binutils-gdb/sim/common/sim-core.c
Felix Lee 31dda65aff * sim-core.h (sim_cpu_core): [WITH_XOR_ENDIAN + 1], to avoid
illegal zero-sized array.
	* sim-core.c (sim_core_xor_read_buffer): same.
1997-09-10 04:46:37 +00:00

774 lines
20 KiB
C

/* This file is part of the program psim.
Copyright (C) 1994-1997, Andrew Cagney <cagney@highland.com.au>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _SIM_CORE_C_
#define _SIM_CORE_C_
#include "sim-main.h"
#include "sim-assert.h"
/* "core" module install handler.
This is called via sim_module_install to install the "core" subsystem
into the simulator. */
static MODULE_INIT_FN sim_core_init;
static MODULE_UNINSTALL_FN sim_core_uninstall;
EXTERN_SIM_CORE\
(SIM_RC)
sim_core_install (SIM_DESC sd)
{
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* establish the other handlers */
sim_module_add_uninstall_fn (sd, sim_core_uninstall);
sim_module_add_init_fn (sd, sim_core_init);
/* establish any initial data structures - none */
return SIM_RC_OK;
}
/* Uninstall the "core" subsystem from the simulator. */
STATIC_SIM_CORE\
(void)
sim_core_uninstall (SIM_DESC sd)
{
sim_core *core = STATE_CORE(sd);
sim_core_maps map;
/* blow away any mappings */
for (map = 0; map < nr_sim_core_maps; map++) {
sim_core_mapping *curr = core->common.map[map].first;
while (curr != NULL) {
sim_core_mapping *tbd = curr;
curr = curr->next;
if (tbd->free_buffer) {
SIM_ASSERT(tbd->buffer != NULL);
zfree(tbd->buffer);
}
zfree(tbd);
}
core->common.map[map].first = NULL;
}
}
STATIC_SIM_CORE\
(SIM_RC)
sim_core_init (SIM_DESC sd)
{
/* Nothing to do */
return SIM_RC_OK;
}
#ifndef SIM_CORE_SIGNAL
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
sim_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
STATIC_SIM_CORE\
(void)
sim_core_signal (SIM_DESC sd,
sim_cpu *cpu,
sim_cia cia,
sim_core_maps map,
int nr_bytes,
address_word addr,
transfer_type transfer,
sim_core_signals sig)
{
const char *copy = (transfer == read_transfer ? "read" : "write");
switch (sig)
{
case sim_core_unmapped_signal:
sim_engine_abort (sd, cpu, cia, "sim-core: %d byte %s to unmaped address 0x%lx",
nr_bytes, copy, (unsigned long) addr);
break;
case sim_core_unaligned_signal:
sim_engine_abort (sd, cpu, cia, "sim-core: %d byte misaligned %s to address 0x%lx",
nr_bytes, copy, (unsigned long) addr);
break;
default:
sim_engine_abort (sd, cpu, cia, "sim_core_signal - internal error - bad switch");
}
}
#endif
STATIC_INLINE_SIM_CORE\
(const char *)
sim_core_map_to_str (sim_core_maps map)
{
switch (map)
{
case sim_core_read_map: return "read";
case sim_core_write_map: return "write";
case sim_core_execute_map: return "exec";
default: return "(invalid-map)";
}
}
STATIC_SIM_CORE\
(sim_core_mapping *)
new_sim_core_mapping (SIM_DESC sd,
attach_type attach,
int space,
address_word addr,
address_word nr_bytes,
unsigned modulo,
device *device,
void *buffer,
int free_buffer)
{
sim_core_mapping *new_mapping = ZALLOC(sim_core_mapping);
/* common */
new_mapping->level = attach;
new_mapping->space = space;
new_mapping->base = addr;
new_mapping->nr_bytes = nr_bytes;
new_mapping->bound = addr + (nr_bytes - 1);
if (modulo == 0)
new_mapping->mask = (unsigned) 0 - 1;
else
new_mapping->mask = modulo - 1;
if (attach == attach_raw_memory)
{
new_mapping->buffer = buffer;
new_mapping->free_buffer = free_buffer;
}
else if (attach >= attach_callback)
{
new_mapping->device = device;
}
else {
sim_io_error (sd, "new_sim_core_mapping - internal error - unknown attach type %d\n",
attach);
}
return new_mapping;
}
STATIC_SIM_CORE\
(void)
sim_core_map_attach (SIM_DESC sd,
sim_core_map *access_map,
attach_type attach,
int space,
address_word addr,
address_word nr_bytes,
unsigned modulo,
device *client, /*callback/default*/
void *buffer, /*raw_memory*/
int free_buffer) /*raw_memory*/
{
/* find the insertion point for this additional mapping and then
insert */
sim_core_mapping *next_mapping;
sim_core_mapping **last_mapping;
SIM_ASSERT ((attach >= attach_callback)
<= (client != NULL && buffer == NULL && !free_buffer));
SIM_ASSERT ((attach == attach_raw_memory)
<= (client == NULL && buffer != NULL));
/* actually do occasionally get a zero size map */
if (nr_bytes == 0)
{
#if (WITH_DEVICES)
device_error(client, "called on sim_core_map_attach with size zero");
#else
sim_io_error (sd, "called on sim_core_map_attach with size zero");
#endif
}
/* find the insertion point (between last/next) */
next_mapping = access_map->first;
last_mapping = &access_map->first;
while(next_mapping != NULL
&& (next_mapping->level < (int) attach
|| (next_mapping->level == (int) attach
&& next_mapping->bound < addr)))
{
/* provided levels are the same */
/* assert: next_mapping->base > all bases before next_mapping */
/* assert: next_mapping->bound >= all bounds before next_mapping */
last_mapping = &next_mapping->next;
next_mapping = next_mapping->next;
}
/* check insertion point correct */
SIM_ASSERT (next_mapping == NULL || next_mapping->level >= (int) attach);
if (next_mapping != NULL && next_mapping->level == (int) attach
&& next_mapping->base < (addr + (nr_bytes - 1)))
{
#if (WITH_DEVICES)
device_error (client, "memory map %d:0x%lx..0x%lx (%ld bytes) overlaps %d:0x%lx..0x%lx (%ld bytes)",
space,
(long) addr,
(long) nr_bytes,
(long) (addr + (nr_bytes - 1)),
next_mapping->space,
(long) next_mapping->base,
(long) next_mapping->bound,
(long) next_mapping->nr_bytes);
#else
sim_io_error (sd, "memory map %d:0x%lx..0x%lx (%ld bytes) overlaps %d:0x%lx..0x%lx (%ld bytes)",
space,
(long) addr,
(long) nr_bytes,
(long) (addr + (nr_bytes - 1)),
next_mapping->space,
(long) next_mapping->base,
(long) next_mapping->bound,
(long) next_mapping->nr_bytes);
#endif
}
/* create/insert the new mapping */
*last_mapping = new_sim_core_mapping(sd,
attach,
space, addr, nr_bytes, modulo,
client, buffer, free_buffer);
(*last_mapping)->next = next_mapping;
}
EXTERN_SIM_CORE\
(void)
sim_core_attach (SIM_DESC sd,
sim_cpu *cpu,
attach_type attach,
access_type access,
int space,
address_word addr,
address_word nr_bytes,
unsigned modulo,
device *client,
void *optional_buffer)
{
sim_core *memory = STATE_CORE(sd);
sim_core_maps map;
void *buffer;
int buffer_freed;
/* check for for attempt to use unimplemented per-processor core map */
if (cpu != NULL)
sim_io_error (sd, "sim_core_map_attach - processor specific memory map not yet supported");
if ((access & access_read_write_exec) == 0
|| (access & ~access_read_write_exec) != 0)
{
#if (WITH_DEVICES)
device_error(client, "invalid access for core attach");
#else
sim_io_error (sd, "invalid access for core attach");
#endif
}
/* verify the attach type */
if (attach == attach_raw_memory)
{
if (WITH_MODULO_MEMORY && modulo != 0)
{
unsigned mask = modulo - 1;
if (mask < 7) /* 8 is minimum modulo */
mask = 0;
while (mask > 1) /* no zero bits */
{
if ((mask & 1) == 0)
mask = 0;
else
mask >>= 1;
}
if (mask == 0)
{
#if (WITH_DEVICES)
device_error (client, "sim_core_attach - internal error - modulo not power of two");
#else
sim_io_error (sd, "sim_core_attach - internal error - modulo not power of two");
#endif
}
}
else if (!WITH_MODULO_MEMORY && modulo != 0)
{
#if (WITH_DEVICES)
device_error (client, "sim_core_attach - internal error - modulo memory disabled");
#else
sim_io_error (sd, "sim_core_attach - internal error - modulo memory disabled");
#endif
}
if (optional_buffer == NULL)
{
buffer = zalloc (modulo == 0 ? nr_bytes : modulo);
buffer_freed = 0;
}
else
{
buffer = optional_buffer;
buffer_freed = 1;
}
}
else if (attach >= attach_callback)
{
buffer = NULL;
buffer_freed = 1;
}
else
{
#if (WITH_DEVICES)
device_error (client, "sim_core_attach - internal error - conflicting buffer and attach arguments");
#else
sim_io_error (sd, "sim_core_attach - internal error - conflicting buffer and attach arguments");
#endif
buffer = NULL;
buffer_freed = 1;
}
/* attach the region to all applicable access maps */
for (map = 0;
map < nr_sim_core_maps;
map++)
{
switch (map)
{
case sim_core_read_map:
if (access & access_read)
sim_core_map_attach (sd, &memory->common.map[map],
attach,
space, addr, nr_bytes, modulo,
client, buffer, !buffer_freed);
buffer_freed ++;
break;
case sim_core_write_map:
if (access & access_write)
sim_core_map_attach (sd, &memory->common.map[map],
attach,
space, addr, nr_bytes, modulo,
client, buffer, !buffer_freed);
buffer_freed ++;
break;
case sim_core_execute_map:
if (access & access_exec)
sim_core_map_attach (sd, &memory->common.map[map],
attach,
space, addr, nr_bytes, modulo,
client, buffer, !buffer_freed);
buffer_freed ++;
break;
case nr_sim_core_maps:
sim_io_error (sd, "sim_core_attach - internal error - bad switch");
break;
}
}
/* Just copy this map to each of the processor specific data structures.
FIXME - later this will be replaced by true processor specific
maps. */
{
int i;
for (i = 0; i < MAX_NR_PROCESSORS; i++)
{
CPU_CORE (STATE_CPU (sd, i))->common = STATE_CORE (sd)->common;
}
}
}
/* Remove any memory reference related to this address */
STATIC_INLINE_SIM_CORE\
(void)
sim_core_map_detach (SIM_DESC sd,
sim_core_map *access_map,
attach_type attach,
int space,
address_word addr)
{
sim_core_mapping **entry;
for (entry = &access_map->first;
(*entry) != NULL;
entry = &(*entry)->next)
{
if ((*entry)->base == addr
&& (*entry)->level == (int) attach
&& (*entry)->space == space)
{
sim_core_mapping *dead = (*entry);
(*entry) = dead->next;
if (dead->free_buffer)
zfree (dead->buffer);
zfree (dead);
return;
}
}
}
EXTERN_SIM_CORE\
(void)
sim_core_detach (SIM_DESC sd,
sim_cpu *cpu,
attach_type attach,
int address_space,
address_word addr)
{
sim_core *memory = STATE_CORE (sd);
sim_core_maps map;
for (map = 0; map < nr_sim_core_maps; map++)
{
sim_core_map_detach (sd, &memory->common.map[map],
attach, address_space, addr);
}
/* Just copy this update to each of the processor specific data
structures. FIXME - later this will be replaced by true
processor specific maps. */
{
int i;
for (i = 0; i < MAX_NR_PROCESSORS; i++)
{
CPU_CORE (STATE_CPU (sd, i))->common = STATE_CORE (sd)->common;
}
}
}
STATIC_INLINE_SIM_CORE\
(sim_core_mapping *)
sim_core_find_mapping(sim_core_common *core,
sim_core_maps map,
address_word addr,
unsigned nr_bytes,
transfer_type transfer,
int abort, /*either 0 or 1 - hint to inline/-O */
sim_cpu *cpu, /* abort => cpu != NULL */
sim_cia cia)
{
sim_core_mapping *mapping = core->map[map].first;
ASSERT ((addr & (nr_bytes - 1)) == 0); /* must be aligned */
ASSERT ((addr + (nr_bytes - 1)) >= addr); /* must not wrap */
ASSERT (!abort || cpu != NULL); /* abort needs a non null CPU */
while (mapping != NULL)
{
if (addr >= mapping->base
&& (addr + (nr_bytes - 1)) <= mapping->bound)
return mapping;
mapping = mapping->next;
}
if (abort)
{
SIM_CORE_SIGNAL (CPU_STATE (cpu), cpu, cia, map, nr_bytes, addr, transfer,
sim_core_unmapped_signal);
}
return NULL;
}
STATIC_INLINE_SIM_CORE\
(void *)
sim_core_translate (sim_core_mapping *mapping,
address_word addr)
{
if (WITH_MODULO_MEMORY)
return (void *)((unsigned8 *) mapping->buffer
+ ((addr - mapping->base) & mapping->mask));
else
return (void *)((unsigned8 *) mapping->buffer
+ addr - mapping->base);
}
EXTERN_SIM_CORE\
(unsigned)
sim_core_read_buffer (SIM_DESC sd,
sim_cpu *cpu,
sim_core_maps map,
void *buffer,
address_word addr,
unsigned len)
{
sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common);
unsigned count = 0;
while (count < len) {
unsigned_word raddr = addr + count;
sim_core_mapping *mapping =
sim_core_find_mapping(core, map,
raddr, /*nr-bytes*/1,
read_transfer,
0 /*dont-abort*/, NULL, NULL_CIA);
if (mapping == NULL)
break;
#if (WITH_DEVICES)
if (mapping->device != NULL) {
int nr_bytes = len - count;
if (raddr + nr_bytes - 1> mapping->bound)
nr_bytes = mapping->bound - raddr + 1;
if (device_io_read_buffer(mapping->device,
(unsigned_1*)buffer + count,
mapping->space,
raddr,
nr_bytes) != nr_bytes)
break;
count += nr_bytes;
}
else
#endif
{
((unsigned_1*)buffer)[count] =
*(unsigned_1*)sim_core_translate(mapping, raddr);
count += 1;
}
}
return count;
}
EXTERN_SIM_CORE\
(unsigned)
sim_core_write_buffer (SIM_DESC sd,
sim_cpu *cpu,
sim_core_maps map,
const void *buffer,
address_word addr,
unsigned len)
{
sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common);
unsigned count = 0;
while (count < len) {
unsigned_word raddr = addr + count;
sim_core_mapping *mapping =
sim_core_find_mapping(core, map,
raddr, /*nr-bytes*/1,
write_transfer,
0 /*dont-abort*/, NULL, NULL_CIA);
if (mapping == NULL)
break;
#if (WITH_DEVICES)
if (WITH_CALLBACK_MEMORY
&& mapping->device != NULL) {
int nr_bytes = len - count;
if (raddr + nr_bytes - 1 > mapping->bound)
nr_bytes = mapping->bound - raddr + 1;
if (device_io_write_buffer(mapping->device,
(unsigned_1*)buffer + count,
mapping->space,
raddr,
nr_bytes) != nr_bytes)
break;
count += nr_bytes;
}
else
#endif
{
*(unsigned_1*)sim_core_translate(mapping, raddr) =
((unsigned_1*)buffer)[count];
count += 1;
}
}
return count;
}
EXTERN_SIM_CORE\
(void)
sim_core_set_xor (SIM_DESC sd,
sim_cpu *cpu,
int is_xor)
{
/* set up the XOR map if required. */
if (WITH_XOR_ENDIAN) {
{
sim_core *core = STATE_CORE (sd);
sim_cpu_core *cpu_core = (cpu != NULL ? CPU_CORE (cpu) : NULL);
if (cpu_core != NULL)
{
int i = 1;
unsigned mask;
if (is_xor)
mask = WITH_XOR_ENDIAN - 1;
else
mask = 0;
while (i - 1 < WITH_XOR_ENDIAN)
{
cpu_core->xor[i-1] = mask;
mask = (mask << 1) & (WITH_XOR_ENDIAN - 1);
i = (i << 1);
}
}
else
{
if (is_xor)
core->byte_xor = WITH_XOR_ENDIAN - 1;
else
core->byte_xor = 0;
}
}
}
else {
if (is_xor)
sim_engine_abort (sd, cpu, NULL_CIA,
"Attempted to enable xor-endian mode when permenantly disabled.");
}
}
STATIC_INLINE_SIM_CORE\
(void)
reverse_n (unsigned_1 *dest,
const unsigned_1 *src,
int nr_bytes)
{
int i;
for (i = 0; i < nr_bytes; i++)
{
dest [nr_bytes - i - 1] = src [i];
}
}
EXTERN_SIM_CORE\
(unsigned)
sim_core_xor_read_buffer (SIM_DESC sd,
sim_cpu *cpu,
sim_core_maps map,
void *buffer,
address_word addr,
unsigned nr_bytes)
{
address_word byte_xor = (cpu == NULL ? STATE_CORE (sd)->byte_xor : CPU_CORE (cpu)->xor[0]);
if (!WITH_XOR_ENDIAN || !byte_xor)
return sim_core_read_buffer (sd, cpu, map, buffer, addr, nr_bytes);
else
/* only break up transfers when xor-endian is both selected and enabled */
{
unsigned_1 x[WITH_XOR_ENDIAN + 1]; /* +1 to avoid zero-sized array */
unsigned nr_transfered = 0;
address_word start = addr;
unsigned nr_this_transfer = (WITH_XOR_ENDIAN - (addr & ~(WITH_XOR_ENDIAN - 1)));
address_word stop;
/* initial and intermediate transfers are broken when they cross
an XOR endian boundary */
while (nr_transfered + nr_this_transfer < nr_bytes)
/* initial/intermediate transfers */
{
/* since xor-endian is enabled stop^xor defines the start
address of the transfer */
stop = start + nr_this_transfer - 1;
SIM_ASSERT (start <= stop);
SIM_ASSERT ((stop ^ byte_xor) <= (start ^ byte_xor));
if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
!= nr_this_transfer)
return nr_transfered;
reverse_n (&((unsigned_1*)buffer)[nr_transfered], x, nr_this_transfer);
nr_transfered += nr_this_transfer;
nr_this_transfer = WITH_XOR_ENDIAN;
start = stop + 1;
}
/* final transfer */
nr_this_transfer = nr_bytes - nr_transfered;
stop = start + nr_this_transfer - 1;
SIM_ASSERT (stop == (addr + nr_bytes - 1));
if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
!= nr_this_transfer)
return nr_transfered;
reverse_n (&((unsigned_1*)buffer)[nr_transfered], x, nr_this_transfer);
return nr_bytes;
}
}
EXTERN_SIM_CORE\
(unsigned)
sim_core_xor_write_buffer (SIM_DESC sd,
sim_cpu *cpu,
sim_core_maps map,
const void *buffer,
address_word addr,
unsigned nr_bytes)
{
address_word byte_xor = (cpu == NULL ? STATE_CORE (sd)->byte_xor : CPU_CORE (cpu)->xor[0]);
if (!WITH_XOR_ENDIAN || !byte_xor)
return sim_core_write_buffer (sd, cpu, map, buffer, addr, nr_bytes);
else
/* only break up transfers when xor-endian is both selected and enabled */
{
unsigned_1 x[WITH_XOR_ENDIAN];
unsigned nr_transfered = 0;
address_word start = addr;
unsigned nr_this_transfer = (WITH_XOR_ENDIAN - (addr & ~(WITH_XOR_ENDIAN - 1)));
address_word stop;
/* initial and intermediate transfers are broken when they cross
an XOR endian boundary */
while (nr_transfered + nr_this_transfer < nr_bytes)
/* initial/intermediate transfers */
{
/* since xor-endian is enabled stop^xor defines the start
address of the transfer */
stop = start + nr_this_transfer - 1;
SIM_ASSERT (start <= stop);
SIM_ASSERT ((stop ^ byte_xor) <= (start ^ byte_xor));
reverse_n (x, &((unsigned_1*)buffer)[nr_transfered], nr_this_transfer);
if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
!= nr_this_transfer)
return nr_transfered;
nr_transfered += nr_this_transfer;
nr_this_transfer = WITH_XOR_ENDIAN;
start = stop + 1;
}
/* final transfer */
nr_this_transfer = nr_bytes - nr_transfered;
stop = start + nr_this_transfer - 1;
SIM_ASSERT (stop == (addr + nr_bytes - 1));
reverse_n (x, &((unsigned_1*)buffer)[nr_transfered], nr_this_transfer);
if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
!= nr_this_transfer)
return nr_transfered;
return nr_bytes;
}
}
/* define the read/write 1/2/4/8/word functions */
#define N 1
#include "sim-n-core.h"
#undef N
#define N 2
#include "sim-n-core.h"
#undef N
#define N 4
#include "sim-n-core.h"
#undef N
#define N 8
#include "sim-n-core.h"
#undef N
#define N word
#include "sim-n-core.h"
#undef N
#endif