the upper 32 bits of
|
|
addresses are ignored by the hardware. Thus, the PC or SP are
|
|
likely to have been sign extended to all 1s by instruction
|
|
sequences that load 32-bit addresses. For example, a typical
|
|
piece of code that loads an address is this:
|
|
|
|
lui $r2, <upper 16 bits>
|
|
ori $r2, <lower 16 bits>
|
|
|
|
But the lui sign-extends the value such that the upper 32 bits
|
|
may be all 1s. The workaround is simply to mask off these
|
|
bits. In the future, gcc may be changed to support true 64-bit
|
|
addressing, and this masking will have to be disabled. */
|
|
return addr &= 0xffffffffUL;
|
|
else
|
|
return addr;
|
|
}
|
|
|
|
/* mips_software_single_step() is called just before we want to resume
|
|
the inferior, if we want to single-step it but there is no hardware
|
|
or kernel single-step support (MIPS on GNU/Linux for example). We find
|
|
the target of the coming instruction and breakpoint it.
|
|
|
|
single_step is also called just after the inferior stops. If we had
|
|
set up a simulated single-step, we undo our damage. */
|
|
|
|
void
|
|
mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
|
|
{
|
|
static CORE_ADDR next_pc;
|
|
typedef char binsn_quantum[BREAKPOINT_MAX];
|
|
static binsn_quantum break_mem;
|
|
CORE_ADDR pc;
|
|
|
|
if (insert_breakpoints_p)
|
|
{
|
|
pc = read_register (mips_regnum (current_gdbarch)->pc);
|
|
next_pc = mips_next_pc (pc);
|
|
|
|
target_insert_breakpoint (next_pc, break_mem);
|
|
}
|
|
else
|
|
target_remove_breakpoint (next_pc, break_mem);
|
|
}
|
|
|
|
static struct mips_extra_func_info temp_proc_desc;
|
|
|
|
/* This hack will go away once the get_prev_frame() code has been
|
|
modified to set the frame's type first. That is BEFORE init extra
|
|
frame info et.al. is called. This is because it will become
|
|
possible to skip the init extra info call for sigtramp and dummy
|
|
frames. */
|
|
static CORE_ADDR *temp_saved_regs;
|
|
|
|
/* Set a register's saved stack address in temp_saved_regs. If an
|
|
address has already been set for this register, do nothing; this
|
|
way we will only recognize the first save of a given register in a
|
|
function prologue.
|
|
|
|
For simplicity, save the address in both [0 .. NUM_REGS) and
|
|
[NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
|
|
is used as it is only second range (the ABI instead of ISA
|
|
registers) that comes into play when finding saved registers in a
|
|
frame. */
|
|
|
|
static void
|
|
set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
|
|
{
|
|
if (saved_regs[regno] == 0)
|
|
{
|
|
saved_regs[regno + 0 * NUM_REGS] = offset;
|
|
saved_regs[regno + 1 * NUM_REGS] = offset;
|
|
}
|
|
}
|
|
|
|
|
|
/* Test whether the PC points to the return instruction at the
|
|
end of a function. */
|
|
|
|
static int
|
|
mips_about_to_return (CORE_ADDR pc)
|
|
{
|
|
if (pc_is_mips16 (pc))
|
|
/* This mips16 case isn't necessarily reliable. Sometimes the compiler
|
|
generates a "jr $ra"; other times it generates code to load
|
|
the return address from the stack to an accessible register (such
|
|
as $a3), then a "jr" using that register. This second case
|
|
is almost impossible to distinguish from an indirect jump
|
|
used for switch statements, so we don't even try. */
|
|
return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
|
|
else
|
|
return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
|
|
}
|
|
|
|
|
|
/* This fencepost looks highly suspicious to me. Removing it also
|
|
seems suspicious as it could affect remote debugging across serial
|
|
lines. */
|
|
|
|
static CORE_ADDR
|
|
heuristic_proc_start (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR start_pc;
|
|
CORE_ADDR fence;
|
|
int instlen;
|
|
int seen_adjsp = 0;
|
|
|
|
pc = ADDR_BITS_REMOVE (pc);
|
|
start_pc = pc;
|
|
fence = start_pc - heuristic_fence_post;
|
|
if (start_pc == 0)
|
|
return 0;
|
|
|
|
if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
|
|
fence = VM_MIN_ADDRESS;
|
|
|
|
instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
|
|
|
|
/* search back for previous return */
|
|
for (start_pc -= instlen;; start_pc -= instlen)
|
|
if (start_pc < fence)
|
|
{
|
|
/* It's not clear to me why we reach this point when
|
|
stop_soon, but with this test, at least we
|
|
don't print out warnings for every child forked (eg, on
|
|
decstation). 22apr93 rich@cygnus.com. */
|
|
if (stop_soon == NO_STOP_QUIETLY)
|
|
{
|
|
static int blurb_printed = 0;
|
|
|
|
warning ("GDB can't find the start of the function at 0x%s.",
|
|
paddr_nz (pc));
|
|
|
|
if (!blurb_printed)
|
|
{
|
|
/* This actually happens frequently in embedded
|
|
development, when you first connect to a board
|
|
and your stack pointer and pc are nowhere in
|
|
particular. This message needs to give people
|
|
in that situation enough information to
|
|
determine that it's no big deal. */
|
|
printf_filtered ("\n\
|
|
GDB is unable to find the start of the function at 0x%s\n\
|
|
and thus can't determine the size of that function's stack frame.\n\
|
|
This means that GDB may be unable to access that stack frame, or\n\
|
|
the frames below it.\n\
|
|
This problem is most likely caused by an invalid program counter or\n\
|
|
stack pointer.\n\
|
|
However, if you think GDB should simply search farther back\n\
|
|
from 0x%s for code which looks like the beginning of a\n\
|
|
function, you can increase the range of the search using the `set\n\
|
|
heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
|
|
blurb_printed = 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
else if (pc_is_mips16 (start_pc))
|
|
{
|
|
unsigned short inst;
|
|
|
|
/* On MIPS16, any one of the following is likely to be the
|
|
start of a function:
|
|
entry
|
|
addiu sp,-n
|
|
daddiu sp,-n
|
|
extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
|
|
inst = mips_fetch_instruction (start_pc);
|
|
if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|
|
|| (inst & 0xff80) == 0x6380 /* addiu sp,-n */
|
|
|| (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
|
|
|| ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
|
|
break;
|
|
else if ((inst & 0xff00) == 0x6300 /* addiu sp */
|
|
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
|
|
seen_adjsp = 1;
|
|
else
|
|
seen_adjsp = 0;
|
|
}
|
|
else if (mips_about_to_return (start_pc))
|
|
{
|
|
start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
|
|
break;
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
/* Fetch the immediate value from a MIPS16 instruction.
|
|
If the previous instruction was an EXTEND, use it to extend
|
|
the upper bits of the immediate value. This is a helper function
|
|
for mips16_heuristic_proc_desc. */
|
|
|
|
static int
|
|
mips16_get_imm (unsigned short prev_inst, /* previous instruction */
|
|
unsigned short inst, /* current instruction */
|
|
int nbits, /* number of bits in imm field */
|
|
int scale, /* scale factor to be applied to imm */
|
|
int is_signed) /* is the imm field signed? */
|
|
{
|
|
int offset;
|
|
|
|
if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
|
|
{
|
|
offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
|
|
if (offset & 0x8000) /* check for negative extend */
|
|
offset = 0 - (0x10000 - (offset & 0xffff));
|
|
return offset | (inst & 0x1f);
|
|
}
|
|
else
|
|
{
|
|
int max_imm = 1 << nbits;
|
|
int mask = max_imm - 1;
|
|
int sign_bit = max_imm >> 1;
|
|
|
|
offset = inst & mask;
|
|
if (is_signed && (offset & sign_bit))
|
|
offset = 0 - (max_imm - offset);
|
|
return offset * scale;
|
|
}
|
|
}
|
|
|
|
|
|
/* Fill in values in temp_proc_desc based on the MIPS16 instruction
|
|
stream from start_pc to limit_pc. */
|
|
|
|
static void
|
|
mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
|
struct frame_info *next_frame, CORE_ADDR sp)
|
|
{
|
|
CORE_ADDR cur_pc;
|
|
CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
|
|
unsigned short prev_inst = 0; /* saved copy of previous instruction */
|
|
unsigned inst = 0; /* current instruction */
|
|
unsigned entry_inst = 0; /* the entry instruction */
|
|
int reg, offset;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
|
|
PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
|
|
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
|
|
{
|
|
/* Save the previous instruction. If it's an EXTEND, we'll extract
|
|
the immediate offset extension from it in mips16_get_imm. */
|
|
prev_inst = inst;
|
|
|
|
/* Fetch and decode the instruction. */
|
|
inst = (unsigned short) mips_fetch_instruction (cur_pc);
|
|
if ((inst & 0xff00) == 0x6300 /* addiu sp */
|
|
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
|
|
if (offset < 0) /* negative stack adjustment? */
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
|
|
else
|
|
/* Exit loop if a positive stack adjustment is found, which
|
|
usually means that the stack cleanup code in the function
|
|
epilogue is reached. */
|
|
break;
|
|
}
|
|
else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
reg = mips16_to_32_reg[(inst & 0x700) >> 8];
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
|
|
set_reg_offset (temp_saved_regs, reg, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
|
|
set_reg_offset (temp_saved_regs, reg, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
|
|
set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
|
|
set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
|
|
}
|
|
else if (inst == 0x673d) /* move $s1, $sp */
|
|
{
|
|
frame_addr = sp;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 17;
|
|
}
|
|
else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
frame_addr = sp + offset;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 17;
|
|
PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
|
|
}
|
|
else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
|
|
}
|
|
else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
|
|
}
|
|
else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|
|
entry_inst = inst; /* save for later processing */
|
|
else if ((inst & 0xf800) == 0x1800) /* jal(x) */
|
|
cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
|
|
}
|
|
|
|
/* The entry instruction is typically the first instruction in a function,
|
|
and it stores registers at offsets relative to the value of the old SP
|
|
(before the prologue). But the value of the sp parameter to this
|
|
function is the new SP (after the prologue has been executed). So we
|
|
can't calculate those offsets until we've seen the entire prologue,
|
|
and can calculate what the old SP must have been. */
|
|
if (entry_inst != 0)
|
|
{
|
|
int areg_count = (entry_inst >> 8) & 7;
|
|
int sreg_count = (entry_inst >> 6) & 3;
|
|
|
|
/* The entry instruction always subtracts 32 from the SP. */
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
|
|
|
|
/* Now we can calculate what the SP must have been at the
|
|
start of the function prologue. */
|
|
sp += PROC_FRAME_OFFSET (&temp_proc_desc);
|
|
|
|
/* Check if a0-a3 were saved in the caller's argument save area. */
|
|
for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, sp + offset);
|
|
offset += mips_abi_regsize (current_gdbarch);
|
|
}
|
|
|
|
/* Check if the ra register was pushed on the stack. */
|
|
offset = -4;
|
|
if (entry_inst & 0x20)
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
|
|
set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
|
|
offset -= mips_abi_regsize (current_gdbarch);
|
|
}
|
|
|
|
/* Check if the s0 and s1 registers were pushed on the stack. */
|
|
for (reg = 16; reg < sreg_count + 16; reg++)
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, sp + offset);
|
|
offset -= mips_abi_regsize (current_gdbarch);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
|
struct frame_info *next_frame, CORE_ADDR sp)
|
|
{
|
|
CORE_ADDR cur_pc;
|
|
CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
|
|
restart:
|
|
temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
|
|
memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
|
|
PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
|
|
{
|
|
unsigned long inst, high_word, low_word;
|
|
int reg;
|
|
|
|
/* Fetch the instruction. */
|
|
inst = (unsigned long) mips_fetch_instruction (cur_pc);
|
|
|
|
/* Save some code by pre-extracting some useful fields. */
|
|
high_word = (inst >> 16) & 0xffff;
|
|
low_word = inst & 0xffff;
|
|
reg = high_word & 0x1f;
|
|
|
|
if (high_word == 0x27bd /* addiu $sp,$sp,-i */
|
|
|| high_word == 0x23bd /* addi $sp,$sp,-i */
|
|
|| high_word == 0x67bd) /* daddiu $sp,$sp,-i */
|
|
{
|
|
if (low_word & 0x8000) /* negative stack adjustment? */
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
|
|
else
|
|
/* Exit loop if a positive stack adjustment is found, which
|
|
usually means that the stack cleanup code in the function
|
|
epilogue is reached. */
|
|
break;
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, sp + low_word);
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
|
|
{
|
|
/* Irix 6.2 N32 ABI uses sd instructions for saving $gp and
|
|
$ra. */
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, sp + low_word);
|
|
}
|
|
else if (high_word == 0x27be) /* addiu $30,$sp,size */
|
|
{
|
|
/* Old gcc frame, r30 is virtual frame pointer. */
|
|
if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
|
|
frame_addr = sp + low_word;
|
|
else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
|
|
{
|
|
unsigned alloca_adjust;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 30;
|
|
frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
|
|
alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
|
|
if (alloca_adjust > 0)
|
|
{
|
|
/* FP > SP + frame_size. This may be because
|
|
* of an alloca or somethings similar.
|
|
* Fix sp to "pre-alloca" value, and try again.
|
|
*/
|
|
sp += alloca_adjust;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
/* move $30,$sp. With different versions of gas this will be either
|
|
`addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
|
|
Accept any one of these. */
|
|
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
|
|
{
|
|
/* New gcc frame, virtual frame pointer is at r30 + frame_size. */
|
|
if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
|
|
{
|
|
unsigned alloca_adjust;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 30;
|
|
frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
|
|
alloca_adjust = (unsigned) (frame_addr - sp);
|
|
if (alloca_adjust > 0)
|
|
{
|
|
/* FP > SP + frame_size. This may be because
|
|
* of an alloca or somethings similar.
|
|
* Fix sp to "pre-alloca" value, and try again.
|
|
*/
|
|
sp += alloca_adjust;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
|
|
}
|
|
}
|
|
}
|
|
|
|
static mips_extra_func_info_t
|
|
heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
|
struct frame_info *next_frame, int cur_frame)
|
|
{
|
|
CORE_ADDR sp;
|
|
|
|
if (cur_frame)
|
|
sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
|
|
else
|
|
sp = 0;
|
|
|
|
if (start_pc == 0)
|
|
return NULL;
|
|
memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
|
|
temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
|
|
memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
|
|
PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
|
|
PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
|
|
PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
|
|
|
|
if (start_pc + 200 < limit_pc)
|
|
limit_pc = start_pc + 200;
|
|
if (pc_is_mips16 (start_pc))
|
|
mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
|
|
else
|
|
mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
|
|
return &temp_proc_desc;
|
|
}
|
|
|
|
struct mips_objfile_private
|
|
{
|
|
bfd_size_type size;
|
|
char *contents;
|
|
};
|
|
|
|
/* Global used to communicate between non_heuristic_proc_desc and
|
|
compare_pdr_entries within qsort (). */
|
|
static bfd *the_bfd;
|
|
|
|
static int
|
|
compare_pdr_entries (const void *a, const void *b)
|
|
{
|
|
CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
|
|
CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
|
|
|
|
if (lhs < rhs)
|
|
return -1;
|
|
else if (lhs == rhs)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static mips_extra_func_info_t
|
|
non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
|
|
{
|
|
CORE_ADDR startaddr;
|
|
mips_extra_func_info_t proc_desc;
|
|
struct block *b = block_for_pc (pc);
|
|
struct symbol *sym;
|
|
struct obj_section *sec;
|
|
struct mips_objfile_private *priv;
|
|
|
|
find_pc_partial_function (pc, NULL, &startaddr, NULL);
|
|
if (addrptr)
|
|
*addrptr = startaddr;
|
|
|
|
priv = NULL;
|
|
|
|
sec = find_pc_section (pc);
|
|
if (sec != NULL)
|
|
{
|
|
priv = (struct mips_objfile_private *) objfile_data (sec->objfile, mips_pdr_data);
|
|
|
|
/* Search the ".pdr" section generated by GAS. This includes most of
|
|
the information normally found in ECOFF PDRs. */
|
|
|
|
the_bfd = sec->objfile->obfd;
|
|
if (priv == NULL
|
|
&& (the_bfd->format == bfd_object
|
|
&& bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
|
|
&& elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
|
|
{
|
|
/* Right now GAS only outputs the address as a four-byte sequence.
|
|
This means that we should not bother with this method on 64-bit
|
|
targets (until that is fixed). */
|
|
|
|
priv = obstack_alloc (&sec->objfile->objfile_obstack,
|
|
sizeof (struct mips_objfile_private));
|
|
priv->size = 0;
|
|
set_objfile_data (sec->objfile, mips_pdr_data, priv);
|
|
}
|
|
else if (priv == NULL)
|
|
{
|
|
asection *bfdsec;
|
|
|
|
priv = obstack_alloc (&sec->objfile->objfile_obstack,
|
|
sizeof (struct mips_objfile_private));
|
|
|
|
bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
|
|
if (bfdsec != NULL)
|
|
{
|
|
priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
|
|
priv->contents = obstack_alloc (&sec->objfile->objfile_obstack,
|
|
priv->size);
|
|
bfd_get_section_contents (sec->objfile->obfd, bfdsec,
|
|
priv->contents, 0, priv->size);
|
|
|
|
/* In general, the .pdr section is sorted. However, in the
|
|
presence of multiple code sections (and other corner cases)
|
|
it can become unsorted. Sort it so that we can use a faster
|
|
binary search. */
|
|
qsort (priv->contents, priv->size / 32, 32,
|
|
compare_pdr_entries);
|
|
}
|
|
else
|
|
priv->size = 0;
|
|
|
|
set_objfile_data (sec->objfile, mips_pdr_data, priv);
|
|
}
|
|
the_bfd = NULL;
|
|
|
|
if (priv->size != 0)
|
|
{
|
|
int low, mid, high;
|
|
char *ptr;
|
|
CORE_ADDR pdr_pc;
|
|
|
|
low = 0;
|
|
high = priv->size / 32;
|
|
|
|
/* We've found a .pdr section describing this objfile. We want to
|
|
find the entry which describes this code address. The .pdr
|
|
information is not very descriptive; we have only a function
|
|
start address. We have to look for the closest entry, because
|
|
the local symbol at the beginning of this function may have
|
|
been stripped - so if we ask the symbol table for the start
|
|
address we may get a preceding global function. */
|
|
|
|
/* First, find the last .pdr entry starting at or before PC. */
|
|
do
|
|
{
|
|
mid = (low + high) / 2;
|
|
|
|
ptr = priv->contents + mid * 32;
|
|
pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
|
|
pdr_pc += ANOFFSET (sec->objfile->section_offsets,
|
|
SECT_OFF_TEXT (sec->objfile));
|
|
|
|
if (pdr_pc > pc)
|
|
high = mid;
|
|
else
|
|
low = mid + 1;
|
|
}
|
|
while (low != high);
|
|
|
|
/* Both low and high point one past the PDR of interest. If
|
|
both are zero, that means this PC is before any region
|
|
covered by a PDR, i.e. pdr_pc for the first PDR entry is
|
|
greater than PC. */
|
|
if (low > 0)
|
|
{
|
|
ptr = priv->contents + (low - 1) * 32;
|
|
pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
|
|
pdr_pc += ANOFFSET (sec->objfile->section_offsets,
|
|
SECT_OFF_TEXT (sec->objfile));
|
|
}
|
|
|
|
/* We don't have a range, so we have no way to know for sure
|
|
whether we're in the correct PDR or a PDR for a preceding
|
|
function and the current function was a stripped local
|
|
symbol. But if the PDR's PC is at least as great as the
|
|
best guess from the symbol table, assume that it does cover
|
|
the right area; if a .pdr section is present at all then
|
|
nearly every function will have an entry. The biggest exception
|
|
will be the dynamic linker stubs; conveniently these are
|
|
placed before .text instead of after. */
|
|
|
|
if (pc >= pdr_pc && pdr_pc >= startaddr)
|
|
{
|
|
struct symbol *sym = find_pc_function (pc);
|
|
|
|
if (addrptr)
|
|
*addrptr = pdr_pc;
|
|
|
|
/* Fill in what we need of the proc_desc. */
|
|
proc_desc = (mips_extra_func_info_t)
|
|
obstack_alloc (&sec->objfile->objfile_obstack,
|
|
sizeof (struct mips_extra_func_info));
|
|
PROC_LOW_ADDR (proc_desc) = pdr_pc;
|
|
|
|
/* Only used for dummy frames. */
|
|
PROC_HIGH_ADDR (proc_desc) = 0;
|
|
|
|
PROC_FRAME_OFFSET (proc_desc)
|
|
= bfd_get_32 (sec->objfile->obfd, ptr + 20);
|
|
PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
|
|
ptr + 24);
|
|
PROC_FRAME_ADJUST (proc_desc) = 0;
|
|
PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
|
|
ptr + 4);
|
|
PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
|
|
ptr + 12);
|
|
PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
|
|
ptr + 8);
|
|
PROC_FREG_OFFSET (proc_desc)
|
|
= bfd_get_32 (sec->objfile->obfd, ptr + 16);
|
|
PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
|
|
ptr + 28);
|
|
proc_desc->pdr.isym = (long) sym;
|
|
|
|
return proc_desc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (b == NULL)
|
|
return NULL;
|
|
|
|
if (startaddr > BLOCK_START (b))
|
|
{
|
|
/* This is the "pathological" case referred to in a comment in
|
|
print_frame_info. It might be better to move this check into
|
|
symbol reading. */
|
|
return NULL;
|
|
}
|
|
|
|
sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
|
|
|
|
/* If we never found a PDR for this function in symbol reading, then
|
|
examine prologues to find the information. */
|
|
if (sym)
|
|
{
|
|
proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
|
|
if (PROC_FRAME_REG (proc_desc) == -1)
|
|
return NULL;
|
|
else
|
|
return proc_desc;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static mips_extra_func_info_t
|
|
find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
CORE_ADDR startaddr = 0;
|
|
|
|
proc_desc = non_heuristic_proc_desc (pc, &startaddr);
|
|
|
|
if (proc_desc)
|
|
{
|
|
/* IF this is the topmost frame AND
|
|
* (this proc does not have debugging information OR
|
|
* the PC is in the procedure prologue)
|
|
* THEN create a "heuristic" proc_desc (by analyzing
|
|
* the actual code) to replace the "official" proc_desc.
|
|
*/
|
|
if (next_frame == NULL)
|
|
{
|
|
struct symtab_and_line val;
|
|
struct symbol *proc_symbol =
|
|
PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
|
|
|
|
if (proc_symbol)
|
|
{
|
|
val = find_pc_line (BLOCK_START
|
|
(SYMBOL_BLOCK_VALUE (proc_symbol)), 0);
|
|
val.pc = val.end ? val.end : pc;
|
|
}
|
|
if (!proc_symbol || pc < val.pc)
|
|
{
|
|
mips_extra_func_info_t found_heuristic =
|
|
heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
|
|
pc, next_frame, cur_frame);
|
|
if (found_heuristic)
|
|
proc_desc = found_heuristic;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Is linked_proc_desc_table really necessary? It only seems to be used
|
|
by procedure call dummys. However, the procedures being called ought
|
|
to have their own proc_descs, and even if they don't,
|
|
heuristic_proc_desc knows how to create them! */
|
|
|
|
struct linked_proc_info *link;
|
|
|
|
for (link = linked_proc_desc_table; link; link = link->next)
|
|
if (PROC_LOW_ADDR (&link->info) <= pc
|
|
&& PROC_HIGH_ADDR (&link->info) > pc)
|
|
return &link->info;
|
|
|
|
if (startaddr == 0)
|
|
startaddr = heuristic_proc_start (pc);
|
|
|
|
proc_desc = heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
|
|
}
|
|
return proc_desc;
|
|
}
|
|
|
|
/* MIPS stack frames are almost impenetrable. When execution stops,
|
|
we basically have to look at symbol information for the function
|
|
that we stopped in, which tells us *which* register (if any) is
|
|
the base of the frame pointer, and what offset from that register
|
|
the frame itself is at.
|
|
|
|
This presents a problem when trying to examine a stack in memory
|
|
(that isn't executing at the moment), using the "frame" command. We
|
|
don't have a PC, nor do we have any registers except SP.
|
|
|
|
This routine takes two arguments, SP and PC, and tries to make the
|
|
cached frames look as if these two arguments defined a frame on the
|
|
cache. This allows the rest of info frame to extract the important
|
|
arguments without difficulty. */
|
|
|
|
struct frame_info *
|
|
setup_arbitrary_frame (int argc, CORE_ADDR *argv)
|
|
{
|
|
if (argc != 2)
|
|
error ("MIPS frame specifications require two arguments: sp and pc");
|
|
|
|
return create_new_frame (argv[0], argv[1]);
|
|
}
|
|
|
|
/* According to the current ABI, should the type be passed in a
|
|
floating-point register (assuming that there is space)? When there
|
|
is no FPU, FP are not even considered as possibile candidates for
|
|
FP registers and, consequently this returns false - forces FP
|
|
arguments into integer registers. */
|
|
|
|
static int
|
|
fp_register_arg_p (enum type_code typecode, struct type *arg_type)
|
|
{
|
|
return ((typecode == TYPE_CODE_FLT
|
|
|| (MIPS_EABI
|
|
&& (typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION)
|
|
&& TYPE_NFIELDS (arg_type) == 1
|
|
&& TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
|
|
&& MIPS_FPU_TYPE != MIPS_FPU_NONE);
|
|
}
|
|
|
|
/* On o32, argument passing in GPRs depends on the alignment of the type being
|
|
passed. Return 1 if this type must be aligned to a doubleword boundary. */
|
|
|
|
static int
|
|
mips_type_needs_double_align (struct type *type)
|
|
{
|
|
enum type_code typecode = TYPE_CODE (type);
|
|
|
|
if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
|
|
return 1;
|
|
else if (typecode == TYPE_CODE_STRUCT)
|
|
{
|
|
if (TYPE_NFIELDS (type) < 1)
|
|
return 0;
|
|
return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
|
|
}
|
|
else if (typecode == TYPE_CODE_UNION)
|
|
{
|
|
int i, n;
|
|
|
|
n = TYPE_NFIELDS (type);
|
|
for (i = 0; i < n; i++)
|
|
if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Adjust the address downward (direction of stack growth) so that it
|
|
is correctly aligned for a new stack frame. */
|
|
static CORE_ADDR
|
|
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
return align_down (addr, 16);
|
|
}
|
|
|
|
/* Determine how a return value is stored within the MIPS register
|
|
file, given the return type `valtype'. */
|
|
|
|
struct return_value_word
|
|
{
|
|
int len;
|
|
int reg;
|
|
int reg_offset;
|
|
int buf_offset;
|
|
};
|
|
|
|
static void
|
|
return_value_location (struct type *valtype,
|
|
struct return_value_word *hi,
|
|
struct return_value_word *lo)
|
|
{
|
|
int len = TYPE_LENGTH (valtype);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
|
&& ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
|
|
|| (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
|
|
{
|
|
if (mips_abi_regsize (current_gdbarch) < 8 && len == 8)
|
|
{
|
|
/* We need to break a 64bit float in two 32 bit halves and
|
|
spread them across a floating-point register pair. */
|
|
lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
|
|
hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
|
|
lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& register_size (current_gdbarch,
|
|
mips_regnum (current_gdbarch)->
|
|
fp0) == 8) ? 4 : 0);
|
|
hi->reg_offset = lo->reg_offset;
|
|
lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
|
|
hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
|
|
lo->len = 4;
|
|
hi->len = 4;
|
|
}
|
|
else
|
|
{
|
|
/* The floating point value fits in a single floating-point
|
|
register. */
|
|
lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& register_size (current_gdbarch,
|
|
mips_regnum (current_gdbarch)->
|
|
fp0) == 8
|
|
&& len == 4) ? 4 : 0);
|
|
lo->reg = mips_regnum (current_gdbarch)->fp0;
|
|
lo->len = len;
|
|
lo->buf_offset = 0;
|
|
hi->len = 0;
|
|
hi->reg_offset = 0;
|
|
hi->buf_offset = 0;
|
|
hi->reg = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Locate a result possibly spread across two registers. */
|
|
int regnum = 2;
|
|
lo->reg = regnum + 0;
|
|
hi->reg = regnum + 1;
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& len < mips_abi_regsize (current_gdbarch))
|
|
{
|
|
/* "un-left-justify" the value in the low register */
|
|
lo->reg_offset = mips_abi_regsize (current_gdbarch) - len;
|
|
lo->len = len;
|
|
hi->reg_offset = 0;
|
|
hi->len = 0;
|
|
}
|
|
else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG && len > mips_abi_regsize (current_gdbarch) /* odd-size structs */
|
|
&& len < mips_abi_regsize (current_gdbarch) * 2
|
|
&& (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
|
|
TYPE_CODE (valtype) == TYPE_CODE_UNION))
|
|
{
|
|
/* "un-left-justify" the value spread across two registers. */
|
|
lo->reg_offset = 2 * mips_abi_regsize (current_gdbarch) - len;
|
|
lo->len = mips_abi_regsize (current_gdbarch) - lo->reg_offset;
|
|
hi->reg_offset = 0;
|
|
hi->len = len - lo->len;
|
|
}
|
|
else
|
|
{
|
|
/* Only perform a partial copy of the second register. */
|
|
lo->reg_offset = 0;
|
|
hi->reg_offset = 0;
|
|
if (len > mips_abi_regsize (current_gdbarch))
|
|
{
|
|
lo->len = mips_abi_regsize (current_gdbarch);
|
|
hi->len = len - mips_abi_regsize (current_gdbarch);
|
|
}
|
|
else
|
|
{
|
|
lo->len = len;
|
|
hi->len = 0;
|
|
}
|
|
}
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& register_size (current_gdbarch, regnum) == 8
|
|
&& mips_abi_regsize (current_gdbarch) == 4)
|
|
{
|
|
/* Account for the fact that only the least-signficant part
|
|
of the register is being used */
|
|
lo->reg_offset += 4;
|
|
hi->reg_offset += 4;
|
|
}
|
|
lo->buf_offset = 0;
|
|
hi->buf_offset = lo->len;
|
|
}
|
|
}
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
|
|
static int
|
|
mips_eabi_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
return (TYPE_LENGTH (type) > 2 * mips_abi_regsize (current_gdbarch));
|
|
}
|
|
|
|
/* Should call_function pass struct by reference?
|
|
For each architecture, structs are passed either by
|
|
value or by reference, depending on their size. */
|
|
|
|
static int
|
|
mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
|
|
{
|
|
enum type_code typecode = TYPE_CODE (check_typedef (type));
|
|
int len = TYPE_LENGTH (check_typedef (type));
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
|
|
return (len > mips_abi_regsize (current_gdbarch));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. We allocate more
|
|
than necessary for EABI, because the first few arguments are
|
|
passed in registers, but that's OK. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
|
|
mips_stack_argsize (gdbarch));
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (current_gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
write_register (argreg++, struct_addr);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
char *val;
|
|
char valbuf[MAX_REGISTER_SIZE];
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_eabi_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
/* The EABI passes structures that do not fit in a register by
|
|
reference. */
|
|
if (len > mips_abi_regsize (gdbarch)
|
|
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
|
{
|
|
store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
|
|
VALUE_ADDRESS (arg));
|
|
typecode = TYPE_CODE_PTR;
|
|
len = mips_abi_regsize (gdbarch);
|
|
val = valbuf;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " push");
|
|
}
|
|
else
|
|
val = (char *) VALUE_CONTENTS (arg);
|
|
|
|
/* 32-bit ABIs always start floating point arguments in an
|
|
even-numbered floating point register. Round the FP register
|
|
up before the check to see if there are any FP registers
|
|
left. Non MIPS_EABI targets also pass the FP in the integer
|
|
registers so also round up normal registers. */
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
if ((float_argreg & 1))
|
|
float_argreg++;
|
|
}
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On non-EABI processors, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
/* MIPS_EABI squeezes a struct that contains a single floating
|
|
point value into an FP register instead of pushing it onto the
|
|
stack. */
|
|
if (fp_register_arg_p (typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
|
|
{
|
|
if (mips_abi_regsize (gdbarch) < 8 && len == 8)
|
|
{
|
|
int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
|
|
unsigned long regval;
|
|
|
|
/* Write the low word of the double to the even register(s). */
|
|
regval = extract_unsigned_integer (val + low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
write_register (float_argreg++, regval);
|
|
|
|
/* Write the high word of the double to the odd register(s). */
|
|
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
write_register (float_argreg++, regval);
|
|
}
|
|
else
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
write_register (float_argreg++, regval);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of
|
|
mips_abi_regsize() are treated specially: Irix cc passes
|
|
them in registers where gcc sometimes puts them on the
|
|
stack. For maximum compatibility, we will put them in
|
|
both places. */
|
|
int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
|
|
&& (len % mips_abi_regsize (gdbarch) != 0));
|
|
|
|
/* Note: Floating-point values that didn't fit into an FP
|
|
register are only written to memory. */
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < mips_abi_regsize (gdbarch)
|
|
? len : mips_abi_regsize (gdbarch));
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM
|
|
|| odd_sized_struct
|
|
|| fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
if (mips_stack_argsize (gdbarch) == 8
|
|
&& (typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_FLT) && len <= 4)
|
|
longword_offset = mips_stack_argsize (gdbarch) - len;
|
|
else if ((typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION)
|
|
&& (TYPE_LENGTH (arg_type)
|
|
< mips_stack_argsize (gdbarch)))
|
|
longword_offset = mips_stack_argsize (gdbarch) - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. Floating point
|
|
arguments will not. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM
|
|
&& !fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
LONGEST regval =
|
|
extract_unsigned_integer (val, partial_len);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval,
|
|
mips_abi_regsize (gdbarch)));
|
|
write_register (argreg, regval);
|
|
argreg++;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In the new EABI (and the NABI32), the stack_offset
|
|
only needs to be adjusted when it has been used. */
|
|
|
|
if (stack_used_p)
|
|
stack_offset += align_up (partial_len,
|
|
mips_stack_argsize (gdbarch));
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype', extract and
|
|
copy its value into `valbuf'. */
|
|
|
|
static void
|
|
mips_eabi_extract_return_value (struct type *valtype,
|
|
char regbuf[], char *valbuf)
|
|
{
|
|
struct return_value_word lo;
|
|
struct return_value_word hi;
|
|
return_value_location (valtype, &hi, &lo);
|
|
|
|
memcpy (valbuf + lo.buf_offset,
|
|
regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) +
|
|
lo.reg_offset, lo.len);
|
|
|
|
if (hi.len > 0)
|
|
memcpy (valbuf + hi.buf_offset,
|
|
regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) +
|
|
hi.reg_offset, hi.len);
|
|
}
|
|
|
|
/* Given a return value in `valbuf' with a type `valtype', write it's
|
|
value into the appropriate register. */
|
|
|
|
static void
|
|
mips_eabi_store_return_value (struct type *valtype, char *valbuf)
|
|
{
|
|
char raw_buffer[MAX_REGISTER_SIZE];
|
|
struct return_value_word lo;
|
|
struct return_value_word hi;
|
|
return_value_location (valtype, &hi, &lo);
|
|
|
|
memset (raw_buffer, 0, sizeof (raw_buffer));
|
|
memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
|
|
deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg),
|
|
raw_buffer, register_size (current_gdbarch,
|
|
lo.reg));
|
|
|
|
if (hi.len > 0)
|
|
{
|
|
memset (raw_buffer, 0, sizeof (raw_buffer));
|
|
memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
|
|
deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg),
|
|
raw_buffer,
|
|
register_size (current_gdbarch,
|
|
hi.reg));
|
|
}
|
|
}
|
|
|
|
/* N32/N64 ABI stuff. */
|
|
|
|
static CORE_ADDR
|
|
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
|
|
mips_stack_argsize (gdbarch));
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (current_gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
write_register (argreg++, struct_addr);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
char *val;
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_n32n64_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
val = (char *) VALUE_CONTENTS (arg);
|
|
|
|
if (fp_register_arg_p (typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
write_register (float_argreg++, regval);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, len));
|
|
write_register (argreg, regval);
|
|
argreg += 1;
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of
|
|
mips_abi_regsize() are treated specially: Irix cc passes
|
|
them in registers where gcc sometimes puts them on the
|
|
stack. For maximum compatibility, we will put them in
|
|
both places. */
|
|
int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
|
|
&& (len % mips_abi_regsize (gdbarch) != 0));
|
|
/* Note: Floating-point values that didn't fit into an FP
|
|
register are only written to memory. */
|
|
while (len > 0)
|
|
{
|
|
/* Rememer if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < mips_abi_regsize (gdbarch)
|
|
? len : mips_abi_regsize (gdbarch));
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM
|
|
|| odd_sized_struct
|
|
|| fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
if (mips_stack_argsize (gdbarch) == 8
|
|
&& (typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_FLT) && len <= 4)
|
|
longword_offset = mips_stack_argsize (gdbarch) - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. Floating point
|
|
arguments will not. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM
|
|
&& !fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
LONGEST regval =
|
|
extract_unsigned_integer (val, partial_len);
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types.
|
|
|
|
cagney/2001-07-23: gdb/179: Also, GCC, when
|
|
outputting LE O32 with sizeof (struct) <
|
|
mips_abi_regsize(), generates a left shift as
|
|
part of storing the argument in a register a
|
|
register (the left shift isn't generated when
|
|
sizeof (struct) >= mips_abi_regsize()). Since
|
|
it is quite possible that this is GCC
|
|
contradicting the LE/O32 ABI, GDB has not been
|
|
adjusted to accommodate this. Either someone
|
|
needs to demonstrate that the LE/O32 ABI
|
|
specifies such a left shift OR this new ABI gets
|
|
identified as such and GDB gets tweaked
|
|
accordingly. */
|
|
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& partial_len < mips_abi_regsize (gdbarch)
|
|
&& (typecode == TYPE_CODE_STRUCT ||
|
|
typecode == TYPE_CODE_UNION))
|
|
regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
|
|
TARGET_CHAR_BIT);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval,
|
|
mips_abi_regsize (gdbarch)));
|
|
write_register (argreg, regval);
|
|
argreg++;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In N32 (N64?), the stack_offset only needs to be
|
|
adjusted when it has been used. */
|
|
|
|
if (stack_used_p)
|
|
stack_offset += align_up (partial_len,
|
|
mips_stack_argsize (gdbarch));
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
mips_n32n64_return_value (struct gdbarch *gdbarch,
|
|
struct type *type, struct regcache *regcache,
|
|
void *readbuf, const void *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
|| TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A floating-point value belongs in the least significant part
|
|
of FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
|
|
mips_xfer_register (regcache,
|
|
NUM_REGS + mips_regnum (current_gdbarch)->fp0,
|
|
TYPE_LENGTH (type),
|
|
TARGET_BYTE_ORDER, readbuf, writebuf, 0);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) <= 2
|
|
&& TYPE_NFIELDS (type) >= 1
|
|
&& ((TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_FLT))
|
|
|| (TYPE_NFIELDS (type) == 2
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_FLT)
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
|
|
== TYPE_CODE_FLT)))
|
|
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A struct that contains one or two floats. Each value is part
|
|
in the least significant part of their floating point
|
|
register.. */
|
|
int regnum;
|
|
int field;
|
|
for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
|
|
field < TYPE_NFIELDS (type); field++, regnum += 2)
|
|
{
|
|
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
|
|
/ TARGET_CHAR_BIT);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
|
|
offset);
|
|
mips_xfer_register (regcache, NUM_REGS + regnum,
|
|
TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
|
|
TARGET_BYTE_ORDER, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
/* A structure or union. Extract the left justified value,
|
|
regardless of the byte order. I.e. DO NOT USE
|
|
mips_xfer_lower. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += register_size (current_gdbarch, regnum), regnum++)
|
|
{
|
|
int xfer = register_size (current_gdbarch, regnum);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
|
|
BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else
|
|
{
|
|
/* A scalar extract each part but least-significant-byte
|
|
justified. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += register_size (current_gdbarch, regnum), regnum++)
|
|
{
|
|
int xfer = register_size (current_gdbarch, regnum);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
|
|
TARGET_BYTE_ORDER, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* O32 ABI stuff. */
|
|
|
|
static CORE_ADDR
|
|
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
|
|
mips_stack_argsize (gdbarch));
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (current_gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
write_register (argreg++, struct_addr);
|
|
stack_offset += mips_stack_argsize (gdbarch);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
char *val;
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o32_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
val = (char *) VALUE_CONTENTS (arg);
|
|
|
|
/* 32-bit ABIs always start floating point arguments in an
|
|
even-numbered floating point register. Round the FP register
|
|
up before the check to see if there are any FP registers
|
|
left. O32/O64 targets also pass the FP in the integer
|
|
registers so also round up normal registers. */
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
if ((float_argreg & 1))
|
|
float_argreg++;
|
|
}
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On O32/O64, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
|
|
if (fp_register_arg_p (typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
|
|
{
|
|
if (mips_abi_regsize (gdbarch) < 8 && len == 8)
|
|
{
|
|
int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
|
|
unsigned long regval;
|
|
|
|
/* Write the low word of the double to the even register(s). */
|
|
regval = extract_unsigned_integer (val + low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
write_register (float_argreg++, regval);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, 4));
|
|
write_register (argreg++, regval);
|
|
|
|
/* Write the high word of the double to the odd register(s). */
|
|
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
write_register (float_argreg++, regval);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, 4));
|
|
write_register (argreg++, regval);
|
|
}
|
|
else
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
write_register (float_argreg++, regval);
|
|
/* CAGNEY: 32 bit MIPS ABI's always reserve two FP
|
|
registers for each argument. The below is (my
|
|
guess) to ensure that the corresponding integer
|
|
register has reserved the same space. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, len));
|
|
write_register (argreg, regval);
|
|
argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
|
|
}
|
|
/* Reserve space for the FP register. */
|
|
stack_offset += align_up (len, mips_stack_argsize (gdbarch));
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of
|
|
mips_abi_regsize() are treated specially: Irix cc passes
|
|
them in registers where gcc sometimes puts them on the
|
|
stack. For maximum compatibility, we will put them in
|
|
both places. */
|
|
int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
|
|
&& (len % mips_abi_regsize (gdbarch) != 0));
|
|
/* Structures should be aligned to eight bytes (even arg registers)
|
|
on MIPS_ABI_O32, if their first member has double precision. */
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& mips_type_needs_double_align (arg_type))
|
|
{
|
|
if ((argreg & 1))
|
|
argreg++;
|
|
}
|
|
/* Note: Floating-point values that didn't fit into an FP
|
|
register are only written to memory. */
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < mips_abi_regsize (gdbarch)
|
|
? len : mips_abi_regsize (gdbarch));
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM
|
|
|| odd_sized_struct
|
|
|| fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
if (mips_stack_argsize (gdbarch) == 8
|
|
&& (typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_FLT) && len <= 4)
|
|
longword_offset = mips_stack_argsize (gdbarch) - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. Floating point
|
|
arguments will not. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM
|
|
&& !fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
LONGEST regval = extract_signed_integer (val, partial_len);
|
|
/* Value may need to be sign extended, because
|
|
mips_isa_regsize() != mips_abi_regsize(). */
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types.
|
|
|
|
Also don't do this adjustment on O64 binaries.
|
|
|
|
cagney/2001-07-23: gdb/179: Also, GCC, when
|
|
outputting LE O32 with sizeof (struct) <
|
|
mips_abi_regsize(), generates a left shift as
|
|
part of storing the argument in a register a
|
|
register (the left shift isn't generated when
|
|
sizeof (struct) >= mips_abi_regsize()). Since
|
|
it is quite possible that this is GCC
|
|
contradicting the LE/O32 ABI, GDB has not been
|
|
adjusted to accommodate this. Either someone
|
|
needs to demonstrate that the LE/O32 ABI
|
|
specifies such a left shift OR this new ABI gets
|
|
identified as such and GDB gets tweaked
|
|
accordingly. */
|
|
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& partial_len < mips_abi_regsize (gdbarch)
|
|
&& (typecode == TYPE_CODE_STRUCT ||
|
|
typecode == TYPE_CODE_UNION))
|
|
regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
|
|
TARGET_CHAR_BIT);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval,
|
|
mips_abi_regsize (gdbarch)));
|
|
write_register (argreg, regval);
|
|
argreg++;
|
|
|
|
/* Prevent subsequent floating point arguments from
|
|
being passed in floating point registers. */
|
|
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In older ABIs, the caller reserved space for
|
|
registers that contained arguments. This was loosely
|
|
refered to as their "home". Consequently, space is
|
|
always allocated. */
|
|
|
|
stack_offset += align_up (partial_len,
|
|
mips_stack_argsize (gdbarch));
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
|
|
struct regcache *regcache,
|
|
void *readbuf, const void *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A single-precision floating-point value. It fits in the
|
|
least significant part of FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
|
|
mips_xfer_register (regcache,
|
|
NUM_REGS + mips_regnum (current_gdbarch)->fp0,
|
|
TYPE_LENGTH (type),
|
|
TARGET_BYTE_ORDER, readbuf, writebuf, 0);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A double-precision floating-point value. The most
|
|
significant part goes in FP1, and the least significant in
|
|
FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
|
|
switch (TARGET_BYTE_ORDER)
|
|
{
|
|
case BFD_ENDIAN_LITTLE:
|
|
mips_xfer_register (regcache,
|
|
NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
|
|
0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
|
|
mips_xfer_register (regcache,
|
|
NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
|
|
1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
|
|
break;
|
|
case BFD_ENDIAN_BIG:
|
|
mips_xfer_register (regcache,
|
|
NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
|
|
1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
|
|
mips_xfer_register (regcache,
|
|
NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
|
|
0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
#if 0
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) <= 2
|
|
&& TYPE_NFIELDS (type) >= 1
|
|
&& ((TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_FLT))
|
|
|| (TYPE_NFIELDS (type) == 2
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_FLT)
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
|
|
== TYPE_CODE_FLT)))
|
|
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A struct that contains one or two floats. Each value is part
|
|
in the least significant part of their floating point
|
|
register.. */
|
|
bfd_byte reg[MAX_REGISTER_SIZE];
|
|
int regnum;
|
|
int field;
|
|
for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
|
|
field < TYPE_NFIELDS (type); field++, regnum += 2)
|
|
{
|
|
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
|
|
/ TARGET_CHAR_BIT);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
|
|
offset);
|
|
mips_xfer_register (regcache, NUM_REGS + regnum,
|
|
TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
|
|
TARGET_BYTE_ORDER, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
#endif
|
|
#if 0
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
/* A structure or union. Extract the left justified value,
|
|
regardless of the byte order. I.e. DO NOT USE
|
|
mips_xfer_lower. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += register_size (current_gdbarch, regnum), regnum++)
|
|
{
|
|
int xfer = register_size (current_gdbarch, regnum);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
|
|
BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
/* A scalar extract each part but least-significant-byte
|
|
justified. o32 thinks registers are 4 byte, regardless of
|
|
the ISA. mips_stack_argsize controls this. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += mips_stack_argsize (gdbarch), regnum++)
|
|
{
|
|
int xfer = mips_stack_argsize (gdbarch);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
|
|
TARGET_BYTE_ORDER, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
|
|
ABI. */
|
|
|
|
static CORE_ADDR
|
|
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs,
|
|
struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
|
|
mips_stack_argsize (gdbarch));
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (current_gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
write_register (argreg++, struct_addr);
|
|
stack_offset += mips_stack_argsize (gdbarch);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
char *val;
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o64_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
val = (char *) VALUE_CONTENTS (arg);
|
|
|
|
/* 32-bit ABIs always start floating point arguments in an
|
|
even-numbered floating point register. Round the FP register
|
|
up before the check to see if there are any FP registers
|
|
left. O32/O64 targets also pass the FP in the integer
|
|
registers so also round up normal registers. */
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
if ((float_argreg & 1))
|
|
float_argreg++;
|
|
}
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On O32/O64, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
|
|
if (fp_register_arg_p (typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
|
|
{
|
|
if (mips_abi_regsize (gdbarch) < 8 && len == 8)
|
|
{
|
|
int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
|
|
unsigned long regval;
|
|
|
|
/* Write the low word of the double to the even register(s). */
|
|
regval = extract_unsigned_integer (val + low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
write_register (float_argreg++, regval);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, 4));
|
|
write_register (argreg++, regval);
|
|
|
|
/* Write the high word of the double to the odd register(s). */
|
|
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
write_register (float_argreg++, regval);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, 4));
|
|
write_register (argreg++, regval);
|
|
}
|
|
else
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
write_register (float_argreg++, regval);
|
|
/* CAGNEY: 32 bit MIPS ABI's always reserve two FP
|
|
registers for each argument. The below is (my
|
|
guess) to ensure that the corresponding integer
|
|
register has reserved the same space. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, len));
|
|
write_register (argreg, regval);
|
|
argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
|
|
}
|
|
/* Reserve space for the FP register. */
|
|
stack_offset += align_up (len, mips_stack_argsize (gdbarch));
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of
|
|
mips_abi_regsize() are treated specially: Irix cc passes
|
|
them in registers where gcc sometimes puts them on the
|
|
stack. For maximum compatibility, we will put them in
|
|
both places. */
|
|
int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
|
|
&& (len % mips_abi_regsize (gdbarch) != 0));
|
|
/* Structures should be aligned to eight bytes (even arg registers)
|
|
on MIPS_ABI_O32, if their first member has double precision. */
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& mips_type_needs_double_align (arg_type))
|
|
{
|
|
if ((argreg & 1))
|
|
argreg++;
|
|
}
|
|
/* Note: Floating-point values that didn't fit into an FP
|
|
register are only written to memory. */
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < mips_abi_regsize (gdbarch)
|
|
? len : mips_abi_regsize (gdbarch));
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM
|
|
|| odd_sized_struct
|
|
|| fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
if (mips_stack_argsize (gdbarch) == 8
|
|
&& (typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_FLT) && len <= 4)
|
|
longword_offset = mips_stack_argsize (gdbarch) - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. Floating point
|
|
arguments will not. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM
|
|
&& !fp_register_arg_p (typecode, arg_type))
|
|
{
|
|
LONGEST regval = extract_signed_integer (val, partial_len);
|
|
/* Value may need to be sign extended, because
|
|
mips_isa_regsize() != mips_abi_regsize(). */
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types.
|
|
|
|
Also don't do this adjustment on O64 binaries.
|
|
|
|
cagney/2001-07-23: gdb/179: Also, GCC, when
|
|
outputting LE O32 with sizeof (struct) <
|
|
mips_abi_regsize(), generates a left shift as
|
|
part of storing the argument in a register a
|
|
register (the left shift isn't generated when
|
|
sizeof (struct) >= mips_abi_regsize()). Since
|
|
it is quite possible that this is GCC
|
|
contradicting the LE/O32 ABI, GDB has not been
|
|
adjusted to accommodate this. Either someone
|
|
needs to demonstrate that the LE/O32 ABI
|
|
specifies such a left shift OR this new ABI gets
|
|
identified as such and GDB gets tweaked
|
|
accordingly. */
|
|
|
|
if (mips_abi_regsize (gdbarch) < 8
|
|
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
&& partial_len < mips_abi_regsize (gdbarch)
|
|
&& (typecode == TYPE_CODE_STRUCT ||
|
|
typecode == TYPE_CODE_UNION))
|
|
regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
|
|
TARGET_CHAR_BIT);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval,
|
|
mips_abi_regsize (gdbarch)));
|
|
write_register (argreg, regval);
|
|
argreg++;
|
|
|
|
/* Prevent subsequent floating point arguments from
|
|
being passed in floating point registers. */
|
|
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In older ABIs, the caller reserved space for
|
|
registers that contained arguments. This was loosely
|
|
refered to as their "home". Consequently, space is
|
|
always allocated. */
|
|
|
|
stack_offset += align_up (partial_len,
|
|
mips_stack_argsize (gdbarch));
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
mips_o64_extract_return_value (struct type *valtype,
|
|
char regbuf[], char *valbuf)
|
|
{
|
|
struct return_value_word lo;
|
|
struct return_value_word hi;
|
|
return_value_location (valtype, &hi, &lo);
|
|
|
|
memcpy (valbuf + lo.buf_offset,
|
|
regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) +
|
|
lo.reg_offset, lo.len);
|
|
|
|
if (hi.len > 0)
|
|
memcpy (valbuf + hi.buf_offset,
|
|
regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) +
|
|
hi.reg_offset, hi.len);
|
|
}
|
|
|
|
static void
|
|
mips_o64_store_return_value (struct type *valtype, char *valbuf)
|
|
{
|
|
char raw_buffer[MAX_REGISTER_SIZE];
|
|
struct return_value_word lo;
|
|
struct return_value_word hi;
|
|
return_value_location (valtype, &hi, &lo);
|
|
|
|
memset (raw_buffer, 0, sizeof (raw_buffer));
|
|
memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
|
|
deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg),
|
|
raw_buffer, register_size (current_gdbarch,
|
|
lo.reg));
|
|
|
|
if (hi.len > 0)
|
|
{
|
|
memset (raw_buffer, 0, sizeof (raw_buffer));
|
|
memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
|
|
deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg),
|
|
raw_buffer,
|
|
register_size (current_gdbarch,
|
|
hi.reg));
|
|
}
|
|
}
|
|
|
|
/* Floating point register management.
|
|
|
|
Background: MIPS1 & 2 fp registers are 32 bits wide. To support
|
|
64bit operations, these early MIPS cpus treat fp register pairs
|
|
(f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
|
|
registers and offer a compatibility mode that emulates the MIPS2 fp
|
|
model. When operating in MIPS2 fp compat mode, later cpu's split
|
|
double precision floats into two 32-bit chunks and store them in
|
|
consecutive fp regs. To display 64-bit floats stored in this
|
|
fashion, we have to combine 32 bits from f0 and 32 bits from f1.
|
|
Throw in user-configurable endianness and you have a real mess.
|
|
|
|
The way this works is:
|
|
- If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
|
|
double-precision value will be split across two logical registers.
|
|
The lower-numbered logical register will hold the low-order bits,
|
|
regardless of the processor's endianness.
|
|
- If we are on a 64-bit processor, and we are looking for a
|
|
single-precision value, it will be in the low ordered bits
|
|
of a 64-bit GPR (after mfc1, for example) or a 64-bit register
|
|
save slot in memory.
|
|
- If we are in 64-bit mode, everything is straightforward.
|
|
|
|
Note that this code only deals with "live" registers at the top of the
|
|
stack. We will attempt to deal with saved registers later, when
|
|
the raw/cooked register interface is in place. (We need a general
|
|
interface that can deal with dynamic saved register sizes -- fp
|
|
regs could be 32 bits wide in one frame and 64 on the frame above
|
|
and below). */
|
|
|
|
static struct type *
|
|
mips_float_register_type (void)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
return builtin_type_ieee_single_big;
|
|
else
|
|
return builtin_type_ieee_single_little;
|
|
}
|
|
|
|
static struct type *
|
|
mips_double_register_type (void)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
return builtin_type_ieee_double_big;
|
|
else
|
|
return builtin_type_ieee_double_little;
|
|
}
|
|
|
|
/* Copy a 32-bit single-precision value from the current frame
|
|
into rare_buffer. */
|
|
|
|
static void
|
|
mips_read_fp_register_single (struct frame_info *frame, int regno,
|
|
char *rare_buffer)
|
|
{
|
|
int raw_size = register_size (current_gdbarch, regno);
|
|
char *raw_buffer = alloca (raw_size);
|
|
|
|
if (!frame_register_read (frame, regno, raw_buffer))
|
|
error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
|
|
if (raw_size == 8)
|
|
{
|
|
/* We have a 64-bit value for this register. Find the low-order
|
|
32 bits. */
|
|
int offset;
|
|
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = 4;
|
|
else
|
|
offset = 0;
|
|
|
|
memcpy (rare_buffer, raw_buffer + offset, 4);
|
|
}
|
|
else
|
|
{
|
|
memcpy (rare_buffer, raw_buffer, 4);
|
|
}
|
|
}
|
|
|
|
/* Copy a 64-bit double-precision value from the current frame into
|
|
rare_buffer. This may include getting half of it from the next
|
|
register. */
|
|
|
|
static void
|
|
mips_read_fp_register_double (struct frame_info *frame, int regno,
|
|
char *rare_buffer)
|
|
{
|
|
int raw_size = register_size (current_gdbarch, regno);
|
|
|
|
if (raw_size == 8 && !mips2_fp_compat ())
|
|
{
|
|
/* We have a 64-bit value for this register, and we should use
|
|
all 64 bits. */
|
|
if (!frame_register_read (frame, regno, rare_buffer))
|
|
error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
|
|
}
|
|
else
|
|
{
|
|
if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
|
|
internal_error (__FILE__, __LINE__,
|
|
"mips_read_fp_register_double: bad access to "
|
|
"odd-numbered FP register");
|
|
|
|
/* mips_read_fp_register_single will find the correct 32 bits from
|
|
each register. */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
mips_read_fp_register_single (frame, regno, rare_buffer + 4);
|
|
mips_read_fp_register_single (frame, regno + 1, rare_buffer);
|
|
}
|
|
else
|
|
{
|
|
mips_read_fp_register_single (frame, regno, rare_buffer);
|
|
mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
|
|
int regnum)
|
|
{ /* do values for FP (float) regs */
|
|
char *raw_buffer;
|
|
double doub, flt1; /* doubles extracted from raw hex data */
|
|
int inv1, inv2;
|
|
|
|
raw_buffer =
|
|
(char *) alloca (2 *
|
|
register_size (current_gdbarch,
|
|
mips_regnum (current_gdbarch)->fp0));
|
|
|
|
fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
|
|
fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
|
|
"");
|
|
|
|
if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
|
|
{
|
|
/* 4-byte registers: Print hex and floating. Also print even
|
|
numbered registers as doubles. */
|
|
mips_read_fp_register_single (frame, regnum, raw_buffer);
|
|
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
|
|
|
|
print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
|
|
file);
|
|
|
|
fprintf_filtered (file, " flt: ");
|
|
if (inv1)
|
|
fprintf_filtered (file, " <invalid float> ");
|
|
else
|
|
fprintf_filtered (file, "%-17.9g", flt1);
|
|
|
|
if (regnum % 2 == 0)
|
|
{
|
|
mips_read_fp_register_double (frame, regnum, raw_buffer);
|
|
doub = unpack_double (mips_double_register_type (), raw_buffer,
|
|
&inv2);
|
|
|
|
fprintf_filtered (file, " dbl: ");
|
|
if (inv2)
|
|
fprintf_filtered (file, "<invalid double>");
|
|
else
|
|
fprintf_filtered (file, "%-24.17g", doub);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Eight byte registers: print each one as hex, float and double. */
|
|
mips_read_fp_register_single (frame, regnum, raw_buffer);
|
|
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
|
|
|
|
mips_read_fp_register_double (frame, regnum, raw_buffer);
|
|
doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
|
|
|
|
|
|
print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
|
|
file);
|
|
|
|
fprintf_filtered (file, " flt: ");
|
|
if (inv1)
|
|
fprintf_filtered (file, "<invalid float>");
|
|
else
|
|
fprintf_filtered (file, "%-17.9g", flt1);
|
|
|
|
fprintf_filtered (file, " dbl: ");
|
|
if (inv2)
|
|
fprintf_filtered (file, "<invalid double>");
|
|
else
|
|
fprintf_filtered (file, "%-24.17g", doub);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_print_register (struct ui_file *file, struct frame_info *frame,
|
|
int regnum, int all)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
char raw_buffer[MAX_REGISTER_SIZE];
|
|
int offset;
|
|
|
|
if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
|
|
{
|
|
mips_print_fp_register (file, frame, regnum);
|
|
return;
|
|
}
|
|
|
|
/* Get the data in raw format. */
|
|
if (!frame_register_read (frame, regnum, raw_buffer))
|
|
{
|
|
fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
|
|
return;
|
|
}
|
|
|
|
fputs_filtered (REGISTER_NAME (regnum), file);
|
|
|
|
/* The problem with printing numeric register names (r26, etc.) is that
|
|
the user can't use them on input. Probably the best solution is to
|
|
fix it so that either the numeric or the funky (a2, etc.) names
|
|
are accepted on input. */
|
|
if (regnum < MIPS_NUMREGS)
|
|
fprintf_filtered (file, "(r%d): ", regnum);
|
|
else
|
|
fprintf_filtered (file, ": ");
|
|
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset =
|
|
register_size (current_gdbarch,
|
|
regnum) - register_size (current_gdbarch, regnum);
|
|
else
|
|
offset = 0;
|
|
|
|
print_scalar_formatted (raw_buffer + offset,
|
|
gdbarch_register_type (gdbarch, regnum), 'x', 0,
|
|
file);
|
|
}
|
|
|
|
/* Replacement for generic do_registers_info.
|
|
Print regs in pretty columns. */
|
|
|
|
static int
|
|
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
|
|
int regnum)
|
|
{
|
|
fprintf_filtered (file, " ");
|
|
mips_print_fp_register (file, frame, regnum);
|
|
fprintf_filtered (file, "\n");
|
|
return regnum + 1;
|
|
}
|
|
|
|
|
|
/* Print a row's worth of GP (int) registers, with name labels above */
|
|
|
|
static int
|
|
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
|
|
int start_regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
/* do values for GP (int) regs */
|
|
char raw_buffer[MAX_REGISTER_SIZE];
|
|
int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
|
|
int col, byte;
|
|
int regnum;
|
|
|
|
/* For GP registers, we print a separate row of names above the vals */
|
|
fprintf_filtered (file, " ");
|
|
for (col = 0, regnum = start_regnum;
|
|
col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
|
|
{
|
|
if (*REGISTER_NAME (regnum) == '\0')
|
|
continue; /* unused register */
|
|
if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
break; /* end the row: reached FP register */
|
|
fprintf_filtered (file,
|
|
mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
|
|
REGISTER_NAME (regnum));
|
|
col++;
|
|
}
|
|
/* print the R0 to R31 names */
|
|
if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
|
|
fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
|
|
else
|
|
fprintf_filtered (file, "\n ");
|
|
|
|
/* now print the values in hex, 4 or 8 to the row */
|
|
for (col = 0, regnum = start_regnum;
|
|
col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
|
|
{
|
|
if (*REGISTER_NAME (regnum) == '\0')
|
|
continue; /* unused register */
|
|
if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
break; /* end row: reached FP register */
|
|
/* OK: get the data in raw format. */
|
|
if (!frame_register_read (frame, regnum, raw_buffer))
|
|
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
|
/* pad small registers */
|
|
for (byte = 0;
|
|
byte < (mips_abi_regsize (current_gdbarch)
|
|
- register_size (current_gdbarch, regnum)); byte++)
|
|
printf_filtered (" ");
|
|
/* Now print the register value in hex, endian order. */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
for (byte =
|
|
register_size (current_gdbarch,
|
|
regnum) - register_size (current_gdbarch, regnum);
|
|
byte < register_size (current_gdbarch, regnum); byte++)
|
|
fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
|
|
else
|
|
for (byte = register_size (current_gdbarch, regnum) - 1;
|
|
byte >= 0; byte--)
|
|
fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
|
|
fprintf_filtered (file, " ");
|
|
col++;
|
|
}
|
|
if (col > 0) /* ie. if we actually printed anything... */
|
|
fprintf_filtered (file, "\n");
|
|
|
|
return regnum;
|
|
}
|
|
|
|
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
|
|
|
|
static void
|
|
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum, int all)
|
|
{
|
|
if (regnum != -1) /* do one specified register */
|
|
{
|
|
gdb_assert (regnum >= NUM_REGS);
|
|
if (*(REGISTER_NAME (regnum)) == '\0')
|
|
error ("Not a valid register for the current processor type");
|
|
|
|
mips_print_register (file, frame, regnum, 0);
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
else
|
|
/* do all (or most) registers */
|
|
{
|
|
regnum = NUM_REGS;
|
|
while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
{
|
|
if (all) /* true for "INFO ALL-REGISTERS" command */
|
|
regnum = print_fp_register_row (file, frame, regnum);
|
|
else
|
|
regnum += MIPS_NUMREGS; /* skip floating point regs */
|
|
}
|
|
else
|
|
regnum = print_gp_register_row (file, frame, regnum);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Is this a branch with a delay slot? */
|
|
|
|
static int is_delayed (unsigned long);
|
|
|
|
static int
|
|
is_delayed (unsigned long insn)
|
|
{
|
|
int i;
|
|
for (i = 0; i < NUMOPCODES; ++i)
|
|
if (mips_opcodes[i].pinfo != INSN_MACRO
|
|
&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
|
|
break;
|
|
return (i < NUMOPCODES
|
|
&& (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
|
|
| INSN_COND_BRANCH_DELAY
|
|
| INSN_COND_BRANCH_LIKELY)));
|
|
}
|
|
|
|
int
|
|
mips_step_skips_delay (CORE_ADDR pc)
|
|
{
|
|
char buf[MIPS_INSTLEN];
|
|
|
|
/* There is no branch delay slot on MIPS16. */
|
|
if (pc_is_mips16 (pc))
|
|
return 0;
|
|
|
|
if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
|
|
/* If error reading memory, guess that it is not a delayed branch. */
|
|
return 0;
|
|
return is_delayed ((unsigned long)
|
|
extract_unsigned_integer (buf, MIPS_INSTLEN));
|
|
}
|
|
|
|
/* Skip the PC past function prologue instructions (32-bit version).
|
|
This is a helper function for mips_skip_prologue. */
|
|
|
|
static CORE_ADDR
|
|
mips32_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
t_inst inst;
|
|
CORE_ADDR end_pc;
|
|
int seen_sp_adjust = 0;
|
|
int load_immediate_bytes = 0;
|
|
|
|
/* Find an upper bound on the prologue. */
|
|
end_pc = skip_prologue_using_sal (pc);
|
|
if (end_pc == 0)
|
|
end_pc = pc + 100; /* Magic. */
|
|
|
|
/* Skip the typical prologue instructions. These are the stack adjustment
|
|
instruction and the instructions that save registers on the stack
|
|
or in the gcc frame. */
|
|
for (; pc < end_pc; pc += MIPS_INSTLEN)
|
|
{
|
|
unsigned long high_word;
|
|
|
|
inst = mips_fetch_instruction (pc);
|
|
high_word = (inst >> 16) & 0xffff;
|
|
|
|
if (high_word == 0x27bd /* addiu $sp,$sp,offset */
|
|
|| high_word == 0x67bd) /* daddiu $sp,$sp,offset */
|
|
seen_sp_adjust = 1;
|
|
else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
|
|
inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
|
|
seen_sp_adjust = 1;
|
|
else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
|
|
|| (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
|
|
&& (inst & 0x001F0000)) /* reg != $zero */
|
|
continue;
|
|
|
|
else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
|
|
continue;
|
|
else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
|
|
/* sx reg,n($s8) */
|
|
continue; /* reg != $zero */
|
|
|
|
/* move $s8,$sp. With different versions of gas this will be either
|
|
`addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
|
|
Accept any one of these. */
|
|
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
|
|
continue;
|
|
|
|
else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
|
|
continue;
|
|
else if (high_word == 0x3c1c) /* lui $gp,n */
|
|
continue;
|
|
else if (high_word == 0x279c) /* addiu $gp,$gp,n */
|
|
continue;
|
|
else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
|
|
|| inst == 0x033ce021) /* addu $gp,$t9,$gp */
|
|
continue;
|
|
/* The following instructions load $at or $t0 with an immediate
|
|
value in preparation for a stack adjustment via
|
|
subu $sp,$sp,[$at,$t0]. These instructions could also initialize
|
|
a local variable, so we accept them only before a stack adjustment
|
|
instruction was seen. */
|
|
else if (!seen_sp_adjust)
|
|
{
|
|
if (high_word == 0x3c01 || /* lui $at,n */
|
|
high_word == 0x3c08) /* lui $t0,n */
|
|
{
|
|
load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
|
|
continue;
|
|
}
|
|
else if (high_word == 0x3421 || /* ori $at,$at,n */
|
|
high_word == 0x3508 || /* ori $t0,$t0,n */
|
|
high_word == 0x3401 || /* ori $at,$zero,n */
|
|
high_word == 0x3408) /* ori $t0,$zero,n */
|
|
{
|
|
load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
|
|
continue;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* In a frameless function, we might have incorrectly
|
|
skipped some load immediate instructions. Undo the skipping
|
|
if the load immediate was not followed by a stack adjustment. */
|
|
if (load_immediate_bytes && !seen_sp_adjust)
|
|
pc -= load_immediate_bytes;
|
|
return pc;
|
|
}
|
|
|
|
/* Skip the PC past function prologue instructions (16-bit version).
|
|
This is a helper function for mips_skip_prologue. */
|
|
|
|
static CORE_ADDR
|
|
mips16_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR end_pc;
|
|
int extend_bytes = 0;
|
|
int prev_extend_bytes;
|
|
|
|
/* Table of instructions likely to be found in a function prologue. */
|
|
static struct
|
|
{
|
|
unsigned short inst;
|
|
unsigned short mask;
|
|
}
|
|
table[] =
|
|
{
|
|
{
|
|
0x6300, 0xff00}
|
|
, /* addiu $sp,offset */
|
|
{
|
|
0xfb00, 0xff00}
|
|
, /* daddiu $sp,offset */
|
|
{
|
|
0xd000, 0xf800}
|
|
, /* sw reg,n($sp) */
|
|
{
|
|
0xf900, 0xff00}
|
|
, /* sd reg,n($sp) */
|
|
{
|
|
0x6200, 0xff00}
|
|
, /* sw $ra,n($sp) */
|
|
{
|
|
0xfa00, 0xff00}
|
|
, /* sd $ra,n($sp) */
|
|
{
|
|
0x673d, 0xffff}
|
|
, /* move $s1,sp */
|
|
{
|
|
0xd980, 0xff80}
|
|
, /* sw $a0-$a3,n($s1) */
|
|
{
|
|
0x6704, 0xff1c}
|
|
, /* move reg,$a0-$a3 */
|
|
{
|
|
0xe809, 0xf81f}
|
|
, /* entry pseudo-op */
|
|
{
|
|
0x0100, 0xff00}
|
|
, /* addiu $s1,$sp,n */
|
|
{
|
|
0, 0} /* end of table marker */
|
|
};
|
|
|
|
/* Find an upper bound on the prologue. */
|
|
end_pc = skip_prologue_using_sal (pc);
|
|
if (end_pc == 0)
|
|
end_pc = pc + 100; /* Magic. */
|
|
|
|
/* Skip the typical prologue instructions. These are the stack adjustment
|
|
instruction and the instructions that save registers on the stack
|
|
or in the gcc frame. */
|
|
for (; pc < end_pc; pc += MIPS16_INSTLEN)
|
|
{
|
|
unsigned short inst;
|
|
int i;
|
|
|
|
inst = mips_fetch_instruction (pc);
|
|
|
|
/* Normally we ignore an extend instruction. However, if it is
|
|
not followed by a valid prologue instruction, we must adjust
|
|
the pc back over the extend so that it won't be considered
|
|
part of the prologue. */
|
|
if ((inst & 0xf800) == 0xf000) /* extend */
|
|
{
|
|
extend_bytes = MIPS16_INSTLEN;
|
|
continue;
|
|
}
|
|
prev_extend_bytes = extend_bytes;
|
|
extend_bytes = 0;
|
|
|
|
/* Check for other valid prologue instructions besides extend. */
|
|
for (i = 0; table[i].mask != 0; i++)
|
|
if ((inst & table[i].mask) == table[i].inst) /* found, get out */
|
|
break;
|
|
if (table[i].mask != 0) /* it was in table? */
|
|
continue; /* ignore it */
|
|
else
|
|
/* non-prologue */
|
|
{
|
|
/* Return the current pc, adjusted backwards by 2 if
|
|
the previous instruction was an extend. */
|
|
return pc - prev_extend_bytes;
|
|
}
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
|
if the code at PC does not look like a function prologue; otherwise
|
|
returns an address that (if we're lucky) follows the prologue. If
|
|
LENIENT, then we must skip everything which is involved in setting
|
|
up the frame (it's OK to skip more, just so long as we don't skip
|
|
anything which might clobber the registers which are being saved.
|
|
We must skip more in the case where part of the prologue is in the
|
|
delay slot of a non-prologue instruction). */
|
|
|
|
static CORE_ADDR
|
|
mips_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
|
|
CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
|
|
|
|
if (post_prologue_pc != 0)
|
|
return max (pc, post_prologue_pc);
|
|
|
|
/* Can't determine prologue from the symbol table, need to examine
|
|
instructions. */
|
|
|
|
if (pc_is_mips16 (pc))
|
|
return mips16_skip_prologue (pc);
|
|
else
|
|
return mips32_skip_prologue (pc);
|
|
}
|
|
|
|
/* Root of all "set mips "/"show mips " commands. This will eventually be
|
|
used for all MIPS-specific commands. */
|
|
|
|
static void
|
|
show_mips_command (char *args, int from_tty)
|
|
{
|
|
help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
set_mips_command (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered
|
|
("\"set mips\" must be followed by an appropriate subcommand.\n");
|
|
help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
/* Commands to show/set the MIPS FPU type. */
|
|
|
|
static void
|
|
show_mipsfpu_command (char *args, int from_tty)
|
|
{
|
|
char *fpu;
|
|
switch (MIPS_FPU_TYPE)
|
|
{
|
|
case MIPS_FPU_SINGLE:
|
|
fpu = "single-precision";
|
|
break;
|
|
case MIPS_FPU_DOUBLE:
|
|
fpu = "double-precision";
|
|
break;
|
|
case MIPS_FPU_NONE:
|
|
fpu = "absent (none)";
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
|
}
|
|
if (mips_fpu_type_auto)
|
|
printf_unfiltered
|
|
("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
|
|
fpu);
|
|
else
|
|
printf_unfiltered
|
|
("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
|
|
}
|
|
|
|
|
|
static void
|
|
set_mipsfpu_command (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered
|
|
("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
|
|
show_mipsfpu_command (args, from_tty);
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_single_command (char *args, int from_tty)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
mips_fpu_type = MIPS_FPU_SINGLE;
|
|
mips_fpu_type_auto = 0;
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
internal_error (__FILE__, __LINE__, "set mipsfpu failed");
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_double_command (char *args, int from_tty)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
mips_fpu_type = MIPS_FPU_DOUBLE;
|
|
mips_fpu_type_auto = 0;
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
internal_error (__FILE__, __LINE__, "set mipsfpu failed");
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_none_command (char *args, int from_tty)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
mips_fpu_type = MIPS_FPU_NONE;
|
|
mips_fpu_type_auto = 0;
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
internal_error (__FILE__, __LINE__, "set mipsfpu failed");
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_auto_command (char *args, int from_tty)
|
|
{
|
|
mips_fpu_type_auto = 1;
|
|
}
|
|
|
|
/* Attempt to identify the particular processor model by reading the
|
|
processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
|
|
the relevant processor still exists (it dates back to '94) and
|
|
secondly this is not the way to do this. The processor type should
|
|
be set by forcing an architecture change. */
|
|
|
|
void
|
|
deprecated_mips_set_processor_regs_hack (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
CORE_ADDR prid;
|
|
|
|
prid = read_register (PRID_REGNUM);
|
|
|
|
if ((prid & ~0xf) == 0x700)
|
|
tdep->mips_processor_reg_names = mips_r3041_reg_names;
|
|
}
|
|
|
|
/* Just like reinit_frame_cache, but with the right arguments to be
|
|
callable as an sfunc. */
|
|
|
|
static void
|
|
reinit_frame_cache_sfunc (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
static int
|
|
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
mips_extra_func_info_t proc_desc;
|
|
|
|
/* Search for the function containing this address. Set the low bit
|
|
of the address when searching, in case we were given an even address
|
|
that is the start of a 16-bit function. If we didn't do this,
|
|
the search would fail because the symbol table says the function
|
|
starts at an odd address, i.e. 1 byte past the given address. */
|
|
memaddr = ADDR_BITS_REMOVE (memaddr);
|
|
proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
|
|
|
|
/* Make an attempt to determine if this is a 16-bit function. If
|
|
the procedure descriptor exists and the address therein is odd,
|
|
it's definitely a 16-bit function. Otherwise, we have to just
|
|
guess that if the address passed in is odd, it's 16-bits. */
|
|
/* FIXME: cagney/2003-06-26: Is this even necessary? The
|
|
disassembler needs to be able to locally determine the ISA, and
|
|
not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
|
|
work. */
|
|
if (proc_desc)
|
|
{
|
|
if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
|
|
info->mach = bfd_mach_mips16;
|
|
}
|
|
else
|
|
{
|
|
if (pc_is_mips16 (memaddr))
|
|
info->mach = bfd_mach_mips16;
|
|
}
|
|
|
|
/* Round down the instruction address to the appropriate boundary. */
|
|
memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
|
|
|
|
/* Set the disassembler options. */
|
|
if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
|
|
{
|
|
/* Set up the disassembler info, so that we get the right
|
|
register names from libopcodes. */
|
|
if (tdep->mips_abi == MIPS_ABI_N32)
|
|
info->disassembler_options = "gpr-names=n32";
|
|
else
|
|
info->disassembler_options = "gpr-names=64";
|
|
info->flavour = bfd_target_elf_flavour;
|
|
}
|
|
else
|
|
/* This string is not recognized explicitly by the disassembler,
|
|
but it tells the disassembler to not try to guess the ABI from
|
|
the bfd elf headers, such that, if the user overrides the ABI
|
|
of a program linked as NewABI, the disassembly will follow the
|
|
register naming conventions specified by the user. */
|
|
info->disassembler_options = "gpr-names=32";
|
|
|
|
/* Call the appropriate disassembler based on the target endian-ness. */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
return print_insn_big_mips (memaddr, info);
|
|
else
|
|
return print_insn_little_mips (memaddr, info);
|
|
}
|
|
|
|
/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
|
|
counter value to determine whether a 16- or 32-bit breakpoint should be
|
|
used. It returns a pointer to a string of bytes that encode a breakpoint
|
|
instruction, stores the length of the string to *lenptr, and adjusts pc
|
|
(if necessary) to point to the actual memory location where the
|
|
breakpoint should be inserted. */
|
|
|
|
static const unsigned char *
|
|
mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
if (pc_is_mips16 (*pcptr))
|
|
{
|
|
static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
|
|
*pcptr = unmake_mips16_addr (*pcptr);
|
|
*lenptr = sizeof (mips16_big_breakpoint);
|
|
return mips16_big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
/* The IDT board uses an unusual breakpoint value, and
|
|
sometimes gets confused when it sees the usual MIPS
|
|
breakpoint instruction. */
|
|
static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
|
|
static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
|
|
static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
|
|
|
|
*lenptr = sizeof (big_breakpoint);
|
|
|
|
if (strcmp (target_shortname, "mips") == 0)
|
|
return idt_big_breakpoint;
|
|
else if (strcmp (target_shortname, "ddb") == 0
|
|
|| strcmp (target_shortname, "pmon") == 0
|
|
|| strcmp (target_shortname, "lsi") == 0)
|
|
return pmon_big_breakpoint;
|
|
else
|
|
return big_breakpoint;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (pc_is_mips16 (*pcptr))
|
|
{
|
|
static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
|
|
*pcptr = unmake_mips16_addr (*pcptr);
|
|
*lenptr = sizeof (mips16_little_breakpoint);
|
|
return mips16_little_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
|
|
static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
|
|
static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
|
|
|
|
*lenptr = sizeof (little_breakpoint);
|
|
|
|
if (strcmp (target_shortname, "mips") == 0)
|
|
return idt_little_breakpoint;
|
|
else if (strcmp (target_shortname, "ddb") == 0
|
|
|| strcmp (target_shortname, "pmon") == 0
|
|
|| strcmp (target_shortname, "lsi") == 0)
|
|
return pmon_little_breakpoint;
|
|
else
|
|
return little_breakpoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If PC is in a mips16 call or return stub, return the address of the target
|
|
PC, which is either the callee or the caller. There are several
|
|
cases which must be handled:
|
|
|
|
* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
|
|
target PC is in $31 ($ra).
|
|
* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
|
|
and the target PC is in $2.
|
|
* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub
|
|
and the the target PC is in $2. Otherwise this is effectively
|
|
a return stub and the target PC is in $18.
|
|
|
|
See the source code for the stubs in gcc/config/mips/mips16.S for
|
|
gory details.
|
|
|
|
This function implements the SKIP_TRAMPOLINE_CODE macro.
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
mips_skip_stub (CORE_ADDR pc)
|
|
{
|
|
char *name;
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address and name of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
|
|
target PC is in $31 ($ra). */
|
|
if (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0)
|
|
return read_signed_register (RA_REGNUM);
|
|
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
|
|
{
|
|
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
|
|
and the target PC is in $2. */
|
|
if (name[19] >= '0' && name[19] <= '9')
|
|
return read_signed_register (2);
|
|
|
|
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub
|
|
and the the target PC is in $2. Otherwise this is effectively
|
|
a return stub and the target PC is in $18. */
|
|
else if (name[19] == 's' || name[19] == 'd')
|
|
{
|
|
if (pc == start_addr)
|
|
{
|
|
/* Check if the target of the stub is a compiler-generated
|
|
stub. Such a stub for a function bar might have a name
|
|
like __fn_stub_bar, and might look like this:
|
|
mfc1 $4,$f13
|
|
mfc1 $5,$f12
|
|
mfc1 $6,$f15
|
|
mfc1 $7,$f14
|
|
la $1,bar (becomes a lui/addiu pair)
|
|
jr $1
|
|
So scan down to the lui/addi and extract the target
|
|
address from those two instructions. */
|
|
|
|
CORE_ADDR target_pc = read_signed_register (2);
|
|
t_inst inst;
|
|
int i;
|
|
|
|
/* See if the name of the target function is __fn_stub_*. */
|
|
if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
|
|
0)
|
|
return target_pc;
|
|
if (strncmp (name, "__fn_stub_", 10) != 0
|
|
&& strcmp (name, "etext") != 0
|
|
&& strcmp (name, "_etext") != 0)
|
|
return target_pc;
|
|
|
|
/* Scan through this _fn_stub_ code for the lui/addiu pair.
|
|
The limit on the search is arbitrarily set to 20
|
|
instructions. FIXME. */
|
|
for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
|
|
{
|
|
inst = mips_fetch_instruction (target_pc);
|
|
if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
|
|
pc = (inst << 16) & 0xffff0000; /* high word */
|
|
else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
|
|
return pc | (inst & 0xffff); /* low word */
|
|
}
|
|
|
|
/* Couldn't find the lui/addui pair, so return stub address. */
|
|
return target_pc;
|
|
}
|
|
else
|
|
/* This is the 'return' part of a call stub. The return
|
|
address is in $r18. */
|
|
return read_signed_register (18);
|
|
}
|
|
}
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
|
|
/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
|
|
This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
|
|
|
|
static int
|
|
mips_in_call_stub (CORE_ADDR pc, char *name)
|
|
{
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address of the function containing the PC. If the
|
|
caller didn't give us a name, look it up at the same time. */
|
|
if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) ==
|
|
0)
|
|
return 0;
|
|
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
|
|
{
|
|
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
|
|
if (name[19] >= '0' && name[19] <= '9')
|
|
return 1;
|
|
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub. */
|
|
else if (name[19] == 's' || name[19] == 'd')
|
|
return pc == start_addr;
|
|
}
|
|
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
|
|
/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
|
|
This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
|
|
|
|
static int
|
|
mips_in_return_stub (CORE_ADDR pc, char *name)
|
|
{
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
|
|
if (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0)
|
|
return 1;
|
|
|
|
/* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
|
|
i.e. after the jal instruction, this is effectively a return stub. */
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0
|
|
&& (name[19] == 's' || name[19] == 'd') && pc != start_addr)
|
|
return 1;
|
|
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
|
|
/* Return non-zero if the PC is in a library helper function that should
|
|
be ignored. This implements the IGNORE_HELPER_CALL macro. */
|
|
|
|
int
|
|
mips_ignore_helper (CORE_ADDR pc)
|
|
{
|
|
char *name;
|
|
|
|
/* Find the starting address and name of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
|
|
that we want to ignore. */
|
|
return (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0);
|
|
}
|
|
|
|
|
|
/* Convert a dbx stab register number (from `r' declaration) to a GDB
|
|
[1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
|
|
|
|
static int
|
|
mips_stab_reg_to_regnum (int num)
|
|
{
|
|
int regnum;
|
|
if (num >= 0 && num < 32)
|
|
regnum = num;
|
|
else if (num >= 38 && num < 70)
|
|
regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
|
|
else if (num == 70)
|
|
regnum = mips_regnum (current_gdbarch)->hi;
|
|
else if (num == 71)
|
|
regnum = mips_regnum (current_gdbarch)->lo;
|
|
else
|
|
/* This will hopefully (eventually) provoke a warning. Should
|
|
we be calling complaint() here? */
|
|
return NUM_REGS + NUM_PSEUDO_REGS;
|
|
return NUM_REGS + regnum;
|
|
}
|
|
|
|
|
|
/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
|
|
NUM_REGS .. 2 * NUM_REGS) REGNUM. */
|
|
|
|
static int
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
|
|
{
|
|
int regnum;
|
|
if (num >= 0 && num < 32)
|
|
regnum = num;
|
|
else if (num >= 32 && num < 64)
|
|
regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
|
|
else if (num == 64)
|
|
regnum = mips_regnum (current_gdbarch)->hi;
|
|
else if (num == 65)
|
|
regnum = mips_regnum (current_gdbarch)->lo;
|
|
else
|
|
/* This will hopefully (eventually) provoke a warning. Should we
|
|
be calling complaint() here? */
|
|
return NUM_REGS + NUM_PSEUDO_REGS;
|
|
return NUM_REGS + regnum;
|
|
}
|
|
|
|
static int
|
|
mips_register_sim_regno (int regnum)
|
|
{
|
|
/* Only makes sense to supply raw registers. */
|
|
gdb_assert (regnum >= 0 && regnum < NUM_REGS);
|
|
/* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
|
|
decide if it is valid. Should instead define a standard sim/gdb
|
|
register numbering scheme. */
|
|
if (REGISTER_NAME (NUM_REGS + regnum) != NULL
|
|
&& REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
|
|
return regnum;
|
|
else
|
|
return LEGACY_SIM_REGNO_IGNORE;
|
|
}
|
|
|
|
|
|
/* Convert an integer into an address. By first converting the value
|
|
into a pointer and then extracting it signed, the address is
|
|
guarenteed to be correctly sign extended. */
|
|
|
|
static CORE_ADDR
|
|
mips_integer_to_address (struct type *type, void *buf)
|
|
{
|
|
char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
|
|
LONGEST val = unpack_long (type, buf);
|
|
store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
|
|
return extract_signed_integer (tmp,
|
|
TYPE_LENGTH (builtin_type_void_data_ptr));
|
|
}
|
|
|
|
static void
|
|
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
|
|
{
|
|
enum mips_abi *abip = (enum mips_abi *) obj;
|
|
const char *name = bfd_get_section_name (abfd, sect);
|
|
|
|
if (*abip != MIPS_ABI_UNKNOWN)
|
|
return;
|
|
|
|
if (strncmp (name, ".mdebug.", 8) != 0)
|
|
return;
|
|
|
|
if (strcmp (name, ".mdebug.abi32") == 0)
|
|
*abip = MIPS_ABI_O32;
|
|
else if (strcmp (name, ".mdebug.abiN32") == 0)
|
|
*abip = MIPS_ABI_N32;
|
|
else if (strcmp (name, ".mdebug.abi64") == 0)
|
|
*abip = MIPS_ABI_N64;
|
|
else if (strcmp (name, ".mdebug.abiO64") == 0)
|
|
*abip = MIPS_ABI_O64;
|
|
else if (strcmp (name, ".mdebug.eabi32") == 0)
|
|
*abip = MIPS_ABI_EABI32;
|
|
else if (strcmp (name, ".mdebug.eabi64") == 0)
|
|
*abip = MIPS_ABI_EABI64;
|
|
else
|
|
warning ("unsupported ABI %s.", name + 8);
|
|
}
|
|
|
|
static enum mips_abi
|
|
global_mips_abi (void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; mips_abi_strings[i] != NULL; i++)
|
|
if (mips_abi_strings[i] == mips_abi_string)
|
|
return (enum mips_abi) i;
|
|
|
|
internal_error (__FILE__, __LINE__, "unknown ABI string");
|
|
}
|
|
|
|
static struct gdbarch *
|
|
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags;
|
|
enum mips_abi mips_abi, found_abi, wanted_abi;
|
|
int num_regs;
|
|
enum mips_fpu_type fpu_type;
|
|
|
|
/* First of all, extract the elf_flags, if available. */
|
|
if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
|
else if (arches != NULL)
|
|
elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
|
|
else
|
|
elf_flags = 0;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
|
|
|
|
/* Check ELF_FLAGS to see if it specifies the ABI being used. */
|
|
switch ((elf_flags & EF_MIPS_ABI))
|
|
{
|
|
case E_MIPS_ABI_O32:
|
|
found_abi = MIPS_ABI_O32;
|
|
break;
|
|
case E_MIPS_ABI_O64:
|
|
found_abi = MIPS_ABI_O64;
|
|
break;
|
|
case E_MIPS_ABI_EABI32:
|
|
found_abi = MIPS_ABI_EABI32;
|
|
break;
|
|
case E_MIPS_ABI_EABI64:
|
|
found_abi = MIPS_ABI_EABI64;
|
|
break;
|
|
default:
|
|
if ((elf_flags & EF_MIPS_ABI2))
|
|
found_abi = MIPS_ABI_N32;
|
|
else
|
|
found_abi = MIPS_ABI_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
/* GCC creates a pseudo-section whose name describes the ABI. */
|
|
if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
|
|
bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
|
|
|
|
/* If we have no useful BFD information, use the ABI from the last
|
|
MIPS architecture (if there is one). */
|
|
if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
|
|
found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
|
|
|
|
/* Try the architecture for any hint of the correct ABI. */
|
|
if (found_abi == MIPS_ABI_UNKNOWN
|
|
&& info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->arch == bfd_arch_mips)
|
|
{
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_mips3900:
|
|
found_abi = MIPS_ABI_EABI32;
|
|
break;
|
|
case bfd_mach_mips4100:
|
|
case bfd_mach_mips5000:
|
|
found_abi = MIPS_ABI_EABI64;
|
|
break;
|
|
case bfd_mach_mips8000:
|
|
case bfd_mach_mips10000:
|
|
/* On Irix, ELF64 executables use the N64 ABI. The
|
|
pseudo-sections which describe the ABI aren't present
|
|
on IRIX. (Even for executables created by gcc.) */
|
|
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
|
|
&& elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
|
found_abi = MIPS_ABI_N64;
|
|
else
|
|
found_abi = MIPS_ABI_N32;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
|
|
found_abi);
|
|
|
|
/* What has the user specified from the command line? */
|
|
wanted_abi = global_mips_abi ();
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
|
|
wanted_abi);
|
|
|
|
/* Now that we have found what the ABI for this binary would be,
|
|
check whether the user is overriding it. */
|
|
if (wanted_abi != MIPS_ABI_UNKNOWN)
|
|
mips_abi = wanted_abi;
|
|
else if (found_abi != MIPS_ABI_UNKNOWN)
|
|
mips_abi = found_abi;
|
|
else
|
|
mips_abi = MIPS_ABI_O32;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
|
|
mips_abi);
|
|
|
|
/* Also used when doing an architecture lookup. */
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
|
|
mips64_transfers_32bit_regs_p);
|
|
|
|
/* Determine the MIPS FPU type. */
|
|
if (!mips_fpu_type_auto)
|
|
fpu_type = mips_fpu_type;
|
|
else if (info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->arch == bfd_arch_mips)
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_mips3900:
|
|
case bfd_mach_mips4100:
|
|
case bfd_mach_mips4111:
|
|
case bfd_mach_mips4120:
|
|
fpu_type = MIPS_FPU_NONE;
|
|
break;
|
|
case bfd_mach_mips4650:
|
|
fpu_type = MIPS_FPU_SINGLE;
|
|
break;
|
|
default:
|
|
fpu_type = MIPS_FPU_DOUBLE;
|
|
break;
|
|
}
|
|
else if (arches != NULL)
|
|
fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
|
|
else
|
|
fpu_type = MIPS_FPU_DOUBLE;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_gdbarch_init: fpu_type = %d\n", fpu_type);
|
|
|
|
/* try to find a pre-existing architecture */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
/* MIPS needs to be pedantic about which ABI the object is
|
|
using. */
|
|
if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
|
|
continue;
|
|
if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
|
|
continue;
|
|
/* Need to be pedantic about which register virtual size is
|
|
used. */
|
|
if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
|
|
!= mips64_transfers_32bit_regs_p)
|
|
continue;
|
|
/* Be pedantic about which FPU is selected. */
|
|
if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
|
|
continue;
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* Need a new architecture. Fill in a target specific vector. */
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
tdep->elf_flags = elf_flags;
|
|
tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
|
|
tdep->found_abi = found_abi;
|
|
tdep->mips_abi = mips_abi;
|
|
tdep->mips_fpu_type = fpu_type;
|
|
|
|
/* Initially set everything according to the default ABI/ISA. */
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
|
|
set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
|
|
|
|
set_gdbarch_elf_make_msymbol_special (gdbarch,
|
|
mips_elf_make_msymbol_special);
|
|
|
|
/* Fill in the OS dependant register numbers and names. */
|
|
{
|
|
const char **reg_names;
|
|
struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
|
|
struct mips_regnum);
|
|
if (info.osabi == GDB_OSABI_IRIX)
|
|
{
|
|
regnum->fp0 = 32;
|
|
regnum->pc = 64;
|
|
regnum->cause = 65;
|
|
regnum->badvaddr = 66;
|
|
regnum->hi = 67;
|
|
regnum->lo = 68;
|
|
regnum->fp_control_status = 69;
|
|
regnum->fp_implementation_revision = 70;
|
|
num_regs = 71;
|
|
reg_names = mips_irix_reg_names;
|
|
}
|
|
else
|
|
{
|
|
regnum->lo = MIPS_EMBED_LO_REGNUM;
|
|
regnum->hi = MIPS_EMBED_HI_REGNUM;
|
|
regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
|
|
regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
|
|
regnum->pc = MIPS_EMBED_PC_REGNUM;
|
|
regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
|
|
regnum->fp_control_status = 70;
|
|
regnum->fp_implementation_revision = 71;
|
|
num_regs = 90;
|
|
if (info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->mach == bfd_mach_mips3900)
|
|
reg_names = mips_tx39_reg_names;
|
|
else
|
|
reg_names = mips_generic_reg_names;
|
|
}
|
|
/* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
|
|
replaced by read_pc? */
|
|
set_gdbarch_pc_regnum (gdbarch, regnum->pc);
|
|
set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
|
|
set_gdbarch_register_name (gdbarch, mips_register_name);
|
|
tdep->mips_processor_reg_names = reg_names;
|
|
tdep->regnum = regnum;
|
|
}
|
|
|
|
switch (mips_abi)
|
|
{
|
|
case MIPS_ABI_O32:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_o32_return_value);
|
|
tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case MIPS_ABI_O64:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
|
|
set_gdbarch_deprecated_store_return_value (gdbarch,
|
|
mips_o64_store_return_value);
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch,
|
|
mips_o64_extract_return_value);
|
|
tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_use_struct_convention (gdbarch,
|
|
always_use_struct_convention);
|
|
break;
|
|
case MIPS_ABI_EABI32:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
|
|
set_gdbarch_deprecated_store_return_value (gdbarch,
|
|
mips_eabi_store_return_value);
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch,
|
|
mips_eabi_extract_return_value);
|
|
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_deprecated_reg_struct_has_addr
|
|
(gdbarch, mips_eabi_reg_struct_has_addr);
|
|
set_gdbarch_use_struct_convention (gdbarch,
|
|
mips_eabi_use_struct_convention);
|
|
break;
|
|
case MIPS_ABI_EABI64:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
|
|
set_gdbarch_deprecated_store_return_value (gdbarch,
|
|
mips_eabi_store_return_value);
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch,
|
|
mips_eabi_extract_return_value);
|
|
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_deprecated_reg_struct_has_addr
|
|
(gdbarch, mips_eabi_reg_struct_has_addr);
|
|
set_gdbarch_use_struct_convention (gdbarch,
|
|
mips_eabi_use_struct_convention);
|
|
break;
|
|
case MIPS_ABI_N32:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
|
|
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case MIPS_ABI_N64:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
|
|
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "unknown ABI in switch");
|
|
}
|
|
|
|
/* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
|
|
that could indicate -gp32 BUT gas/config/tc-mips.c contains the
|
|
comment:
|
|
|
|
``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
|
|
flag in object files because to do so would make it impossible to
|
|
link with libraries compiled without "-gp32". This is
|
|
unnecessarily restrictive.
|
|
|
|
We could solve this problem by adding "-gp32" multilibs to gcc,
|
|
but to set this flag before gcc is built with such multilibs will
|
|
break too many systems.''
|
|
|
|
But even more unhelpfully, the default linker output target for
|
|
mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
|
|
for 64-bit programs - you need to change the ABI to change this,
|
|
and not all gcc targets support that currently. Therefore using
|
|
this flag to detect 32-bit mode would do the wrong thing given
|
|
the current gcc - it would make GDB treat these 64-bit programs
|
|
as 32-bit programs by default. */
|
|
|
|
set_gdbarch_read_pc (gdbarch, mips_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, mips_write_pc);
|
|
set_gdbarch_read_sp (gdbarch, mips_read_sp);
|
|
|
|
/* Add/remove bits from an address. The MIPS needs be careful to
|
|
ensure that all 32 bit addresses are sign extended to 64 bits. */
|
|
set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
|
|
|
|
/* Unwind the frame. */
|
|
set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
|
|
set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
|
|
|
|
/* Map debug register numbers onto internal register numbers. */
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
|
|
set_gdbarch_ecoff_reg_to_regnum (gdbarch,
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch,
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
|
|
set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
|
|
|
|
/* MIPS version of CALL_DUMMY */
|
|
|
|
/* NOTE: cagney/2003-08-05: Eventually call dummy location will be
|
|
replaced by a command, and all targets will default to on stack
|
|
(regardless of the stack's execute status). */
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
|
|
set_gdbarch_frame_align (gdbarch, mips_frame_align);
|
|
|
|
set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
|
|
set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
|
|
set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
|
|
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
|
|
|
|
set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
|
|
set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
|
|
set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
|
|
|
|
set_gdbarch_register_type (gdbarch, mips_register_type);
|
|
|
|
set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
|
|
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
|
|
|
|
/* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
|
|
HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
|
|
need to all be folded into the target vector. Since they are
|
|
being used as guards for STOPPED_BY_WATCHPOINT, why not have
|
|
STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
|
|
is sitting on? */
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
|
|
|
set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
|
|
|
|
/* NOTE drow/2004-02-11: We overload the core solib trampoline code
|
|
to support MIPS16. This is a bad thing. Make sure not to do it
|
|
if we have an OS ABI that actually supports shared libraries, since
|
|
shared library support is more important. If we have an OS someday
|
|
that supports both shared libraries and MIPS16, we'll have to find
|
|
a better place for these. */
|
|
if (info.osabi == GDB_OSABI_UNKNOWN)
|
|
{
|
|
set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
|
|
set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
|
|
}
|
|
|
|
/* Hook in OS ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
/* Unwind the frame. */
|
|
frame_unwind_append_sniffer (gdbarch, mips_mdebug_frame_sniffer);
|
|
frame_base_append_sniffer (gdbarch, mips_mdebug_frame_base_sniffer);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
static void
|
|
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
|
|
{
|
|
struct gdbarch_info info;
|
|
|
|
/* Force the architecture to update, and (if it's a MIPS architecture)
|
|
mips_gdbarch_init will take care of the rest. */
|
|
gdbarch_info_init (&info);
|
|
gdbarch_update_p (info);
|
|
}
|
|
|
|
/* Print out which MIPS ABI is in use. */
|
|
|
|
static void
|
|
show_mips_abi (char *ignore_args, int from_tty)
|
|
{
|
|
if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
|
|
printf_filtered
|
|
("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
|
|
else
|
|
{
|
|
enum mips_abi global_abi = global_mips_abi ();
|
|
enum mips_abi actual_abi = mips_abi (current_gdbarch);
|
|
const char *actual_abi_str = mips_abi_strings[actual_abi];
|
|
|
|
if (global_abi == MIPS_ABI_UNKNOWN)
|
|
printf_filtered
|
|
("The MIPS ABI is set automatically (currently \"%s\").\n",
|
|
actual_abi_str);
|
|
else if (global_abi == actual_abi)
|
|
printf_filtered
|
|
("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
|
|
actual_abi_str);
|
|
else
|
|
{
|
|
/* Probably shouldn't happen... */
|
|
printf_filtered
|
|
("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
|
|
actual_abi_str, mips_abi_strings[global_abi]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
if (tdep != NULL)
|
|
{
|
|
int ef_mips_arch;
|
|
int ef_mips_32bitmode;
|
|
/* determine the ISA */
|
|
switch (tdep->elf_flags & EF_MIPS_ARCH)
|
|
{
|
|
case E_MIPS_ARCH_1:
|
|
ef_mips_arch = 1;
|
|
break;
|
|
case E_MIPS_ARCH_2:
|
|
ef_mips_arch = 2;
|
|
break;
|
|
case E_MIPS_ARCH_3:
|
|
ef_mips_arch = 3;
|
|
break;
|
|
case E_MIPS_ARCH_4:
|
|
ef_mips_arch = 4;
|
|
break;
|
|
default:
|
|
ef_mips_arch = 0;
|
|
break;
|
|
}
|
|
/* determine the size of a pointer */
|
|
ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: tdep->elf_flags = 0x%x\n",
|
|
tdep->elf_flags);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ef_mips_32bitmode = %d\n",
|
|
ef_mips_32bitmode);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ef_mips_arch = %d\n",
|
|
ef_mips_arch);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
|
|
tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
|
|
mips_mask_address_p (tdep),
|
|
tdep->default_mask_address_p);
|
|
}
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
|
|
MIPS_DEFAULT_FPU_TYPE,
|
|
(MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
|
|
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
|
|
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
|
|
: "???"));
|
|
fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
|
|
MIPS_FPU_TYPE,
|
|
(MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
|
|
: MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
|
|
: MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
|
|
: "???"));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: mips_stack_argsize() = %d\n",
|
|
mips_stack_argsize (current_gdbarch));
|
|
fprintf_unfiltered (file, "mips_dump_tdep: A0_REGNUM = %d\n", A0_REGNUM);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
|
|
XSTRING (ADDR_BITS_REMOVE (ADDR)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ATTACH_DETACH # %s\n",
|
|
XSTRING (ATTACH_DETACH));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
|
|
XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
|
|
XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
|
|
FIRST_EMBED_REGNUM);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
|
|
XSTRING (IGNORE_HELPER_CALL (PC)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
|
|
XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
|
|
XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
|
|
LAST_EMBED_REGNUM);
|
|
#ifdef MACHINE_CPROC_FP_OFFSET
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
|
|
MACHINE_CPROC_FP_OFFSET);
|
|
#endif
|
|
#ifdef MACHINE_CPROC_PC_OFFSET
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
|
|
MACHINE_CPROC_PC_OFFSET);
|
|
#endif
|
|
#ifdef MACHINE_CPROC_SP_OFFSET
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
|
|
MACHINE_CPROC_SP_OFFSET);
|
|
#endif
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS16_INSTLEN = %d\n",
|
|
MIPS16_INSTLEN);
|
|
fprintf_unfiltered (file, "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_INSTLEN = %d\n", MIPS_INSTLEN);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
|
|
MIPS_LAST_ARG_REGNUM,
|
|
MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_NUMREGS = %d\n", MIPS_NUMREGS);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: mips_abi_regsize() = %d\n",
|
|
mips_abi_regsize (current_gdbarch));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: PRID_REGNUM = %d\n", PRID_REGNUM);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_FRAME_REG = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_MASK = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_PC_REG = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_MASK = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PROC_SYMBOL = function?\n");
|
|
fprintf_unfiltered (file, "mips_dump_tdep: PS_REGNUM = %d\n", PS_REGNUM);
|
|
fprintf_unfiltered (file, "mips_dump_tdep: RA_REGNUM = %d\n", RA_REGNUM);
|
|
#ifdef SAVED_BYTES
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: SAVED_BYTES = %d\n", SAVED_BYTES);
|
|
#endif
|
|
#ifdef SAVED_FP
|
|
fprintf_unfiltered (file, "mips_dump_tdep: SAVED_FP = %d\n", SAVED_FP);
|
|
#endif
|
|
#ifdef SAVED_PC
|
|
fprintf_unfiltered (file, "mips_dump_tdep: SAVED_PC = %d\n", SAVED_PC);
|
|
#endif
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
|
|
XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
|
|
XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
|
|
XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
|
|
SOFTWARE_SINGLE_STEP_P ());
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
|
|
XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
|
|
#ifdef STACK_END_ADDR
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: STACK_END_ADDR = %d\n",
|
|
STACK_END_ADDR);
|
|
#endif
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
|
|
XSTRING (STEP_SKIPS_DELAY (PC)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
|
|
STEP_SKIPS_DELAY_P);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
|
|
XSTRING (STOPPED_BY_WATCHPOINT (WS)));
|
|
fprintf_unfiltered (file, "mips_dump_tdep: T9_REGNUM = %d\n", T9_REGNUM);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
|
|
XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT
|
|
(TYPE, CNT, OTHERTYPE)));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
|
|
XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
|
|
#ifdef TRACE_CLEAR
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TRACE_CLEAR # %s\n",
|
|
XSTRING (TRACE_CLEAR (THREAD, STATE)));
|
|
#endif
|
|
#ifdef TRACE_FLAVOR
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TRACE_FLAVOR = %d\n", TRACE_FLAVOR);
|
|
#endif
|
|
#ifdef TRACE_FLAVOR_SIZE
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
|
|
TRACE_FLAVOR_SIZE);
|
|
#endif
|
|
#ifdef TRACE_SET
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: TRACE_SET # %s\n",
|
|
XSTRING (TRACE_SET (X, STATE)));
|
|
#endif
|
|
#ifdef UNUSED_REGNUM
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: UNUSED_REGNUM = %d\n", UNUSED_REGNUM);
|
|
#endif
|
|
fprintf_unfiltered (file, "mips_dump_tdep: V0_REGNUM = %d\n", V0_REGNUM);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
|
|
(long) VM_MIN_ADDRESS);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ZERO_REGNUM = %d\n", ZERO_REGNUM);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: _PROC_MAGIC_ = %d\n", _PROC_MAGIC_);
|
|
}
|
|
|
|
extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_mips_tdep (void)
|
|
{
|
|
static struct cmd_list_element *mipsfpulist = NULL;
|
|
struct cmd_list_element *c;
|
|
|
|
mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
|
|
if (MIPS_ABI_LAST + 1
|
|
!= sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
|
|
internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
|
|
|
|
gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
|
|
|
|
mips_pdr_data = register_objfile_data ();
|
|
|
|
/* Add root prefix command for all "set mips"/"show mips" commands */
|
|
add_prefix_cmd ("mips", no_class, set_mips_command,
|
|
"Various MIPS specific commands.",
|
|
&setmipscmdlist, "set mips ", 0, &setlist);
|
|
|
|
add_prefix_cmd ("mips", no_class, show_mips_command,
|
|
"Various MIPS specific commands.",
|
|
&showmipscmdlist, "show mips ", 0, &showlist);
|
|
|
|
/* Allow the user to override the saved register size. */
|
|
add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
|
|
class_obscure,
|
|
size_enums,
|
|
&mips_abi_regsize_string, "\
|
|
Set size of general purpose registers saved on the stack.\n\
|
|
This option can be set to one of:\n\
|
|
32 - Force GDB to treat saved GP registers as 32-bit\n\
|
|
64 - Force GDB to treat saved GP registers as 64-bit\n\
|
|
auto - Allow GDB to use the target's default setting or autodetect the\n\
|
|
saved GP register size from information contained in the executable.\n\
|
|
(default: auto)", &setmipscmdlist), &showmipscmdlist);
|
|
|
|
/* Allow the user to override the argument stack size. */
|
|
add_show_from_set (add_set_enum_cmd ("stack-arg-size",
|
|
class_obscure,
|
|
size_enums,
|
|
&mips_stack_argsize_string, "\
|
|
Set the amount of stack space reserved for each argument.\n\
|
|
This option can be set to one of:\n\
|
|
32 - Force GDB to allocate 32-bit chunks per argument\n\
|
|
64 - Force GDB to allocate 64-bit chunks per argument\n\
|
|
auto - Allow GDB to determine the correct setting from the current\n\
|
|
target and executable (default)", &setmipscmdlist), &showmipscmdlist);
|
|
|
|
/* Allow the user to override the ABI. */
|
|
c = add_set_enum_cmd
|
|
("abi", class_obscure, mips_abi_strings, &mips_abi_string,
|
|
"Set the ABI used by this program.\n"
|
|
"This option can be set to one of:\n"
|
|
" auto - the default ABI associated with the current binary\n"
|
|
" o32\n"
|
|
" o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist);
|
|
set_cmd_sfunc (c, mips_abi_update);
|
|
add_cmd ("abi", class_obscure, show_mips_abi,
|
|
"Show ABI in use by MIPS target", &showmipscmdlist);
|
|
|
|
/* Let the user turn off floating point and set the fence post for
|
|
heuristic_proc_start. */
|
|
|
|
add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
|
|
"Set use of MIPS floating-point coprocessor.",
|
|
&mipsfpulist, "set mipsfpu ", 0, &setlist);
|
|
add_cmd ("single", class_support, set_mipsfpu_single_command,
|
|
"Select single-precision MIPS floating-point coprocessor.",
|
|
&mipsfpulist);
|
|
add_cmd ("double", class_support, set_mipsfpu_double_command,
|
|
"Select double-precision MIPS floating-point coprocessor.",
|
|
&mipsfpulist);
|
|
add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
|
|
add_cmd ("none", class_support, set_mipsfpu_none_command,
|
|
"Select no MIPS floating-point coprocessor.", &mipsfpulist);
|
|
add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
|
|
add_cmd ("auto", class_support, set_mipsfpu_auto_command,
|
|
"Select MIPS floating-point coprocessor automatically.",
|
|
&mipsfpulist);
|
|
add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
|
|
"Show current use of MIPS floating-point coprocessor target.",
|
|
&showlist);
|
|
|
|
/* We really would like to have both "0" and "unlimited" work, but
|
|
command.c doesn't deal with that. So make it a var_zinteger
|
|
because the user can always use "999999" or some such for unlimited. */
|
|
c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
|
|
(char *) &heuristic_fence_post, "\
|
|
Set the distance searched for the start of a function.\n\
|
|
If you are debugging a stripped executable, GDB needs to search through the\n\
|
|
program for the start of a function. This command sets the distance of the\n\
|
|
search. The only need to set it is when debugging a stripped executable.", &setlist);
|
|
/* We need to throw away the frame cache when we set this, since it
|
|
might change our ability to get backtraces. */
|
|
set_cmd_sfunc (c, reinit_frame_cache_sfunc);
|
|
add_show_from_set (c, &showlist);
|
|
|
|
/* Allow the user to control whether the upper bits of 64-bit
|
|
addresses should be zeroed. */
|
|
add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
|
|
Set zeroing of upper 32 bits of 64-bit addresses.\n\
|
|
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
|
|
allow GDB to determine the correct value.\n", "\
|
|
Show zeroing of upper 32 bits of 64-bit addresses.",
|
|
NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist);
|
|
|
|
/* Allow the user to control the size of 32 bit registers within the
|
|
raw remote packet. */
|
|
add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
|
|
var_boolean, &mips64_transfers_32bit_regs_p, "\
|
|
Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
|
|
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
|
|
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
|
|
64 bits for others. Use \"off\" to disable compatibility mode", "\
|
|
Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
|
|
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
|
|
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
|
|
64 bits for others. Use \"off\" to disable compatibility mode", set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist);
|
|
|
|
/* Debug this files internals. */
|
|
add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
|
|
&mips_debug, "Set mips debugging.\n\
|
|
When non-zero, mips specific debugging is enabled.", &setdebuglist), &showdebuglist);
|
|
}
|