14265 lines
424 KiB
C
14265 lines
424 KiB
C
/* MIPS-specific support for ELF
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
||
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
||
Free Software Foundation, Inc.
|
||
|
||
Most of the information added by Ian Lance Taylor, Cygnus Support,
|
||
<ian@cygnus.com>.
|
||
N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
|
||
<mark@codesourcery.com>
|
||
Traditional MIPS targets support added by Koundinya.K, Dansk Data
|
||
Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
|
||
/* This file handles functionality common to the different MIPS ABI's. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libbfd.h"
|
||
#include "libiberty.h"
|
||
#include "elf-bfd.h"
|
||
#include "elfxx-mips.h"
|
||
#include "elf/mips.h"
|
||
#include "elf-vxworks.h"
|
||
|
||
/* Get the ECOFF swapping routines. */
|
||
#include "coff/sym.h"
|
||
#include "coff/symconst.h"
|
||
#include "coff/ecoff.h"
|
||
#include "coff/mips.h"
|
||
|
||
#include "hashtab.h"
|
||
|
||
/* This structure is used to hold information about one GOT entry.
|
||
There are three types of entry:
|
||
|
||
(1) absolute addresses
|
||
(abfd == NULL)
|
||
(2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
|
||
(abfd != NULL, symndx >= 0)
|
||
(3) SYMBOL addresses, where SYMBOL is not local to an input bfd
|
||
(abfd != NULL, symndx == -1)
|
||
|
||
Type (3) entries are treated differently for different types of GOT.
|
||
In the "master" GOT -- i.e. the one that describes every GOT
|
||
reference needed in the link -- the mips_got_entry is keyed on both
|
||
the symbol and the input bfd that references it. If it turns out
|
||
that we need multiple GOTs, we can then use this information to
|
||
create separate GOTs for each input bfd.
|
||
|
||
However, we want each of these separate GOTs to have at most one
|
||
entry for a given symbol, so their type (3) entries are keyed only
|
||
on the symbol. The input bfd given by the "abfd" field is somewhat
|
||
arbitrary in this case.
|
||
|
||
This means that when there are multiple GOTs, each GOT has a unique
|
||
mips_got_entry for every symbol within it. We can therefore use the
|
||
mips_got_entry fields (tls_type and gotidx) to track the symbol's
|
||
GOT index.
|
||
|
||
However, if it turns out that we need only a single GOT, we continue
|
||
to use the master GOT to describe it. There may therefore be several
|
||
mips_got_entries for the same symbol, each with a different input bfd.
|
||
We want to make sure that each symbol gets a unique GOT entry, so when
|
||
there's a single GOT, we use the symbol's hash entry, not the
|
||
mips_got_entry fields, to track a symbol's GOT index. */
|
||
struct mips_got_entry
|
||
{
|
||
/* The input bfd in which the symbol is defined. */
|
||
bfd *abfd;
|
||
/* The index of the symbol, as stored in the relocation r_info, if
|
||
we have a local symbol; -1 otherwise. */
|
||
long symndx;
|
||
union
|
||
{
|
||
/* If abfd == NULL, an address that must be stored in the got. */
|
||
bfd_vma address;
|
||
/* If abfd != NULL && symndx != -1, the addend of the relocation
|
||
that should be added to the symbol value. */
|
||
bfd_vma addend;
|
||
/* If abfd != NULL && symndx == -1, the hash table entry
|
||
corresponding to symbol in the GOT. The symbol's entry
|
||
is in the local area if h->global_got_area is GGA_NONE,
|
||
otherwise it is in the global area. */
|
||
struct mips_elf_link_hash_entry *h;
|
||
} d;
|
||
|
||
/* The TLS types included in this GOT entry (specifically, GD and
|
||
IE). The GD and IE flags can be added as we encounter new
|
||
relocations. LDM can also be set; it will always be alone, not
|
||
combined with any GD or IE flags. An LDM GOT entry will be
|
||
a local symbol entry with r_symndx == 0. */
|
||
unsigned char tls_type;
|
||
|
||
/* The offset from the beginning of the .got section to the entry
|
||
corresponding to this symbol+addend. If it's a global symbol
|
||
whose offset is yet to be decided, it's going to be -1. */
|
||
long gotidx;
|
||
};
|
||
|
||
/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
|
||
The structures form a non-overlapping list that is sorted by increasing
|
||
MIN_ADDEND. */
|
||
struct mips_got_page_range
|
||
{
|
||
struct mips_got_page_range *next;
|
||
bfd_signed_vma min_addend;
|
||
bfd_signed_vma max_addend;
|
||
};
|
||
|
||
/* This structure describes the range of addends that are applied to page
|
||
relocations against a given symbol. */
|
||
struct mips_got_page_entry
|
||
{
|
||
/* The input bfd in which the symbol is defined. */
|
||
bfd *abfd;
|
||
/* The index of the symbol, as stored in the relocation r_info. */
|
||
long symndx;
|
||
/* The ranges for this page entry. */
|
||
struct mips_got_page_range *ranges;
|
||
/* The maximum number of page entries needed for RANGES. */
|
||
bfd_vma num_pages;
|
||
};
|
||
|
||
/* This structure is used to hold .got information when linking. */
|
||
|
||
struct mips_got_info
|
||
{
|
||
/* The global symbol in the GOT with the lowest index in the dynamic
|
||
symbol table. */
|
||
struct elf_link_hash_entry *global_gotsym;
|
||
/* The number of global .got entries. */
|
||
unsigned int global_gotno;
|
||
/* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
|
||
unsigned int reloc_only_gotno;
|
||
/* The number of .got slots used for TLS. */
|
||
unsigned int tls_gotno;
|
||
/* The first unused TLS .got entry. Used only during
|
||
mips_elf_initialize_tls_index. */
|
||
unsigned int tls_assigned_gotno;
|
||
/* The number of local .got entries, eventually including page entries. */
|
||
unsigned int local_gotno;
|
||
/* The maximum number of page entries needed. */
|
||
unsigned int page_gotno;
|
||
/* The number of local .got entries we have used. */
|
||
unsigned int assigned_gotno;
|
||
/* A hash table holding members of the got. */
|
||
struct htab *got_entries;
|
||
/* A hash table of mips_got_page_entry structures. */
|
||
struct htab *got_page_entries;
|
||
/* A hash table mapping input bfds to other mips_got_info. NULL
|
||
unless multi-got was necessary. */
|
||
struct htab *bfd2got;
|
||
/* In multi-got links, a pointer to the next got (err, rather, most
|
||
of the time, it points to the previous got). */
|
||
struct mips_got_info *next;
|
||
/* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
|
||
for none, or MINUS_TWO for not yet assigned. This is needed
|
||
because a single-GOT link may have multiple hash table entries
|
||
for the LDM. It does not get initialized in multi-GOT mode. */
|
||
bfd_vma tls_ldm_offset;
|
||
};
|
||
|
||
/* Map an input bfd to a got in a multi-got link. */
|
||
|
||
struct mips_elf_bfd2got_hash
|
||
{
|
||
bfd *bfd;
|
||
struct mips_got_info *g;
|
||
};
|
||
|
||
/* Structure passed when traversing the bfd2got hash table, used to
|
||
create and merge bfd's gots. */
|
||
|
||
struct mips_elf_got_per_bfd_arg
|
||
{
|
||
/* A hashtable that maps bfds to gots. */
|
||
htab_t bfd2got;
|
||
/* The output bfd. */
|
||
bfd *obfd;
|
||
/* The link information. */
|
||
struct bfd_link_info *info;
|
||
/* A pointer to the primary got, i.e., the one that's going to get
|
||
the implicit relocations from DT_MIPS_LOCAL_GOTNO and
|
||
DT_MIPS_GOTSYM. */
|
||
struct mips_got_info *primary;
|
||
/* A non-primary got we're trying to merge with other input bfd's
|
||
gots. */
|
||
struct mips_got_info *current;
|
||
/* The maximum number of got entries that can be addressed with a
|
||
16-bit offset. */
|
||
unsigned int max_count;
|
||
/* The maximum number of page entries needed by each got. */
|
||
unsigned int max_pages;
|
||
/* The total number of global entries which will live in the
|
||
primary got and be automatically relocated. This includes
|
||
those not referenced by the primary GOT but included in
|
||
the "master" GOT. */
|
||
unsigned int global_count;
|
||
};
|
||
|
||
/* Another structure used to pass arguments for got entries traversal. */
|
||
|
||
struct mips_elf_set_global_got_offset_arg
|
||
{
|
||
struct mips_got_info *g;
|
||
int value;
|
||
unsigned int needed_relocs;
|
||
struct bfd_link_info *info;
|
||
};
|
||
|
||
/* A structure used to count TLS relocations or GOT entries, for GOT
|
||
entry or ELF symbol table traversal. */
|
||
|
||
struct mips_elf_count_tls_arg
|
||
{
|
||
struct bfd_link_info *info;
|
||
unsigned int needed;
|
||
};
|
||
|
||
struct _mips_elf_section_data
|
||
{
|
||
struct bfd_elf_section_data elf;
|
||
union
|
||
{
|
||
bfd_byte *tdata;
|
||
} u;
|
||
};
|
||
|
||
#define mips_elf_section_data(sec) \
|
||
((struct _mips_elf_section_data *) elf_section_data (sec))
|
||
|
||
#define is_mips_elf(bfd) \
|
||
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
||
&& elf_tdata (bfd) != NULL \
|
||
&& elf_object_id (bfd) == MIPS_ELF_DATA)
|
||
|
||
/* The ABI says that every symbol used by dynamic relocations must have
|
||
a global GOT entry. Among other things, this provides the dynamic
|
||
linker with a free, directly-indexed cache. The GOT can therefore
|
||
contain symbols that are not referenced by GOT relocations themselves
|
||
(in other words, it may have symbols that are not referenced by things
|
||
like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
|
||
|
||
GOT relocations are less likely to overflow if we put the associated
|
||
GOT entries towards the beginning. We therefore divide the global
|
||
GOT entries into two areas: "normal" and "reloc-only". Entries in
|
||
the first area can be used for both dynamic relocations and GP-relative
|
||
accesses, while those in the "reloc-only" area are for dynamic
|
||
relocations only.
|
||
|
||
These GGA_* ("Global GOT Area") values are organised so that lower
|
||
values are more general than higher values. Also, non-GGA_NONE
|
||
values are ordered by the position of the area in the GOT. */
|
||
#define GGA_NORMAL 0
|
||
#define GGA_RELOC_ONLY 1
|
||
#define GGA_NONE 2
|
||
|
||
/* Information about a non-PIC interface to a PIC function. There are
|
||
two ways of creating these interfaces. The first is to add:
|
||
|
||
lui $25,%hi(func)
|
||
addiu $25,$25,%lo(func)
|
||
|
||
immediately before a PIC function "func". The second is to add:
|
||
|
||
lui $25,%hi(func)
|
||
j func
|
||
addiu $25,$25,%lo(func)
|
||
|
||
to a separate trampoline section.
|
||
|
||
Stubs of the first kind go in a new section immediately before the
|
||
target function. Stubs of the second kind go in a single section
|
||
pointed to by the hash table's "strampoline" field. */
|
||
struct mips_elf_la25_stub {
|
||
/* The generated section that contains this stub. */
|
||
asection *stub_section;
|
||
|
||
/* The offset of the stub from the start of STUB_SECTION. */
|
||
bfd_vma offset;
|
||
|
||
/* One symbol for the original function. Its location is available
|
||
in H->root.root.u.def. */
|
||
struct mips_elf_link_hash_entry *h;
|
||
};
|
||
|
||
/* Macros for populating a mips_elf_la25_stub. */
|
||
|
||
#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
|
||
#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
|
||
#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
|
||
#define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
|
||
#define LA25_LUI_MICROMIPS_2(VAL) (VAL)
|
||
#define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
|
||
#define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
|
||
#define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
|
||
#define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
|
||
|
||
/* This structure is passed to mips_elf_sort_hash_table_f when sorting
|
||
the dynamic symbols. */
|
||
|
||
struct mips_elf_hash_sort_data
|
||
{
|
||
/* The symbol in the global GOT with the lowest dynamic symbol table
|
||
index. */
|
||
struct elf_link_hash_entry *low;
|
||
/* The least dynamic symbol table index corresponding to a non-TLS
|
||
symbol with a GOT entry. */
|
||
long min_got_dynindx;
|
||
/* The greatest dynamic symbol table index corresponding to a symbol
|
||
with a GOT entry that is not referenced (e.g., a dynamic symbol
|
||
with dynamic relocations pointing to it from non-primary GOTs). */
|
||
long max_unref_got_dynindx;
|
||
/* The greatest dynamic symbol table index not corresponding to a
|
||
symbol without a GOT entry. */
|
||
long max_non_got_dynindx;
|
||
};
|
||
|
||
/* The MIPS ELF linker needs additional information for each symbol in
|
||
the global hash table. */
|
||
|
||
struct mips_elf_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry root;
|
||
|
||
/* External symbol information. */
|
||
EXTR esym;
|
||
|
||
/* The la25 stub we have created for ths symbol, if any. */
|
||
struct mips_elf_la25_stub *la25_stub;
|
||
|
||
/* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
|
||
this symbol. */
|
||
unsigned int possibly_dynamic_relocs;
|
||
|
||
/* If there is a stub that 32 bit functions should use to call this
|
||
16 bit function, this points to the section containing the stub. */
|
||
asection *fn_stub;
|
||
|
||
/* If there is a stub that 16 bit functions should use to call this
|
||
32 bit function, this points to the section containing the stub. */
|
||
asection *call_stub;
|
||
|
||
/* This is like the call_stub field, but it is used if the function
|
||
being called returns a floating point value. */
|
||
asection *call_fp_stub;
|
||
|
||
#define GOT_NORMAL 0
|
||
#define GOT_TLS_GD 1
|
||
#define GOT_TLS_LDM 2
|
||
#define GOT_TLS_IE 4
|
||
#define GOT_TLS_OFFSET_DONE 0x40
|
||
#define GOT_TLS_DONE 0x80
|
||
unsigned char tls_type;
|
||
|
||
/* This is only used in single-GOT mode; in multi-GOT mode there
|
||
is one mips_got_entry per GOT entry, so the offset is stored
|
||
there. In single-GOT mode there may be many mips_got_entry
|
||
structures all referring to the same GOT slot. It might be
|
||
possible to use root.got.offset instead, but that field is
|
||
overloaded already. */
|
||
bfd_vma tls_got_offset;
|
||
|
||
/* The highest GGA_* value that satisfies all references to this symbol. */
|
||
unsigned int global_got_area : 2;
|
||
|
||
/* True if all GOT relocations against this symbol are for calls. This is
|
||
a looser condition than no_fn_stub below, because there may be other
|
||
non-call non-GOT relocations against the symbol. */
|
||
unsigned int got_only_for_calls : 1;
|
||
|
||
/* True if one of the relocations described by possibly_dynamic_relocs
|
||
is against a readonly section. */
|
||
unsigned int readonly_reloc : 1;
|
||
|
||
/* True if there is a relocation against this symbol that must be
|
||
resolved by the static linker (in other words, if the relocation
|
||
cannot possibly be made dynamic). */
|
||
unsigned int has_static_relocs : 1;
|
||
|
||
/* True if we must not create a .MIPS.stubs entry for this symbol.
|
||
This is set, for example, if there are relocations related to
|
||
taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
|
||
See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
|
||
unsigned int no_fn_stub : 1;
|
||
|
||
/* Whether we need the fn_stub; this is true if this symbol appears
|
||
in any relocs other than a 16 bit call. */
|
||
unsigned int need_fn_stub : 1;
|
||
|
||
/* True if this symbol is referenced by branch relocations from
|
||
any non-PIC input file. This is used to determine whether an
|
||
la25 stub is required. */
|
||
unsigned int has_nonpic_branches : 1;
|
||
|
||
/* Does this symbol need a traditional MIPS lazy-binding stub
|
||
(as opposed to a PLT entry)? */
|
||
unsigned int needs_lazy_stub : 1;
|
||
};
|
||
|
||
/* MIPS ELF linker hash table. */
|
||
|
||
struct mips_elf_link_hash_table
|
||
{
|
||
struct elf_link_hash_table root;
|
||
#if 0
|
||
/* We no longer use this. */
|
||
/* String section indices for the dynamic section symbols. */
|
||
bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
|
||
#endif
|
||
|
||
/* The number of .rtproc entries. */
|
||
bfd_size_type procedure_count;
|
||
|
||
/* The size of the .compact_rel section (if SGI_COMPAT). */
|
||
bfd_size_type compact_rel_size;
|
||
|
||
/* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
|
||
entry is set to the address of __rld_obj_head as in IRIX5. */
|
||
bfd_boolean use_rld_obj_head;
|
||
|
||
/* This is the value of the __rld_map or __rld_obj_head symbol. */
|
||
bfd_vma rld_value;
|
||
|
||
/* This is set if we see any mips16 stub sections. */
|
||
bfd_boolean mips16_stubs_seen;
|
||
|
||
/* True if we can generate copy relocs and PLTs. */
|
||
bfd_boolean use_plts_and_copy_relocs;
|
||
|
||
/* True if we're generating code for VxWorks. */
|
||
bfd_boolean is_vxworks;
|
||
|
||
/* True if we already reported the small-data section overflow. */
|
||
bfd_boolean small_data_overflow_reported;
|
||
|
||
/* Shortcuts to some dynamic sections, or NULL if they are not
|
||
being used. */
|
||
asection *srelbss;
|
||
asection *sdynbss;
|
||
asection *srelplt;
|
||
asection *srelplt2;
|
||
asection *sgotplt;
|
||
asection *splt;
|
||
asection *sstubs;
|
||
asection *sgot;
|
||
|
||
/* The master GOT information. */
|
||
struct mips_got_info *got_info;
|
||
|
||
/* The size of the PLT header in bytes. */
|
||
bfd_vma plt_header_size;
|
||
|
||
/* The size of a PLT entry in bytes. */
|
||
bfd_vma plt_entry_size;
|
||
|
||
/* The number of functions that need a lazy-binding stub. */
|
||
bfd_vma lazy_stub_count;
|
||
|
||
/* The size of a function stub entry in bytes. */
|
||
bfd_vma function_stub_size;
|
||
|
||
/* The number of reserved entries at the beginning of the GOT. */
|
||
unsigned int reserved_gotno;
|
||
|
||
/* The section used for mips_elf_la25_stub trampolines.
|
||
See the comment above that structure for details. */
|
||
asection *strampoline;
|
||
|
||
/* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
|
||
pairs. */
|
||
htab_t la25_stubs;
|
||
|
||
/* A function FN (NAME, IS, OS) that creates a new input section
|
||
called NAME and links it to output section OS. If IS is nonnull,
|
||
the new section should go immediately before it, otherwise it
|
||
should go at the (current) beginning of OS.
|
||
|
||
The function returns the new section on success, otherwise it
|
||
returns null. */
|
||
asection *(*add_stub_section) (const char *, asection *, asection *);
|
||
};
|
||
|
||
/* Get the MIPS ELF linker hash table from a link_info structure. */
|
||
|
||
#define mips_elf_hash_table(p) \
|
||
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
||
== MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
|
||
|
||
/* A structure used to communicate with htab_traverse callbacks. */
|
||
struct mips_htab_traverse_info
|
||
{
|
||
/* The usual link-wide information. */
|
||
struct bfd_link_info *info;
|
||
bfd *output_bfd;
|
||
|
||
/* Starts off FALSE and is set to TRUE if the link should be aborted. */
|
||
bfd_boolean error;
|
||
};
|
||
|
||
#define TLS_RELOC_P(r_type) \
|
||
(r_type == R_MIPS_TLS_DTPMOD32 \
|
||
|| r_type == R_MIPS_TLS_DTPMOD64 \
|
||
|| r_type == R_MIPS_TLS_DTPREL32 \
|
||
|| r_type == R_MIPS_TLS_DTPREL64 \
|
||
|| r_type == R_MIPS_TLS_GD \
|
||
|| r_type == R_MIPS_TLS_LDM \
|
||
|| r_type == R_MIPS_TLS_DTPREL_HI16 \
|
||
|| r_type == R_MIPS_TLS_DTPREL_LO16 \
|
||
|| r_type == R_MIPS_TLS_GOTTPREL \
|
||
|| r_type == R_MIPS_TLS_TPREL32 \
|
||
|| r_type == R_MIPS_TLS_TPREL64 \
|
||
|| r_type == R_MIPS_TLS_TPREL_HI16 \
|
||
|| r_type == R_MIPS_TLS_TPREL_LO16 \
|
||
|| r_type == R_MICROMIPS_TLS_GD \
|
||
|| r_type == R_MICROMIPS_TLS_LDM \
|
||
|| r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
|
||
|| r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
|
||
|| r_type == R_MICROMIPS_TLS_GOTTPREL \
|
||
|| r_type == R_MICROMIPS_TLS_TPREL_HI16 \
|
||
|| r_type == R_MICROMIPS_TLS_TPREL_LO16)
|
||
|
||
/* Structure used to pass information to mips_elf_output_extsym. */
|
||
|
||
struct extsym_info
|
||
{
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
struct ecoff_debug_info *debug;
|
||
const struct ecoff_debug_swap *swap;
|
||
bfd_boolean failed;
|
||
};
|
||
|
||
/* The names of the runtime procedure table symbols used on IRIX5. */
|
||
|
||
static const char * const mips_elf_dynsym_rtproc_names[] =
|
||
{
|
||
"_procedure_table",
|
||
"_procedure_string_table",
|
||
"_procedure_table_size",
|
||
NULL
|
||
};
|
||
|
||
/* These structures are used to generate the .compact_rel section on
|
||
IRIX5. */
|
||
|
||
typedef struct
|
||
{
|
||
unsigned long id1; /* Always one? */
|
||
unsigned long num; /* Number of compact relocation entries. */
|
||
unsigned long id2; /* Always two? */
|
||
unsigned long offset; /* The file offset of the first relocation. */
|
||
unsigned long reserved0; /* Zero? */
|
||
unsigned long reserved1; /* Zero? */
|
||
} Elf32_compact_rel;
|
||
|
||
typedef struct
|
||
{
|
||
bfd_byte id1[4];
|
||
bfd_byte num[4];
|
||
bfd_byte id2[4];
|
||
bfd_byte offset[4];
|
||
bfd_byte reserved0[4];
|
||
bfd_byte reserved1[4];
|
||
} Elf32_External_compact_rel;
|
||
|
||
typedef struct
|
||
{
|
||
unsigned int ctype : 1; /* 1: long 0: short format. See below. */
|
||
unsigned int rtype : 4; /* Relocation types. See below. */
|
||
unsigned int dist2to : 8;
|
||
unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
|
||
unsigned long konst; /* KONST field. See below. */
|
||
unsigned long vaddr; /* VADDR to be relocated. */
|
||
} Elf32_crinfo;
|
||
|
||
typedef struct
|
||
{
|
||
unsigned int ctype : 1; /* 1: long 0: short format. See below. */
|
||
unsigned int rtype : 4; /* Relocation types. See below. */
|
||
unsigned int dist2to : 8;
|
||
unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
|
||
unsigned long konst; /* KONST field. See below. */
|
||
} Elf32_crinfo2;
|
||
|
||
typedef struct
|
||
{
|
||
bfd_byte info[4];
|
||
bfd_byte konst[4];
|
||
bfd_byte vaddr[4];
|
||
} Elf32_External_crinfo;
|
||
|
||
typedef struct
|
||
{
|
||
bfd_byte info[4];
|
||
bfd_byte konst[4];
|
||
} Elf32_External_crinfo2;
|
||
|
||
/* These are the constants used to swap the bitfields in a crinfo. */
|
||
|
||
#define CRINFO_CTYPE (0x1)
|
||
#define CRINFO_CTYPE_SH (31)
|
||
#define CRINFO_RTYPE (0xf)
|
||
#define CRINFO_RTYPE_SH (27)
|
||
#define CRINFO_DIST2TO (0xff)
|
||
#define CRINFO_DIST2TO_SH (19)
|
||
#define CRINFO_RELVADDR (0x7ffff)
|
||
#define CRINFO_RELVADDR_SH (0)
|
||
|
||
/* A compact relocation info has long (3 words) or short (2 words)
|
||
formats. A short format doesn't have VADDR field and relvaddr
|
||
fields contains ((VADDR - vaddr of the previous entry) >> 2). */
|
||
#define CRF_MIPS_LONG 1
|
||
#define CRF_MIPS_SHORT 0
|
||
|
||
/* There are 4 types of compact relocation at least. The value KONST
|
||
has different meaning for each type:
|
||
|
||
(type) (konst)
|
||
CT_MIPS_REL32 Address in data
|
||
CT_MIPS_WORD Address in word (XXX)
|
||
CT_MIPS_GPHI_LO GP - vaddr
|
||
CT_MIPS_JMPAD Address to jump
|
||
*/
|
||
|
||
#define CRT_MIPS_REL32 0xa
|
||
#define CRT_MIPS_WORD 0xb
|
||
#define CRT_MIPS_GPHI_LO 0xc
|
||
#define CRT_MIPS_JMPAD 0xd
|
||
|
||
#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
|
||
#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
|
||
#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
|
||
#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
|
||
|
||
/* The structure of the runtime procedure descriptor created by the
|
||
loader for use by the static exception system. */
|
||
|
||
typedef struct runtime_pdr {
|
||
bfd_vma adr; /* Memory address of start of procedure. */
|
||
long regmask; /* Save register mask. */
|
||
long regoffset; /* Save register offset. */
|
||
long fregmask; /* Save floating point register mask. */
|
||
long fregoffset; /* Save floating point register offset. */
|
||
long frameoffset; /* Frame size. */
|
||
short framereg; /* Frame pointer register. */
|
||
short pcreg; /* Offset or reg of return pc. */
|
||
long irpss; /* Index into the runtime string table. */
|
||
long reserved;
|
||
struct exception_info *exception_info;/* Pointer to exception array. */
|
||
} RPDR, *pRPDR;
|
||
#define cbRPDR sizeof (RPDR)
|
||
#define rpdNil ((pRPDR) 0)
|
||
|
||
static struct mips_got_entry *mips_elf_create_local_got_entry
|
||
(bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
|
||
struct mips_elf_link_hash_entry *, int);
|
||
static bfd_boolean mips_elf_sort_hash_table_f
|
||
(struct mips_elf_link_hash_entry *, void *);
|
||
static bfd_vma mips_elf_high
|
||
(bfd_vma);
|
||
static bfd_boolean mips_elf_create_dynamic_relocation
|
||
(bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
|
||
struct mips_elf_link_hash_entry *, asection *, bfd_vma,
|
||
bfd_vma *, asection *);
|
||
static hashval_t mips_elf_got_entry_hash
|
||
(const void *);
|
||
static bfd_vma mips_elf_adjust_gp
|
||
(bfd *, struct mips_got_info *, bfd *);
|
||
static struct mips_got_info *mips_elf_got_for_ibfd
|
||
(struct mips_got_info *, bfd *);
|
||
|
||
/* This will be used when we sort the dynamic relocation records. */
|
||
static bfd *reldyn_sorting_bfd;
|
||
|
||
/* True if ABFD is for CPUs with load interlocking that include
|
||
non-MIPS1 CPUs and R3900. */
|
||
#define LOAD_INTERLOCKS_P(abfd) \
|
||
( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
|
||
|| ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
|
||
|
||
/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
|
||
This should be safe for all architectures. We enable this predicate
|
||
for RM9000 for now. */
|
||
#define JAL_TO_BAL_P(abfd) \
|
||
((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
|
||
|
||
/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
|
||
This should be safe for all architectures. We enable this predicate for
|
||
all CPUs. */
|
||
#define JALR_TO_BAL_P(abfd) 1
|
||
|
||
/* True if ABFD is for CPUs that are faster if JR is converted to B.
|
||
This should be safe for all architectures. We enable this predicate for
|
||
all CPUs. */
|
||
#define JR_TO_B_P(abfd) 1
|
||
|
||
/* True if ABFD is a PIC object. */
|
||
#define PIC_OBJECT_P(abfd) \
|
||
((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
|
||
|
||
/* Nonzero if ABFD is using the N32 ABI. */
|
||
#define ABI_N32_P(abfd) \
|
||
((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
|
||
|
||
/* Nonzero if ABFD is using the N64 ABI. */
|
||
#define ABI_64_P(abfd) \
|
||
(get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
|
||
|
||
/* Nonzero if ABFD is using NewABI conventions. */
|
||
#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
|
||
|
||
/* The IRIX compatibility level we are striving for. */
|
||
#define IRIX_COMPAT(abfd) \
|
||
(get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
|
||
|
||
/* Whether we are trying to be compatible with IRIX at all. */
|
||
#define SGI_COMPAT(abfd) \
|
||
(IRIX_COMPAT (abfd) != ict_none)
|
||
|
||
/* The name of the options section. */
|
||
#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
|
||
(NEWABI_P (abfd) ? ".MIPS.options" : ".options")
|
||
|
||
/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
|
||
Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
|
||
#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
|
||
(strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
|
||
|
||
/* Whether the section is readonly. */
|
||
#define MIPS_ELF_READONLY_SECTION(sec) \
|
||
((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
|
||
== (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
||
|
||
/* The name of the stub section. */
|
||
#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
|
||
|
||
/* The size of an external REL relocation. */
|
||
#define MIPS_ELF_REL_SIZE(abfd) \
|
||
(get_elf_backend_data (abfd)->s->sizeof_rel)
|
||
|
||
/* The size of an external RELA relocation. */
|
||
#define MIPS_ELF_RELA_SIZE(abfd) \
|
||
(get_elf_backend_data (abfd)->s->sizeof_rela)
|
||
|
||
/* The size of an external dynamic table entry. */
|
||
#define MIPS_ELF_DYN_SIZE(abfd) \
|
||
(get_elf_backend_data (abfd)->s->sizeof_dyn)
|
||
|
||
/* The size of a GOT entry. */
|
||
#define MIPS_ELF_GOT_SIZE(abfd) \
|
||
(get_elf_backend_data (abfd)->s->arch_size / 8)
|
||
|
||
/* The size of a symbol-table entry. */
|
||
#define MIPS_ELF_SYM_SIZE(abfd) \
|
||
(get_elf_backend_data (abfd)->s->sizeof_sym)
|
||
|
||
/* The default alignment for sections, as a power of two. */
|
||
#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
|
||
(get_elf_backend_data (abfd)->s->log_file_align)
|
||
|
||
/* Get word-sized data. */
|
||
#define MIPS_ELF_GET_WORD(abfd, ptr) \
|
||
(ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
|
||
|
||
/* Put out word-sized data. */
|
||
#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
|
||
(ABI_64_P (abfd) \
|
||
? bfd_put_64 (abfd, val, ptr) \
|
||
: bfd_put_32 (abfd, val, ptr))
|
||
|
||
/* The opcode for word-sized loads (LW or LD). */
|
||
#define MIPS_ELF_LOAD_WORD(abfd) \
|
||
(ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
|
||
|
||
/* Add a dynamic symbol table-entry. */
|
||
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
|
||
_bfd_elf_add_dynamic_entry (info, tag, val)
|
||
|
||
#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
|
||
(get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
|
||
|
||
/* The name of the dynamic relocation section. */
|
||
#define MIPS_ELF_REL_DYN_NAME(INFO) \
|
||
(mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
|
||
|
||
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
|
||
from smaller values. Start with zero, widen, *then* decrement. */
|
||
#define MINUS_ONE (((bfd_vma)0) - 1)
|
||
#define MINUS_TWO (((bfd_vma)0) - 2)
|
||
|
||
/* The value to write into got[1] for SVR4 targets, to identify it is
|
||
a GNU object. The dynamic linker can then use got[1] to store the
|
||
module pointer. */
|
||
#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
|
||
((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
|
||
|
||
/* The offset of $gp from the beginning of the .got section. */
|
||
#define ELF_MIPS_GP_OFFSET(INFO) \
|
||
(mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
|
||
|
||
/* The maximum size of the GOT for it to be addressable using 16-bit
|
||
offsets from $gp. */
|
||
#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
|
||
|
||
/* Instructions which appear in a stub. */
|
||
#define STUB_LW(abfd) \
|
||
((ABI_64_P (abfd) \
|
||
? 0xdf998010 /* ld t9,0x8010(gp) */ \
|
||
: 0x8f998010)) /* lw t9,0x8010(gp) */
|
||
#define STUB_MOVE(abfd) \
|
||
((ABI_64_P (abfd) \
|
||
? 0x03e0782d /* daddu t7,ra */ \
|
||
: 0x03e07821)) /* addu t7,ra */
|
||
#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
|
||
#define STUB_JALR 0x0320f809 /* jalr t9,ra */
|
||
#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
|
||
#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
|
||
#define STUB_LI16S(abfd, VAL) \
|
||
((ABI_64_P (abfd) \
|
||
? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
|
||
: (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
|
||
|
||
#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
|
||
#define MIPS_FUNCTION_STUB_BIG_SIZE 20
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER(abfd) \
|
||
(ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
|
||
: ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
|
||
: "/usr/lib/libc.so.1")
|
||
|
||
#ifdef BFD64
|
||
#define MNAME(bfd,pre,pos) \
|
||
(ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
|
||
#define ELF_R_SYM(bfd, i) \
|
||
(ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
|
||
#define ELF_R_TYPE(bfd, i) \
|
||
(ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
|
||
#define ELF_R_INFO(bfd, s, t) \
|
||
(ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
|
||
#else
|
||
#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
|
||
#define ELF_R_SYM(bfd, i) \
|
||
(ELF32_R_SYM (i))
|
||
#define ELF_R_TYPE(bfd, i) \
|
||
(ELF32_R_TYPE (i))
|
||
#define ELF_R_INFO(bfd, s, t) \
|
||
(ELF32_R_INFO (s, t))
|
||
#endif
|
||
|
||
/* The mips16 compiler uses a couple of special sections to handle
|
||
floating point arguments.
|
||
|
||
Section names that look like .mips16.fn.FNNAME contain stubs that
|
||
copy floating point arguments from the fp regs to the gp regs and
|
||
then jump to FNNAME. If any 32 bit function calls FNNAME, the
|
||
call should be redirected to the stub instead. If no 32 bit
|
||
function calls FNNAME, the stub should be discarded. We need to
|
||
consider any reference to the function, not just a call, because
|
||
if the address of the function is taken we will need the stub,
|
||
since the address might be passed to a 32 bit function.
|
||
|
||
Section names that look like .mips16.call.FNNAME contain stubs
|
||
that copy floating point arguments from the gp regs to the fp
|
||
regs and then jump to FNNAME. If FNNAME is a 32 bit function,
|
||
then any 16 bit function that calls FNNAME should be redirected
|
||
to the stub instead. If FNNAME is not a 32 bit function, the
|
||
stub should be discarded.
|
||
|
||
.mips16.call.fp.FNNAME sections are similar, but contain stubs
|
||
which call FNNAME and then copy the return value from the fp regs
|
||
to the gp regs. These stubs store the return value in $18 while
|
||
calling FNNAME; any function which might call one of these stubs
|
||
must arrange to save $18 around the call. (This case is not
|
||
needed for 32 bit functions that call 16 bit functions, because
|
||
16 bit functions always return floating point values in both
|
||
$f0/$f1 and $2/$3.)
|
||
|
||
Note that in all cases FNNAME might be defined statically.
|
||
Therefore, FNNAME is not used literally. Instead, the relocation
|
||
information will indicate which symbol the section is for.
|
||
|
||
We record any stubs that we find in the symbol table. */
|
||
|
||
#define FN_STUB ".mips16.fn."
|
||
#define CALL_STUB ".mips16.call."
|
||
#define CALL_FP_STUB ".mips16.call.fp."
|
||
|
||
#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
|
||
#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
|
||
#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
|
||
|
||
/* The format of the first PLT entry in an O32 executable. */
|
||
static const bfd_vma mips_o32_exec_plt0_entry[] =
|
||
{
|
||
0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
|
||
0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
|
||
0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
|
||
0x031cc023, /* subu $24, $24, $28 */
|
||
0x03e07821, /* move $15, $31 # 32-bit move (addu) */
|
||
0x0018c082, /* srl $24, $24, 2 */
|
||
0x0320f809, /* jalr $25 */
|
||
0x2718fffe /* subu $24, $24, 2 */
|
||
};
|
||
|
||
/* The format of the first PLT entry in an N32 executable. Different
|
||
because gp ($28) is not available; we use t2 ($14) instead. */
|
||
static const bfd_vma mips_n32_exec_plt0_entry[] =
|
||
{
|
||
0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
|
||
0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
|
||
0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
|
||
0x030ec023, /* subu $24, $24, $14 */
|
||
0x03e07821, /* move $15, $31 # 32-bit move (addu) */
|
||
0x0018c082, /* srl $24, $24, 2 */
|
||
0x0320f809, /* jalr $25 */
|
||
0x2718fffe /* subu $24, $24, 2 */
|
||
};
|
||
|
||
/* The format of the first PLT entry in an N64 executable. Different
|
||
from N32 because of the increased size of GOT entries. */
|
||
static const bfd_vma mips_n64_exec_plt0_entry[] =
|
||
{
|
||
0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
|
||
0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
|
||
0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
|
||
0x030ec023, /* subu $24, $24, $14 */
|
||
0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
|
||
0x0018c0c2, /* srl $24, $24, 3 */
|
||
0x0320f809, /* jalr $25 */
|
||
0x2718fffe /* subu $24, $24, 2 */
|
||
};
|
||
|
||
/* The format of subsequent PLT entries. */
|
||
static const bfd_vma mips_exec_plt_entry[] =
|
||
{
|
||
0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
|
||
0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
|
||
0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
|
||
0x03200008 /* jr $25 */
|
||
};
|
||
|
||
/* The format of the first PLT entry in a VxWorks executable. */
|
||
static const bfd_vma mips_vxworks_exec_plt0_entry[] =
|
||
{
|
||
0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
|
||
0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
|
||
0x8f390008, /* lw t9, 8(t9) */
|
||
0x00000000, /* nop */
|
||
0x03200008, /* jr t9 */
|
||
0x00000000 /* nop */
|
||
};
|
||
|
||
/* The format of subsequent PLT entries. */
|
||
static const bfd_vma mips_vxworks_exec_plt_entry[] =
|
||
{
|
||
0x10000000, /* b .PLT_resolver */
|
||
0x24180000, /* li t8, <pltindex> */
|
||
0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
|
||
0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
|
||
0x8f390000, /* lw t9, 0(t9) */
|
||
0x00000000, /* nop */
|
||
0x03200008, /* jr t9 */
|
||
0x00000000 /* nop */
|
||
};
|
||
|
||
/* The format of the first PLT entry in a VxWorks shared object. */
|
||
static const bfd_vma mips_vxworks_shared_plt0_entry[] =
|
||
{
|
||
0x8f990008, /* lw t9, 8(gp) */
|
||
0x00000000, /* nop */
|
||
0x03200008, /* jr t9 */
|
||
0x00000000, /* nop */
|
||
0x00000000, /* nop */
|
||
0x00000000 /* nop */
|
||
};
|
||
|
||
/* The format of subsequent PLT entries. */
|
||
static const bfd_vma mips_vxworks_shared_plt_entry[] =
|
||
{
|
||
0x10000000, /* b .PLT_resolver */
|
||
0x24180000 /* li t8, <pltindex> */
|
||
};
|
||
|
||
/* Look up an entry in a MIPS ELF linker hash table. */
|
||
|
||
#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
|
||
((struct mips_elf_link_hash_entry *) \
|
||
elf_link_hash_lookup (&(table)->root, (string), (create), \
|
||
(copy), (follow)))
|
||
|
||
/* Traverse a MIPS ELF linker hash table. */
|
||
|
||
#define mips_elf_link_hash_traverse(table, func, info) \
|
||
(elf_link_hash_traverse \
|
||
(&(table)->root, \
|
||
(bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
|
||
(info)))
|
||
|
||
/* Find the base offsets for thread-local storage in this object,
|
||
for GD/LD and IE/LE respectively. */
|
||
|
||
#define TP_OFFSET 0x7000
|
||
#define DTP_OFFSET 0x8000
|
||
|
||
static bfd_vma
|
||
dtprel_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
|
||
}
|
||
|
||
static bfd_vma
|
||
tprel_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
|
||
}
|
||
|
||
/* Create an entry in a MIPS ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table, const char *string)
|
||
{
|
||
struct mips_elf_link_hash_entry *ret =
|
||
(struct mips_elf_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == NULL)
|
||
ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
|
||
if (ret == NULL)
|
||
return (struct bfd_hash_entry *) ret;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct mips_elf_link_hash_entry *)
|
||
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string));
|
||
if (ret != NULL)
|
||
{
|
||
/* Set local fields. */
|
||
memset (&ret->esym, 0, sizeof (EXTR));
|
||
/* We use -2 as a marker to indicate that the information has
|
||
not been set. -1 means there is no associated ifd. */
|
||
ret->esym.ifd = -2;
|
||
ret->la25_stub = 0;
|
||
ret->possibly_dynamic_relocs = 0;
|
||
ret->fn_stub = NULL;
|
||
ret->call_stub = NULL;
|
||
ret->call_fp_stub = NULL;
|
||
ret->tls_type = GOT_NORMAL;
|
||
ret->global_got_area = GGA_NONE;
|
||
ret->got_only_for_calls = TRUE;
|
||
ret->readonly_reloc = FALSE;
|
||
ret->has_static_relocs = FALSE;
|
||
ret->no_fn_stub = FALSE;
|
||
ret->need_fn_stub = FALSE;
|
||
ret->has_nonpic_branches = FALSE;
|
||
ret->needs_lazy_stub = FALSE;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
|
||
{
|
||
if (!sec->used_by_bfd)
|
||
{
|
||
struct _mips_elf_section_data *sdata;
|
||
bfd_size_type amt = sizeof (*sdata);
|
||
|
||
sdata = bfd_zalloc (abfd, amt);
|
||
if (sdata == NULL)
|
||
return FALSE;
|
||
sec->used_by_bfd = sdata;
|
||
}
|
||
|
||
return _bfd_elf_new_section_hook (abfd, sec);
|
||
}
|
||
|
||
/* Read ECOFF debugging information from a .mdebug section into a
|
||
ecoff_debug_info structure. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
|
||
struct ecoff_debug_info *debug)
|
||
{
|
||
HDRR *symhdr;
|
||
const struct ecoff_debug_swap *swap;
|
||
char *ext_hdr;
|
||
|
||
swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
memset (debug, 0, sizeof (*debug));
|
||
|
||
ext_hdr = bfd_malloc (swap->external_hdr_size);
|
||
if (ext_hdr == NULL && swap->external_hdr_size != 0)
|
||
goto error_return;
|
||
|
||
if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
|
||
swap->external_hdr_size))
|
||
goto error_return;
|
||
|
||
symhdr = &debug->symbolic_header;
|
||
(*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
|
||
|
||
/* The symbolic header contains absolute file offsets and sizes to
|
||
read. */
|
||
#define READ(ptr, offset, count, size, type) \
|
||
if (symhdr->count == 0) \
|
||
debug->ptr = NULL; \
|
||
else \
|
||
{ \
|
||
bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
|
||
debug->ptr = bfd_malloc (amt); \
|
||
if (debug->ptr == NULL) \
|
||
goto error_return; \
|
||
if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
|
||
|| bfd_bread (debug->ptr, amt, abfd) != amt) \
|
||
goto error_return; \
|
||
}
|
||
|
||
READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
|
||
READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
|
||
READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
|
||
READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
|
||
READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
|
||
READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
|
||
union aux_ext *);
|
||
READ (ss, cbSsOffset, issMax, sizeof (char), char *);
|
||
READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
|
||
READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
|
||
READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
|
||
READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
|
||
#undef READ
|
||
|
||
debug->fdr = NULL;
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (ext_hdr != NULL)
|
||
free (ext_hdr);
|
||
if (debug->line != NULL)
|
||
free (debug->line);
|
||
if (debug->external_dnr != NULL)
|
||
free (debug->external_dnr);
|
||
if (debug->external_pdr != NULL)
|
||
free (debug->external_pdr);
|
||
if (debug->external_sym != NULL)
|
||
free (debug->external_sym);
|
||
if (debug->external_opt != NULL)
|
||
free (debug->external_opt);
|
||
if (debug->external_aux != NULL)
|
||
free (debug->external_aux);
|
||
if (debug->ss != NULL)
|
||
free (debug->ss);
|
||
if (debug->ssext != NULL)
|
||
free (debug->ssext);
|
||
if (debug->external_fdr != NULL)
|
||
free (debug->external_fdr);
|
||
if (debug->external_rfd != NULL)
|
||
free (debug->external_rfd);
|
||
if (debug->external_ext != NULL)
|
||
free (debug->external_ext);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Swap RPDR (runtime procedure table entry) for output. */
|
||
|
||
static void
|
||
ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
|
||
{
|
||
H_PUT_S32 (abfd, in->adr, ex->p_adr);
|
||
H_PUT_32 (abfd, in->regmask, ex->p_regmask);
|
||
H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
|
||
H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
|
||
H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
|
||
H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
|
||
|
||
H_PUT_16 (abfd, in->framereg, ex->p_framereg);
|
||
H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
|
||
|
||
H_PUT_32 (abfd, in->irpss, ex->p_irpss);
|
||
}
|
||
|
||
/* Create a runtime procedure table from the .mdebug section. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_create_procedure_table (void *handle, bfd *abfd,
|
||
struct bfd_link_info *info, asection *s,
|
||
struct ecoff_debug_info *debug)
|
||
{
|
||
const struct ecoff_debug_swap *swap;
|
||
HDRR *hdr = &debug->symbolic_header;
|
||
RPDR *rpdr, *rp;
|
||
struct rpdr_ext *erp;
|
||
void *rtproc;
|
||
struct pdr_ext *epdr;
|
||
struct sym_ext *esym;
|
||
char *ss, **sv;
|
||
char *str;
|
||
bfd_size_type size;
|
||
bfd_size_type count;
|
||
unsigned long sindex;
|
||
unsigned long i;
|
||
PDR pdr;
|
||
SYMR sym;
|
||
const char *no_name_func = _("static procedure (no name)");
|
||
|
||
epdr = NULL;
|
||
rpdr = NULL;
|
||
esym = NULL;
|
||
ss = NULL;
|
||
sv = NULL;
|
||
|
||
swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
|
||
sindex = strlen (no_name_func) + 1;
|
||
count = hdr->ipdMax;
|
||
if (count > 0)
|
||
{
|
||
size = swap->external_pdr_size;
|
||
|
||
epdr = bfd_malloc (size * count);
|
||
if (epdr == NULL)
|
||
goto error_return;
|
||
|
||
if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
|
||
goto error_return;
|
||
|
||
size = sizeof (RPDR);
|
||
rp = rpdr = bfd_malloc (size * count);
|
||
if (rpdr == NULL)
|
||
goto error_return;
|
||
|
||
size = sizeof (char *);
|
||
sv = bfd_malloc (size * count);
|
||
if (sv == NULL)
|
||
goto error_return;
|
||
|
||
count = hdr->isymMax;
|
||
size = swap->external_sym_size;
|
||
esym = bfd_malloc (size * count);
|
||
if (esym == NULL)
|
||
goto error_return;
|
||
|
||
if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
|
||
goto error_return;
|
||
|
||
count = hdr->issMax;
|
||
ss = bfd_malloc (count);
|
||
if (ss == NULL)
|
||
goto error_return;
|
||
if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
|
||
goto error_return;
|
||
|
||
count = hdr->ipdMax;
|
||
for (i = 0; i < (unsigned long) count; i++, rp++)
|
||
{
|
||
(*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
|
||
(*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
|
||
rp->adr = sym.value;
|
||
rp->regmask = pdr.regmask;
|
||
rp->regoffset = pdr.regoffset;
|
||
rp->fregmask = pdr.fregmask;
|
||
rp->fregoffset = pdr.fregoffset;
|
||
rp->frameoffset = pdr.frameoffset;
|
||
rp->framereg = pdr.framereg;
|
||
rp->pcreg = pdr.pcreg;
|
||
rp->irpss = sindex;
|
||
sv[i] = ss + sym.iss;
|
||
sindex += strlen (sv[i]) + 1;
|
||
}
|
||
}
|
||
|
||
size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
|
||
size = BFD_ALIGN (size, 16);
|
||
rtproc = bfd_alloc (abfd, size);
|
||
if (rtproc == NULL)
|
||
{
|
||
mips_elf_hash_table (info)->procedure_count = 0;
|
||
goto error_return;
|
||
}
|
||
|
||
mips_elf_hash_table (info)->procedure_count = count + 2;
|
||
|
||
erp = rtproc;
|
||
memset (erp, 0, sizeof (struct rpdr_ext));
|
||
erp++;
|
||
str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
|
||
strcpy (str, no_name_func);
|
||
str += strlen (no_name_func) + 1;
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
|
||
strcpy (str, sv[i]);
|
||
str += strlen (sv[i]) + 1;
|
||
}
|
||
H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
|
||
|
||
/* Set the size and contents of .rtproc section. */
|
||
s->size = size;
|
||
s->contents = rtproc;
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
s->map_head.link_order = NULL;
|
||
|
||
if (epdr != NULL)
|
||
free (epdr);
|
||
if (rpdr != NULL)
|
||
free (rpdr);
|
||
if (esym != NULL)
|
||
free (esym);
|
||
if (ss != NULL)
|
||
free (ss);
|
||
if (sv != NULL)
|
||
free (sv);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (epdr != NULL)
|
||
free (epdr);
|
||
if (rpdr != NULL)
|
||
free (rpdr);
|
||
if (esym != NULL)
|
||
free (esym);
|
||
if (ss != NULL)
|
||
free (ss);
|
||
if (sv != NULL)
|
||
free (sv);
|
||
return FALSE;
|
||
}
|
||
|
||
/* We're going to create a stub for H. Create a symbol for the stub's
|
||
value and size, to help make the disassembly easier to read. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_create_stub_symbol (struct bfd_link_info *info,
|
||
struct mips_elf_link_hash_entry *h,
|
||
const char *prefix, asection *s, bfd_vma value,
|
||
bfd_vma size)
|
||
{
|
||
struct bfd_link_hash_entry *bh;
|
||
struct elf_link_hash_entry *elfh;
|
||
const char *name;
|
||
|
||
if (ELF_ST_IS_MICROMIPS (h->root.other))
|
||
value |= 1;
|
||
|
||
/* Create a new symbol. */
|
||
name = ACONCAT ((prefix, h->root.root.root.string, NULL));
|
||
bh = NULL;
|
||
if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
|
||
BSF_LOCAL, s, value, NULL,
|
||
TRUE, FALSE, &bh))
|
||
return FALSE;
|
||
|
||
/* Make it a local function. */
|
||
elfh = (struct elf_link_hash_entry *) bh;
|
||
elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
||
elfh->size = size;
|
||
elfh->forced_local = 1;
|
||
return TRUE;
|
||
}
|
||
|
||
/* We're about to redefine H. Create a symbol to represent H's
|
||
current value and size, to help make the disassembly easier
|
||
to read. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_create_shadow_symbol (struct bfd_link_info *info,
|
||
struct mips_elf_link_hash_entry *h,
|
||
const char *prefix)
|
||
{
|
||
struct bfd_link_hash_entry *bh;
|
||
struct elf_link_hash_entry *elfh;
|
||
const char *name;
|
||
asection *s;
|
||
bfd_vma value;
|
||
|
||
/* Read the symbol's value. */
|
||
BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak);
|
||
s = h->root.root.u.def.section;
|
||
value = h->root.root.u.def.value;
|
||
|
||
/* Create a new symbol. */
|
||
name = ACONCAT ((prefix, h->root.root.root.string, NULL));
|
||
bh = NULL;
|
||
if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
|
||
BSF_LOCAL, s, value, NULL,
|
||
TRUE, FALSE, &bh))
|
||
return FALSE;
|
||
|
||
/* Make it local and copy the other attributes from H. */
|
||
elfh = (struct elf_link_hash_entry *) bh;
|
||
elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
|
||
elfh->other = h->root.other;
|
||
elfh->size = h->root.size;
|
||
elfh->forced_local = 1;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
|
||
function rather than to a hard-float stub. */
|
||
|
||
static bfd_boolean
|
||
section_allows_mips16_refs_p (asection *section)
|
||
{
|
||
const char *name;
|
||
|
||
name = bfd_get_section_name (section->owner, section);
|
||
return (FN_STUB_P (name)
|
||
|| CALL_STUB_P (name)
|
||
|| CALL_FP_STUB_P (name)
|
||
|| strcmp (name, ".pdr") == 0);
|
||
}
|
||
|
||
/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
|
||
stub section of some kind. Return the R_SYMNDX of the target
|
||
function, or 0 if we can't decide which function that is. */
|
||
|
||
static unsigned long
|
||
mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
|
||
const Elf_Internal_Rela *relocs,
|
||
const Elf_Internal_Rela *relend)
|
||
{
|
||
const Elf_Internal_Rela *rel;
|
||
|
||
/* Trust the first R_MIPS_NONE relocation, if any. */
|
||
for (rel = relocs; rel < relend; rel++)
|
||
if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
|
||
return ELF_R_SYM (sec->owner, rel->r_info);
|
||
|
||
/* Otherwise trust the first relocation, whatever its kind. This is
|
||
the traditional behavior. */
|
||
if (relocs < relend)
|
||
return ELF_R_SYM (sec->owner, relocs->r_info);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check the mips16 stubs for a particular symbol, and see if we can
|
||
discard them. */
|
||
|
||
static void
|
||
mips_elf_check_mips16_stubs (struct bfd_link_info *info,
|
||
struct mips_elf_link_hash_entry *h)
|
||
{
|
||
/* Dynamic symbols must use the standard call interface, in case other
|
||
objects try to call them. */
|
||
if (h->fn_stub != NULL
|
||
&& h->root.dynindx != -1)
|
||
{
|
||
mips_elf_create_shadow_symbol (info, h, ".mips16.");
|
||
h->need_fn_stub = TRUE;
|
||
}
|
||
|
||
if (h->fn_stub != NULL
|
||
&& ! h->need_fn_stub)
|
||
{
|
||
/* We don't need the fn_stub; the only references to this symbol
|
||
are 16 bit calls. Clobber the size to 0 to prevent it from
|
||
being included in the link. */
|
||
h->fn_stub->size = 0;
|
||
h->fn_stub->flags &= ~SEC_RELOC;
|
||
h->fn_stub->reloc_count = 0;
|
||
h->fn_stub->flags |= SEC_EXCLUDE;
|
||
}
|
||
|
||
if (h->call_stub != NULL
|
||
&& ELF_ST_IS_MIPS16 (h->root.other))
|
||
{
|
||
/* We don't need the call_stub; this is a 16 bit function, so
|
||
calls from other 16 bit functions are OK. Clobber the size
|
||
to 0 to prevent it from being included in the link. */
|
||
h->call_stub->size = 0;
|
||
h->call_stub->flags &= ~SEC_RELOC;
|
||
h->call_stub->reloc_count = 0;
|
||
h->call_stub->flags |= SEC_EXCLUDE;
|
||
}
|
||
|
||
if (h->call_fp_stub != NULL
|
||
&& ELF_ST_IS_MIPS16 (h->root.other))
|
||
{
|
||
/* We don't need the call_stub; this is a 16 bit function, so
|
||
calls from other 16 bit functions are OK. Clobber the size
|
||
to 0 to prevent it from being included in the link. */
|
||
h->call_fp_stub->size = 0;
|
||
h->call_fp_stub->flags &= ~SEC_RELOC;
|
||
h->call_fp_stub->reloc_count = 0;
|
||
h->call_fp_stub->flags |= SEC_EXCLUDE;
|
||
}
|
||
}
|
||
|
||
/* Hashtable callbacks for mips_elf_la25_stubs. */
|
||
|
||
static hashval_t
|
||
mips_elf_la25_stub_hash (const void *entry_)
|
||
{
|
||
const struct mips_elf_la25_stub *entry;
|
||
|
||
entry = (struct mips_elf_la25_stub *) entry_;
|
||
return entry->h->root.root.u.def.section->id
|
||
+ entry->h->root.root.u.def.value;
|
||
}
|
||
|
||
static int
|
||
mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
|
||
{
|
||
const struct mips_elf_la25_stub *entry1, *entry2;
|
||
|
||
entry1 = (struct mips_elf_la25_stub *) entry1_;
|
||
entry2 = (struct mips_elf_la25_stub *) entry2_;
|
||
return ((entry1->h->root.root.u.def.section
|
||
== entry2->h->root.root.u.def.section)
|
||
&& (entry1->h->root.root.u.def.value
|
||
== entry2->h->root.root.u.def.value));
|
||
}
|
||
|
||
/* Called by the linker to set up the la25 stub-creation code. FN is
|
||
the linker's implementation of add_stub_function. Return true on
|
||
success. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
|
||
asection *(*fn) (const char *, asection *,
|
||
asection *))
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
htab->add_stub_section = fn;
|
||
htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
|
||
mips_elf_la25_stub_eq, NULL);
|
||
if (htab->la25_stubs == NULL)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return true if H is a locally-defined PIC function, in the sense
|
||
that it might need $25 to be valid on entry. Note that MIPS16
|
||
functions never need $25 to be valid on entry; they set up $gp
|
||
using PC-relative instructions instead. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
|
||
{
|
||
return ((h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
&& h->root.def_regular
|
||
&& !bfd_is_abs_section (h->root.root.u.def.section)
|
||
&& !ELF_ST_IS_MIPS16 (h->root.other)
|
||
&& (PIC_OBJECT_P (h->root.root.u.def.section->owner)
|
||
|| ELF_ST_IS_MIPS_PIC (h->root.other)));
|
||
}
|
||
|
||
/* STUB describes an la25 stub that we have decided to implement
|
||
by inserting an LUI/ADDIU pair before the target function.
|
||
Create the section and redirect the function symbol to it. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
char *name;
|
||
asection *s, *input_section;
|
||
unsigned int align;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* Create a unique name for the new section. */
|
||
name = bfd_malloc (11 + sizeof (".text.stub."));
|
||
if (name == NULL)
|
||
return FALSE;
|
||
sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
|
||
|
||
/* Create the section. */
|
||
input_section = stub->h->root.root.u.def.section;
|
||
s = htab->add_stub_section (name, input_section,
|
||
input_section->output_section);
|
||
if (s == NULL)
|
||
return FALSE;
|
||
|
||
/* Make sure that any padding goes before the stub. */
|
||
align = input_section->alignment_power;
|
||
if (!bfd_set_section_alignment (s->owner, s, align))
|
||
return FALSE;
|
||
if (align > 3)
|
||
s->size = (1 << align) - 8;
|
||
|
||
/* Create a symbol for the stub. */
|
||
mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
|
||
stub->stub_section = s;
|
||
stub->offset = s->size;
|
||
|
||
/* Allocate room for it. */
|
||
s->size += 8;
|
||
return TRUE;
|
||
}
|
||
|
||
/* STUB describes an la25 stub that we have decided to implement
|
||
with a separate trampoline. Allocate room for it and redirect
|
||
the function symbol to it. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
asection *s;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* Create a trampoline section, if we haven't already. */
|
||
s = htab->strampoline;
|
||
if (s == NULL)
|
||
{
|
||
asection *input_section = stub->h->root.root.u.def.section;
|
||
s = htab->add_stub_section (".text", NULL,
|
||
input_section->output_section);
|
||
if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
|
||
return FALSE;
|
||
htab->strampoline = s;
|
||
}
|
||
|
||
/* Create a symbol for the stub. */
|
||
mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
|
||
stub->stub_section = s;
|
||
stub->offset = s->size;
|
||
|
||
/* Allocate room for it. */
|
||
s->size += 16;
|
||
return TRUE;
|
||
}
|
||
|
||
/* H describes a symbol that needs an la25 stub. Make sure that an
|
||
appropriate stub exists and point H at it. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_add_la25_stub (struct bfd_link_info *info,
|
||
struct mips_elf_link_hash_entry *h)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_la25_stub search, *stub;
|
||
bfd_boolean use_trampoline_p;
|
||
asection *s;
|
||
bfd_vma value;
|
||
void **slot;
|
||
|
||
/* Prefer to use LUI/ADDIU stubs if the function is at the beginning
|
||
of the section and if we would need no more than 2 nops. */
|
||
s = h->root.root.u.def.section;
|
||
value = h->root.root.u.def.value;
|
||
use_trampoline_p = (value != 0 || s->alignment_power > 4);
|
||
|
||
/* Describe the stub we want. */
|
||
search.stub_section = NULL;
|
||
search.offset = 0;
|
||
search.h = h;
|
||
|
||
/* See if we've already created an equivalent stub. */
|
||
htab = mips_elf_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
|
||
if (slot == NULL)
|
||
return FALSE;
|
||
|
||
stub = (struct mips_elf_la25_stub *) *slot;
|
||
if (stub != NULL)
|
||
{
|
||
/* We can reuse the existing stub. */
|
||
h->la25_stub = stub;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create a permanent copy of ENTRY and add it to the hash table. */
|
||
stub = bfd_malloc (sizeof (search));
|
||
if (stub == NULL)
|
||
return FALSE;
|
||
*stub = search;
|
||
*slot = stub;
|
||
|
||
h->la25_stub = stub;
|
||
return (use_trampoline_p
|
||
? mips_elf_add_la25_trampoline (stub, info)
|
||
: mips_elf_add_la25_intro (stub, info));
|
||
}
|
||
|
||
/* A mips_elf_link_hash_traverse callback that is called before sizing
|
||
sections. DATA points to a mips_htab_traverse_info structure. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
|
||
{
|
||
struct mips_htab_traverse_info *hti;
|
||
|
||
hti = (struct mips_htab_traverse_info *) data;
|
||
if (!hti->info->relocatable)
|
||
mips_elf_check_mips16_stubs (hti->info, h);
|
||
|
||
if (mips_elf_local_pic_function_p (h))
|
||
{
|
||
/* PR 12845: If H is in a section that has been garbage
|
||
collected it will have its output section set to *ABS*. */
|
||
if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
|
||
return TRUE;
|
||
|
||
/* H is a function that might need $25 to be valid on entry.
|
||
If we're creating a non-PIC relocatable object, mark H as
|
||
being PIC. If we're creating a non-relocatable object with
|
||
non-PIC branches and jumps to H, make sure that H has an la25
|
||
stub. */
|
||
if (hti->info->relocatable)
|
||
{
|
||
if (!PIC_OBJECT_P (hti->output_bfd))
|
||
h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
|
||
}
|
||
else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
|
||
{
|
||
hti->error = TRUE;
|
||
return FALSE;
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
|
||
Most mips16 instructions are 16 bits, but these instructions
|
||
are 32 bits.
|
||
|
||
The format of these instructions is:
|
||
|
||
+--------------+--------------------------------+
|
||
| JALX | X| Imm 20:16 | Imm 25:21 |
|
||
+--------------+--------------------------------+
|
||
| Immediate 15:0 |
|
||
+-----------------------------------------------+
|
||
|
||
JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
|
||
Note that the immediate value in the first word is swapped.
|
||
|
||
When producing a relocatable object file, R_MIPS16_26 is
|
||
handled mostly like R_MIPS_26. In particular, the addend is
|
||
stored as a straight 26-bit value in a 32-bit instruction.
|
||
(gas makes life simpler for itself by never adjusting a
|
||
R_MIPS16_26 reloc to be against a section, so the addend is
|
||
always zero). However, the 32 bit instruction is stored as 2
|
||
16-bit values, rather than a single 32-bit value. In a
|
||
big-endian file, the result is the same; in a little-endian
|
||
file, the two 16-bit halves of the 32 bit value are swapped.
|
||
This is so that a disassembler can recognize the jal
|
||
instruction.
|
||
|
||
When doing a final link, R_MIPS16_26 is treated as a 32 bit
|
||
instruction stored as two 16-bit values. The addend A is the
|
||
contents of the targ26 field. The calculation is the same as
|
||
R_MIPS_26. When storing the calculated value, reorder the
|
||
immediate value as shown above, and don't forget to store the
|
||
value as two 16-bit values.
|
||
|
||
To put it in MIPS ABI terms, the relocation field is T-targ26-16,
|
||
defined as
|
||
|
||
big-endian:
|
||
+--------+----------------------+
|
||
| | |
|
||
| | targ26-16 |
|
||
|31 26|25 0|
|
||
+--------+----------------------+
|
||
|
||
little-endian:
|
||
+----------+------+-------------+
|
||
| | | |
|
||
| sub1 | | sub2 |
|
||
|0 9|10 15|16 31|
|
||
+----------+--------------------+
|
||
where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
|
||
((sub1 << 16) | sub2)).
|
||
|
||
When producing a relocatable object file, the calculation is
|
||
(((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
|
||
When producing a fully linked file, the calculation is
|
||
let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
|
||
((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
|
||
|
||
The table below lists the other MIPS16 instruction relocations.
|
||
Each one is calculated in the same way as the non-MIPS16 relocation
|
||
given on the right, but using the extended MIPS16 layout of 16-bit
|
||
immediate fields:
|
||
|
||
R_MIPS16_GPREL R_MIPS_GPREL16
|
||
R_MIPS16_GOT16 R_MIPS_GOT16
|
||
R_MIPS16_CALL16 R_MIPS_CALL16
|
||
R_MIPS16_HI16 R_MIPS_HI16
|
||
R_MIPS16_LO16 R_MIPS_LO16
|
||
|
||
A typical instruction will have a format like this:
|
||
|
||
+--------------+--------------------------------+
|
||
| EXTEND | Imm 10:5 | Imm 15:11 |
|
||
+--------------+--------------------------------+
|
||
| Major | rx | ry | Imm 4:0 |
|
||
+--------------+--------------------------------+
|
||
|
||
EXTEND is the five bit value 11110. Major is the instruction
|
||
opcode.
|
||
|
||
All we need to do here is shuffle the bits appropriately.
|
||
As above, the two 16-bit halves must be swapped on a
|
||
little-endian system. */
|
||
|
||
static inline bfd_boolean
|
||
mips16_reloc_p (int r_type)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS16_26:
|
||
case R_MIPS16_GPREL:
|
||
case R_MIPS16_GOT16:
|
||
case R_MIPS16_CALL16:
|
||
case R_MIPS16_HI16:
|
||
case R_MIPS16_LO16:
|
||
return TRUE;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Check if a microMIPS reloc. */
|
||
|
||
static inline bfd_boolean
|
||
micromips_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
|
||
}
|
||
|
||
/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
|
||
on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
|
||
and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
|
||
|
||
static inline bfd_boolean
|
||
micromips_reloc_shuffle_p (unsigned int r_type)
|
||
{
|
||
return (micromips_reloc_p (r_type)
|
||
&& r_type != R_MICROMIPS_PC7_S1
|
||
&& r_type != R_MICROMIPS_PC10_S1);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got16_reloc_p (int r_type)
|
||
{
|
||
return (r_type == R_MIPS_GOT16
|
||
|| r_type == R_MIPS16_GOT16
|
||
|| r_type == R_MICROMIPS_GOT16);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
call16_reloc_p (int r_type)
|
||
{
|
||
return (r_type == R_MIPS_CALL16
|
||
|| r_type == R_MIPS16_CALL16
|
||
|| r_type == R_MICROMIPS_CALL16);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got_disp_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got_page_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got_ofst_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got_hi16_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got_lo16_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
call_hi16_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
call_lo16_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
hi16_reloc_p (int r_type)
|
||
{
|
||
return (r_type == R_MIPS_HI16
|
||
|| r_type == R_MIPS16_HI16
|
||
|| r_type == R_MICROMIPS_HI16);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
lo16_reloc_p (int r_type)
|
||
{
|
||
return (r_type == R_MIPS_LO16
|
||
|| r_type == R_MIPS16_LO16
|
||
|| r_type == R_MICROMIPS_LO16);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
mips16_call_reloc_p (int r_type)
|
||
{
|
||
return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
jal_reloc_p (int r_type)
|
||
{
|
||
return (r_type == R_MIPS_26
|
||
|| r_type == R_MIPS16_26
|
||
|| r_type == R_MICROMIPS_26_S1);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
micromips_branch_reloc_p (int r_type)
|
||
{
|
||
return (r_type == R_MICROMIPS_26_S1
|
||
|| r_type == R_MICROMIPS_PC16_S1
|
||
|| r_type == R_MICROMIPS_PC10_S1
|
||
|| r_type == R_MICROMIPS_PC7_S1);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
tls_gd_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
tls_ldm_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
tls_gottprel_reloc_p (unsigned int r_type)
|
||
{
|
||
return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
|
||
}
|
||
|
||
void
|
||
_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
|
||
bfd_boolean jal_shuffle, bfd_byte *data)
|
||
{
|
||
bfd_vma first, second, val;
|
||
|
||
if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
|
||
return;
|
||
|
||
/* Pick up the first and second halfwords of the instruction. */
|
||
first = bfd_get_16 (abfd, data);
|
||
second = bfd_get_16 (abfd, data + 2);
|
||
if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
|
||
val = first << 16 | second;
|
||
else if (r_type != R_MIPS16_26)
|
||
val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
|
||
| ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
|
||
else
|
||
val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
|
||
| ((first & 0x1f) << 21) | second);
|
||
bfd_put_32 (abfd, val, data);
|
||
}
|
||
|
||
void
|
||
_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
|
||
bfd_boolean jal_shuffle, bfd_byte *data)
|
||
{
|
||
bfd_vma first, second, val;
|
||
|
||
if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
|
||
return;
|
||
|
||
val = bfd_get_32 (abfd, data);
|
||
if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
|
||
{
|
||
second = val & 0xffff;
|
||
first = val >> 16;
|
||
}
|
||
else if (r_type != R_MIPS16_26)
|
||
{
|
||
second = ((val >> 11) & 0xffe0) | (val & 0x1f);
|
||
first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
|
||
}
|
||
else
|
||
{
|
||
second = val & 0xffff;
|
||
first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
|
||
| ((val >> 21) & 0x1f);
|
||
}
|
||
bfd_put_16 (abfd, second, data + 2);
|
||
bfd_put_16 (abfd, first, data);
|
||
}
|
||
|
||
bfd_reloc_status_type
|
||
_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
|
||
arelent *reloc_entry, asection *input_section,
|
||
bfd_boolean relocatable, void *data, bfd_vma gp)
|
||
{
|
||
bfd_vma relocation;
|
||
bfd_signed_vma val;
|
||
bfd_reloc_status_type status;
|
||
|
||
if (bfd_is_com_section (symbol->section))
|
||
relocation = 0;
|
||
else
|
||
relocation = symbol->value;
|
||
|
||
relocation += symbol->section->output_section->vma;
|
||
relocation += symbol->section->output_offset;
|
||
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* Set val to the offset into the section or symbol. */
|
||
val = reloc_entry->addend;
|
||
|
||
_bfd_mips_elf_sign_extend (val, 16);
|
||
|
||
/* Adjust val for the final section location and GP value. If we
|
||
are producing relocatable output, we don't want to do this for
|
||
an external symbol. */
|
||
if (! relocatable
|
||
|| (symbol->flags & BSF_SECTION_SYM) != 0)
|
||
val += relocation - gp;
|
||
|
||
if (reloc_entry->howto->partial_inplace)
|
||
{
|
||
status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
|
||
(bfd_byte *) data
|
||
+ reloc_entry->address);
|
||
if (status != bfd_reloc_ok)
|
||
return status;
|
||
}
|
||
else
|
||
reloc_entry->addend = val;
|
||
|
||
if (relocatable)
|
||
reloc_entry->address += input_section->output_offset;
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
|
||
R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
|
||
that contains the relocation field and DATA points to the start of
|
||
INPUT_SECTION. */
|
||
|
||
struct mips_hi16
|
||
{
|
||
struct mips_hi16 *next;
|
||
bfd_byte *data;
|
||
asection *input_section;
|
||
arelent rel;
|
||
};
|
||
|
||
/* FIXME: This should not be a static variable. */
|
||
|
||
static struct mips_hi16 *mips_hi16_list;
|
||
|
||
/* A howto special_function for REL *HI16 relocations. We can only
|
||
calculate the correct value once we've seen the partnering
|
||
*LO16 relocation, so just save the information for later.
|
||
|
||
The ABI requires that the *LO16 immediately follow the *HI16.
|
||
However, as a GNU extension, we permit an arbitrary number of
|
||
*HI16s to be associated with a single *LO16. This significantly
|
||
simplies the relocation handling in gcc. */
|
||
|
||
bfd_reloc_status_type
|
||
_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
|
||
asymbol *symbol ATTRIBUTE_UNUSED, void *data,
|
||
asection *input_section, bfd *output_bfd,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
struct mips_hi16 *n;
|
||
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
n = bfd_malloc (sizeof *n);
|
||
if (n == NULL)
|
||
return bfd_reloc_outofrange;
|
||
|
||
n->next = mips_hi16_list;
|
||
n->data = data;
|
||
n->input_section = input_section;
|
||
n->rel = *reloc_entry;
|
||
mips_hi16_list = n;
|
||
|
||
if (output_bfd != NULL)
|
||
reloc_entry->address += input_section->output_offset;
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
|
||
like any other 16-bit relocation when applied to global symbols, but is
|
||
treated in the same as R_MIPS_HI16 when applied to local symbols. */
|
||
|
||
bfd_reloc_status_type
|
||
_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
||
void *data, asection *input_section,
|
||
bfd *output_bfd, char **error_message)
|
||
{
|
||
if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (symbol))
|
||
|| bfd_is_com_section (bfd_get_section (symbol)))
|
||
/* The relocation is against a global symbol. */
|
||
return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
|
||
input_section, output_bfd,
|
||
error_message);
|
||
|
||
return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
|
||
input_section, output_bfd, error_message);
|
||
}
|
||
|
||
/* A howto special_function for REL *LO16 relocations. The *LO16 itself
|
||
is a straightforward 16 bit inplace relocation, but we must deal with
|
||
any partnering high-part relocations as well. */
|
||
|
||
bfd_reloc_status_type
|
||
_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
||
void *data, asection *input_section,
|
||
bfd *output_bfd, char **error_message)
|
||
{
|
||
bfd_vma vallo;
|
||
bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
|
||
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
_bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
|
||
location);
|
||
vallo = bfd_get_32 (abfd, location);
|
||
_bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
|
||
location);
|
||
|
||
while (mips_hi16_list != NULL)
|
||
{
|
||
bfd_reloc_status_type ret;
|
||
struct mips_hi16 *hi;
|
||
|
||
hi = mips_hi16_list;
|
||
|
||
/* R_MIPS*_GOT16 relocations are something of a special case. We
|
||
want to install the addend in the same way as for a R_MIPS*_HI16
|
||
relocation (with a rightshift of 16). However, since GOT16
|
||
relocations can also be used with global symbols, their howto
|
||
has a rightshift of 0. */
|
||
if (hi->rel.howto->type == R_MIPS_GOT16)
|
||
hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
|
||
else if (hi->rel.howto->type == R_MIPS16_GOT16)
|
||
hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
|
||
else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
|
||
hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
|
||
|
||
/* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
|
||
carry or borrow will induce a change of +1 or -1 in the high part. */
|
||
hi->rel.addend += (vallo + 0x8000) & 0xffff;
|
||
|
||
ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
|
||
hi->input_section, output_bfd,
|
||
error_message);
|
||
if (ret != bfd_reloc_ok)
|
||
return ret;
|
||
|
||
mips_hi16_list = hi->next;
|
||
free (hi);
|
||
}
|
||
|
||
return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
|
||
input_section, output_bfd,
|
||
error_message);
|
||
}
|
||
|
||
/* A generic howto special_function. This calculates and installs the
|
||
relocation itself, thus avoiding the oft-discussed problems in
|
||
bfd_perform_relocation and bfd_install_relocation. */
|
||
|
||
bfd_reloc_status_type
|
||
_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
|
||
asymbol *symbol, void *data ATTRIBUTE_UNUSED,
|
||
asection *input_section, bfd *output_bfd,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
bfd_signed_vma val;
|
||
bfd_reloc_status_type status;
|
||
bfd_boolean relocatable;
|
||
|
||
relocatable = (output_bfd != NULL);
|
||
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* Build up the field adjustment in VAL. */
|
||
val = 0;
|
||
if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
|
||
{
|
||
/* Either we're calculating the final field value or we have a
|
||
relocation against a section symbol. Add in the section's
|
||
offset or address. */
|
||
val += symbol->section->output_section->vma;
|
||
val += symbol->section->output_offset;
|
||
}
|
||
|
||
if (!relocatable)
|
||
{
|
||
/* We're calculating the final field value. Add in the symbol's value
|
||
and, if pc-relative, subtract the address of the field itself. */
|
||
val += symbol->value;
|
||
if (reloc_entry->howto->pc_relative)
|
||
{
|
||
val -= input_section->output_section->vma;
|
||
val -= input_section->output_offset;
|
||
val -= reloc_entry->address;
|
||
}
|
||
}
|
||
|
||
/* VAL is now the final adjustment. If we're keeping this relocation
|
||
in the output file, and if the relocation uses a separate addend,
|
||
we just need to add VAL to that addend. Otherwise we need to add
|
||
VAL to the relocation field itself. */
|
||
if (relocatable && !reloc_entry->howto->partial_inplace)
|
||
reloc_entry->addend += val;
|
||
else
|
||
{
|
||
bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
|
||
|
||
/* Add in the separate addend, if any. */
|
||
val += reloc_entry->addend;
|
||
|
||
/* Add VAL to the relocation field. */
|
||
_bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
|
||
location);
|
||
status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
|
||
location);
|
||
_bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
|
||
location);
|
||
|
||
if (status != bfd_reloc_ok)
|
||
return status;
|
||
}
|
||
|
||
if (relocatable)
|
||
reloc_entry->address += input_section->output_offset;
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Swap an entry in a .gptab section. Note that these routines rely
|
||
on the equivalence of the two elements of the union. */
|
||
|
||
static void
|
||
bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
|
||
Elf32_gptab *in)
|
||
{
|
||
in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
|
||
in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
|
||
}
|
||
|
||
static void
|
||
bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
|
||
Elf32_External_gptab *ex)
|
||
{
|
||
H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
|
||
H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
|
||
}
|
||
|
||
static void
|
||
bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
|
||
Elf32_External_compact_rel *ex)
|
||
{
|
||
H_PUT_32 (abfd, in->id1, ex->id1);
|
||
H_PUT_32 (abfd, in->num, ex->num);
|
||
H_PUT_32 (abfd, in->id2, ex->id2);
|
||
H_PUT_32 (abfd, in->offset, ex->offset);
|
||
H_PUT_32 (abfd, in->reserved0, ex->reserved0);
|
||
H_PUT_32 (abfd, in->reserved1, ex->reserved1);
|
||
}
|
||
|
||
static void
|
||
bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
|
||
Elf32_External_crinfo *ex)
|
||
{
|
||
unsigned long l;
|
||
|
||
l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
|
||
| ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
|
||
| ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
|
||
| ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
|
||
H_PUT_32 (abfd, l, ex->info);
|
||
H_PUT_32 (abfd, in->konst, ex->konst);
|
||
H_PUT_32 (abfd, in->vaddr, ex->vaddr);
|
||
}
|
||
|
||
/* A .reginfo section holds a single Elf32_RegInfo structure. These
|
||
routines swap this structure in and out. They are used outside of
|
||
BFD, so they are globally visible. */
|
||
|
||
void
|
||
bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
|
||
Elf32_RegInfo *in)
|
||
{
|
||
in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
|
||
in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
|
||
in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
|
||
in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
|
||
in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
|
||
in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
|
||
}
|
||
|
||
void
|
||
bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
|
||
Elf32_External_RegInfo *ex)
|
||
{
|
||
H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
|
||
H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
|
||
H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
|
||
H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
|
||
H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
|
||
H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
|
||
}
|
||
|
||
/* In the 64 bit ABI, the .MIPS.options section holds register
|
||
information in an Elf64_Reginfo structure. These routines swap
|
||
them in and out. They are globally visible because they are used
|
||
outside of BFD. These routines are here so that gas can call them
|
||
without worrying about whether the 64 bit ABI has been included. */
|
||
|
||
void
|
||
bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
|
||
Elf64_Internal_RegInfo *in)
|
||
{
|
||
in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
|
||
in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
|
||
in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
|
||
in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
|
||
in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
|
||
in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
|
||
in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
|
||
}
|
||
|
||
void
|
||
bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
|
||
Elf64_External_RegInfo *ex)
|
||
{
|
||
H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
|
||
H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
|
||
H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
|
||
H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
|
||
H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
|
||
H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
|
||
H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
|
||
}
|
||
|
||
/* Swap in an options header. */
|
||
|
||
void
|
||
bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
|
||
Elf_Internal_Options *in)
|
||
{
|
||
in->kind = H_GET_8 (abfd, ex->kind);
|
||
in->size = H_GET_8 (abfd, ex->size);
|
||
in->section = H_GET_16 (abfd, ex->section);
|
||
in->info = H_GET_32 (abfd, ex->info);
|
||
}
|
||
|
||
/* Swap out an options header. */
|
||
|
||
void
|
||
bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
|
||
Elf_External_Options *ex)
|
||
{
|
||
H_PUT_8 (abfd, in->kind, ex->kind);
|
||
H_PUT_8 (abfd, in->size, ex->size);
|
||
H_PUT_16 (abfd, in->section, ex->section);
|
||
H_PUT_32 (abfd, in->info, ex->info);
|
||
}
|
||
|
||
/* This function is called via qsort() to sort the dynamic relocation
|
||
entries by increasing r_symndx value. */
|
||
|
||
static int
|
||
sort_dynamic_relocs (const void *arg1, const void *arg2)
|
||
{
|
||
Elf_Internal_Rela int_reloc1;
|
||
Elf_Internal_Rela int_reloc2;
|
||
int diff;
|
||
|
||
bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
|
||
bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
|
||
|
||
diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
|
||
if (diff != 0)
|
||
return diff;
|
||
|
||
if (int_reloc1.r_offset < int_reloc2.r_offset)
|
||
return -1;
|
||
if (int_reloc1.r_offset > int_reloc2.r_offset)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Like sort_dynamic_relocs, but used for elf64 relocations. */
|
||
|
||
static int
|
||
sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
|
||
const void *arg2 ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef BFD64
|
||
Elf_Internal_Rela int_reloc1[3];
|
||
Elf_Internal_Rela int_reloc2[3];
|
||
|
||
(*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
|
||
(reldyn_sorting_bfd, arg1, int_reloc1);
|
||
(*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
|
||
(reldyn_sorting_bfd, arg2, int_reloc2);
|
||
|
||
if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
|
||
return -1;
|
||
if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
|
||
return 1;
|
||
|
||
if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
|
||
return -1;
|
||
if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
|
||
return 1;
|
||
return 0;
|
||
#else
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
|
||
/* This routine is used to write out ECOFF debugging external symbol
|
||
information. It is called via mips_elf_link_hash_traverse. The
|
||
ECOFF external symbol information must match the ELF external
|
||
symbol information. Unfortunately, at this point we don't know
|
||
whether a symbol is required by reloc information, so the two
|
||
tables may wind up being different. We must sort out the external
|
||
symbol information before we can set the final size of the .mdebug
|
||
section, and we must set the size of the .mdebug section before we
|
||
can relocate any sections, and we can't know which symbols are
|
||
required by relocation until we relocate the sections.
|
||
Fortunately, it is relatively unlikely that any symbol will be
|
||
stripped but required by a reloc. In particular, it can not happen
|
||
when generating a final executable. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
|
||
{
|
||
struct extsym_info *einfo = data;
|
||
bfd_boolean strip;
|
||
asection *sec, *output_section;
|
||
|
||
if (h->root.indx == -2)
|
||
strip = FALSE;
|
||
else if ((h->root.def_dynamic
|
||
|| h->root.ref_dynamic
|
||
|| h->root.type == bfd_link_hash_new)
|
||
&& !h->root.def_regular
|
||
&& !h->root.ref_regular)
|
||
strip = TRUE;
|
||
else if (einfo->info->strip == strip_all
|
||
|| (einfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (einfo->info->keep_hash,
|
||
h->root.root.root.string,
|
||
FALSE, FALSE) == NULL))
|
||
strip = TRUE;
|
||
else
|
||
strip = FALSE;
|
||
|
||
if (strip)
|
||
return TRUE;
|
||
|
||
if (h->esym.ifd == -2)
|
||
{
|
||
h->esym.jmptbl = 0;
|
||
h->esym.cobol_main = 0;
|
||
h->esym.weakext = 0;
|
||
h->esym.reserved = 0;
|
||
h->esym.ifd = ifdNil;
|
||
h->esym.asym.value = 0;
|
||
h->esym.asym.st = stGlobal;
|
||
|
||
if (h->root.root.type == bfd_link_hash_undefined
|
||
|| h->root.root.type == bfd_link_hash_undefweak)
|
||
{
|
||
const char *name;
|
||
|
||
/* Use undefined class. Also, set class and type for some
|
||
special symbols. */
|
||
name = h->root.root.root.string;
|
||
if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
|
||
|| strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
|
||
{
|
||
h->esym.asym.sc = scData;
|
||
h->esym.asym.st = stLabel;
|
||
h->esym.asym.value = 0;
|
||
}
|
||
else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
|
||
{
|
||
h->esym.asym.sc = scAbs;
|
||
h->esym.asym.st = stLabel;
|
||
h->esym.asym.value =
|
||
mips_elf_hash_table (einfo->info)->procedure_count;
|
||
}
|
||
else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
|
||
{
|
||
h->esym.asym.sc = scAbs;
|
||
h->esym.asym.st = stLabel;
|
||
h->esym.asym.value = elf_gp (einfo->abfd);
|
||
}
|
||
else
|
||
h->esym.asym.sc = scUndefined;
|
||
}
|
||
else if (h->root.root.type != bfd_link_hash_defined
|
||
&& h->root.root.type != bfd_link_hash_defweak)
|
||
h->esym.asym.sc = scAbs;
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
sec = h->root.root.u.def.section;
|
||
output_section = sec->output_section;
|
||
|
||
/* When making a shared library and symbol h is the one from
|
||
the another shared library, OUTPUT_SECTION may be null. */
|
||
if (output_section == NULL)
|
||
h->esym.asym.sc = scUndefined;
|
||
else
|
||
{
|
||
name = bfd_section_name (output_section->owner, output_section);
|
||
|
||
if (strcmp (name, ".text") == 0)
|
||
h->esym.asym.sc = scText;
|
||
else if (strcmp (name, ".data") == 0)
|
||
h->esym.asym.sc = scData;
|
||
else if (strcmp (name, ".sdata") == 0)
|
||
h->esym.asym.sc = scSData;
|
||
else if (strcmp (name, ".rodata") == 0
|
||
|| strcmp (name, ".rdata") == 0)
|
||
h->esym.asym.sc = scRData;
|
||
else if (strcmp (name, ".bss") == 0)
|
||
h->esym.asym.sc = scBss;
|
||
else if (strcmp (name, ".sbss") == 0)
|
||
h->esym.asym.sc = scSBss;
|
||
else if (strcmp (name, ".init") == 0)
|
||
h->esym.asym.sc = scInit;
|
||
else if (strcmp (name, ".fini") == 0)
|
||
h->esym.asym.sc = scFini;
|
||
else
|
||
h->esym.asym.sc = scAbs;
|
||
}
|
||
}
|
||
|
||
h->esym.asym.reserved = 0;
|
||
h->esym.asym.index = indexNil;
|
||
}
|
||
|
||
if (h->root.root.type == bfd_link_hash_common)
|
||
h->esym.asym.value = h->root.root.u.c.size;
|
||
else if (h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
{
|
||
if (h->esym.asym.sc == scCommon)
|
||
h->esym.asym.sc = scBss;
|
||
else if (h->esym.asym.sc == scSCommon)
|
||
h->esym.asym.sc = scSBss;
|
||
|
||
sec = h->root.root.u.def.section;
|
||
output_section = sec->output_section;
|
||
if (output_section != NULL)
|
||
h->esym.asym.value = (h->root.root.u.def.value
|
||
+ sec->output_offset
|
||
+ output_section->vma);
|
||
else
|
||
h->esym.asym.value = 0;
|
||
}
|
||
else
|
||
{
|
||
struct mips_elf_link_hash_entry *hd = h;
|
||
|
||
while (hd->root.root.type == bfd_link_hash_indirect)
|
||
hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
|
||
|
||
if (hd->needs_lazy_stub)
|
||
{
|
||
/* Set type and value for a symbol with a function stub. */
|
||
h->esym.asym.st = stProc;
|
||
sec = hd->root.root.u.def.section;
|
||
if (sec == NULL)
|
||
h->esym.asym.value = 0;
|
||
else
|
||
{
|
||
output_section = sec->output_section;
|
||
if (output_section != NULL)
|
||
h->esym.asym.value = (hd->root.plt.offset
|
||
+ sec->output_offset
|
||
+ output_section->vma);
|
||
else
|
||
h->esym.asym.value = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
|
||
h->root.root.root.string,
|
||
&h->esym))
|
||
{
|
||
einfo->failed = TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* A comparison routine used to sort .gptab entries. */
|
||
|
||
static int
|
||
gptab_compare (const void *p1, const void *p2)
|
||
{
|
||
const Elf32_gptab *a1 = p1;
|
||
const Elf32_gptab *a2 = p2;
|
||
|
||
return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
|
||
}
|
||
|
||
/* Functions to manage the got entry hash table. */
|
||
|
||
/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
|
||
hash number. */
|
||
|
||
static INLINE hashval_t
|
||
mips_elf_hash_bfd_vma (bfd_vma addr)
|
||
{
|
||
#ifdef BFD64
|
||
return addr + (addr >> 32);
|
||
#else
|
||
return addr;
|
||
#endif
|
||
}
|
||
|
||
/* got_entries only match if they're identical, except for gotidx, so
|
||
use all fields to compute the hash, and compare the appropriate
|
||
union members. */
|
||
|
||
static hashval_t
|
||
mips_elf_got_entry_hash (const void *entry_)
|
||
{
|
||
const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
|
||
|
||
return entry->symndx
|
||
+ ((entry->tls_type & GOT_TLS_LDM) << 17)
|
||
+ (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
|
||
: entry->abfd->id
|
||
+ (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
|
||
: entry->d.h->root.root.root.hash));
|
||
}
|
||
|
||
static int
|
||
mips_elf_got_entry_eq (const void *entry1, const void *entry2)
|
||
{
|
||
const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
|
||
const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
|
||
|
||
/* An LDM entry can only match another LDM entry. */
|
||
if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
|
||
return 0;
|
||
|
||
return e1->abfd == e2->abfd && e1->symndx == e2->symndx
|
||
&& (! e1->abfd ? e1->d.address == e2->d.address
|
||
: e1->symndx >= 0 ? e1->d.addend == e2->d.addend
|
||
: e1->d.h == e2->d.h);
|
||
}
|
||
|
||
/* multi_got_entries are still a match in the case of global objects,
|
||
even if the input bfd in which they're referenced differs, so the
|
||
hash computation and compare functions are adjusted
|
||
accordingly. */
|
||
|
||
static hashval_t
|
||
mips_elf_multi_got_entry_hash (const void *entry_)
|
||
{
|
||
const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
|
||
|
||
return entry->symndx
|
||
+ (! entry->abfd
|
||
? mips_elf_hash_bfd_vma (entry->d.address)
|
||
: entry->symndx >= 0
|
||
? ((entry->tls_type & GOT_TLS_LDM)
|
||
? (GOT_TLS_LDM << 17)
|
||
: (entry->abfd->id
|
||
+ mips_elf_hash_bfd_vma (entry->d.addend)))
|
||
: entry->d.h->root.root.root.hash);
|
||
}
|
||
|
||
static int
|
||
mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
|
||
{
|
||
const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
|
||
const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
|
||
|
||
/* Any two LDM entries match. */
|
||
if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
|
||
return 1;
|
||
|
||
/* Nothing else matches an LDM entry. */
|
||
if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
|
||
return 0;
|
||
|
||
return e1->symndx == e2->symndx
|
||
&& (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
|
||
: e1->abfd == NULL || e2->abfd == NULL
|
||
? e1->abfd == e2->abfd && e1->d.address == e2->d.address
|
||
: e1->d.h == e2->d.h);
|
||
}
|
||
|
||
static hashval_t
|
||
mips_got_page_entry_hash (const void *entry_)
|
||
{
|
||
const struct mips_got_page_entry *entry;
|
||
|
||
entry = (const struct mips_got_page_entry *) entry_;
|
||
return entry->abfd->id + entry->symndx;
|
||
}
|
||
|
||
static int
|
||
mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
|
||
{
|
||
const struct mips_got_page_entry *entry1, *entry2;
|
||
|
||
entry1 = (const struct mips_got_page_entry *) entry1_;
|
||
entry2 = (const struct mips_got_page_entry *) entry2_;
|
||
return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
|
||
}
|
||
|
||
/* Return the dynamic relocation section. If it doesn't exist, try to
|
||
create a new it if CREATE_P, otherwise return NULL. Also return NULL
|
||
if creation fails. */
|
||
|
||
static asection *
|
||
mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
|
||
{
|
||
const char *dname;
|
||
asection *sreloc;
|
||
bfd *dynobj;
|
||
|
||
dname = MIPS_ELF_REL_DYN_NAME (info);
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sreloc = bfd_get_section_by_name (dynobj, dname);
|
||
if (sreloc == NULL && create_p)
|
||
{
|
||
sreloc = bfd_make_section_with_flags (dynobj, dname,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY));
|
||
if (sreloc == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, sreloc,
|
||
MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
|
||
return NULL;
|
||
}
|
||
return sreloc;
|
||
}
|
||
|
||
/* Count the number of relocations needed for a TLS GOT entry, with
|
||
access types from TLS_TYPE, and symbol H (or a local symbol if H
|
||
is NULL). */
|
||
|
||
static int
|
||
mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
int indx = 0;
|
||
int ret = 0;
|
||
bfd_boolean need_relocs = FALSE;
|
||
bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
|
||
|
||
if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
||
&& (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
|
||
indx = h->dynindx;
|
||
|
||
if ((info->shared || indx != 0)
|
||
&& (h == NULL
|
||
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak))
|
||
need_relocs = TRUE;
|
||
|
||
if (!need_relocs)
|
||
return FALSE;
|
||
|
||
if (tls_type & GOT_TLS_GD)
|
||
{
|
||
ret++;
|
||
if (indx != 0)
|
||
ret++;
|
||
}
|
||
|
||
if (tls_type & GOT_TLS_IE)
|
||
ret++;
|
||
|
||
if ((tls_type & GOT_TLS_LDM) && info->shared)
|
||
ret++;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Count the number of TLS relocations required for the GOT entry in
|
||
ARG1, if it describes a local symbol. */
|
||
|
||
static int
|
||
mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
|
||
{
|
||
struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
|
||
struct mips_elf_count_tls_arg *arg = arg2;
|
||
|
||
if (entry->abfd != NULL && entry->symndx != -1)
|
||
arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Count the number of TLS GOT entries required for the global (or
|
||
forced-local) symbol in ARG1. */
|
||
|
||
static int
|
||
mips_elf_count_global_tls_entries (void *arg1, void *arg2)
|
||
{
|
||
struct mips_elf_link_hash_entry *hm
|
||
= (struct mips_elf_link_hash_entry *) arg1;
|
||
struct mips_elf_count_tls_arg *arg = arg2;
|
||
|
||
if (hm->tls_type & GOT_TLS_GD)
|
||
arg->needed += 2;
|
||
if (hm->tls_type & GOT_TLS_IE)
|
||
arg->needed += 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Count the number of TLS relocations required for the global (or
|
||
forced-local) symbol in ARG1. */
|
||
|
||
static int
|
||
mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
|
||
{
|
||
struct mips_elf_link_hash_entry *hm
|
||
= (struct mips_elf_link_hash_entry *) arg1;
|
||
struct mips_elf_count_tls_arg *arg = arg2;
|
||
|
||
arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Output a simple dynamic relocation into SRELOC. */
|
||
|
||
static void
|
||
mips_elf_output_dynamic_relocation (bfd *output_bfd,
|
||
asection *sreloc,
|
||
unsigned long reloc_index,
|
||
unsigned long indx,
|
||
int r_type,
|
||
bfd_vma offset)
|
||
{
|
||
Elf_Internal_Rela rel[3];
|
||
|
||
memset (rel, 0, sizeof (rel));
|
||
|
||
rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
|
||
rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
|
||
|
||
if (ABI_64_P (output_bfd))
|
||
{
|
||
(*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
|
||
(output_bfd, &rel[0],
|
||
(sreloc->contents
|
||
+ reloc_index * sizeof (Elf64_Mips_External_Rel)));
|
||
}
|
||
else
|
||
bfd_elf32_swap_reloc_out
|
||
(output_bfd, &rel[0],
|
||
(sreloc->contents
|
||
+ reloc_index * sizeof (Elf32_External_Rel)));
|
||
}
|
||
|
||
/* Initialize a set of TLS GOT entries for one symbol. */
|
||
|
||
static void
|
||
mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
|
||
unsigned char *tls_type_p,
|
||
struct bfd_link_info *info,
|
||
struct mips_elf_link_hash_entry *h,
|
||
bfd_vma value)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
int indx;
|
||
asection *sreloc, *sgot;
|
||
bfd_vma offset, offset2;
|
||
bfd_boolean need_relocs = FALSE;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
if (htab == NULL)
|
||
return;
|
||
|
||
sgot = htab->sgot;
|
||
|
||
indx = 0;
|
||
if (h != NULL)
|
||
{
|
||
bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
|
||
|
||
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
|
||
&& (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
|
||
indx = h->root.dynindx;
|
||
}
|
||
|
||
if (*tls_type_p & GOT_TLS_DONE)
|
||
return;
|
||
|
||
if ((info->shared || indx != 0)
|
||
&& (h == NULL
|
||
|| ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak))
|
||
need_relocs = TRUE;
|
||
|
||
/* MINUS_ONE means the symbol is not defined in this object. It may not
|
||
be defined at all; assume that the value doesn't matter in that
|
||
case. Otherwise complain if we would use the value. */
|
||
BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
|
||
|| h->root.root.type == bfd_link_hash_undefweak);
|
||
|
||
/* Emit necessary relocations. */
|
||
sreloc = mips_elf_rel_dyn_section (info, FALSE);
|
||
|
||
/* General Dynamic. */
|
||
if (*tls_type_p & GOT_TLS_GD)
|
||
{
|
||
offset = got_offset;
|
||
offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
|
||
|
||
if (need_relocs)
|
||
{
|
||
mips_elf_output_dynamic_relocation
|
||
(abfd, sreloc, sreloc->reloc_count++, indx,
|
||
ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
|
||
sgot->output_offset + sgot->output_section->vma + offset);
|
||
|
||
if (indx)
|
||
mips_elf_output_dynamic_relocation
|
||
(abfd, sreloc, sreloc->reloc_count++, indx,
|
||
ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
|
||
sgot->output_offset + sgot->output_section->vma + offset2);
|
||
else
|
||
MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
|
||
sgot->contents + offset2);
|
||
}
|
||
else
|
||
{
|
||
MIPS_ELF_PUT_WORD (abfd, 1,
|
||
sgot->contents + offset);
|
||
MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
|
||
sgot->contents + offset2);
|
||
}
|
||
|
||
got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
|
||
}
|
||
|
||
/* Initial Exec model. */
|
||
if (*tls_type_p & GOT_TLS_IE)
|
||
{
|
||
offset = got_offset;
|
||
|
||
if (need_relocs)
|
||
{
|
||
if (indx == 0)
|
||
MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
|
||
sgot->contents + offset);
|
||
else
|
||
MIPS_ELF_PUT_WORD (abfd, 0,
|
||
sgot->contents + offset);
|
||
|
||
mips_elf_output_dynamic_relocation
|
||
(abfd, sreloc, sreloc->reloc_count++, indx,
|
||
ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
|
||
sgot->output_offset + sgot->output_section->vma + offset);
|
||
}
|
||
else
|
||
MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
|
||
sgot->contents + offset);
|
||
}
|
||
|
||
if (*tls_type_p & GOT_TLS_LDM)
|
||
{
|
||
/* The initial offset is zero, and the LD offsets will include the
|
||
bias by DTP_OFFSET. */
|
||
MIPS_ELF_PUT_WORD (abfd, 0,
|
||
sgot->contents + got_offset
|
||
+ MIPS_ELF_GOT_SIZE (abfd));
|
||
|
||
if (!info->shared)
|
||
MIPS_ELF_PUT_WORD (abfd, 1,
|
||
sgot->contents + got_offset);
|
||
else
|
||
mips_elf_output_dynamic_relocation
|
||
(abfd, sreloc, sreloc->reloc_count++, indx,
|
||
ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
|
||
sgot->output_offset + sgot->output_section->vma + got_offset);
|
||
}
|
||
|
||
*tls_type_p |= GOT_TLS_DONE;
|
||
}
|
||
|
||
/* Return the GOT index to use for a relocation of type R_TYPE against
|
||
a symbol accessed using TLS_TYPE models. The GOT entries for this
|
||
symbol in this GOT start at GOT_INDEX. This function initializes the
|
||
GOT entries and corresponding relocations. */
|
||
|
||
static bfd_vma
|
||
mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
|
||
int r_type, struct bfd_link_info *info,
|
||
struct mips_elf_link_hash_entry *h, bfd_vma symbol)
|
||
{
|
||
BFD_ASSERT (tls_gottprel_reloc_p (r_type)
|
||
|| tls_gd_reloc_p (r_type)
|
||
|| tls_ldm_reloc_p (r_type));
|
||
|
||
mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
|
||
|
||
if (tls_gottprel_reloc_p (r_type))
|
||
{
|
||
BFD_ASSERT (*tls_type & GOT_TLS_IE);
|
||
if (*tls_type & GOT_TLS_GD)
|
||
return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
|
||
else
|
||
return got_index;
|
||
}
|
||
|
||
if (tls_gd_reloc_p (r_type))
|
||
{
|
||
BFD_ASSERT (*tls_type & GOT_TLS_GD);
|
||
return got_index;
|
||
}
|
||
|
||
if (tls_ldm_reloc_p (r_type))
|
||
{
|
||
BFD_ASSERT (*tls_type & GOT_TLS_LDM);
|
||
return got_index;
|
||
}
|
||
|
||
return got_index;
|
||
}
|
||
|
||
/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
|
||
for global symbol H. .got.plt comes before the GOT, so the offset
|
||
will be negative. */
|
||
|
||
static bfd_vma
|
||
mips_elf_gotplt_index (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
bfd_vma plt_index, got_address, got_value;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
|
||
|
||
/* This function only works for VxWorks, because a non-VxWorks .got.plt
|
||
section starts with reserved entries. */
|
||
BFD_ASSERT (htab->is_vxworks);
|
||
|
||
/* Calculate the index of the symbol's PLT entry. */
|
||
plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
|
||
|
||
/* Calculate the address of the associated .got.plt entry. */
|
||
got_address = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ plt_index * 4);
|
||
|
||
/* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
|
||
got_value = (htab->root.hgot->root.u.def.section->output_section->vma
|
||
+ htab->root.hgot->root.u.def.section->output_offset
|
||
+ htab->root.hgot->root.u.def.value);
|
||
|
||
return got_address - got_value;
|
||
}
|
||
|
||
/* Return the GOT offset for address VALUE. If there is not yet a GOT
|
||
entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
|
||
create a TLS GOT entry instead. Return -1 if no satisfactory GOT
|
||
offset can be found. */
|
||
|
||
static bfd_vma
|
||
mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
|
||
bfd_vma value, unsigned long r_symndx,
|
||
struct mips_elf_link_hash_entry *h, int r_type)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_got_entry *entry;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
|
||
r_symndx, h, r_type);
|
||
if (!entry)
|
||
return MINUS_ONE;
|
||
|
||
if (TLS_RELOC_P (r_type))
|
||
{
|
||
if (entry->symndx == -1 && htab->got_info->next == NULL)
|
||
/* A type (3) entry in the single-GOT case. We use the symbol's
|
||
hash table entry to track the index. */
|
||
return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
|
||
r_type, info, h, value);
|
||
else
|
||
return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
|
||
r_type, info, h, value);
|
||
}
|
||
else
|
||
return entry->gotidx;
|
||
}
|
||
|
||
/* Returns the GOT index for the global symbol indicated by H. */
|
||
|
||
static bfd_vma
|
||
mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
|
||
int r_type, struct bfd_link_info *info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
bfd_vma got_index;
|
||
struct mips_got_info *g, *gg;
|
||
long global_got_dynindx = 0;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
gg = g = htab->got_info;
|
||
if (g->bfd2got && ibfd)
|
||
{
|
||
struct mips_got_entry e, *p;
|
||
|
||
BFD_ASSERT (h->dynindx >= 0);
|
||
|
||
g = mips_elf_got_for_ibfd (g, ibfd);
|
||
if (g->next != gg || TLS_RELOC_P (r_type))
|
||
{
|
||
e.abfd = ibfd;
|
||
e.symndx = -1;
|
||
e.d.h = (struct mips_elf_link_hash_entry *)h;
|
||
e.tls_type = 0;
|
||
|
||
p = htab_find (g->got_entries, &e);
|
||
|
||
BFD_ASSERT (p->gotidx > 0);
|
||
|
||
if (TLS_RELOC_P (r_type))
|
||
{
|
||
bfd_vma value = MINUS_ONE;
|
||
if ((h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& h->root.u.def.section->output_section)
|
||
value = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_offset
|
||
+ h->root.u.def.section->output_section->vma);
|
||
|
||
return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
|
||
info, e.d.h, value);
|
||
}
|
||
else
|
||
return p->gotidx;
|
||
}
|
||
}
|
||
|
||
if (gg->global_gotsym != NULL)
|
||
global_got_dynindx = gg->global_gotsym->dynindx;
|
||
|
||
if (TLS_RELOC_P (r_type))
|
||
{
|
||
struct mips_elf_link_hash_entry *hm
|
||
= (struct mips_elf_link_hash_entry *) h;
|
||
bfd_vma value = MINUS_ONE;
|
||
|
||
if ((h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& h->root.u.def.section->output_section)
|
||
value = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_offset
|
||
+ h->root.u.def.section->output_section->vma);
|
||
|
||
got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
|
||
r_type, info, hm, value);
|
||
}
|
||
else
|
||
{
|
||
/* Once we determine the global GOT entry with the lowest dynamic
|
||
symbol table index, we must put all dynamic symbols with greater
|
||
indices into the GOT. That makes it easy to calculate the GOT
|
||
offset. */
|
||
BFD_ASSERT (h->dynindx >= global_got_dynindx);
|
||
got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
|
||
* MIPS_ELF_GOT_SIZE (abfd));
|
||
}
|
||
BFD_ASSERT (got_index < htab->sgot->size);
|
||
|
||
return got_index;
|
||
}
|
||
|
||
/* Find a GOT page entry that points to within 32KB of VALUE. These
|
||
entries are supposed to be placed at small offsets in the GOT, i.e.,
|
||
within 32KB of GP. Return the index of the GOT entry, or -1 if no
|
||
entry could be created. If OFFSETP is nonnull, use it to return the
|
||
offset of the GOT entry from VALUE. */
|
||
|
||
static bfd_vma
|
||
mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
|
||
bfd_vma value, bfd_vma *offsetp)
|
||
{
|
||
bfd_vma page, got_index;
|
||
struct mips_got_entry *entry;
|
||
|
||
page = (value + 0x8000) & ~(bfd_vma) 0xffff;
|
||
entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
|
||
NULL, R_MIPS_GOT_PAGE);
|
||
|
||
if (!entry)
|
||
return MINUS_ONE;
|
||
|
||
got_index = entry->gotidx;
|
||
|
||
if (offsetp)
|
||
*offsetp = value - entry->d.address;
|
||
|
||
return got_index;
|
||
}
|
||
|
||
/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
|
||
EXTERNAL is true if the relocation was originally against a global
|
||
symbol that binds locally. */
|
||
|
||
static bfd_vma
|
||
mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
|
||
bfd_vma value, bfd_boolean external)
|
||
{
|
||
struct mips_got_entry *entry;
|
||
|
||
/* GOT16 relocations against local symbols are followed by a LO16
|
||
relocation; those against global symbols are not. Thus if the
|
||
symbol was originally local, the GOT16 relocation should load the
|
||
equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
|
||
if (! external)
|
||
value = mips_elf_high (value) << 16;
|
||
|
||
/* It doesn't matter whether the original relocation was R_MIPS_GOT16,
|
||
R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
|
||
same in all cases. */
|
||
entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
|
||
NULL, R_MIPS_GOT16);
|
||
if (entry)
|
||
return entry->gotidx;
|
||
else
|
||
return MINUS_ONE;
|
||
}
|
||
|
||
/* Returns the offset for the entry at the INDEXth position
|
||
in the GOT. */
|
||
|
||
static bfd_vma
|
||
mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
|
||
bfd *input_bfd, bfd_vma got_index)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
asection *sgot;
|
||
bfd_vma gp;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
sgot = htab->sgot;
|
||
gp = _bfd_get_gp_value (output_bfd)
|
||
+ mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
|
||
|
||
return sgot->output_section->vma + sgot->output_offset + got_index - gp;
|
||
}
|
||
|
||
/* Create and return a local GOT entry for VALUE, which was calculated
|
||
from a symbol belonging to INPUT_SECTON. Return NULL if it could not
|
||
be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
|
||
instead. */
|
||
|
||
static struct mips_got_entry *
|
||
mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
|
||
bfd *ibfd, bfd_vma value,
|
||
unsigned long r_symndx,
|
||
struct mips_elf_link_hash_entry *h,
|
||
int r_type)
|
||
{
|
||
struct mips_got_entry entry, **loc;
|
||
struct mips_got_info *g;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
entry.abfd = NULL;
|
||
entry.symndx = -1;
|
||
entry.d.address = value;
|
||
entry.tls_type = 0;
|
||
|
||
g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
|
||
if (g == NULL)
|
||
{
|
||
g = mips_elf_got_for_ibfd (htab->got_info, abfd);
|
||
BFD_ASSERT (g != NULL);
|
||
}
|
||
|
||
/* This function shouldn't be called for symbols that live in the global
|
||
area of the GOT. */
|
||
BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
|
||
if (TLS_RELOC_P (r_type))
|
||
{
|
||
struct mips_got_entry *p;
|
||
|
||
entry.abfd = ibfd;
|
||
if (tls_ldm_reloc_p (r_type))
|
||
{
|
||
entry.tls_type = GOT_TLS_LDM;
|
||
entry.symndx = 0;
|
||
entry.d.addend = 0;
|
||
}
|
||
else if (h == NULL)
|
||
{
|
||
entry.symndx = r_symndx;
|
||
entry.d.addend = 0;
|
||
}
|
||
else
|
||
entry.d.h = h;
|
||
|
||
p = (struct mips_got_entry *)
|
||
htab_find (g->got_entries, &entry);
|
||
|
||
BFD_ASSERT (p);
|
||
return p;
|
||
}
|
||
|
||
loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
|
||
INSERT);
|
||
if (*loc)
|
||
return *loc;
|
||
|
||
entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
|
||
entry.tls_type = 0;
|
||
|
||
*loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
|
||
|
||
if (! *loc)
|
||
return NULL;
|
||
|
||
memcpy (*loc, &entry, sizeof entry);
|
||
|
||
if (g->assigned_gotno > g->local_gotno)
|
||
{
|
||
(*loc)->gotidx = -1;
|
||
/* We didn't allocate enough space in the GOT. */
|
||
(*_bfd_error_handler)
|
||
(_("not enough GOT space for local GOT entries"));
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return NULL;
|
||
}
|
||
|
||
MIPS_ELF_PUT_WORD (abfd, value,
|
||
(htab->sgot->contents + entry.gotidx));
|
||
|
||
/* These GOT entries need a dynamic relocation on VxWorks. */
|
||
if (htab->is_vxworks)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
asection *s;
|
||
bfd_byte *rloc;
|
||
bfd_vma got_address;
|
||
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
got_address = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset
|
||
+ entry.gotidx);
|
||
|
||
rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
|
||
outrel.r_offset = got_address;
|
||
outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
|
||
outrel.r_addend = value;
|
||
bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
|
||
}
|
||
|
||
return *loc;
|
||
}
|
||
|
||
/* Return the number of dynamic section symbols required by OUTPUT_BFD.
|
||
The number might be exact or a worst-case estimate, depending on how
|
||
much information is available to elf_backend_omit_section_dynsym at
|
||
the current linking stage. */
|
||
|
||
static bfd_size_type
|
||
count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
bfd_size_type count;
|
||
|
||
count = 0;
|
||
if (info->shared || elf_hash_table (info)->is_relocatable_executable)
|
||
{
|
||
asection *p;
|
||
const struct elf_backend_data *bed;
|
||
|
||
bed = get_elf_backend_data (output_bfd);
|
||
for (p = output_bfd->sections; p ; p = p->next)
|
||
if ((p->flags & SEC_EXCLUDE) == 0
|
||
&& (p->flags & SEC_ALLOC) != 0
|
||
&& !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
|
||
++count;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* Sort the dynamic symbol table so that symbols that need GOT entries
|
||
appear towards the end. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_hash_sort_data hsd;
|
||
struct mips_got_info *g;
|
||
|
||
if (elf_hash_table (info)->dynsymcount == 0)
|
||
return TRUE;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
g = htab->got_info;
|
||
if (g == NULL)
|
||
return TRUE;
|
||
|
||
hsd.low = NULL;
|
||
hsd.max_unref_got_dynindx
|
||
= hsd.min_got_dynindx
|
||
= (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
|
||
hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
|
||
mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
|
||
elf_hash_table (info)),
|
||
mips_elf_sort_hash_table_f,
|
||
&hsd);
|
||
|
||
/* There should have been enough room in the symbol table to
|
||
accommodate both the GOT and non-GOT symbols. */
|
||
BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
|
||
BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
|
||
== elf_hash_table (info)->dynsymcount);
|
||
BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
|
||
== g->global_gotno);
|
||
|
||
/* Now we know which dynamic symbol has the lowest dynamic symbol
|
||
table index in the GOT. */
|
||
g->global_gotsym = hsd.low;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* If H needs a GOT entry, assign it the highest available dynamic
|
||
index. Otherwise, assign it the lowest available dynamic
|
||
index. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
|
||
{
|
||
struct mips_elf_hash_sort_data *hsd = data;
|
||
|
||
/* Symbols without dynamic symbol table entries aren't interesting
|
||
at all. */
|
||
if (h->root.dynindx == -1)
|
||
return TRUE;
|
||
|
||
switch (h->global_got_area)
|
||
{
|
||
case GGA_NONE:
|
||
h->root.dynindx = hsd->max_non_got_dynindx++;
|
||
break;
|
||
|
||
case GGA_NORMAL:
|
||
BFD_ASSERT (h->tls_type == GOT_NORMAL);
|
||
|
||
h->root.dynindx = --hsd->min_got_dynindx;
|
||
hsd->low = (struct elf_link_hash_entry *) h;
|
||
break;
|
||
|
||
case GGA_RELOC_ONLY:
|
||
BFD_ASSERT (h->tls_type == GOT_NORMAL);
|
||
|
||
if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
|
||
hsd->low = (struct elf_link_hash_entry *) h;
|
||
h->root.dynindx = hsd->max_unref_got_dynindx++;
|
||
break;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* If H is a symbol that needs a global GOT entry, but has a dynamic
|
||
symbol table index lower than any we've seen to date, record it for
|
||
posterity. FOR_CALL is true if the caller is only interested in
|
||
using the GOT entry for calls. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
|
||
bfd *abfd, struct bfd_link_info *info,
|
||
bfd_boolean for_call,
|
||
unsigned char tls_flag)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_link_hash_entry *hmips;
|
||
struct mips_got_entry entry, **loc;
|
||
struct mips_got_info *g;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
if (!for_call)
|
||
hmips->got_only_for_calls = FALSE;
|
||
|
||
/* A global symbol in the GOT must also be in the dynamic symbol
|
||
table. */
|
||
if (h->dynindx == -1)
|
||
{
|
||
switch (ELF_ST_VISIBILITY (h->other))
|
||
{
|
||
case STV_INTERNAL:
|
||
case STV_HIDDEN:
|
||
_bfd_elf_link_hash_hide_symbol (info, h, TRUE);
|
||
break;
|
||
}
|
||
if (!bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Make sure we have a GOT to put this entry into. */
|
||
g = htab->got_info;
|
||
BFD_ASSERT (g != NULL);
|
||
|
||
entry.abfd = abfd;
|
||
entry.symndx = -1;
|
||
entry.d.h = (struct mips_elf_link_hash_entry *) h;
|
||
entry.tls_type = 0;
|
||
|
||
loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
|
||
INSERT);
|
||
|
||
/* If we've already marked this entry as needing GOT space, we don't
|
||
need to do it again. */
|
||
if (*loc)
|
||
{
|
||
(*loc)->tls_type |= tls_flag;
|
||
return TRUE;
|
||
}
|
||
|
||
*loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
|
||
|
||
if (! *loc)
|
||
return FALSE;
|
||
|
||
entry.gotidx = -1;
|
||
entry.tls_type = tls_flag;
|
||
|
||
memcpy (*loc, &entry, sizeof entry);
|
||
|
||
if (tls_flag == 0)
|
||
hmips->global_got_area = GGA_NORMAL;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Reserve space in G for a GOT entry containing the value of symbol
|
||
SYMNDX in input bfd ABDF, plus ADDEND. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
|
||
struct bfd_link_info *info,
|
||
unsigned char tls_flag)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_got_info *g;
|
||
struct mips_got_entry entry, **loc;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
g = htab->got_info;
|
||
BFD_ASSERT (g != NULL);
|
||
|
||
entry.abfd = abfd;
|
||
entry.symndx = symndx;
|
||
entry.d.addend = addend;
|
||
entry.tls_type = tls_flag;
|
||
loc = (struct mips_got_entry **)
|
||
htab_find_slot (g->got_entries, &entry, INSERT);
|
||
|
||
if (*loc)
|
||
{
|
||
if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
|
||
{
|
||
g->tls_gotno += 2;
|
||
(*loc)->tls_type |= tls_flag;
|
||
}
|
||
else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
|
||
{
|
||
g->tls_gotno += 1;
|
||
(*loc)->tls_type |= tls_flag;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
if (tls_flag != 0)
|
||
{
|
||
entry.gotidx = -1;
|
||
entry.tls_type = tls_flag;
|
||
if (tls_flag == GOT_TLS_IE)
|
||
g->tls_gotno += 1;
|
||
else if (tls_flag == GOT_TLS_GD)
|
||
g->tls_gotno += 2;
|
||
else if (g->tls_ldm_offset == MINUS_ONE)
|
||
{
|
||
g->tls_ldm_offset = MINUS_TWO;
|
||
g->tls_gotno += 2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
entry.gotidx = g->local_gotno++;
|
||
entry.tls_type = 0;
|
||
}
|
||
|
||
*loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
|
||
|
||
if (! *loc)
|
||
return FALSE;
|
||
|
||
memcpy (*loc, &entry, sizeof entry);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the maximum number of GOT page entries required for RANGE. */
|
||
|
||
static bfd_vma
|
||
mips_elf_pages_for_range (const struct mips_got_page_range *range)
|
||
{
|
||
return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
|
||
}
|
||
|
||
/* Record that ABFD has a page relocation against symbol SYMNDX and
|
||
that ADDEND is the addend for that relocation.
|
||
|
||
This function creates an upper bound on the number of GOT slots
|
||
required; no attempt is made to combine references to non-overridable
|
||
global symbols across multiple input files. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
|
||
long symndx, bfd_signed_vma addend)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_got_info *g;
|
||
struct mips_got_page_entry lookup, *entry;
|
||
struct mips_got_page_range **range_ptr, *range;
|
||
bfd_vma old_pages, new_pages;
|
||
void **loc;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
g = htab->got_info;
|
||
BFD_ASSERT (g != NULL);
|
||
|
||
/* Find the mips_got_page_entry hash table entry for this symbol. */
|
||
lookup.abfd = abfd;
|
||
lookup.symndx = symndx;
|
||
loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
|
||
if (loc == NULL)
|
||
return FALSE;
|
||
|
||
/* Create a mips_got_page_entry if this is the first time we've
|
||
seen the symbol. */
|
||
entry = (struct mips_got_page_entry *) *loc;
|
||
if (!entry)
|
||
{
|
||
entry = bfd_alloc (abfd, sizeof (*entry));
|
||
if (!entry)
|
||
return FALSE;
|
||
|
||
entry->abfd = abfd;
|
||
entry->symndx = symndx;
|
||
entry->ranges = NULL;
|
||
entry->num_pages = 0;
|
||
*loc = entry;
|
||
}
|
||
|
||
/* Skip over ranges whose maximum extent cannot share a page entry
|
||
with ADDEND. */
|
||
range_ptr = &entry->ranges;
|
||
while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
|
||
range_ptr = &(*range_ptr)->next;
|
||
|
||
/* If we scanned to the end of the list, or found a range whose
|
||
minimum extent cannot share a page entry with ADDEND, create
|
||
a new singleton range. */
|
||
range = *range_ptr;
|
||
if (!range || addend < range->min_addend - 0xffff)
|
||
{
|
||
range = bfd_alloc (abfd, sizeof (*range));
|
||
if (!range)
|
||
return FALSE;
|
||
|
||
range->next = *range_ptr;
|
||
range->min_addend = addend;
|
||
range->max_addend = addend;
|
||
|
||
*range_ptr = range;
|
||
entry->num_pages++;
|
||
g->page_gotno++;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Remember how many pages the old range contributed. */
|
||
old_pages = mips_elf_pages_for_range (range);
|
||
|
||
/* Update the ranges. */
|
||
if (addend < range->min_addend)
|
||
range->min_addend = addend;
|
||
else if (addend > range->max_addend)
|
||
{
|
||
if (range->next && addend >= range->next->min_addend - 0xffff)
|
||
{
|
||
old_pages += mips_elf_pages_for_range (range->next);
|
||
range->max_addend = range->next->max_addend;
|
||
range->next = range->next->next;
|
||
}
|
||
else
|
||
range->max_addend = addend;
|
||
}
|
||
|
||
/* Record any change in the total estimate. */
|
||
new_pages = mips_elf_pages_for_range (range);
|
||
if (old_pages != new_pages)
|
||
{
|
||
entry->num_pages += new_pages - old_pages;
|
||
g->page_gotno += new_pages - old_pages;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
|
||
|
||
static void
|
||
mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
|
||
unsigned int n)
|
||
{
|
||
asection *s;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
if (htab->is_vxworks)
|
||
s->size += n * MIPS_ELF_RELA_SIZE (abfd);
|
||
else
|
||
{
|
||
if (s->size == 0)
|
||
{
|
||
/* Make room for a null element. */
|
||
s->size += MIPS_ELF_REL_SIZE (abfd);
|
||
++s->reloc_count;
|
||
}
|
||
s->size += n * MIPS_ELF_REL_SIZE (abfd);
|
||
}
|
||
}
|
||
|
||
/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
|
||
if the GOT entry is for an indirect or warning symbol. */
|
||
|
||
static int
|
||
mips_elf_check_recreate_got (void **entryp, void *data)
|
||
{
|
||
struct mips_got_entry *entry;
|
||
bfd_boolean *must_recreate;
|
||
|
||
entry = (struct mips_got_entry *) *entryp;
|
||
must_recreate = (bfd_boolean *) data;
|
||
if (entry->abfd != NULL && entry->symndx == -1)
|
||
{
|
||
struct mips_elf_link_hash_entry *h;
|
||
|
||
h = entry->d.h;
|
||
if (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
{
|
||
*must_recreate = TRUE;
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* A htab_traverse callback for GOT entries. Add all entries to
|
||
hash table *DATA, converting entries for indirect and warning
|
||
symbols into entries for the target symbol. Set *DATA to null
|
||
on error. */
|
||
|
||
static int
|
||
mips_elf_recreate_got (void **entryp, void *data)
|
||
{
|
||
htab_t *new_got;
|
||
struct mips_got_entry *entry;
|
||
void **slot;
|
||
|
||
new_got = (htab_t *) data;
|
||
entry = (struct mips_got_entry *) *entryp;
|
||
if (entry->abfd != NULL && entry->symndx == -1)
|
||
{
|
||
struct mips_elf_link_hash_entry *h;
|
||
|
||
h = entry->d.h;
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
{
|
||
BFD_ASSERT (h->global_got_area == GGA_NONE);
|
||
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
||
}
|
||
entry->d.h = h;
|
||
}
|
||
slot = htab_find_slot (*new_got, entry, INSERT);
|
||
if (slot == NULL)
|
||
{
|
||
*new_got = NULL;
|
||
return 0;
|
||
}
|
||
if (*slot == NULL)
|
||
*slot = entry;
|
||
else
|
||
free (entry);
|
||
return 1;
|
||
}
|
||
|
||
/* If any entries in G->got_entries are for indirect or warning symbols,
|
||
replace them with entries for the target symbol. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_resolve_final_got_entries (struct mips_got_info *g)
|
||
{
|
||
bfd_boolean must_recreate;
|
||
htab_t new_got;
|
||
|
||
must_recreate = FALSE;
|
||
htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
|
||
if (must_recreate)
|
||
{
|
||
new_got = htab_create (htab_size (g->got_entries),
|
||
mips_elf_got_entry_hash,
|
||
mips_elf_got_entry_eq, NULL);
|
||
htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
|
||
if (new_got == NULL)
|
||
return FALSE;
|
||
|
||
/* Each entry in g->got_entries has either been copied to new_got
|
||
or freed. Now delete the hash table itself. */
|
||
htab_delete (g->got_entries);
|
||
g->got_entries = new_got;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* A mips_elf_link_hash_traverse callback for which DATA points
|
||
to the link_info structure. Count the number of type (3) entries
|
||
in the master GOT. */
|
||
|
||
static int
|
||
mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_got_info *g;
|
||
|
||
info = (struct bfd_link_info *) data;
|
||
htab = mips_elf_hash_table (info);
|
||
g = htab->got_info;
|
||
if (h->global_got_area != GGA_NONE)
|
||
{
|
||
/* Make a final decision about whether the symbol belongs in the
|
||
local or global GOT. Symbols that bind locally can (and in the
|
||
case of forced-local symbols, must) live in the local GOT.
|
||
Those that are aren't in the dynamic symbol table must also
|
||
live in the local GOT.
|
||
|
||
Note that the former condition does not always imply the
|
||
latter: symbols do not bind locally if they are completely
|
||
undefined. We'll report undefined symbols later if appropriate. */
|
||
if (h->root.dynindx == -1
|
||
|| (h->got_only_for_calls
|
||
? SYMBOL_CALLS_LOCAL (info, &h->root)
|
||
: SYMBOL_REFERENCES_LOCAL (info, &h->root)))
|
||
{
|
||
/* The symbol belongs in the local GOT. We no longer need this
|
||
entry if it was only used for relocations; those relocations
|
||
will be against the null or section symbol instead of H. */
|
||
if (h->global_got_area != GGA_RELOC_ONLY)
|
||
g->local_gotno++;
|
||
h->global_got_area = GGA_NONE;
|
||
}
|
||
else if (htab->is_vxworks
|
||
&& h->got_only_for_calls
|
||
&& h->root.plt.offset != MINUS_ONE)
|
||
/* On VxWorks, calls can refer directly to the .got.plt entry;
|
||
they don't need entries in the regular GOT. .got.plt entries
|
||
will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
|
||
h->global_got_area = GGA_NONE;
|
||
else
|
||
{
|
||
g->global_gotno++;
|
||
if (h->global_got_area == GGA_RELOC_ONLY)
|
||
g->reloc_only_gotno++;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Compute the hash value of the bfd in a bfd2got hash entry. */
|
||
|
||
static hashval_t
|
||
mips_elf_bfd2got_entry_hash (const void *entry_)
|
||
{
|
||
const struct mips_elf_bfd2got_hash *entry
|
||
= (struct mips_elf_bfd2got_hash *)entry_;
|
||
|
||
return entry->bfd->id;
|
||
}
|
||
|
||
/* Check whether two hash entries have the same bfd. */
|
||
|
||
static int
|
||
mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
|
||
{
|
||
const struct mips_elf_bfd2got_hash *e1
|
||
= (const struct mips_elf_bfd2got_hash *)entry1;
|
||
const struct mips_elf_bfd2got_hash *e2
|
||
= (const struct mips_elf_bfd2got_hash *)entry2;
|
||
|
||
return e1->bfd == e2->bfd;
|
||
}
|
||
|
||
/* In a multi-got link, determine the GOT to be used for IBFD. G must
|
||
be the master GOT data. */
|
||
|
||
static struct mips_got_info *
|
||
mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
|
||
{
|
||
struct mips_elf_bfd2got_hash e, *p;
|
||
|
||
if (! g->bfd2got)
|
||
return g;
|
||
|
||
e.bfd = ibfd;
|
||
p = htab_find (g->bfd2got, &e);
|
||
return p ? p->g : NULL;
|
||
}
|
||
|
||
/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
|
||
Return NULL if an error occured. */
|
||
|
||
static struct mips_got_info *
|
||
mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
|
||
bfd *input_bfd)
|
||
{
|
||
struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
|
||
struct mips_got_info *g;
|
||
void **bfdgotp;
|
||
|
||
bfdgot_entry.bfd = input_bfd;
|
||
bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
|
||
bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
|
||
|
||
if (bfdgot == NULL)
|
||
{
|
||
bfdgot = ((struct mips_elf_bfd2got_hash *)
|
||
bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
|
||
if (bfdgot == NULL)
|
||
return NULL;
|
||
|
||
*bfdgotp = bfdgot;
|
||
|
||
g = ((struct mips_got_info *)
|
||
bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
|
||
if (g == NULL)
|
||
return NULL;
|
||
|
||
bfdgot->bfd = input_bfd;
|
||
bfdgot->g = g;
|
||
|
||
g->global_gotsym = NULL;
|
||
g->global_gotno = 0;
|
||
g->reloc_only_gotno = 0;
|
||
g->local_gotno = 0;
|
||
g->page_gotno = 0;
|
||
g->assigned_gotno = -1;
|
||
g->tls_gotno = 0;
|
||
g->tls_assigned_gotno = 0;
|
||
g->tls_ldm_offset = MINUS_ONE;
|
||
g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
|
||
mips_elf_multi_got_entry_eq, NULL);
|
||
if (g->got_entries == NULL)
|
||
return NULL;
|
||
|
||
g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
|
||
mips_got_page_entry_eq, NULL);
|
||
if (g->got_page_entries == NULL)
|
||
return NULL;
|
||
|
||
g->bfd2got = NULL;
|
||
g->next = NULL;
|
||
}
|
||
|
||
return bfdgot->g;
|
||
}
|
||
|
||
/* A htab_traverse callback for the entries in the master got.
|
||
Create one separate got for each bfd that has entries in the global
|
||
got, such that we can tell how many local and global entries each
|
||
bfd requires. */
|
||
|
||
static int
|
||
mips_elf_make_got_per_bfd (void **entryp, void *p)
|
||
{
|
||
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
||
struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
|
||
struct mips_got_info *g;
|
||
|
||
g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
|
||
if (g == NULL)
|
||
{
|
||
arg->obfd = NULL;
|
||
return 0;
|
||
}
|
||
|
||
/* Insert the GOT entry in the bfd's got entry hash table. */
|
||
entryp = htab_find_slot (g->got_entries, entry, INSERT);
|
||
if (*entryp != NULL)
|
||
return 1;
|
||
|
||
*entryp = entry;
|
||
|
||
if (entry->tls_type)
|
||
{
|
||
if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
|
||
g->tls_gotno += 2;
|
||
if (entry->tls_type & GOT_TLS_IE)
|
||
g->tls_gotno += 1;
|
||
}
|
||
else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
|
||
++g->local_gotno;
|
||
else
|
||
++g->global_gotno;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A htab_traverse callback for the page entries in the master got.
|
||
Associate each page entry with the bfd's got. */
|
||
|
||
static int
|
||
mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
|
||
{
|
||
struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
|
||
struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
|
||
struct mips_got_info *g;
|
||
|
||
g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
|
||
if (g == NULL)
|
||
{
|
||
arg->obfd = NULL;
|
||
return 0;
|
||
}
|
||
|
||
/* Insert the GOT entry in the bfd's got entry hash table. */
|
||
entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
|
||
if (*entryp != NULL)
|
||
return 1;
|
||
|
||
*entryp = entry;
|
||
g->page_gotno += entry->num_pages;
|
||
return 1;
|
||
}
|
||
|
||
/* Consider merging the got described by BFD2GOT with TO, using the
|
||
information given by ARG. Return -1 if this would lead to overflow,
|
||
1 if they were merged successfully, and 0 if a merge failed due to
|
||
lack of memory. (These values are chosen so that nonnegative return
|
||
values can be returned by a htab_traverse callback.) */
|
||
|
||
static int
|
||
mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
|
||
struct mips_got_info *to,
|
||
struct mips_elf_got_per_bfd_arg *arg)
|
||
{
|
||
struct mips_got_info *from = bfd2got->g;
|
||
unsigned int estimate;
|
||
|
||
/* Work out how many page entries we would need for the combined GOT. */
|
||
estimate = arg->max_pages;
|
||
if (estimate >= from->page_gotno + to->page_gotno)
|
||
estimate = from->page_gotno + to->page_gotno;
|
||
|
||
/* And conservatively estimate how many local and TLS entries
|
||
would be needed. */
|
||
estimate += from->local_gotno + to->local_gotno;
|
||
estimate += from->tls_gotno + to->tls_gotno;
|
||
|
||
/* If we're merging with the primary got, we will always have
|
||
the full set of global entries. Otherwise estimate those
|
||
conservatively as well. */
|
||
if (to == arg->primary)
|
||
estimate += arg->global_count;
|
||
else
|
||
estimate += from->global_gotno + to->global_gotno;
|
||
|
||
/* Bail out if the combined GOT might be too big. */
|
||
if (estimate > arg->max_count)
|
||
return -1;
|
||
|
||
/* Commit to the merge. Record that TO is now the bfd for this got. */
|
||
bfd2got->g = to;
|
||
|
||
/* Transfer the bfd's got information from FROM to TO. */
|
||
htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
|
||
if (arg->obfd == NULL)
|
||
return 0;
|
||
|
||
htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
|
||
if (arg->obfd == NULL)
|
||
return 0;
|
||
|
||
/* We don't have to worry about releasing memory of the actual
|
||
got entries, since they're all in the master got_entries hash
|
||
table anyway. */
|
||
htab_delete (from->got_entries);
|
||
htab_delete (from->got_page_entries);
|
||
return 1;
|
||
}
|
||
|
||
/* Attempt to merge gots of different input bfds. Try to use as much
|
||
as possible of the primary got, since it doesn't require explicit
|
||
dynamic relocations, but don't use bfds that would reference global
|
||
symbols out of the addressable range. Failing the primary got,
|
||
attempt to merge with the current got, or finish the current got
|
||
and then make make the new got current. */
|
||
|
||
static int
|
||
mips_elf_merge_gots (void **bfd2got_, void *p)
|
||
{
|
||
struct mips_elf_bfd2got_hash *bfd2got
|
||
= (struct mips_elf_bfd2got_hash *)*bfd2got_;
|
||
struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
|
||
struct mips_got_info *g;
|
||
unsigned int estimate;
|
||
int result;
|
||
|
||
g = bfd2got->g;
|
||
|
||
/* Work out the number of page, local and TLS entries. */
|
||
estimate = arg->max_pages;
|
||
if (estimate > g->page_gotno)
|
||
estimate = g->page_gotno;
|
||
estimate += g->local_gotno + g->tls_gotno;
|
||
|
||
/* We place TLS GOT entries after both locals and globals. The globals
|
||
for the primary GOT may overflow the normal GOT size limit, so be
|
||
sure not to merge a GOT which requires TLS with the primary GOT in that
|
||
case. This doesn't affect non-primary GOTs. */
|
||
estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
|
||
|
||
if (estimate <= arg->max_count)
|
||
{
|
||
/* If we don't have a primary GOT, use it as
|
||
a starting point for the primary GOT. */
|
||
if (!arg->primary)
|
||
{
|
||
arg->primary = bfd2got->g;
|
||
return 1;
|
||
}
|
||
|
||
/* Try merging with the primary GOT. */
|
||
result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
|
||
if (result >= 0)
|
||
return result;
|
||
}
|
||
|
||
/* If we can merge with the last-created got, do it. */
|
||
if (arg->current)
|
||
{
|
||
result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
|
||
if (result >= 0)
|
||
return result;
|
||
}
|
||
|
||
/* Well, we couldn't merge, so create a new GOT. Don't check if it
|
||
fits; if it turns out that it doesn't, we'll get relocation
|
||
overflows anyway. */
|
||
g->next = arg->current;
|
||
arg->current = g;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
|
||
is null iff there is just a single GOT. */
|
||
|
||
static int
|
||
mips_elf_initialize_tls_index (void **entryp, void *p)
|
||
{
|
||
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
||
struct mips_got_info *g = p;
|
||
bfd_vma next_index;
|
||
unsigned char tls_type;
|
||
|
||
/* We're only interested in TLS symbols. */
|
||
if (entry->tls_type == 0)
|
||
return 1;
|
||
|
||
next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
|
||
|
||
if (entry->symndx == -1 && g->next == NULL)
|
||
{
|
||
/* A type (3) got entry in the single-GOT case. We use the symbol's
|
||
hash table entry to track its index. */
|
||
if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
|
||
return 1;
|
||
entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
|
||
entry->d.h->tls_got_offset = next_index;
|
||
tls_type = entry->d.h->tls_type;
|
||
}
|
||
else
|
||
{
|
||
if (entry->tls_type & GOT_TLS_LDM)
|
||
{
|
||
/* There are separate mips_got_entry objects for each input bfd
|
||
that requires an LDM entry. Make sure that all LDM entries in
|
||
a GOT resolve to the same index. */
|
||
if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
|
||
{
|
||
entry->gotidx = g->tls_ldm_offset;
|
||
return 1;
|
||
}
|
||
g->tls_ldm_offset = next_index;
|
||
}
|
||
entry->gotidx = next_index;
|
||
tls_type = entry->tls_type;
|
||
}
|
||
|
||
/* Account for the entries we've just allocated. */
|
||
if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
|
||
g->tls_assigned_gotno += 2;
|
||
if (tls_type & GOT_TLS_IE)
|
||
g->tls_assigned_gotno += 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* If passed a NULL mips_got_info in the argument, set the marker used
|
||
to tell whether a global symbol needs a got entry (in the primary
|
||
got) to the given VALUE.
|
||
|
||
If passed a pointer G to a mips_got_info in the argument (it must
|
||
not be the primary GOT), compute the offset from the beginning of
|
||
the (primary) GOT section to the entry in G corresponding to the
|
||
global symbol. G's assigned_gotno must contain the index of the
|
||
first available global GOT entry in G. VALUE must contain the size
|
||
of a GOT entry in bytes. For each global GOT entry that requires a
|
||
dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
|
||
marked as not eligible for lazy resolution through a function
|
||
stub. */
|
||
static int
|
||
mips_elf_set_global_got_offset (void **entryp, void *p)
|
||
{
|
||
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
||
struct mips_elf_set_global_got_offset_arg *arg
|
||
= (struct mips_elf_set_global_got_offset_arg *)p;
|
||
struct mips_got_info *g = arg->g;
|
||
|
||
if (g && entry->tls_type != GOT_NORMAL)
|
||
arg->needed_relocs +=
|
||
mips_tls_got_relocs (arg->info, entry->tls_type,
|
||
entry->symndx == -1 ? &entry->d.h->root : NULL);
|
||
|
||
if (entry->abfd != NULL
|
||
&& entry->symndx == -1
|
||
&& entry->d.h->global_got_area != GGA_NONE)
|
||
{
|
||
if (g)
|
||
{
|
||
BFD_ASSERT (g->global_gotsym == NULL);
|
||
|
||
entry->gotidx = arg->value * (long) g->assigned_gotno++;
|
||
if (arg->info->shared
|
||
|| (elf_hash_table (arg->info)->dynamic_sections_created
|
||
&& entry->d.h->root.def_dynamic
|
||
&& !entry->d.h->root.def_regular))
|
||
++arg->needed_relocs;
|
||
}
|
||
else
|
||
entry->d.h->global_got_area = arg->value;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A htab_traverse callback for GOT entries for which DATA is the
|
||
bfd_link_info. Forbid any global symbols from having traditional
|
||
lazy-binding stubs. */
|
||
|
||
static int
|
||
mips_elf_forbid_lazy_stubs (void **entryp, void *data)
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_got_entry *entry;
|
||
|
||
entry = (struct mips_got_entry *) *entryp;
|
||
info = (struct bfd_link_info *) data;
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
if (entry->abfd != NULL
|
||
&& entry->symndx == -1
|
||
&& entry->d.h->needs_lazy_stub)
|
||
{
|
||
entry->d.h->needs_lazy_stub = FALSE;
|
||
htab->lazy_stub_count--;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the offset of an input bfd IBFD's GOT from the beginning of
|
||
the primary GOT. */
|
||
static bfd_vma
|
||
mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
|
||
{
|
||
if (g->bfd2got == NULL)
|
||
return 0;
|
||
|
||
g = mips_elf_got_for_ibfd (g, ibfd);
|
||
if (! g)
|
||
return 0;
|
||
|
||
BFD_ASSERT (g->next);
|
||
|
||
g = g->next;
|
||
|
||
return (g->local_gotno + g->global_gotno + g->tls_gotno)
|
||
* MIPS_ELF_GOT_SIZE (abfd);
|
||
}
|
||
|
||
/* Turn a single GOT that is too big for 16-bit addressing into
|
||
a sequence of GOTs, each one 16-bit addressable. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
|
||
asection *got, bfd_size_type pages)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
|
||
struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
|
||
struct mips_got_info *g, *gg;
|
||
unsigned int assign, needed_relocs;
|
||
bfd *dynobj;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
g = htab->got_info;
|
||
g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
|
||
mips_elf_bfd2got_entry_eq, NULL);
|
||
if (g->bfd2got == NULL)
|
||
return FALSE;
|
||
|
||
got_per_bfd_arg.bfd2got = g->bfd2got;
|
||
got_per_bfd_arg.obfd = abfd;
|
||
got_per_bfd_arg.info = info;
|
||
|
||
/* Count how many GOT entries each input bfd requires, creating a
|
||
map from bfd to got info while at that. */
|
||
htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
|
||
if (got_per_bfd_arg.obfd == NULL)
|
||
return FALSE;
|
||
|
||
/* Also count how many page entries each input bfd requires. */
|
||
htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
|
||
&got_per_bfd_arg);
|
||
if (got_per_bfd_arg.obfd == NULL)
|
||
return FALSE;
|
||
|
||
got_per_bfd_arg.current = NULL;
|
||
got_per_bfd_arg.primary = NULL;
|
||
got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
|
||
/ MIPS_ELF_GOT_SIZE (abfd))
|
||
- htab->reserved_gotno);
|
||
got_per_bfd_arg.max_pages = pages;
|
||
/* The number of globals that will be included in the primary GOT.
|
||
See the calls to mips_elf_set_global_got_offset below for more
|
||
information. */
|
||
got_per_bfd_arg.global_count = g->global_gotno;
|
||
|
||
/* Try to merge the GOTs of input bfds together, as long as they
|
||
don't seem to exceed the maximum GOT size, choosing one of them
|
||
to be the primary GOT. */
|
||
htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
|
||
if (got_per_bfd_arg.obfd == NULL)
|
||
return FALSE;
|
||
|
||
/* If we do not find any suitable primary GOT, create an empty one. */
|
||
if (got_per_bfd_arg.primary == NULL)
|
||
{
|
||
g->next = (struct mips_got_info *)
|
||
bfd_alloc (abfd, sizeof (struct mips_got_info));
|
||
if (g->next == NULL)
|
||
return FALSE;
|
||
|
||
g->next->global_gotsym = NULL;
|
||
g->next->global_gotno = 0;
|
||
g->next->reloc_only_gotno = 0;
|
||
g->next->local_gotno = 0;
|
||
g->next->page_gotno = 0;
|
||
g->next->tls_gotno = 0;
|
||
g->next->assigned_gotno = 0;
|
||
g->next->tls_assigned_gotno = 0;
|
||
g->next->tls_ldm_offset = MINUS_ONE;
|
||
g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
|
||
mips_elf_multi_got_entry_eq,
|
||
NULL);
|
||
if (g->next->got_entries == NULL)
|
||
return FALSE;
|
||
g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
|
||
mips_got_page_entry_eq,
|
||
NULL);
|
||
if (g->next->got_page_entries == NULL)
|
||
return FALSE;
|
||
g->next->bfd2got = NULL;
|
||
}
|
||
else
|
||
g->next = got_per_bfd_arg.primary;
|
||
g->next->next = got_per_bfd_arg.current;
|
||
|
||
/* GG is now the master GOT, and G is the primary GOT. */
|
||
gg = g;
|
||
g = g->next;
|
||
|
||
/* Map the output bfd to the primary got. That's what we're going
|
||
to use for bfds that use GOT16 or GOT_PAGE relocations that we
|
||
didn't mark in check_relocs, and we want a quick way to find it.
|
||
We can't just use gg->next because we're going to reverse the
|
||
list. */
|
||
{
|
||
struct mips_elf_bfd2got_hash *bfdgot;
|
||
void **bfdgotp;
|
||
|
||
bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
|
||
(abfd, sizeof (struct mips_elf_bfd2got_hash));
|
||
|
||
if (bfdgot == NULL)
|
||
return FALSE;
|
||
|
||
bfdgot->bfd = abfd;
|
||
bfdgot->g = g;
|
||
bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
|
||
|
||
BFD_ASSERT (*bfdgotp == NULL);
|
||
*bfdgotp = bfdgot;
|
||
}
|
||
|
||
/* Every symbol that is referenced in a dynamic relocation must be
|
||
present in the primary GOT, so arrange for them to appear after
|
||
those that are actually referenced. */
|
||
gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
|
||
g->global_gotno = gg->global_gotno;
|
||
|
||
set_got_offset_arg.g = NULL;
|
||
set_got_offset_arg.value = GGA_RELOC_ONLY;
|
||
htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
|
||
&set_got_offset_arg);
|
||
set_got_offset_arg.value = GGA_NORMAL;
|
||
htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
|
||
&set_got_offset_arg);
|
||
|
||
/* Now go through the GOTs assigning them offset ranges.
|
||
[assigned_gotno, local_gotno[ will be set to the range of local
|
||
entries in each GOT. We can then compute the end of a GOT by
|
||
adding local_gotno to global_gotno. We reverse the list and make
|
||
it circular since then we'll be able to quickly compute the
|
||
beginning of a GOT, by computing the end of its predecessor. To
|
||
avoid special cases for the primary GOT, while still preserving
|
||
assertions that are valid for both single- and multi-got links,
|
||
we arrange for the main got struct to have the right number of
|
||
global entries, but set its local_gotno such that the initial
|
||
offset of the primary GOT is zero. Remember that the primary GOT
|
||
will become the last item in the circular linked list, so it
|
||
points back to the master GOT. */
|
||
gg->local_gotno = -g->global_gotno;
|
||
gg->global_gotno = g->global_gotno;
|
||
gg->tls_gotno = 0;
|
||
assign = 0;
|
||
gg->next = gg;
|
||
|
||
do
|
||
{
|
||
struct mips_got_info *gn;
|
||
|
||
assign += htab->reserved_gotno;
|
||
g->assigned_gotno = assign;
|
||
g->local_gotno += assign;
|
||
g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
|
||
assign = g->local_gotno + g->global_gotno + g->tls_gotno;
|
||
|
||
/* Take g out of the direct list, and push it onto the reversed
|
||
list that gg points to. g->next is guaranteed to be nonnull after
|
||
this operation, as required by mips_elf_initialize_tls_index. */
|
||
gn = g->next;
|
||
g->next = gg->next;
|
||
gg->next = g;
|
||
|
||
/* Set up any TLS entries. We always place the TLS entries after
|
||
all non-TLS entries. */
|
||
g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
|
||
htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
|
||
|
||
/* Move onto the next GOT. It will be a secondary GOT if nonull. */
|
||
g = gn;
|
||
|
||
/* Forbid global symbols in every non-primary GOT from having
|
||
lazy-binding stubs. */
|
||
if (g)
|
||
htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
|
||
}
|
||
while (g);
|
||
|
||
got->size = (gg->next->local_gotno
|
||
+ gg->next->global_gotno
|
||
+ gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
|
||
|
||
needed_relocs = 0;
|
||
set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
|
||
set_got_offset_arg.info = info;
|
||
for (g = gg->next; g && g->next != gg; g = g->next)
|
||
{
|
||
unsigned int save_assign;
|
||
|
||
/* Assign offsets to global GOT entries. */
|
||
save_assign = g->assigned_gotno;
|
||
g->assigned_gotno = g->local_gotno;
|
||
set_got_offset_arg.g = g;
|
||
set_got_offset_arg.needed_relocs = 0;
|
||
htab_traverse (g->got_entries,
|
||
mips_elf_set_global_got_offset,
|
||
&set_got_offset_arg);
|
||
needed_relocs += set_got_offset_arg.needed_relocs;
|
||
BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
|
||
|
||
g->assigned_gotno = save_assign;
|
||
if (info->shared)
|
||
{
|
||
needed_relocs += g->local_gotno - g->assigned_gotno;
|
||
BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
|
||
+ g->next->global_gotno
|
||
+ g->next->tls_gotno
|
||
+ htab->reserved_gotno);
|
||
}
|
||
}
|
||
|
||
if (needed_relocs)
|
||
mips_elf_allocate_dynamic_relocations (dynobj, info,
|
||
needed_relocs);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Returns the first relocation of type r_type found, beginning with
|
||
RELOCATION. RELEND is one-past-the-end of the relocation table. */
|
||
|
||
static const Elf_Internal_Rela *
|
||
mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
|
||
const Elf_Internal_Rela *relocation,
|
||
const Elf_Internal_Rela *relend)
|
||
{
|
||
unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
|
||
|
||
while (relocation < relend)
|
||
{
|
||
if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
|
||
&& ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
|
||
return relocation;
|
||
|
||
++relocation;
|
||
}
|
||
|
||
/* We didn't find it. */
|
||
return NULL;
|
||
}
|
||
|
||
/* Return whether an input relocation is against a local symbol. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_local_relocation_p (bfd *input_bfd,
|
||
const Elf_Internal_Rela *relocation,
|
||
asection **local_sections)
|
||
{
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
size_t extsymoff;
|
||
|
||
r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
|
||
|
||
if (r_symndx < extsymoff)
|
||
return TRUE;
|
||
if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Sign-extend VALUE, which has the indicated number of BITS. */
|
||
|
||
bfd_vma
|
||
_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
|
||
{
|
||
if (value & ((bfd_vma) 1 << (bits - 1)))
|
||
/* VALUE is negative. */
|
||
value |= ((bfd_vma) - 1) << bits;
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Return non-zero if the indicated VALUE has overflowed the maximum
|
||
range expressible by a signed number with the indicated number of
|
||
BITS. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_overflow_p (bfd_vma value, int bits)
|
||
{
|
||
bfd_signed_vma svalue = (bfd_signed_vma) value;
|
||
|
||
if (svalue > (1 << (bits - 1)) - 1)
|
||
/* The value is too big. */
|
||
return TRUE;
|
||
else if (svalue < -(1 << (bits - 1)))
|
||
/* The value is too small. */
|
||
return TRUE;
|
||
|
||
/* All is well. */
|
||
return FALSE;
|
||
}
|
||
|
||
/* Calculate the %high function. */
|
||
|
||
static bfd_vma
|
||
mips_elf_high (bfd_vma value)
|
||
{
|
||
return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
|
||
}
|
||
|
||
/* Calculate the %higher function. */
|
||
|
||
static bfd_vma
|
||
mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef BFD64
|
||
return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
|
||
#else
|
||
abort ();
|
||
return MINUS_ONE;
|
||
#endif
|
||
}
|
||
|
||
/* Calculate the %highest function. */
|
||
|
||
static bfd_vma
|
||
mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef BFD64
|
||
return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
|
||
#else
|
||
abort ();
|
||
return MINUS_ONE;
|
||
#endif
|
||
}
|
||
|
||
/* Create the .compact_rel section. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_create_compact_rel_section
|
||
(bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
flagword flags;
|
||
register asection *s;
|
||
|
||
if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
|
||
{
|
||
flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
|
||
| SEC_READONLY);
|
||
|
||
s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s,
|
||
MIPS_ELF_LOG_FILE_ALIGN (abfd)))
|
||
return FALSE;
|
||
|
||
s->size = sizeof (Elf32_External_compact_rel);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create the .got section to hold the global offset table. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
flagword flags;
|
||
register asection *s;
|
||
struct elf_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *bh;
|
||
struct mips_got_info *g;
|
||
bfd_size_type amt;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
/* This function may be called more than once. */
|
||
if (htab->sgot)
|
||
return TRUE;
|
||
|
||
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED);
|
||
|
||
/* We have to use an alignment of 2**4 here because this is hardcoded
|
||
in the function stub generation and in the linker script. */
|
||
s = bfd_make_section_with_flags (abfd, ".got", flags);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, 4))
|
||
return FALSE;
|
||
htab->sgot = s;
|
||
|
||
/* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
|
||
linker script because we don't want to define the symbol if we
|
||
are not creating a global offset table. */
|
||
bh = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
|
||
0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
|
||
return FALSE;
|
||
|
||
h = (struct elf_link_hash_entry *) bh;
|
||
h->non_elf = 0;
|
||
h->def_regular = 1;
|
||
h->type = STT_OBJECT;
|
||
elf_hash_table (info)->hgot = h;
|
||
|
||
if (info->shared
|
||
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
|
||
amt = sizeof (struct mips_got_info);
|
||
g = bfd_alloc (abfd, amt);
|
||
if (g == NULL)
|
||
return FALSE;
|
||
g->global_gotsym = NULL;
|
||
g->global_gotno = 0;
|
||
g->reloc_only_gotno = 0;
|
||
g->tls_gotno = 0;
|
||
g->local_gotno = 0;
|
||
g->page_gotno = 0;
|
||
g->assigned_gotno = 0;
|
||
g->bfd2got = NULL;
|
||
g->next = NULL;
|
||
g->tls_ldm_offset = MINUS_ONE;
|
||
g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
|
||
mips_elf_got_entry_eq, NULL);
|
||
if (g->got_entries == NULL)
|
||
return FALSE;
|
||
g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
|
||
mips_got_page_entry_eq, NULL);
|
||
if (g->got_page_entries == NULL)
|
||
return FALSE;
|
||
htab->got_info = g;
|
||
mips_elf_section_data (s)->elf.this_hdr.sh_flags
|
||
|= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
|
||
|
||
/* We also need a .got.plt section when generating PLTs. */
|
||
s = bfd_make_section_with_flags (abfd, ".got.plt",
|
||
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
||
if (s == NULL)
|
||
return FALSE;
|
||
htab->sgotplt = s;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
|
||
__GOTT_INDEX__ symbols. These symbols are only special for
|
||
shared objects; they are not used in executables. */
|
||
|
||
static bfd_boolean
|
||
is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
|
||
{
|
||
return (mips_elf_hash_table (info)->is_vxworks
|
||
&& info->shared
|
||
&& (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
|
||
|| strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
|
||
}
|
||
|
||
/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
|
||
require an la25 stub. See also mips_elf_local_pic_function_p,
|
||
which determines whether the destination function ever requires a
|
||
stub. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
|
||
{
|
||
/* We specifically ignore branches and jumps from EF_PIC objects,
|
||
where the onus is on the compiler or programmer to perform any
|
||
necessary initialization of $25. Sometimes such initialization
|
||
is unnecessary; for example, -mno-shared functions do not use
|
||
the incoming value of $25, and may therefore be called directly. */
|
||
if (PIC_OBJECT_P (input_bfd))
|
||
return FALSE;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS_26:
|
||
case R_MIPS_PC16:
|
||
case R_MIPS16_26:
|
||
case R_MICROMIPS_26_S1:
|
||
case R_MICROMIPS_PC7_S1:
|
||
case R_MICROMIPS_PC10_S1:
|
||
case R_MICROMIPS_PC16_S1:
|
||
case R_MICROMIPS_PC23_S2:
|
||
return TRUE;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Calculate the value produced by the RELOCATION (which comes from
|
||
the INPUT_BFD). The ADDEND is the addend to use for this
|
||
RELOCATION; RELOCATION->R_ADDEND is ignored.
|
||
|
||
The result of the relocation calculation is stored in VALUEP.
|
||
On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
|
||
is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
|
||
|
||
This function returns bfd_reloc_continue if the caller need take no
|
||
further action regarding this relocation, bfd_reloc_notsupported if
|
||
something goes dramatically wrong, bfd_reloc_overflow if an
|
||
overflow occurs, and bfd_reloc_ok to indicate success. */
|
||
|
||
static bfd_reloc_status_type
|
||
mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
|
||
asection *input_section,
|
||
struct bfd_link_info *info,
|
||
const Elf_Internal_Rela *relocation,
|
||
bfd_vma addend, reloc_howto_type *howto,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections, bfd_vma *valuep,
|
||
const char **namep,
|
||
bfd_boolean *cross_mode_jump_p,
|
||
bfd_boolean save_addend)
|
||
{
|
||
/* The eventual value we will return. */
|
||
bfd_vma value;
|
||
/* The address of the symbol against which the relocation is
|
||
occurring. */
|
||
bfd_vma symbol = 0;
|
||
/* The final GP value to be used for the relocatable, executable, or
|
||
shared object file being produced. */
|
||
bfd_vma gp;
|
||
/* The place (section offset or address) of the storage unit being
|
||
relocated. */
|
||
bfd_vma p;
|
||
/* The value of GP used to create the relocatable object. */
|
||
bfd_vma gp0;
|
||
/* The offset into the global offset table at which the address of
|
||
the relocation entry symbol, adjusted by the addend, resides
|
||
during execution. */
|
||
bfd_vma g = MINUS_ONE;
|
||
/* The section in which the symbol referenced by the relocation is
|
||
located. */
|
||
asection *sec = NULL;
|
||
struct mips_elf_link_hash_entry *h = NULL;
|
||
/* TRUE if the symbol referred to by this relocation is a local
|
||
symbol. */
|
||
bfd_boolean local_p, was_local_p;
|
||
/* TRUE if the symbol referred to by this relocation is "_gp_disp". */
|
||
bfd_boolean gp_disp_p = FALSE;
|
||
/* TRUE if the symbol referred to by this relocation is
|
||
"__gnu_local_gp". */
|
||
bfd_boolean gnu_local_gp_p = FALSE;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
size_t extsymoff;
|
||
unsigned long r_symndx;
|
||
int r_type;
|
||
/* TRUE if overflow occurred during the calculation of the
|
||
relocation value. */
|
||
bfd_boolean overflowed_p;
|
||
/* TRUE if this relocation refers to a MIPS16 function. */
|
||
bfd_boolean target_is_16_bit_code_p = FALSE;
|
||
bfd_boolean target_is_micromips_code_p = FALSE;
|
||
struct mips_elf_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
/* Parse the relocation. */
|
||
r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
|
||
r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
|
||
p = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ relocation->r_offset);
|
||
|
||
/* Assume that there will be no overflow. */
|
||
overflowed_p = FALSE;
|
||
|
||
/* Figure out whether or not the symbol is local, and get the offset
|
||
used in the array of hash table entries. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
local_p = mips_elf_local_relocation_p (input_bfd, relocation,
|
||
local_sections);
|
||
was_local_p = local_p;
|
||
if (! elf_bad_symtab (input_bfd))
|
||
extsymoff = symtab_hdr->sh_info;
|
||
else
|
||
{
|
||
/* The symbol table does not follow the rule that local symbols
|
||
must come before globals. */
|
||
extsymoff = 0;
|
||
}
|
||
|
||
/* Figure out the value of the symbol. */
|
||
if (local_p)
|
||
{
|
||
Elf_Internal_Sym *sym;
|
||
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
|
||
symbol = sec->output_section->vma + sec->output_offset;
|
||
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
|
||
|| (sec->flags & SEC_MERGE))
|
||
symbol += sym->st_value;
|
||
if ((sec->flags & SEC_MERGE)
|
||
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
{
|
||
addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
|
||
addend -= symbol;
|
||
addend += sec->output_section->vma + sec->output_offset;
|
||
}
|
||
|
||
/* MIPS16/microMIPS text labels should be treated as odd. */
|
||
if (ELF_ST_IS_COMPRESSED (sym->st_other))
|
||
++symbol;
|
||
|
||
/* Record the name of this symbol, for our caller. */
|
||
*namep = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
sym->st_name);
|
||
if (*namep == '\0')
|
||
*namep = bfd_section_name (input_bfd, sec);
|
||
|
||
target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
|
||
target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
|
||
}
|
||
else
|
||
{
|
||
/* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
|
||
|
||
/* For global symbols we look up the symbol in the hash-table. */
|
||
h = ((struct mips_elf_link_hash_entry *)
|
||
elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
|
||
/* Find the real hash-table entry for this symbol. */
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
||
|
||
/* Record the name of this symbol, for our caller. */
|
||
*namep = h->root.root.root.string;
|
||
|
||
/* See if this is the special _gp_disp symbol. Note that such a
|
||
symbol must always be a global symbol. */
|
||
if (strcmp (*namep, "_gp_disp") == 0
|
||
&& ! NEWABI_P (input_bfd))
|
||
{
|
||
/* Relocations against _gp_disp are permitted only with
|
||
R_MIPS_HI16 and R_MIPS_LO16 relocations. */
|
||
if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
|
||
return bfd_reloc_notsupported;
|
||
|
||
gp_disp_p = TRUE;
|
||
}
|
||
/* See if this is the special _gp symbol. Note that such a
|
||
symbol must always be a global symbol. */
|
||
else if (strcmp (*namep, "__gnu_local_gp") == 0)
|
||
gnu_local_gp_p = TRUE;
|
||
|
||
|
||
/* If this symbol is defined, calculate its address. Note that
|
||
_gp_disp is a magic symbol, always implicitly defined by the
|
||
linker, so it's inappropriate to check to see whether or not
|
||
its defined. */
|
||
else if ((h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
&& h->root.root.u.def.section)
|
||
{
|
||
sec = h->root.root.u.def.section;
|
||
if (sec->output_section)
|
||
symbol = (h->root.root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
else
|
||
symbol = h->root.root.u.def.value;
|
||
}
|
||
else if (h->root.root.type == bfd_link_hash_undefweak)
|
||
/* We allow relocations against undefined weak symbols, giving
|
||
it the value zero, so that you can undefined weak functions
|
||
and check to see if they exist by looking at their
|
||
addresses. */
|
||
symbol = 0;
|
||
else if (info->unresolved_syms_in_objects == RM_IGNORE
|
||
&& ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
|
||
symbol = 0;
|
||
else if (strcmp (*namep, SGI_COMPAT (input_bfd)
|
||
? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
|
||
{
|
||
/* If this is a dynamic link, we should have created a
|
||
_DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
|
||
in in _bfd_mips_elf_create_dynamic_sections.
|
||
Otherwise, we should define the symbol with a value of 0.
|
||
FIXME: It should probably get into the symbol table
|
||
somehow as well. */
|
||
BFD_ASSERT (! info->shared);
|
||
BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
|
||
symbol = 0;
|
||
}
|
||
else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
|
||
{
|
||
/* This is an optional symbol - an Irix specific extension to the
|
||
ELF spec. Ignore it for now.
|
||
XXX - FIXME - there is more to the spec for OPTIONAL symbols
|
||
than simply ignoring them, but we do not handle this for now.
|
||
For information see the "64-bit ELF Object File Specification"
|
||
which is available from here:
|
||
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
|
||
symbol = 0;
|
||
}
|
||
else if ((*info->callbacks->undefined_symbol)
|
||
(info, h->root.root.root.string, input_bfd,
|
||
input_section, relocation->r_offset,
|
||
(info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
|
||
|| ELF_ST_VISIBILITY (h->root.other)))
|
||
{
|
||
return bfd_reloc_undefined;
|
||
}
|
||
else
|
||
{
|
||
return bfd_reloc_notsupported;
|
||
}
|
||
|
||
target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
|
||
/* If the output section is the PLT section,
|
||
then the target is not microMIPS. */
|
||
target_is_micromips_code_p = (htab->splt != sec
|
||
&& ELF_ST_IS_MICROMIPS (h->root.other));
|
||
}
|
||
|
||
/* If this is a reference to a 16-bit function with a stub, we need
|
||
to redirect the relocation to the stub unless:
|
||
|
||
(a) the relocation is for a MIPS16 JAL;
|
||
|
||
(b) the relocation is for a MIPS16 PIC call, and there are no
|
||
non-MIPS16 uses of the GOT slot; or
|
||
|
||
(c) the section allows direct references to MIPS16 functions. */
|
||
if (r_type != R_MIPS16_26
|
||
&& !info->relocatable
|
||
&& ((h != NULL
|
||
&& h->fn_stub != NULL
|
||
&& (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
|
||
|| (local_p
|
||
&& elf_tdata (input_bfd)->local_stubs != NULL
|
||
&& elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
|
||
&& !section_allows_mips16_refs_p (input_section))
|
||
{
|
||
/* This is a 32- or 64-bit call to a 16-bit function. We should
|
||
have already noticed that we were going to need the
|
||
stub. */
|
||
if (local_p)
|
||
sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
|
||
else
|
||
{
|
||
BFD_ASSERT (h->need_fn_stub);
|
||
sec = h->fn_stub;
|
||
}
|
||
|
||
symbol = sec->output_section->vma + sec->output_offset;
|
||
/* The target is 16-bit, but the stub isn't. */
|
||
target_is_16_bit_code_p = FALSE;
|
||
}
|
||
/* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
|
||
need to redirect the call to the stub. Note that we specifically
|
||
exclude R_MIPS16_CALL16 from this behavior; indirect calls should
|
||
use an indirect stub instead. */
|
||
else if (r_type == R_MIPS16_26 && !info->relocatable
|
||
&& ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
|
||
|| (local_p
|
||
&& elf_tdata (input_bfd)->local_call_stubs != NULL
|
||
&& elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
|
||
&& !target_is_16_bit_code_p)
|
||
{
|
||
if (local_p)
|
||
sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
|
||
else
|
||
{
|
||
/* If both call_stub and call_fp_stub are defined, we can figure
|
||
out which one to use by checking which one appears in the input
|
||
file. */
|
||
if (h->call_stub != NULL && h->call_fp_stub != NULL)
|
||
{
|
||
asection *o;
|
||
|
||
sec = NULL;
|
||
for (o = input_bfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
|
||
{
|
||
sec = h->call_fp_stub;
|
||
break;
|
||
}
|
||
}
|
||
if (sec == NULL)
|
||
sec = h->call_stub;
|
||
}
|
||
else if (h->call_stub != NULL)
|
||
sec = h->call_stub;
|
||
else
|
||
sec = h->call_fp_stub;
|
||
}
|
||
|
||
BFD_ASSERT (sec->size > 0);
|
||
symbol = sec->output_section->vma + sec->output_offset;
|
||
}
|
||
/* If this is a direct call to a PIC function, redirect to the
|
||
non-PIC stub. */
|
||
else if (h != NULL && h->la25_stub
|
||
&& mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
|
||
symbol = (h->la25_stub->stub_section->output_section->vma
|
||
+ h->la25_stub->stub_section->output_offset
|
||
+ h->la25_stub->offset);
|
||
|
||
/* Make sure MIPS16 and microMIPS are not used together. */
|
||
if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
|
||
|| (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("MIPS16 and microMIPS functions cannot call each other"));
|
||
return bfd_reloc_notsupported;
|
||
}
|
||
|
||
/* Calls from 16-bit code to 32-bit code and vice versa require the
|
||
mode change. However, we can ignore calls to undefined weak symbols,
|
||
which should never be executed at runtime. This exception is important
|
||
because the assembly writer may have "known" that any definition of the
|
||
symbol would be 16-bit code, and that direct jumps were therefore
|
||
acceptable. */
|
||
*cross_mode_jump_p = (!info->relocatable
|
||
&& !(h && h->root.root.type == bfd_link_hash_undefweak)
|
||
&& ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
|
||
|| (r_type == R_MICROMIPS_26_S1
|
||
&& !target_is_micromips_code_p)
|
||
|| ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
|
||
&& (target_is_16_bit_code_p
|
||
|| target_is_micromips_code_p))));
|
||
|
||
local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
|
||
|
||
gp0 = _bfd_get_gp_value (input_bfd);
|
||
gp = _bfd_get_gp_value (abfd);
|
||
if (htab->got_info)
|
||
gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
|
||
|
||
if (gnu_local_gp_p)
|
||
symbol = gp;
|
||
|
||
/* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
|
||
to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
|
||
corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
|
||
if (got_page_reloc_p (r_type) && !local_p)
|
||
{
|
||
r_type = (micromips_reloc_p (r_type)
|
||
? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
|
||
addend = 0;
|
||
}
|
||
|
||
/* If we haven't already determined the GOT offset, and we're going
|
||
to need it, get it now. */
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS16_CALL16:
|
||
case R_MIPS16_GOT16:
|
||
case R_MIPS_CALL16:
|
||
case R_MIPS_GOT16:
|
||
case R_MIPS_GOT_DISP:
|
||
case R_MIPS_GOT_HI16:
|
||
case R_MIPS_CALL_HI16:
|
||
case R_MIPS_GOT_LO16:
|
||
case R_MIPS_CALL_LO16:
|
||
case R_MICROMIPS_CALL16:
|
||
case R_MICROMIPS_GOT16:
|
||
case R_MICROMIPS_GOT_DISP:
|
||
case R_MICROMIPS_GOT_HI16:
|
||
case R_MICROMIPS_CALL_HI16:
|
||
case R_MICROMIPS_GOT_LO16:
|
||
case R_MICROMIPS_CALL_LO16:
|
||
case R_MIPS_TLS_GD:
|
||
case R_MIPS_TLS_GOTTPREL:
|
||
case R_MIPS_TLS_LDM:
|
||
case R_MICROMIPS_TLS_GD:
|
||
case R_MICROMIPS_TLS_GOTTPREL:
|
||
case R_MICROMIPS_TLS_LDM:
|
||
/* Find the index into the GOT where this value is located. */
|
||
if (tls_ldm_reloc_p (r_type))
|
||
{
|
||
g = mips_elf_local_got_index (abfd, input_bfd, info,
|
||
0, 0, NULL, r_type);
|
||
if (g == MINUS_ONE)
|
||
return bfd_reloc_outofrange;
|
||
}
|
||
else if (!local_p)
|
||
{
|
||
/* On VxWorks, CALL relocations should refer to the .got.plt
|
||
entry, which is initialized to point at the PLT stub. */
|
||
if (htab->is_vxworks
|
||
&& (call_hi16_reloc_p (r_type)
|
||
|| call_lo16_reloc_p (r_type)
|
||
|| call16_reloc_p (r_type)))
|
||
{
|
||
BFD_ASSERT (addend == 0);
|
||
BFD_ASSERT (h->root.needs_plt);
|
||
g = mips_elf_gotplt_index (info, &h->root);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (addend == 0);
|
||
g = mips_elf_global_got_index (dynobj, input_bfd,
|
||
&h->root, r_type, info);
|
||
if (h->tls_type == GOT_NORMAL
|
||
&& !elf_hash_table (info)->dynamic_sections_created)
|
||
/* This is a static link. We must initialize the GOT entry. */
|
||
MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
|
||
}
|
||
}
|
||
else if (!htab->is_vxworks
|
||
&& (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
|
||
/* The calculation below does not involve "g". */
|
||
break;
|
||
else
|
||
{
|
||
g = mips_elf_local_got_index (abfd, input_bfd, info,
|
||
symbol + addend, r_symndx, h, r_type);
|
||
if (g == MINUS_ONE)
|
||
return bfd_reloc_outofrange;
|
||
}
|
||
|
||
/* Convert GOT indices to actual offsets. */
|
||
g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
|
||
break;
|
||
}
|
||
|
||
/* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
|
||
symbols are resolved by the loader. Add them to .rela.dyn. */
|
||
if (h != NULL && is_gott_symbol (info, &h->root))
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
asection *s;
|
||
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
|
||
|
||
outrel.r_offset = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ relocation->r_offset);
|
||
outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
|
||
outrel.r_addend = addend;
|
||
bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
|
||
|
||
/* If we've written this relocation for a readonly section,
|
||
we need to set DF_TEXTREL again, so that we do not delete the
|
||
DT_TEXTREL tag. */
|
||
if (MIPS_ELF_READONLY_SECTION (input_section))
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
*valuep = 0;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Figure out what kind of relocation is being performed. */
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS_NONE:
|
||
return bfd_reloc_continue;
|
||
|
||
case R_MIPS_16:
|
||
value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
break;
|
||
|
||
case R_MIPS_32:
|
||
case R_MIPS_REL32:
|
||
case R_MIPS_64:
|
||
if ((info->shared
|
||
|| (htab->root.dynamic_sections_created
|
||
&& h != NULL
|
||
&& h->root.def_dynamic
|
||
&& !h->root.def_regular
|
||
&& !h->has_static_relocs))
|
||
&& r_symndx != STN_UNDEF
|
||
&& (h == NULL
|
||
|| h->root.root.type != bfd_link_hash_undefweak
|
||
|| ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
|
||
&& (input_section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* If we're creating a shared library, then we can't know
|
||
where the symbol will end up. So, we create a relocation
|
||
record in the output, and leave the job up to the dynamic
|
||
linker. We must do the same for executable references to
|
||
shared library symbols, unless we've decided to use copy
|
||
relocs or PLTs instead. */
|
||
value = addend;
|
||
if (!mips_elf_create_dynamic_relocation (abfd,
|
||
info,
|
||
relocation,
|
||
h,
|
||
sec,
|
||
symbol,
|
||
&value,
|
||
input_section))
|
||
return bfd_reloc_undefined;
|
||
}
|
||
else
|
||
{
|
||
if (r_type != R_MIPS_REL32)
|
||
value = symbol + addend;
|
||
else
|
||
value = addend;
|
||
}
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_PC32:
|
||
value = symbol + addend - p;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS16_26:
|
||
/* The calculation for R_MIPS16_26 is just the same as for an
|
||
R_MIPS_26. It's only the storage of the relocated field into
|
||
the output file that's different. That's handled in
|
||
mips_elf_perform_relocation. So, we just fall through to the
|
||
R_MIPS_26 case here. */
|
||
case R_MIPS_26:
|
||
case R_MICROMIPS_26_S1:
|
||
{
|
||
unsigned int shift;
|
||
|
||
/* Make sure the target of JALX is word-aligned. Bit 0 must be
|
||
the correct ISA mode selector and bit 1 must be 0. */
|
||
if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* Shift is 2, unusually, for microMIPS JALX. */
|
||
shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
|
||
|
||
if (was_local_p)
|
||
value = addend | ((p + 4) & (0xfc000000 << shift));
|
||
else
|
||
value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
|
||
value = (value + symbol) >> shift;
|
||
if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
|
||
overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
|
||
value &= howto->dst_mask;
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_TLS_DTPREL_HI16:
|
||
case R_MICROMIPS_TLS_DTPREL_HI16:
|
||
value = (mips_elf_high (addend + symbol - dtprel_base (info))
|
||
& howto->dst_mask);
|
||
break;
|
||
|
||
case R_MIPS_TLS_DTPREL_LO16:
|
||
case R_MIPS_TLS_DTPREL32:
|
||
case R_MIPS_TLS_DTPREL64:
|
||
case R_MICROMIPS_TLS_DTPREL_LO16:
|
||
value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_TLS_TPREL_HI16:
|
||
case R_MICROMIPS_TLS_TPREL_HI16:
|
||
value = (mips_elf_high (addend + symbol - tprel_base (info))
|
||
& howto->dst_mask);
|
||
break;
|
||
|
||
case R_MIPS_TLS_TPREL_LO16:
|
||
case R_MICROMIPS_TLS_TPREL_LO16:
|
||
value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_HI16:
|
||
case R_MIPS16_HI16:
|
||
case R_MICROMIPS_HI16:
|
||
if (!gp_disp_p)
|
||
{
|
||
value = mips_elf_high (addend + symbol);
|
||
value &= howto->dst_mask;
|
||
}
|
||
else
|
||
{
|
||
/* For MIPS16 ABI code we generate this sequence
|
||
0: li $v0,%hi(_gp_disp)
|
||
4: addiupc $v1,%lo(_gp_disp)
|
||
8: sll $v0,16
|
||
12: addu $v0,$v1
|
||
14: move $gp,$v0
|
||
So the offsets of hi and lo relocs are the same, but the
|
||
$pc is four higher than $t9 would be, so reduce
|
||
both reloc addends by 4. */
|
||
if (r_type == R_MIPS16_HI16)
|
||
value = mips_elf_high (addend + gp - p - 4);
|
||
/* The microMIPS .cpload sequence uses the same assembly
|
||
instructions as the traditional psABI version, but the
|
||
incoming $t9 has the low bit set. */
|
||
else if (r_type == R_MICROMIPS_HI16)
|
||
value = mips_elf_high (addend + gp - p - 1);
|
||
else
|
||
value = mips_elf_high (addend + gp - p);
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_LO16:
|
||
case R_MIPS16_LO16:
|
||
case R_MICROMIPS_LO16:
|
||
case R_MICROMIPS_HI0_LO16:
|
||
if (!gp_disp_p)
|
||
value = (symbol + addend) & howto->dst_mask;
|
||
else
|
||
{
|
||
/* See the comment for R_MIPS16_HI16 above for the reason
|
||
for this conditional. */
|
||
if (r_type == R_MIPS16_LO16)
|
||
value = addend + gp - p;
|
||
else if (r_type == R_MICROMIPS_LO16
|
||
|| r_type == R_MICROMIPS_HI0_LO16)
|
||
value = addend + gp - p + 3;
|
||
else
|
||
value = addend + gp - p + 4;
|
||
/* The MIPS ABI requires checking the R_MIPS_LO16 relocation
|
||
for overflow. But, on, say, IRIX5, relocations against
|
||
_gp_disp are normally generated from the .cpload
|
||
pseudo-op. It generates code that normally looks like
|
||
this:
|
||
|
||
lui $gp,%hi(_gp_disp)
|
||
addiu $gp,$gp,%lo(_gp_disp)
|
||
addu $gp,$gp,$t9
|
||
|
||
Here $t9 holds the address of the function being called,
|
||
as required by the MIPS ELF ABI. The R_MIPS_LO16
|
||
relocation can easily overflow in this situation, but the
|
||
R_MIPS_HI16 relocation will handle the overflow.
|
||
Therefore, we consider this a bug in the MIPS ABI, and do
|
||
not check for overflow here. */
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_LITERAL:
|
||
case R_MICROMIPS_LITERAL:
|
||
/* Because we don't merge literal sections, we can handle this
|
||
just like R_MIPS_GPREL16. In the long run, we should merge
|
||
shared literals, and then we will need to additional work
|
||
here. */
|
||
|
||
/* Fall through. */
|
||
|
||
case R_MIPS16_GPREL:
|
||
/* The R_MIPS16_GPREL performs the same calculation as
|
||
R_MIPS_GPREL16, but stores the relocated bits in a different
|
||
order. We don't need to do anything special here; the
|
||
differences are handled in mips_elf_perform_relocation. */
|
||
case R_MIPS_GPREL16:
|
||
case R_MICROMIPS_GPREL7_S2:
|
||
case R_MICROMIPS_GPREL16:
|
||
/* Only sign-extend the addend if it was extracted from the
|
||
instruction. If the addend was separate, leave it alone,
|
||
otherwise we may lose significant bits. */
|
||
if (howto->partial_inplace)
|
||
addend = _bfd_mips_elf_sign_extend (addend, 16);
|
||
value = symbol + addend - gp;
|
||
/* If the symbol was local, any earlier relocatable links will
|
||
have adjusted its addend with the gp offset, so compensate
|
||
for that now. Don't do it for symbols forced local in this
|
||
link, though, since they won't have had the gp offset applied
|
||
to them before. */
|
||
if (was_local_p)
|
||
value += gp0;
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
break;
|
||
|
||
case R_MIPS16_GOT16:
|
||
case R_MIPS16_CALL16:
|
||
case R_MIPS_GOT16:
|
||
case R_MIPS_CALL16:
|
||
case R_MICROMIPS_GOT16:
|
||
case R_MICROMIPS_CALL16:
|
||
/* VxWorks does not have separate local and global semantics for
|
||
R_MIPS*_GOT16; every relocation evaluates to "G". */
|
||
if (!htab->is_vxworks && local_p)
|
||
{
|
||
value = mips_elf_got16_entry (abfd, input_bfd, info,
|
||
symbol + addend, !was_local_p);
|
||
if (value == MINUS_ONE)
|
||
return bfd_reloc_outofrange;
|
||
value
|
||
= mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
break;
|
||
}
|
||
|
||
/* Fall through. */
|
||
|
||
case R_MIPS_TLS_GD:
|
||
case R_MIPS_TLS_GOTTPREL:
|
||
case R_MIPS_TLS_LDM:
|
||
case R_MIPS_GOT_DISP:
|
||
case R_MICROMIPS_TLS_GD:
|
||
case R_MICROMIPS_TLS_GOTTPREL:
|
||
case R_MICROMIPS_TLS_LDM:
|
||
case R_MICROMIPS_GOT_DISP:
|
||
value = g;
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
break;
|
||
|
||
case R_MIPS_GPREL32:
|
||
value = (addend + symbol + gp0 - gp);
|
||
if (!save_addend)
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_PC16:
|
||
case R_MIPS_GNU_REL16_S2:
|
||
value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
|
||
overflowed_p = mips_elf_overflow_p (value, 18);
|
||
value >>= howto->rightshift;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MICROMIPS_PC7_S1:
|
||
value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
|
||
overflowed_p = mips_elf_overflow_p (value, 8);
|
||
value >>= howto->rightshift;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MICROMIPS_PC10_S1:
|
||
value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
|
||
overflowed_p = mips_elf_overflow_p (value, 11);
|
||
value >>= howto->rightshift;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MICROMIPS_PC16_S1:
|
||
value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
|
||
overflowed_p = mips_elf_overflow_p (value, 17);
|
||
value >>= howto->rightshift;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MICROMIPS_PC23_S2:
|
||
value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
|
||
overflowed_p = mips_elf_overflow_p (value, 25);
|
||
value >>= howto->rightshift;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_GOT_HI16:
|
||
case R_MIPS_CALL_HI16:
|
||
case R_MICROMIPS_GOT_HI16:
|
||
case R_MICROMIPS_CALL_HI16:
|
||
/* We're allowed to handle these two relocations identically.
|
||
The dynamic linker is allowed to handle the CALL relocations
|
||
differently by creating a lazy evaluation stub. */
|
||
value = g;
|
||
value = mips_elf_high (value);
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_GOT_LO16:
|
||
case R_MIPS_CALL_LO16:
|
||
case R_MICROMIPS_GOT_LO16:
|
||
case R_MICROMIPS_CALL_LO16:
|
||
value = g & howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_GOT_PAGE:
|
||
case R_MICROMIPS_GOT_PAGE:
|
||
value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
|
||
if (value == MINUS_ONE)
|
||
return bfd_reloc_outofrange;
|
||
value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
break;
|
||
|
||
case R_MIPS_GOT_OFST:
|
||
case R_MICROMIPS_GOT_OFST:
|
||
if (local_p)
|
||
mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
|
||
else
|
||
value = addend;
|
||
overflowed_p = mips_elf_overflow_p (value, 16);
|
||
break;
|
||
|
||
case R_MIPS_SUB:
|
||
case R_MICROMIPS_SUB:
|
||
value = symbol - addend;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_HIGHER:
|
||
case R_MICROMIPS_HIGHER:
|
||
value = mips_elf_higher (addend + symbol);
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_HIGHEST:
|
||
case R_MICROMIPS_HIGHEST:
|
||
value = mips_elf_highest (addend + symbol);
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_SCN_DISP:
|
||
case R_MICROMIPS_SCN_DISP:
|
||
value = symbol + addend - sec->output_offset;
|
||
value &= howto->dst_mask;
|
||
break;
|
||
|
||
case R_MIPS_JALR:
|
||
case R_MICROMIPS_JALR:
|
||
/* This relocation is only a hint. In some cases, we optimize
|
||
it into a bal instruction. But we don't try to optimize
|
||
when the symbol does not resolve locally. */
|
||
if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
|
||
return bfd_reloc_continue;
|
||
value = symbol + addend;
|
||
break;
|
||
|
||
case R_MIPS_PJUMP:
|
||
case R_MIPS_GNU_VTINHERIT:
|
||
case R_MIPS_GNU_VTENTRY:
|
||
/* We don't do anything with these at present. */
|
||
return bfd_reloc_continue;
|
||
|
||
default:
|
||
/* An unrecognized relocation type. */
|
||
return bfd_reloc_notsupported;
|
||
}
|
||
|
||
/* Store the VALUE for our caller. */
|
||
*valuep = value;
|
||
return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
|
||
}
|
||
|
||
/* Obtain the field relocated by RELOCATION. */
|
||
|
||
static bfd_vma
|
||
mips_elf_obtain_contents (reloc_howto_type *howto,
|
||
const Elf_Internal_Rela *relocation,
|
||
bfd *input_bfd, bfd_byte *contents)
|
||
{
|
||
bfd_vma x;
|
||
bfd_byte *location = contents + relocation->r_offset;
|
||
|
||
/* Obtain the bytes. */
|
||
x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* It has been determined that the result of the RELOCATION is the
|
||
VALUE. Use HOWTO to place VALUE into the output file at the
|
||
appropriate position. The SECTION is the section to which the
|
||
relocation applies.
|
||
CROSS_MODE_JUMP_P is true if the relocation field
|
||
is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
|
||
|
||
Returns FALSE if anything goes wrong. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_perform_relocation (struct bfd_link_info *info,
|
||
reloc_howto_type *howto,
|
||
const Elf_Internal_Rela *relocation,
|
||
bfd_vma value, bfd *input_bfd,
|
||
asection *input_section, bfd_byte *contents,
|
||
bfd_boolean cross_mode_jump_p)
|
||
{
|
||
bfd_vma x;
|
||
bfd_byte *location;
|
||
int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
|
||
|
||
/* Figure out where the relocation is occurring. */
|
||
location = contents + relocation->r_offset;
|
||
|
||
_bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
|
||
|
||
/* Obtain the current value. */
|
||
x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
|
||
|
||
/* Clear the field we are setting. */
|
||
x &= ~howto->dst_mask;
|
||
|
||
/* Set the field. */
|
||
x |= (value & howto->dst_mask);
|
||
|
||
/* If required, turn JAL into JALX. */
|
||
if (cross_mode_jump_p && jal_reloc_p (r_type))
|
||
{
|
||
bfd_boolean ok;
|
||
bfd_vma opcode = x >> 26;
|
||
bfd_vma jalx_opcode;
|
||
|
||
/* Check to see if the opcode is already JAL or JALX. */
|
||
if (r_type == R_MIPS16_26)
|
||
{
|
||
ok = ((opcode == 0x6) || (opcode == 0x7));
|
||
jalx_opcode = 0x7;
|
||
}
|
||
else if (r_type == R_MICROMIPS_26_S1)
|
||
{
|
||
ok = ((opcode == 0x3d) || (opcode == 0x3c));
|
||
jalx_opcode = 0x3c;
|
||
}
|
||
else
|
||
{
|
||
ok = ((opcode == 0x3) || (opcode == 0x1d));
|
||
jalx_opcode = 0x1d;
|
||
}
|
||
|
||
/* If the opcode is not JAL or JALX, there's a problem. */
|
||
if (!ok)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
|
||
input_bfd,
|
||
input_section,
|
||
(unsigned long) relocation->r_offset);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Make this the JALX opcode. */
|
||
x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
|
||
}
|
||
|
||
/* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
|
||
range. */
|
||
if (!info->relocatable
|
||
&& !cross_mode_jump_p
|
||
&& ((JAL_TO_BAL_P (input_bfd)
|
||
&& r_type == R_MIPS_26
|
||
&& (x >> 26) == 0x3) /* jal addr */
|
||
|| (JALR_TO_BAL_P (input_bfd)
|
||
&& r_type == R_MIPS_JALR
|
||
&& x == 0x0320f809) /* jalr t9 */
|
||
|| (JR_TO_B_P (input_bfd)
|
||
&& r_type == R_MIPS_JALR
|
||
&& x == 0x03200008))) /* jr t9 */
|
||
{
|
||
bfd_vma addr;
|
||
bfd_vma dest;
|
||
bfd_signed_vma off;
|
||
|
||
addr = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ relocation->r_offset
|
||
+ 4);
|
||
if (r_type == R_MIPS_26)
|
||
dest = (value << 2) | ((addr >> 28) << 28);
|
||
else
|
||
dest = value;
|
||
off = dest - addr;
|
||
if (off <= 0x1ffff && off >= -0x20000)
|
||
{
|
||
if (x == 0x03200008) /* jr t9 */
|
||
x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
|
||
else
|
||
x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
|
||
}
|
||
}
|
||
|
||
/* Put the value into the output. */
|
||
bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
|
||
|
||
_bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
|
||
location);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
|
||
is the original relocation, which is now being transformed into a
|
||
dynamic relocation. The ADDENDP is adjusted if necessary; the
|
||
caller should store the result in place of the original addend. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_create_dynamic_relocation (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
const Elf_Internal_Rela *rel,
|
||
struct mips_elf_link_hash_entry *h,
|
||
asection *sec, bfd_vma symbol,
|
||
bfd_vma *addendp, asection *input_section)
|
||
{
|
||
Elf_Internal_Rela outrel[3];
|
||
asection *sreloc;
|
||
bfd *dynobj;
|
||
int r_type;
|
||
long indx;
|
||
bfd_boolean defined_p;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
r_type = ELF_R_TYPE (output_bfd, rel->r_info);
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sreloc = mips_elf_rel_dyn_section (info, FALSE);
|
||
BFD_ASSERT (sreloc != NULL);
|
||
BFD_ASSERT (sreloc->contents != NULL);
|
||
BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
|
||
< sreloc->size);
|
||
|
||
outrel[0].r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
|
||
if (ABI_64_P (output_bfd))
|
||
{
|
||
outrel[1].r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
|
||
outrel[2].r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
|
||
}
|
||
|
||
if (outrel[0].r_offset == MINUS_ONE)
|
||
/* The relocation field has been deleted. */
|
||
return TRUE;
|
||
|
||
if (outrel[0].r_offset == MINUS_TWO)
|
||
{
|
||
/* The relocation field has been converted into a relative value of
|
||
some sort. Functions like _bfd_elf_write_section_eh_frame expect
|
||
the field to be fully relocated, so add in the symbol's value. */
|
||
*addendp += symbol;
|
||
return TRUE;
|
||
}
|
||
|
||
/* We must now calculate the dynamic symbol table index to use
|
||
in the relocation. */
|
||
if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
|
||
{
|
||
BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
|
||
indx = h->root.dynindx;
|
||
if (SGI_COMPAT (output_bfd))
|
||
defined_p = h->root.def_regular;
|
||
else
|
||
/* ??? glibc's ld.so just adds the final GOT entry to the
|
||
relocation field. It therefore treats relocs against
|
||
defined symbols in the same way as relocs against
|
||
undefined symbols. */
|
||
defined_p = FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (sec != NULL && bfd_is_abs_section (sec))
|
||
indx = 0;
|
||
else if (sec == NULL || sec->owner == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
indx = elf_section_data (sec->output_section)->dynindx;
|
||
if (indx == 0)
|
||
{
|
||
asection *osec = htab->root.text_index_section;
|
||
indx = elf_section_data (osec)->dynindx;
|
||
}
|
||
if (indx == 0)
|
||
abort ();
|
||
}
|
||
|
||
/* Instead of generating a relocation using the section
|
||
symbol, we may as well make it a fully relative
|
||
relocation. We want to avoid generating relocations to
|
||
local symbols because we used to generate them
|
||
incorrectly, without adding the original symbol value,
|
||
which is mandated by the ABI for section symbols. In
|
||
order to give dynamic loaders and applications time to
|
||
phase out the incorrect use, we refrain from emitting
|
||
section-relative relocations. It's not like they're
|
||
useful, after all. This should be a bit more efficient
|
||
as well. */
|
||
/* ??? Although this behavior is compatible with glibc's ld.so,
|
||
the ABI says that relocations against STN_UNDEF should have
|
||
a symbol value of 0. Irix rld honors this, so relocations
|
||
against STN_UNDEF have no effect. */
|
||
if (!SGI_COMPAT (output_bfd))
|
||
indx = 0;
|
||
defined_p = TRUE;
|
||
}
|
||
|
||
/* If the relocation was previously an absolute relocation and
|
||
this symbol will not be referred to by the relocation, we must
|
||
adjust it by the value we give it in the dynamic symbol table.
|
||
Otherwise leave the job up to the dynamic linker. */
|
||
if (defined_p && r_type != R_MIPS_REL32)
|
||
*addendp += symbol;
|
||
|
||
if (htab->is_vxworks)
|
||
/* VxWorks uses non-relative relocations for this. */
|
||
outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
|
||
else
|
||
/* The relocation is always an REL32 relocation because we don't
|
||
know where the shared library will wind up at load-time. */
|
||
outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
|
||
R_MIPS_REL32);
|
||
|
||
/* For strict adherence to the ABI specification, we should
|
||
generate a R_MIPS_64 relocation record by itself before the
|
||
_REL32/_64 record as well, such that the addend is read in as
|
||
a 64-bit value (REL32 is a 32-bit relocation, after all).
|
||
However, since none of the existing ELF64 MIPS dynamic
|
||
loaders seems to care, we don't waste space with these
|
||
artificial relocations. If this turns out to not be true,
|
||
mips_elf_allocate_dynamic_relocation() should be tweaked so
|
||
as to make room for a pair of dynamic relocations per
|
||
invocation if ABI_64_P, and here we should generate an
|
||
additional relocation record with R_MIPS_64 by itself for a
|
||
NULL symbol before this relocation record. */
|
||
outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
|
||
ABI_64_P (output_bfd)
|
||
? R_MIPS_64
|
||
: R_MIPS_NONE);
|
||
outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
|
||
|
||
/* Adjust the output offset of the relocation to reference the
|
||
correct location in the output file. */
|
||
outrel[0].r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
outrel[1].r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
outrel[2].r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
/* Put the relocation back out. We have to use the special
|
||
relocation outputter in the 64-bit case since the 64-bit
|
||
relocation format is non-standard. */
|
||
if (ABI_64_P (output_bfd))
|
||
{
|
||
(*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
|
||
(output_bfd, &outrel[0],
|
||
(sreloc->contents
|
||
+ sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
|
||
}
|
||
else if (htab->is_vxworks)
|
||
{
|
||
/* VxWorks uses RELA rather than REL dynamic relocations. */
|
||
outrel[0].r_addend = *addendp;
|
||
bfd_elf32_swap_reloca_out
|
||
(output_bfd, &outrel[0],
|
||
(sreloc->contents
|
||
+ sreloc->reloc_count * sizeof (Elf32_External_Rela)));
|
||
}
|
||
else
|
||
bfd_elf32_swap_reloc_out
|
||
(output_bfd, &outrel[0],
|
||
(sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
|
||
|
||
/* We've now added another relocation. */
|
||
++sreloc->reloc_count;
|
||
|
||
/* Make sure the output section is writable. The dynamic linker
|
||
will be writing to it. */
|
||
elf_section_data (input_section->output_section)->this_hdr.sh_flags
|
||
|= SHF_WRITE;
|
||
|
||
/* On IRIX5, make an entry of compact relocation info. */
|
||
if (IRIX_COMPAT (output_bfd) == ict_irix5)
|
||
{
|
||
asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
|
||
bfd_byte *cr;
|
||
|
||
if (scpt)
|
||
{
|
||
Elf32_crinfo cptrel;
|
||
|
||
mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
|
||
cptrel.vaddr = (rel->r_offset
|
||
+ input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
if (r_type == R_MIPS_REL32)
|
||
mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
|
||
else
|
||
mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
|
||
mips_elf_set_cr_dist2to (cptrel, 0);
|
||
cptrel.konst = *addendp;
|
||
|
||
cr = (scpt->contents
|
||
+ sizeof (Elf32_External_compact_rel));
|
||
mips_elf_set_cr_relvaddr (cptrel, 0);
|
||
bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
|
||
((Elf32_External_crinfo *) cr
|
||
+ scpt->reloc_count));
|
||
++scpt->reloc_count;
|
||
}
|
||
}
|
||
|
||
/* If we've written this relocation for a readonly section,
|
||
we need to set DF_TEXTREL again, so that we do not delete the
|
||
DT_TEXTREL tag. */
|
||
if (MIPS_ELF_READONLY_SECTION (input_section))
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the MACH for a MIPS e_flags value. */
|
||
|
||
unsigned long
|
||
_bfd_elf_mips_mach (flagword flags)
|
||
{
|
||
switch (flags & EF_MIPS_MACH)
|
||
{
|
||
case E_MIPS_MACH_3900:
|
||
return bfd_mach_mips3900;
|
||
|
||
case E_MIPS_MACH_4010:
|
||
return bfd_mach_mips4010;
|
||
|
||
case E_MIPS_MACH_4100:
|
||
return bfd_mach_mips4100;
|
||
|
||
case E_MIPS_MACH_4111:
|
||
return bfd_mach_mips4111;
|
||
|
||
case E_MIPS_MACH_4120:
|
||
return bfd_mach_mips4120;
|
||
|
||
case E_MIPS_MACH_4650:
|
||
return bfd_mach_mips4650;
|
||
|
||
case E_MIPS_MACH_5400:
|
||
return bfd_mach_mips5400;
|
||
|
||
case E_MIPS_MACH_5500:
|
||
return bfd_mach_mips5500;
|
||
|
||
case E_MIPS_MACH_9000:
|
||
return bfd_mach_mips9000;
|
||
|
||
case E_MIPS_MACH_SB1:
|
||
return bfd_mach_mips_sb1;
|
||
|
||
case E_MIPS_MACH_LS2E:
|
||
return bfd_mach_mips_loongson_2e;
|
||
|
||
case E_MIPS_MACH_LS2F:
|
||
return bfd_mach_mips_loongson_2f;
|
||
|
||
case E_MIPS_MACH_LS3A:
|
||
return bfd_mach_mips_loongson_3a;
|
||
|
||
case E_MIPS_MACH_OCTEON2:
|
||
return bfd_mach_mips_octeon2;
|
||
|
||
case E_MIPS_MACH_OCTEON:
|
||
return bfd_mach_mips_octeon;
|
||
|
||
case E_MIPS_MACH_XLR:
|
||
return bfd_mach_mips_xlr;
|
||
|
||
default:
|
||
switch (flags & EF_MIPS_ARCH)
|
||
{
|
||
default:
|
||
case E_MIPS_ARCH_1:
|
||
return bfd_mach_mips3000;
|
||
|
||
case E_MIPS_ARCH_2:
|
||
return bfd_mach_mips6000;
|
||
|
||
case E_MIPS_ARCH_3:
|
||
return bfd_mach_mips4000;
|
||
|
||
case E_MIPS_ARCH_4:
|
||
return bfd_mach_mips8000;
|
||
|
||
case E_MIPS_ARCH_5:
|
||
return bfd_mach_mips5;
|
||
|
||
case E_MIPS_ARCH_32:
|
||
return bfd_mach_mipsisa32;
|
||
|
||
case E_MIPS_ARCH_64:
|
||
return bfd_mach_mipsisa64;
|
||
|
||
case E_MIPS_ARCH_32R2:
|
||
return bfd_mach_mipsisa32r2;
|
||
|
||
case E_MIPS_ARCH_64R2:
|
||
return bfd_mach_mipsisa64r2;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return printable name for ABI. */
|
||
|
||
static INLINE char *
|
||
elf_mips_abi_name (bfd *abfd)
|
||
{
|
||
flagword flags;
|
||
|
||
flags = elf_elfheader (abfd)->e_flags;
|
||
switch (flags & EF_MIPS_ABI)
|
||
{
|
||
case 0:
|
||
if (ABI_N32_P (abfd))
|
||
return "N32";
|
||
else if (ABI_64_P (abfd))
|
||
return "64";
|
||
else
|
||
return "none";
|
||
case E_MIPS_ABI_O32:
|
||
return "O32";
|
||
case E_MIPS_ABI_O64:
|
||
return "O64";
|
||
case E_MIPS_ABI_EABI32:
|
||
return "EABI32";
|
||
case E_MIPS_ABI_EABI64:
|
||
return "EABI64";
|
||
default:
|
||
return "unknown abi";
|
||
}
|
||
}
|
||
|
||
/* MIPS ELF uses two common sections. One is the usual one, and the
|
||
other is for small objects. All the small objects are kept
|
||
together, and then referenced via the gp pointer, which yields
|
||
faster assembler code. This is what we use for the small common
|
||
section. This approach is copied from ecoff.c. */
|
||
static asection mips_elf_scom_section;
|
||
static asymbol mips_elf_scom_symbol;
|
||
static asymbol *mips_elf_scom_symbol_ptr;
|
||
|
||
/* MIPS ELF also uses an acommon section, which represents an
|
||
allocated common symbol which may be overridden by a
|
||
definition in a shared library. */
|
||
static asection mips_elf_acom_section;
|
||
static asymbol mips_elf_acom_symbol;
|
||
static asymbol *mips_elf_acom_symbol_ptr;
|
||
|
||
/* This is used for both the 32-bit and the 64-bit ABI. */
|
||
|
||
void
|
||
_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
|
||
{
|
||
elf_symbol_type *elfsym;
|
||
|
||
/* Handle the special MIPS section numbers that a symbol may use. */
|
||
elfsym = (elf_symbol_type *) asym;
|
||
switch (elfsym->internal_elf_sym.st_shndx)
|
||
{
|
||
case SHN_MIPS_ACOMMON:
|
||
/* This section is used in a dynamically linked executable file.
|
||
It is an allocated common section. The dynamic linker can
|
||
either resolve these symbols to something in a shared
|
||
library, or it can just leave them here. For our purposes,
|
||
we can consider these symbols to be in a new section. */
|
||
if (mips_elf_acom_section.name == NULL)
|
||
{
|
||
/* Initialize the acommon section. */
|
||
mips_elf_acom_section.name = ".acommon";
|
||
mips_elf_acom_section.flags = SEC_ALLOC;
|
||
mips_elf_acom_section.output_section = &mips_elf_acom_section;
|
||
mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
|
||
mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
|
||
mips_elf_acom_symbol.name = ".acommon";
|
||
mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
|
||
mips_elf_acom_symbol.section = &mips_elf_acom_section;
|
||
mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
|
||
}
|
||
asym->section = &mips_elf_acom_section;
|
||
break;
|
||
|
||
case SHN_COMMON:
|
||
/* Common symbols less than the GP size are automatically
|
||
treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
|
||
if (asym->value > elf_gp_size (abfd)
|
||
|| ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
|
||
|| IRIX_COMPAT (abfd) == ict_irix6)
|
||
break;
|
||
/* Fall through. */
|
||
case SHN_MIPS_SCOMMON:
|
||
if (mips_elf_scom_section.name == NULL)
|
||
{
|
||
/* Initialize the small common section. */
|
||
mips_elf_scom_section.name = ".scommon";
|
||
mips_elf_scom_section.flags = SEC_IS_COMMON;
|
||
mips_elf_scom_section.output_section = &mips_elf_scom_section;
|
||
mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
|
||
mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
|
||
mips_elf_scom_symbol.name = ".scommon";
|
||
mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
|
||
mips_elf_scom_symbol.section = &mips_elf_scom_section;
|
||
mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
|
||
}
|
||
asym->section = &mips_elf_scom_section;
|
||
asym->value = elfsym->internal_elf_sym.st_size;
|
||
break;
|
||
|
||
case SHN_MIPS_SUNDEFINED:
|
||
asym->section = bfd_und_section_ptr;
|
||
break;
|
||
|
||
case SHN_MIPS_TEXT:
|
||
{
|
||
asection *section = bfd_get_section_by_name (abfd, ".text");
|
||
|
||
if (section != NULL)
|
||
{
|
||
asym->section = section;
|
||
/* MIPS_TEXT is a bit special, the address is not an offset
|
||
to the base of the .text section. So substract the section
|
||
base address to make it an offset. */
|
||
asym->value -= section->vma;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SHN_MIPS_DATA:
|
||
{
|
||
asection *section = bfd_get_section_by_name (abfd, ".data");
|
||
|
||
if (section != NULL)
|
||
{
|
||
asym->section = section;
|
||
/* MIPS_DATA is a bit special, the address is not an offset
|
||
to the base of the .data section. So substract the section
|
||
base address to make it an offset. */
|
||
asym->value -= section->vma;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* If this is an odd-valued function symbol, assume it's a MIPS16
|
||
or microMIPS one. */
|
||
if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
|
||
&& (asym->value & 1) != 0)
|
||
{
|
||
asym->value--;
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
|
||
elfsym->internal_elf_sym.st_other
|
||
= ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
|
||
else
|
||
elfsym->internal_elf_sym.st_other
|
||
= ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
|
||
}
|
||
}
|
||
|
||
/* Implement elf_backend_eh_frame_address_size. This differs from
|
||
the default in the way it handles EABI64.
|
||
|
||
EABI64 was originally specified as an LP64 ABI, and that is what
|
||
-mabi=eabi normally gives on a 64-bit target. However, gcc has
|
||
historically accepted the combination of -mabi=eabi and -mlong32,
|
||
and this ILP32 variation has become semi-official over time.
|
||
Both forms use elf32 and have pointer-sized FDE addresses.
|
||
|
||
If an EABI object was generated by GCC 4.0 or above, it will have
|
||
an empty .gcc_compiled_longXX section, where XX is the size of longs
|
||
in bits. Unfortunately, ILP32 objects generated by earlier compilers
|
||
have no special marking to distinguish them from LP64 objects.
|
||
|
||
We don't want users of the official LP64 ABI to be punished for the
|
||
existence of the ILP32 variant, but at the same time, we don't want
|
||
to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
|
||
We therefore take the following approach:
|
||
|
||
- If ABFD contains a .gcc_compiled_longXX section, use it to
|
||
determine the pointer size.
|
||
|
||
- Otherwise check the type of the first relocation. Assume that
|
||
the LP64 ABI is being used if the relocation is of type R_MIPS_64.
|
||
|
||
- Otherwise punt.
|
||
|
||
The second check is enough to detect LP64 objects generated by pre-4.0
|
||
compilers because, in the kind of output generated by those compilers,
|
||
the first relocation will be associated with either a CIE personality
|
||
routine or an FDE start address. Furthermore, the compilers never
|
||
used a special (non-pointer) encoding for this ABI.
|
||
|
||
Checking the relocation type should also be safe because there is no
|
||
reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
|
||
did so. */
|
||
|
||
unsigned int
|
||
_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
|
||
{
|
||
if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
||
return 8;
|
||
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
|
||
{
|
||
bfd_boolean long32_p, long64_p;
|
||
|
||
long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
|
||
long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
|
||
if (long32_p && long64_p)
|
||
return 0;
|
||
if (long32_p)
|
||
return 4;
|
||
if (long64_p)
|
||
return 8;
|
||
|
||
if (sec->reloc_count > 0
|
||
&& elf_section_data (sec)->relocs != NULL
|
||
&& (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
|
||
== R_MIPS_64))
|
||
return 8;
|
||
|
||
return 0;
|
||
}
|
||
return 4;
|
||
}
|
||
|
||
/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
|
||
relocations against two unnamed section symbols to resolve to the
|
||
same address. For example, if we have code like:
|
||
|
||
lw $4,%got_disp(.data)($gp)
|
||
lw $25,%got_disp(.text)($gp)
|
||
jalr $25
|
||
|
||
then the linker will resolve both relocations to .data and the program
|
||
will jump there rather than to .text.
|
||
|
||
We can work around this problem by giving names to local section symbols.
|
||
This is also what the MIPSpro tools do. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
|
||
{
|
||
return SGI_COMPAT (abfd);
|
||
}
|
||
|
||
/* Work over a section just before writing it out. This routine is
|
||
used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
|
||
sections that need the SHF_MIPS_GPREL flag by name; there has to be
|
||
a better way. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
|
||
{
|
||
if (hdr->sh_type == SHT_MIPS_REGINFO
|
||
&& hdr->sh_size > 0)
|
||
{
|
||
bfd_byte buf[4];
|
||
|
||
BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
|
||
BFD_ASSERT (hdr->contents == NULL);
|
||
|
||
if (bfd_seek (abfd,
|
||
hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
|
||
SEEK_SET) != 0)
|
||
return FALSE;
|
||
H_PUT_32 (abfd, elf_gp (abfd), buf);
|
||
if (bfd_bwrite (buf, 4, abfd) != 4)
|
||
return FALSE;
|
||
}
|
||
|
||
if (hdr->sh_type == SHT_MIPS_OPTIONS
|
||
&& hdr->bfd_section != NULL
|
||
&& mips_elf_section_data (hdr->bfd_section) != NULL
|
||
&& mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
|
||
{
|
||
bfd_byte *contents, *l, *lend;
|
||
|
||
/* We stored the section contents in the tdata field in the
|
||
set_section_contents routine. We save the section contents
|
||
so that we don't have to read them again.
|
||
At this point we know that elf_gp is set, so we can look
|
||
through the section contents to see if there is an
|
||
ODK_REGINFO structure. */
|
||
|
||
contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
|
||
l = contents;
|
||
lend = contents + hdr->sh_size;
|
||
while (l + sizeof (Elf_External_Options) <= lend)
|
||
{
|
||
Elf_Internal_Options intopt;
|
||
|
||
bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
|
||
&intopt);
|
||
if (intopt.size < sizeof (Elf_External_Options))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: Warning: bad `%s' option size %u smaller than its header"),
|
||
abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
|
||
break;
|
||
}
|
||
if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
|
||
{
|
||
bfd_byte buf[8];
|
||
|
||
if (bfd_seek (abfd,
|
||
(hdr->sh_offset
|
||
+ (l - contents)
|
||
+ sizeof (Elf_External_Options)
|
||
+ (sizeof (Elf64_External_RegInfo) - 8)),
|
||
SEEK_SET) != 0)
|
||
return FALSE;
|
||
H_PUT_64 (abfd, elf_gp (abfd), buf);
|
||
if (bfd_bwrite (buf, 8, abfd) != 8)
|
||
return FALSE;
|
||
}
|
||
else if (intopt.kind == ODK_REGINFO)
|
||
{
|
||
bfd_byte buf[4];
|
||
|
||
if (bfd_seek (abfd,
|
||
(hdr->sh_offset
|
||
+ (l - contents)
|
||
+ sizeof (Elf_External_Options)
|
||
+ (sizeof (Elf32_External_RegInfo) - 4)),
|
||
SEEK_SET) != 0)
|
||
return FALSE;
|
||
H_PUT_32 (abfd, elf_gp (abfd), buf);
|
||
if (bfd_bwrite (buf, 4, abfd) != 4)
|
||
return FALSE;
|
||
}
|
||
l += intopt.size;
|
||
}
|
||
}
|
||
|
||
if (hdr->bfd_section != NULL)
|
||
{
|
||
const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
|
||
|
||
/* .sbss is not handled specially here because the GNU/Linux
|
||
prelinker can convert .sbss from NOBITS to PROGBITS and
|
||
changing it back to NOBITS breaks the binary. The entry in
|
||
_bfd_mips_elf_special_sections will ensure the correct flags
|
||
are set on .sbss if BFD creates it without reading it from an
|
||
input file, and without special handling here the flags set
|
||
on it in an input file will be followed. */
|
||
if (strcmp (name, ".sdata") == 0
|
||
|| strcmp (name, ".lit8") == 0
|
||
|| strcmp (name, ".lit4") == 0)
|
||
{
|
||
hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
|
||
hdr->sh_type = SHT_PROGBITS;
|
||
}
|
||
else if (strcmp (name, ".srdata") == 0)
|
||
{
|
||
hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
|
||
hdr->sh_type = SHT_PROGBITS;
|
||
}
|
||
else if (strcmp (name, ".compact_rel") == 0)
|
||
{
|
||
hdr->sh_flags = 0;
|
||
hdr->sh_type = SHT_PROGBITS;
|
||
}
|
||
else if (strcmp (name, ".rtproc") == 0)
|
||
{
|
||
if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
|
||
{
|
||
unsigned int adjust;
|
||
|
||
adjust = hdr->sh_size % hdr->sh_addralign;
|
||
if (adjust != 0)
|
||
hdr->sh_size += hdr->sh_addralign - adjust;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Handle a MIPS specific section when reading an object file. This
|
||
is called when elfcode.h finds a section with an unknown type.
|
||
This routine supports both the 32-bit and 64-bit ELF ABI.
|
||
|
||
FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
|
||
how to. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_section_from_shdr (bfd *abfd,
|
||
Elf_Internal_Shdr *hdr,
|
||
const char *name,
|
||
int shindex)
|
||
{
|
||
flagword flags = 0;
|
||
|
||
/* There ought to be a place to keep ELF backend specific flags, but
|
||
at the moment there isn't one. We just keep track of the
|
||
sections by their name, instead. Fortunately, the ABI gives
|
||
suggested names for all the MIPS specific sections, so we will
|
||
probably get away with this. */
|
||
switch (hdr->sh_type)
|
||
{
|
||
case SHT_MIPS_LIBLIST:
|
||
if (strcmp (name, ".liblist") != 0)
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_MSYM:
|
||
if (strcmp (name, ".msym") != 0)
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_CONFLICT:
|
||
if (strcmp (name, ".conflict") != 0)
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_GPTAB:
|
||
if (! CONST_STRNEQ (name, ".gptab."))
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_UCODE:
|
||
if (strcmp (name, ".ucode") != 0)
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_DEBUG:
|
||
if (strcmp (name, ".mdebug") != 0)
|
||
return FALSE;
|
||
flags = SEC_DEBUGGING;
|
||
break;
|
||
case SHT_MIPS_REGINFO:
|
||
if (strcmp (name, ".reginfo") != 0
|
||
|| hdr->sh_size != sizeof (Elf32_External_RegInfo))
|
||
return FALSE;
|
||
flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
|
||
break;
|
||
case SHT_MIPS_IFACE:
|
||
if (strcmp (name, ".MIPS.interfaces") != 0)
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_CONTENT:
|
||
if (! CONST_STRNEQ (name, ".MIPS.content"))
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_OPTIONS:
|
||
if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_DWARF:
|
||
if (! CONST_STRNEQ (name, ".debug_")
|
||
&& ! CONST_STRNEQ (name, ".zdebug_"))
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_SYMBOL_LIB:
|
||
if (strcmp (name, ".MIPS.symlib") != 0)
|
||
return FALSE;
|
||
break;
|
||
case SHT_MIPS_EVENTS:
|
||
if (! CONST_STRNEQ (name, ".MIPS.events")
|
||
&& ! CONST_STRNEQ (name, ".MIPS.post_rel"))
|
||
return FALSE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
||
return FALSE;
|
||
|
||
if (flags)
|
||
{
|
||
if (! bfd_set_section_flags (abfd, hdr->bfd_section,
|
||
(bfd_get_section_flags (abfd,
|
||
hdr->bfd_section)
|
||
| flags)))
|
||
return FALSE;
|
||
}
|
||
|
||
/* FIXME: We should record sh_info for a .gptab section. */
|
||
|
||
/* For a .reginfo section, set the gp value in the tdata information
|
||
from the contents of this section. We need the gp value while
|
||
processing relocs, so we just get it now. The .reginfo section
|
||
is not used in the 64-bit MIPS ELF ABI. */
|
||
if (hdr->sh_type == SHT_MIPS_REGINFO)
|
||
{
|
||
Elf32_External_RegInfo ext;
|
||
Elf32_RegInfo s;
|
||
|
||
if (! bfd_get_section_contents (abfd, hdr->bfd_section,
|
||
&ext, 0, sizeof ext))
|
||
return FALSE;
|
||
bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
|
||
elf_gp (abfd) = s.ri_gp_value;
|
||
}
|
||
|
||
/* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
|
||
set the gp value based on what we find. We may see both
|
||
SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
|
||
they should agree. */
|
||
if (hdr->sh_type == SHT_MIPS_OPTIONS)
|
||
{
|
||
bfd_byte *contents, *l, *lend;
|
||
|
||
contents = bfd_malloc (hdr->sh_size);
|
||
if (contents == NULL)
|
||
return FALSE;
|
||
if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
|
||
0, hdr->sh_size))
|
||
{
|
||
free (contents);
|
||
return FALSE;
|
||
}
|
||
l = contents;
|
||
lend = contents + hdr->sh_size;
|
||
while (l + sizeof (Elf_External_Options) <= lend)
|
||
{
|
||
Elf_Internal_Options intopt;
|
||
|
||
bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
|
||
&intopt);
|
||
if (intopt.size < sizeof (Elf_External_Options))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: Warning: bad `%s' option size %u smaller than its header"),
|
||
abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
|
||
break;
|
||
}
|
||
if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
|
||
{
|
||
Elf64_Internal_RegInfo intreg;
|
||
|
||
bfd_mips_elf64_swap_reginfo_in
|
||
(abfd,
|
||
((Elf64_External_RegInfo *)
|
||
(l + sizeof (Elf_External_Options))),
|
||
&intreg);
|
||
elf_gp (abfd) = intreg.ri_gp_value;
|
||
}
|
||
else if (intopt.kind == ODK_REGINFO)
|
||
{
|
||
Elf32_RegInfo intreg;
|
||
|
||
bfd_mips_elf32_swap_reginfo_in
|
||
(abfd,
|
||
((Elf32_External_RegInfo *)
|
||
(l + sizeof (Elf_External_Options))),
|
||
&intreg);
|
||
elf_gp (abfd) = intreg.ri_gp_value;
|
||
}
|
||
l += intopt.size;
|
||
}
|
||
free (contents);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set the correct type for a MIPS ELF section. We do this by the
|
||
section name, which is a hack, but ought to work. This routine is
|
||
used by both the 32-bit and the 64-bit ABI. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
|
||
{
|
||
const char *name = bfd_get_section_name (abfd, sec);
|
||
|
||
if (strcmp (name, ".liblist") == 0)
|
||
{
|
||
hdr->sh_type = SHT_MIPS_LIBLIST;
|
||
hdr->sh_info = sec->size / sizeof (Elf32_Lib);
|
||
/* The sh_link field is set in final_write_processing. */
|
||
}
|
||
else if (strcmp (name, ".conflict") == 0)
|
||
hdr->sh_type = SHT_MIPS_CONFLICT;
|
||
else if (CONST_STRNEQ (name, ".gptab."))
|
||
{
|
||
hdr->sh_type = SHT_MIPS_GPTAB;
|
||
hdr->sh_entsize = sizeof (Elf32_External_gptab);
|
||
/* The sh_info field is set in final_write_processing. */
|
||
}
|
||
else if (strcmp (name, ".ucode") == 0)
|
||
hdr->sh_type = SHT_MIPS_UCODE;
|
||
else if (strcmp (name, ".mdebug") == 0)
|
||
{
|
||
hdr->sh_type = SHT_MIPS_DEBUG;
|
||
/* In a shared object on IRIX 5.3, the .mdebug section has an
|
||
entsize of 0. FIXME: Does this matter? */
|
||
if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
|
||
hdr->sh_entsize = 0;
|
||
else
|
||
hdr->sh_entsize = 1;
|
||
}
|
||
else if (strcmp (name, ".reginfo") == 0)
|
||
{
|
||
hdr->sh_type = SHT_MIPS_REGINFO;
|
||
/* In a shared object on IRIX 5.3, the .reginfo section has an
|
||
entsize of 0x18. FIXME: Does this matter? */
|
||
if (SGI_COMPAT (abfd))
|
||
{
|
||
if ((abfd->flags & DYNAMIC) != 0)
|
||
hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
|
||
else
|
||
hdr->sh_entsize = 1;
|
||
}
|
||
else
|
||
hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
|
||
}
|
||
else if (SGI_COMPAT (abfd)
|
||
&& (strcmp (name, ".hash") == 0
|
||
|| strcmp (name, ".dynamic") == 0
|
||
|| strcmp (name, ".dynstr") == 0))
|
||
{
|
||
if (SGI_COMPAT (abfd))
|
||
hdr->sh_entsize = 0;
|
||
#if 0
|
||
/* This isn't how the IRIX6 linker behaves. */
|
||
hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
|
||
#endif
|
||
}
|
||
else if (strcmp (name, ".got") == 0
|
||
|| strcmp (name, ".srdata") == 0
|
||
|| strcmp (name, ".sdata") == 0
|
||
|| strcmp (name, ".sbss") == 0
|
||
|| strcmp (name, ".lit4") == 0
|
||
|| strcmp (name, ".lit8") == 0)
|
||
hdr->sh_flags |= SHF_MIPS_GPREL;
|
||
else if (strcmp (name, ".MIPS.interfaces") == 0)
|
||
{
|
||
hdr->sh_type = SHT_MIPS_IFACE;
|
||
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
||
}
|
||
else if (CONST_STRNEQ (name, ".MIPS.content"))
|
||
{
|
||
hdr->sh_type = SHT_MIPS_CONTENT;
|
||
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
||
/* The sh_info field is set in final_write_processing. */
|
||
}
|
||
else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
|
||
{
|
||
hdr->sh_type = SHT_MIPS_OPTIONS;
|
||
hdr->sh_entsize = 1;
|
||
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
||
}
|
||
else if (CONST_STRNEQ (name, ".debug_")
|
||
|| CONST_STRNEQ (name, ".zdebug_"))
|
||
{
|
||
hdr->sh_type = SHT_MIPS_DWARF;
|
||
|
||
/* Irix facilities such as libexc expect a single .debug_frame
|
||
per executable, the system ones have NOSTRIP set and the linker
|
||
doesn't merge sections with different flags so ... */
|
||
if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
|
||
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
||
}
|
||
else if (strcmp (name, ".MIPS.symlib") == 0)
|
||
{
|
||
hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
|
||
/* The sh_link and sh_info fields are set in
|
||
final_write_processing. */
|
||
}
|
||
else if (CONST_STRNEQ (name, ".MIPS.events")
|
||
|| CONST_STRNEQ (name, ".MIPS.post_rel"))
|
||
{
|
||
hdr->sh_type = SHT_MIPS_EVENTS;
|
||
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
||
/* The sh_link field is set in final_write_processing. */
|
||
}
|
||
else if (strcmp (name, ".msym") == 0)
|
||
{
|
||
hdr->sh_type = SHT_MIPS_MSYM;
|
||
hdr->sh_flags |= SHF_ALLOC;
|
||
hdr->sh_entsize = 8;
|
||
}
|
||
|
||
/* The generic elf_fake_sections will set up REL_HDR using the default
|
||
kind of relocations. We used to set up a second header for the
|
||
non-default kind of relocations here, but only NewABI would use
|
||
these, and the IRIX ld doesn't like resulting empty RELA sections.
|
||
Thus we create those header only on demand now. */
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Given a BFD section, try to locate the corresponding ELF section
|
||
index. This is used by both the 32-bit and the 64-bit ABI.
|
||
Actually, it's not clear to me that the 64-bit ABI supports these,
|
||
but for non-PIC objects we will certainly want support for at least
|
||
the .scommon section. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec, int *retval)
|
||
{
|
||
if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
|
||
{
|
||
*retval = SHN_MIPS_SCOMMON;
|
||
return TRUE;
|
||
}
|
||
if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
|
||
{
|
||
*retval = SHN_MIPS_ACOMMON;
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* Hook called by the linker routine which adds symbols from an object
|
||
file. We must handle the special MIPS section numbers here. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
|
||
Elf_Internal_Sym *sym, const char **namep,
|
||
flagword *flagsp ATTRIBUTE_UNUSED,
|
||
asection **secp, bfd_vma *valp)
|
||
{
|
||
if (SGI_COMPAT (abfd)
|
||
&& (abfd->flags & DYNAMIC) != 0
|
||
&& strcmp (*namep, "_rld_new_interface") == 0)
|
||
{
|
||
/* Skip IRIX5 rld entry name. */
|
||
*namep = NULL;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Shared objects may have a dynamic symbol '_gp_disp' defined as
|
||
a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
|
||
by setting a DT_NEEDED for the shared object. Since _gp_disp is
|
||
a magic symbol resolved by the linker, we ignore this bogus definition
|
||
of _gp_disp. New ABI objects do not suffer from this problem so this
|
||
is not done for them. */
|
||
if (!NEWABI_P(abfd)
|
||
&& (sym->st_shndx == SHN_ABS)
|
||
&& (strcmp (*namep, "_gp_disp") == 0))
|
||
{
|
||
*namep = NULL;
|
||
return TRUE;
|
||
}
|
||
|
||
switch (sym->st_shndx)
|
||
{
|
||
case SHN_COMMON:
|
||
/* Common symbols less than the GP size are automatically
|
||
treated as SHN_MIPS_SCOMMON symbols. */
|
||
if (sym->st_size > elf_gp_size (abfd)
|
||
|| ELF_ST_TYPE (sym->st_info) == STT_TLS
|
||
|| IRIX_COMPAT (abfd) == ict_irix6)
|
||
break;
|
||
/* Fall through. */
|
||
case SHN_MIPS_SCOMMON:
|
||
*secp = bfd_make_section_old_way (abfd, ".scommon");
|
||
(*secp)->flags |= SEC_IS_COMMON;
|
||
*valp = sym->st_size;
|
||
break;
|
||
|
||
case SHN_MIPS_TEXT:
|
||
/* This section is used in a shared object. */
|
||
if (elf_tdata (abfd)->elf_text_section == NULL)
|
||
{
|
||
asymbol *elf_text_symbol;
|
||
asection *elf_text_section;
|
||
bfd_size_type amt = sizeof (asection);
|
||
|
||
elf_text_section = bfd_zalloc (abfd, amt);
|
||
if (elf_text_section == NULL)
|
||
return FALSE;
|
||
|
||
amt = sizeof (asymbol);
|
||
elf_text_symbol = bfd_zalloc (abfd, amt);
|
||
if (elf_text_symbol == NULL)
|
||
return FALSE;
|
||
|
||
/* Initialize the section. */
|
||
|
||
elf_tdata (abfd)->elf_text_section = elf_text_section;
|
||
elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
|
||
|
||
elf_text_section->symbol = elf_text_symbol;
|
||
elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
|
||
|
||
elf_text_section->name = ".text";
|
||
elf_text_section->flags = SEC_NO_FLAGS;
|
||
elf_text_section->output_section = NULL;
|
||
elf_text_section->owner = abfd;
|
||
elf_text_symbol->name = ".text";
|
||
elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
|
||
elf_text_symbol->section = elf_text_section;
|
||
}
|
||
/* This code used to do *secp = bfd_und_section_ptr if
|
||
info->shared. I don't know why, and that doesn't make sense,
|
||
so I took it out. */
|
||
*secp = elf_tdata (abfd)->elf_text_section;
|
||
break;
|
||
|
||
case SHN_MIPS_ACOMMON:
|
||
/* Fall through. XXX Can we treat this as allocated data? */
|
||
case SHN_MIPS_DATA:
|
||
/* This section is used in a shared object. */
|
||
if (elf_tdata (abfd)->elf_data_section == NULL)
|
||
{
|
||
asymbol *elf_data_symbol;
|
||
asection *elf_data_section;
|
||
bfd_size_type amt = sizeof (asection);
|
||
|
||
elf_data_section = bfd_zalloc (abfd, amt);
|
||
if (elf_data_section == NULL)
|
||
return FALSE;
|
||
|
||
amt = sizeof (asymbol);
|
||
elf_data_symbol = bfd_zalloc (abfd, amt);
|
||
if (elf_data_symbol == NULL)
|
||
return FALSE;
|
||
|
||
/* Initialize the section. */
|
||
|
||
elf_tdata (abfd)->elf_data_section = elf_data_section;
|
||
elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
|
||
|
||
elf_data_section->symbol = elf_data_symbol;
|
||
elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
|
||
|
||
elf_data_section->name = ".data";
|
||
elf_data_section->flags = SEC_NO_FLAGS;
|
||
elf_data_section->output_section = NULL;
|
||
elf_data_section->owner = abfd;
|
||
elf_data_symbol->name = ".data";
|
||
elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
|
||
elf_data_symbol->section = elf_data_section;
|
||
}
|
||
/* This code used to do *secp = bfd_und_section_ptr if
|
||
info->shared. I don't know why, and that doesn't make sense,
|
||
so I took it out. */
|
||
*secp = elf_tdata (abfd)->elf_data_section;
|
||
break;
|
||
|
||
case SHN_MIPS_SUNDEFINED:
|
||
*secp = bfd_und_section_ptr;
|
||
break;
|
||
}
|
||
|
||
if (SGI_COMPAT (abfd)
|
||
&& ! info->shared
|
||
&& info->output_bfd->xvec == abfd->xvec
|
||
&& strcmp (*namep, "__rld_obj_head") == 0)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *bh;
|
||
|
||
/* Mark __rld_obj_head as dynamic. */
|
||
bh = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
|
||
get_elf_backend_data (abfd)->collect, &bh)))
|
||
return FALSE;
|
||
|
||
h = (struct elf_link_hash_entry *) bh;
|
||
h->non_elf = 0;
|
||
h->def_regular = 1;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
|
||
mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
|
||
}
|
||
|
||
/* If this is a mips16 text symbol, add 1 to the value to make it
|
||
odd. This will cause something like .word SYM to come up with
|
||
the right value when it is loaded into the PC. */
|
||
if (ELF_ST_IS_COMPRESSED (sym->st_other))
|
||
++*valp;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This hook function is called before the linker writes out a global
|
||
symbol. We mark symbols as small common if appropriate. This is
|
||
also where we undo the increment of the value for a mips16 symbol. */
|
||
|
||
int
|
||
_bfd_mips_elf_link_output_symbol_hook
|
||
(struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
|
||
asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
|
||
{
|
||
/* If we see a common symbol, which implies a relocatable link, then
|
||
if a symbol was small common in an input file, mark it as small
|
||
common in the output file. */
|
||
if (sym->st_shndx == SHN_COMMON
|
||
&& strcmp (input_sec->name, ".scommon") == 0)
|
||
sym->st_shndx = SHN_MIPS_SCOMMON;
|
||
|
||
if (ELF_ST_IS_COMPRESSED (sym->st_other))
|
||
sym->st_value &= ~1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Functions for the dynamic linker. */
|
||
|
||
/* Create dynamic sections when linking against a dynamic object. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *bh;
|
||
flagword flags;
|
||
register asection *s;
|
||
const char * const *namep;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED | SEC_READONLY);
|
||
|
||
/* The psABI requires a read-only .dynamic section, but the VxWorks
|
||
EABI doesn't. */
|
||
if (!htab->is_vxworks)
|
||
{
|
||
s = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (s != NULL)
|
||
{
|
||
if (! bfd_set_section_flags (abfd, s, flags))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* We need to create .got section. */
|
||
if (!mips_elf_create_got_section (abfd, info))
|
||
return FALSE;
|
||
|
||
if (! mips_elf_rel_dyn_section (info, TRUE))
|
||
return FALSE;
|
||
|
||
/* Create .stub section. */
|
||
s = bfd_make_section_with_flags (abfd,
|
||
MIPS_ELF_STUB_SECTION_NAME (abfd),
|
||
flags | SEC_CODE);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s,
|
||
MIPS_ELF_LOG_FILE_ALIGN (abfd)))
|
||
return FALSE;
|
||
htab->sstubs = s;
|
||
|
||
if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
|
||
&& !info->shared
|
||
&& bfd_get_section_by_name (abfd, ".rld_map") == NULL)
|
||
{
|
||
s = bfd_make_section_with_flags (abfd, ".rld_map",
|
||
flags &~ (flagword) SEC_READONLY);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s,
|
||
MIPS_ELF_LOG_FILE_ALIGN (abfd)))
|
||
return FALSE;
|
||
}
|
||
|
||
/* On IRIX5, we adjust add some additional symbols and change the
|
||
alignments of several sections. There is no ABI documentation
|
||
indicating that this is necessary on IRIX6, nor any evidence that
|
||
the linker takes such action. */
|
||
if (IRIX_COMPAT (abfd) == ict_irix5)
|
||
{
|
||
for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
|
||
{
|
||
bh = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
|
||
NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
|
||
return FALSE;
|
||
|
||
h = (struct elf_link_hash_entry *) bh;
|
||
h->non_elf = 0;
|
||
h->def_regular = 1;
|
||
h->type = STT_SECTION;
|
||
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
/* We need to create a .compact_rel section. */
|
||
if (SGI_COMPAT (abfd))
|
||
{
|
||
if (!mips_elf_create_compact_rel_section (abfd, info))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Change alignments of some sections. */
|
||
s = bfd_get_section_by_name (abfd, ".hash");
|
||
if (s != NULL)
|
||
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
||
s = bfd_get_section_by_name (abfd, ".dynstr");
|
||
if (s != NULL)
|
||
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
||
s = bfd_get_section_by_name (abfd, ".reginfo");
|
||
if (s != NULL)
|
||
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
||
s = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (s != NULL)
|
||
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
||
}
|
||
|
||
if (!info->shared)
|
||
{
|
||
const char *name;
|
||
|
||
name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
|
||
bh = NULL;
|
||
if (!(_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
|
||
NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
|
||
return FALSE;
|
||
|
||
h = (struct elf_link_hash_entry *) bh;
|
||
h->non_elf = 0;
|
||
h->def_regular = 1;
|
||
h->type = STT_SECTION;
|
||
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
|
||
if (! mips_elf_hash_table (info)->use_rld_obj_head)
|
||
{
|
||
/* __rld_map is a four byte word located in the .data section
|
||
and is filled in by the rtld to contain a pointer to
|
||
the _r_debug structure. Its symbol value will be set in
|
||
_bfd_mips_elf_finish_dynamic_symbol. */
|
||
s = bfd_get_section_by_name (abfd, ".rld_map");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
|
||
bh = NULL;
|
||
if (!(_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
|
||
get_elf_backend_data (abfd)->collect, &bh)))
|
||
return FALSE;
|
||
|
||
h = (struct elf_link_hash_entry *) bh;
|
||
h->non_elf = 0;
|
||
h->def_regular = 1;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
|
||
Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
|
||
if (!_bfd_elf_create_dynamic_sections (abfd, info))
|
||
return FALSE;
|
||
|
||
/* Cache the sections created above. */
|
||
htab->splt = bfd_get_section_by_name (abfd, ".plt");
|
||
htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
|
||
if (htab->is_vxworks)
|
||
{
|
||
htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
|
||
htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
|
||
}
|
||
else
|
||
htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
|
||
if (!htab->sdynbss
|
||
|| (htab->is_vxworks && !htab->srelbss && !info->shared)
|
||
|| !htab->srelplt
|
||
|| !htab->splt)
|
||
abort ();
|
||
|
||
if (htab->is_vxworks)
|
||
{
|
||
/* Do the usual VxWorks handling. */
|
||
if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
|
||
return FALSE;
|
||
|
||
/* Work out the PLT sizes. */
|
||
if (info->shared)
|
||
{
|
||
htab->plt_header_size
|
||
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
|
||
htab->plt_entry_size
|
||
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
|
||
}
|
||
else
|
||
{
|
||
htab->plt_header_size
|
||
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
|
||
htab->plt_entry_size
|
||
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
|
||
}
|
||
}
|
||
else if (!info->shared)
|
||
{
|
||
/* All variants of the plt0 entry are the same size. */
|
||
htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
|
||
htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return true if relocation REL against section SEC is a REL rather than
|
||
RELA relocation. RELOCS is the first relocation in the section and
|
||
ABFD is the bfd that contains SEC. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
|
||
const Elf_Internal_Rela *relocs,
|
||
const Elf_Internal_Rela *rel)
|
||
{
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
const struct elf_backend_data *bed;
|
||
|
||
/* To determine which flavor of relocation this is, we depend on the
|
||
fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
|
||
rel_hdr = elf_section_data (sec)->rel.hdr;
|
||
if (rel_hdr == NULL)
|
||
return FALSE;
|
||
bed = get_elf_backend_data (abfd);
|
||
return ((size_t) (rel - relocs)
|
||
< NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
|
||
}
|
||
|
||
/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
|
||
HOWTO is the relocation's howto and CONTENTS points to the contents
|
||
of the section that REL is against. */
|
||
|
||
static bfd_vma
|
||
mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
|
||
reloc_howto_type *howto, bfd_byte *contents)
|
||
{
|
||
bfd_byte *location;
|
||
unsigned int r_type;
|
||
bfd_vma addend;
|
||
|
||
r_type = ELF_R_TYPE (abfd, rel->r_info);
|
||
location = contents + rel->r_offset;
|
||
|
||
/* Get the addend, which is stored in the input file. */
|
||
_bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
|
||
addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
|
||
_bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
|
||
|
||
return addend & howto->src_mask;
|
||
}
|
||
|
||
/* REL is a relocation in ABFD that needs a partnering LO16 relocation
|
||
and *ADDEND is the addend for REL itself. Look for the LO16 relocation
|
||
and update *ADDEND with the final addend. Return true on success
|
||
or false if the LO16 could not be found. RELEND is the exclusive
|
||
upper bound on the relocations for REL's section. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_add_lo16_rel_addend (bfd *abfd,
|
||
const Elf_Internal_Rela *rel,
|
||
const Elf_Internal_Rela *relend,
|
||
bfd_byte *contents, bfd_vma *addend)
|
||
{
|
||
unsigned int r_type, lo16_type;
|
||
const Elf_Internal_Rela *lo16_relocation;
|
||
reloc_howto_type *lo16_howto;
|
||
bfd_vma l;
|
||
|
||
r_type = ELF_R_TYPE (abfd, rel->r_info);
|
||
if (mips16_reloc_p (r_type))
|
||
lo16_type = R_MIPS16_LO16;
|
||
else if (micromips_reloc_p (r_type))
|
||
lo16_type = R_MICROMIPS_LO16;
|
||
else
|
||
lo16_type = R_MIPS_LO16;
|
||
|
||
/* The combined value is the sum of the HI16 addend, left-shifted by
|
||
sixteen bits, and the LO16 addend, sign extended. (Usually, the
|
||
code does a `lui' of the HI16 value, and then an `addiu' of the
|
||
LO16 value.)
|
||
|
||
Scan ahead to find a matching LO16 relocation.
|
||
|
||
According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
|
||
be immediately following. However, for the IRIX6 ABI, the next
|
||
relocation may be a composed relocation consisting of several
|
||
relocations for the same address. In that case, the R_MIPS_LO16
|
||
relocation may occur as one of these. We permit a similar
|
||
extension in general, as that is useful for GCC.
|
||
|
||
In some cases GCC dead code elimination removes the LO16 but keeps
|
||
the corresponding HI16. This is strictly speaking a violation of
|
||
the ABI but not immediately harmful. */
|
||
lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
|
||
if (lo16_relocation == NULL)
|
||
return FALSE;
|
||
|
||
/* Obtain the addend kept there. */
|
||
lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
|
||
l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
|
||
|
||
l <<= lo16_howto->rightshift;
|
||
l = _bfd_mips_elf_sign_extend (l, 16);
|
||
|
||
*addend <<= 16;
|
||
*addend += l;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Try to read the contents of section SEC in bfd ABFD. Return true and
|
||
store the contents in *CONTENTS on success. Assume that *CONTENTS
|
||
already holds the contents if it is nonull on entry. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
|
||
{
|
||
if (*contents)
|
||
return TRUE;
|
||
|
||
/* Get cached copy if it exists. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
{
|
||
*contents = elf_section_data (sec)->this_hdr.contents;
|
||
return TRUE;
|
||
}
|
||
|
||
return bfd_malloc_and_get_section (abfd, sec, contents);
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
allocate space in the global offset table. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
||
asection *sec, const Elf_Internal_Rela *relocs)
|
||
{
|
||
const char *name;
|
||
bfd *dynobj;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
size_t extsymoff;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
asection *sreloc;
|
||
const struct elf_backend_data *bed;
|
||
struct mips_elf_link_hash_table *htab;
|
||
bfd_byte *contents;
|
||
bfd_vma addend;
|
||
reloc_howto_type *howto;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
|
||
|
||
/* Check for the mips16 stub sections. */
|
||
|
||
name = bfd_get_section_name (abfd, sec);
|
||
if (FN_STUB_P (name))
|
||
{
|
||
unsigned long r_symndx;
|
||
|
||
/* Look at the relocation information to figure out which symbol
|
||
this is for. */
|
||
|
||
r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
|
||
if (r_symndx == 0)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: Warning: cannot determine the target function for"
|
||
" stub section `%s'"),
|
||
abfd, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx < extsymoff
|
||
|| sym_hashes[r_symndx - extsymoff] == NULL)
|
||
{
|
||
asection *o;
|
||
|
||
/* This stub is for a local symbol. This stub will only be
|
||
needed if there is some relocation in this BFD, other
|
||
than a 16 bit function call, which refers to this symbol. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
Elf_Internal_Rela *sec_relocs;
|
||
const Elf_Internal_Rela *r, *rend;
|
||
|
||
/* We can ignore stub sections when looking for relocs. */
|
||
if ((o->flags & SEC_RELOC) == 0
|
||
|| o->reloc_count == 0
|
||
|| section_allows_mips16_refs_p (o))
|
||
continue;
|
||
|
||
sec_relocs
|
||
= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
||
info->keep_memory);
|
||
if (sec_relocs == NULL)
|
||
return FALSE;
|
||
|
||
rend = sec_relocs + o->reloc_count;
|
||
for (r = sec_relocs; r < rend; r++)
|
||
if (ELF_R_SYM (abfd, r->r_info) == r_symndx
|
||
&& !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
|
||
break;
|
||
|
||
if (elf_section_data (o)->relocs != sec_relocs)
|
||
free (sec_relocs);
|
||
|
||
if (r < rend)
|
||
break;
|
||
}
|
||
|
||
if (o == NULL)
|
||
{
|
||
/* There is no non-call reloc for this stub, so we do
|
||
not need it. Since this function is called before
|
||
the linker maps input sections to output sections, we
|
||
can easily discard it by setting the SEC_EXCLUDE
|
||
flag. */
|
||
sec->flags |= SEC_EXCLUDE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Record this stub in an array of local symbol stubs for
|
||
this BFD. */
|
||
if (elf_tdata (abfd)->local_stubs == NULL)
|
||
{
|
||
unsigned long symcount;
|
||
asection **n;
|
||
bfd_size_type amt;
|
||
|
||
if (elf_bad_symtab (abfd))
|
||
symcount = NUM_SHDR_ENTRIES (symtab_hdr);
|
||
else
|
||
symcount = symtab_hdr->sh_info;
|
||
amt = symcount * sizeof (asection *);
|
||
n = bfd_zalloc (abfd, amt);
|
||
if (n == NULL)
|
||
return FALSE;
|
||
elf_tdata (abfd)->local_stubs = n;
|
||
}
|
||
|
||
sec->flags |= SEC_KEEP;
|
||
elf_tdata (abfd)->local_stubs[r_symndx] = sec;
|
||
|
||
/* We don't need to set mips16_stubs_seen in this case.
|
||
That flag is used to see whether we need to look through
|
||
the global symbol table for stubs. We don't need to set
|
||
it here, because we just have a local stub. */
|
||
}
|
||
else
|
||
{
|
||
struct mips_elf_link_hash_entry *h;
|
||
|
||
h = ((struct mips_elf_link_hash_entry *)
|
||
sym_hashes[r_symndx - extsymoff]);
|
||
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
||
|
||
/* H is the symbol this stub is for. */
|
||
|
||
/* If we already have an appropriate stub for this function, we
|
||
don't need another one, so we can discard this one. Since
|
||
this function is called before the linker maps input sections
|
||
to output sections, we can easily discard it by setting the
|
||
SEC_EXCLUDE flag. */
|
||
if (h->fn_stub != NULL)
|
||
{
|
||
sec->flags |= SEC_EXCLUDE;
|
||
return TRUE;
|
||
}
|
||
|
||
sec->flags |= SEC_KEEP;
|
||
h->fn_stub = sec;
|
||
mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
|
||
}
|
||
}
|
||
else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
|
||
{
|
||
unsigned long r_symndx;
|
||
struct mips_elf_link_hash_entry *h;
|
||
asection **loc;
|
||
|
||
/* Look at the relocation information to figure out which symbol
|
||
this is for. */
|
||
|
||
r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
|
||
if (r_symndx == 0)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: Warning: cannot determine the target function for"
|
||
" stub section `%s'"),
|
||
abfd, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx < extsymoff
|
||
|| sym_hashes[r_symndx - extsymoff] == NULL)
|
||
{
|
||
asection *o;
|
||
|
||
/* This stub is for a local symbol. This stub will only be
|
||
needed if there is some relocation (R_MIPS16_26) in this BFD
|
||
that refers to this symbol. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
Elf_Internal_Rela *sec_relocs;
|
||
const Elf_Internal_Rela *r, *rend;
|
||
|
||
/* We can ignore stub sections when looking for relocs. */
|
||
if ((o->flags & SEC_RELOC) == 0
|
||
|| o->reloc_count == 0
|
||
|| section_allows_mips16_refs_p (o))
|
||
continue;
|
||
|
||
sec_relocs
|
||
= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
||
info->keep_memory);
|
||
if (sec_relocs == NULL)
|
||
return FALSE;
|
||
|
||
rend = sec_relocs + o->reloc_count;
|
||
for (r = sec_relocs; r < rend; r++)
|
||
if (ELF_R_SYM (abfd, r->r_info) == r_symndx
|
||
&& ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
|
||
break;
|
||
|
||
if (elf_section_data (o)->relocs != sec_relocs)
|
||
free (sec_relocs);
|
||
|
||
if (r < rend)
|
||
break;
|
||
}
|
||
|
||
if (o == NULL)
|
||
{
|
||
/* There is no non-call reloc for this stub, so we do
|
||
not need it. Since this function is called before
|
||
the linker maps input sections to output sections, we
|
||
can easily discard it by setting the SEC_EXCLUDE
|
||
flag. */
|
||
sec->flags |= SEC_EXCLUDE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Record this stub in an array of local symbol call_stubs for
|
||
this BFD. */
|
||
if (elf_tdata (abfd)->local_call_stubs == NULL)
|
||
{
|
||
unsigned long symcount;
|
||
asection **n;
|
||
bfd_size_type amt;
|
||
|
||
if (elf_bad_symtab (abfd))
|
||
symcount = NUM_SHDR_ENTRIES (symtab_hdr);
|
||
else
|
||
symcount = symtab_hdr->sh_info;
|
||
amt = symcount * sizeof (asection *);
|
||
n = bfd_zalloc (abfd, amt);
|
||
if (n == NULL)
|
||
return FALSE;
|
||
elf_tdata (abfd)->local_call_stubs = n;
|
||
}
|
||
|
||
sec->flags |= SEC_KEEP;
|
||
elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
|
||
|
||
/* We don't need to set mips16_stubs_seen in this case.
|
||
That flag is used to see whether we need to look through
|
||
the global symbol table for stubs. We don't need to set
|
||
it here, because we just have a local stub. */
|
||
}
|
||
else
|
||
{
|
||
h = ((struct mips_elf_link_hash_entry *)
|
||
sym_hashes[r_symndx - extsymoff]);
|
||
|
||
/* H is the symbol this stub is for. */
|
||
|
||
if (CALL_FP_STUB_P (name))
|
||
loc = &h->call_fp_stub;
|
||
else
|
||
loc = &h->call_stub;
|
||
|
||
/* If we already have an appropriate stub for this function, we
|
||
don't need another one, so we can discard this one. Since
|
||
this function is called before the linker maps input sections
|
||
to output sections, we can easily discard it by setting the
|
||
SEC_EXCLUDE flag. */
|
||
if (*loc != NULL)
|
||
{
|
||
sec->flags |= SEC_EXCLUDE;
|
||
return TRUE;
|
||
}
|
||
|
||
sec->flags |= SEC_KEEP;
|
||
*loc = sec;
|
||
mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
|
||
}
|
||
}
|
||
|
||
sreloc = NULL;
|
||
contents = NULL;
|
||
for (rel = relocs; rel < rel_end; ++rel)
|
||
{
|
||
unsigned long r_symndx;
|
||
unsigned int r_type;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_boolean can_make_dynamic_p;
|
||
|
||
r_symndx = ELF_R_SYM (abfd, rel->r_info);
|
||
r_type = ELF_R_TYPE (abfd, rel->r_info);
|
||
|
||
if (r_symndx < extsymoff)
|
||
h = NULL;
|
||
else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: Malformed reloc detected for section %s"),
|
||
abfd, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - extsymoff];
|
||
while (h != NULL
|
||
&& (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning))
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
/* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
|
||
relocation into a dynamic one. */
|
||
can_make_dynamic_p = FALSE;
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS16_GOT16:
|
||
case R_MIPS16_CALL16:
|
||
case R_MIPS_GOT16:
|
||
case R_MIPS_CALL16:
|
||
case R_MIPS_CALL_HI16:
|
||
case R_MIPS_CALL_LO16:
|
||
case R_MIPS_GOT_HI16:
|
||
case R_MIPS_GOT_LO16:
|
||
case R_MIPS_GOT_PAGE:
|
||
case R_MIPS_GOT_OFST:
|
||
case R_MIPS_GOT_DISP:
|
||
case R_MIPS_TLS_GOTTPREL:
|
||
case R_MIPS_TLS_GD:
|
||
case R_MIPS_TLS_LDM:
|
||
case R_MICROMIPS_GOT16:
|
||
case R_MICROMIPS_CALL16:
|
||
case R_MICROMIPS_CALL_HI16:
|
||
case R_MICROMIPS_CALL_LO16:
|
||
case R_MICROMIPS_GOT_HI16:
|
||
case R_MICROMIPS_GOT_LO16:
|
||
case R_MICROMIPS_GOT_PAGE:
|
||
case R_MICROMIPS_GOT_OFST:
|
||
case R_MICROMIPS_GOT_DISP:
|
||
case R_MICROMIPS_TLS_GOTTPREL:
|
||
case R_MICROMIPS_TLS_GD:
|
||
case R_MICROMIPS_TLS_LDM:
|
||
if (dynobj == NULL)
|
||
elf_hash_table (info)->dynobj = dynobj = abfd;
|
||
if (!mips_elf_create_got_section (dynobj, info))
|
||
return FALSE;
|
||
if (htab->is_vxworks && !info->shared)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: GOT reloc at 0x%lx not expected in executables"),
|
||
abfd, (unsigned long) rel->r_offset);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
/* This is just a hint; it can safely be ignored. Don't set
|
||
has_static_relocs for the corresponding symbol. */
|
||
case R_MIPS_JALR:
|
||
case R_MICROMIPS_JALR:
|
||
break;
|
||
|
||
case R_MIPS_32:
|
||
case R_MIPS_REL32:
|
||
case R_MIPS_64:
|
||
/* In VxWorks executables, references to external symbols
|
||
must be handled using copy relocs or PLT entries; it is not
|
||
possible to convert this relocation into a dynamic one.
|
||
|
||
For executables that use PLTs and copy-relocs, we have a
|
||
choice between converting the relocation into a dynamic
|
||
one or using copy relocations or PLT entries. It is
|
||
usually better to do the former, unless the relocation is
|
||
against a read-only section. */
|
||
if ((info->shared
|
||
|| (h != NULL
|
||
&& !htab->is_vxworks
|
||
&& strcmp (h->root.root.string, "__gnu_local_gp") != 0
|
||
&& !(!info->nocopyreloc
|
||
&& !PIC_OBJECT_P (abfd)
|
||
&& MIPS_ELF_READONLY_SECTION (sec))))
|
||
&& (sec->flags & SEC_ALLOC) != 0)
|
||
{
|
||
can_make_dynamic_p = TRUE;
|
||
if (dynobj == NULL)
|
||
elf_hash_table (info)->dynobj = dynobj = abfd;
|
||
break;
|
||
}
|
||
/* For sections that are not SEC_ALLOC a copy reloc would be
|
||
output if possible (implying questionable semantics for
|
||
read-only data objects) or otherwise the final link would
|
||
fail as ld.so will not process them and could not therefore
|
||
handle any outstanding dynamic relocations.
|
||
|
||
For such sections that are also SEC_DEBUGGING, we can avoid
|
||
these problems by simply ignoring any relocs as these
|
||
sections have a predefined use and we know it is safe to do
|
||
so.
|
||
|
||
This is needed in cases such as a global symbol definition
|
||
in a shared library causing a common symbol from an object
|
||
file to be converted to an undefined reference. If that
|
||
happens, then all the relocations against this symbol from
|
||
SEC_DEBUGGING sections in the object file will resolve to
|
||
nil. */
|
||
if ((sec->flags & SEC_DEBUGGING) != 0)
|
||
break;
|
||
/* Fall through. */
|
||
|
||
default:
|
||
/* Most static relocations require pointer equality, except
|
||
for branches. */
|
||
if (h)
|
||
h->pointer_equality_needed = TRUE;
|
||
/* Fall through. */
|
||
|
||
case R_MIPS_26:
|
||
case R_MIPS_PC16:
|
||
case R_MIPS16_26:
|
||
case R_MICROMIPS_26_S1:
|
||
case R_MICROMIPS_PC7_S1:
|
||
case R_MICROMIPS_PC10_S1:
|
||
case R_MICROMIPS_PC16_S1:
|
||
case R_MICROMIPS_PC23_S2:
|
||
if (h)
|
||
((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
|
||
break;
|
||
}
|
||
|
||
if (h)
|
||
{
|
||
/* Relocations against the special VxWorks __GOTT_BASE__ and
|
||
__GOTT_INDEX__ symbols must be left to the loader. Allocate
|
||
room for them in .rela.dyn. */
|
||
if (is_gott_symbol (info, h))
|
||
{
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = mips_elf_rel_dyn_section (info, TRUE);
|
||
if (sreloc == NULL)
|
||
return FALSE;
|
||
}
|
||
mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
|
||
if (MIPS_ELF_READONLY_SECTION (sec))
|
||
/* We tell the dynamic linker that there are
|
||
relocations against the text segment. */
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
}
|
||
else if (call_lo16_reloc_p (r_type)
|
||
|| got_lo16_reloc_p (r_type)
|
||
|| got_disp_reloc_p (r_type)
|
||
|| (got16_reloc_p (r_type) && htab->is_vxworks))
|
||
{
|
||
/* We may need a local GOT entry for this relocation. We
|
||
don't count R_MIPS_GOT_PAGE because we can estimate the
|
||
maximum number of pages needed by looking at the size of
|
||
the segment. Similar comments apply to R_MIPS*_GOT16 and
|
||
R_MIPS*_CALL16, except on VxWorks, where GOT relocations
|
||
always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
|
||
R_MIPS_CALL_HI16 because these are always followed by an
|
||
R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
|
||
if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
|
||
rel->r_addend, info, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
|
||
((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS_CALL16:
|
||
case R_MIPS16_CALL16:
|
||
case R_MICROMIPS_CALL16:
|
||
if (h == NULL)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
|
||
abfd, (unsigned long) rel->r_offset);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case R_MIPS_CALL_HI16:
|
||
case R_MIPS_CALL_LO16:
|
||
case R_MICROMIPS_CALL_HI16:
|
||
case R_MICROMIPS_CALL_LO16:
|
||
if (h != NULL)
|
||
{
|
||
/* Make sure there is room in the regular GOT to hold the
|
||
function's address. We may eliminate it in favour of
|
||
a .got.plt entry later; see mips_elf_count_got_symbols. */
|
||
if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
|
||
return FALSE;
|
||
|
||
/* We need a stub, not a plt entry for the undefined
|
||
function. But we record it as if it needs plt. See
|
||
_bfd_elf_adjust_dynamic_symbol. */
|
||
h->needs_plt = 1;
|
||
h->type = STT_FUNC;
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_GOT_PAGE:
|
||
case R_MICROMIPS_GOT_PAGE:
|
||
/* If this is a global, overridable symbol, GOT_PAGE will
|
||
decay to GOT_DISP, so we'll need a GOT entry for it. */
|
||
if (h)
|
||
{
|
||
struct mips_elf_link_hash_entry *hmips =
|
||
(struct mips_elf_link_hash_entry *) h;
|
||
|
||
/* This symbol is definitely not overridable. */
|
||
if (hmips->root.def_regular
|
||
&& ! (info->shared && ! info->symbolic
|
||
&& ! hmips->root.forced_local))
|
||
h = NULL;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case R_MIPS16_GOT16:
|
||
case R_MIPS_GOT16:
|
||
case R_MIPS_GOT_HI16:
|
||
case R_MIPS_GOT_LO16:
|
||
case R_MICROMIPS_GOT16:
|
||
case R_MICROMIPS_GOT_HI16:
|
||
case R_MICROMIPS_GOT_LO16:
|
||
if (!h || got_page_reloc_p (r_type))
|
||
{
|
||
/* This relocation needs (or may need, if h != NULL) a
|
||
page entry in the GOT. For R_MIPS_GOT_PAGE we do not
|
||
know for sure until we know whether the symbol is
|
||
preemptible. */
|
||
if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
|
||
{
|
||
if (!mips_elf_get_section_contents (abfd, sec, &contents))
|
||
return FALSE;
|
||
howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
|
||
addend = mips_elf_read_rel_addend (abfd, rel,
|
||
howto, contents);
|
||
if (got16_reloc_p (r_type))
|
||
mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
|
||
contents, &addend);
|
||
else
|
||
addend <<= howto->rightshift;
|
||
}
|
||
else
|
||
addend = rel->r_addend;
|
||
if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
|
||
addend))
|
||
return FALSE;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case R_MIPS_GOT_DISP:
|
||
case R_MICROMIPS_GOT_DISP:
|
||
if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
|
||
FALSE, 0))
|
||
return FALSE;
|
||
break;
|
||
|
||
case R_MIPS_TLS_GOTTPREL:
|
||
case R_MICROMIPS_TLS_GOTTPREL:
|
||
if (info->shared)
|
||
info->flags |= DF_STATIC_TLS;
|
||
/* Fall through */
|
||
|
||
case R_MIPS_TLS_LDM:
|
||
case R_MICROMIPS_TLS_LDM:
|
||
if (tls_ldm_reloc_p (r_type))
|
||
{
|
||
r_symndx = STN_UNDEF;
|
||
h = NULL;
|
||
}
|
||
/* Fall through */
|
||
|
||
case R_MIPS_TLS_GD:
|
||
case R_MICROMIPS_TLS_GD:
|
||
/* This symbol requires a global offset table entry, or two
|
||
for TLS GD relocations. */
|
||
{
|
||
unsigned char flag;
|
||
|
||
flag = (tls_gd_reloc_p (r_type)
|
||
? GOT_TLS_GD
|
||
: tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
|
||
if (h != NULL)
|
||
{
|
||
struct mips_elf_link_hash_entry *hmips =
|
||
(struct mips_elf_link_hash_entry *) h;
|
||
hmips->tls_type |= flag;
|
||
|
||
if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
|
||
FALSE, flag))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
|
||
|
||
if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
|
||
rel->r_addend,
|
||
info, flag))
|
||
return FALSE;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_32:
|
||
case R_MIPS_REL32:
|
||
case R_MIPS_64:
|
||
/* In VxWorks executables, references to external symbols
|
||
are handled using copy relocs or PLT stubs, so there's
|
||
no need to add a .rela.dyn entry for this relocation. */
|
||
if (can_make_dynamic_p)
|
||
{
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = mips_elf_rel_dyn_section (info, TRUE);
|
||
if (sreloc == NULL)
|
||
return FALSE;
|
||
}
|
||
if (info->shared && h == NULL)
|
||
{
|
||
/* When creating a shared object, we must copy these
|
||
reloc types into the output file as R_MIPS_REL32
|
||
relocs. Make room for this reloc in .rel(a).dyn. */
|
||
mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
|
||
if (MIPS_ELF_READONLY_SECTION (sec))
|
||
/* We tell the dynamic linker that there are
|
||
relocations against the text segment. */
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
else
|
||
{
|
||
struct mips_elf_link_hash_entry *hmips;
|
||
|
||
/* For a shared object, we must copy this relocation
|
||
unless the symbol turns out to be undefined and
|
||
weak with non-default visibility, in which case
|
||
it will be left as zero.
|
||
|
||
We could elide R_MIPS_REL32 for locally binding symbols
|
||
in shared libraries, but do not yet do so.
|
||
|
||
For an executable, we only need to copy this
|
||
reloc if the symbol is defined in a dynamic
|
||
object. */
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
++hmips->possibly_dynamic_relocs;
|
||
if (MIPS_ELF_READONLY_SECTION (sec))
|
||
/* We need it to tell the dynamic linker if there
|
||
are relocations against the text segment. */
|
||
hmips->readonly_reloc = TRUE;
|
||
}
|
||
}
|
||
|
||
if (SGI_COMPAT (abfd))
|
||
mips_elf_hash_table (info)->compact_rel_size +=
|
||
sizeof (Elf32_External_crinfo);
|
||
break;
|
||
|
||
case R_MIPS_26:
|
||
case R_MIPS_GPREL16:
|
||
case R_MIPS_LITERAL:
|
||
case R_MIPS_GPREL32:
|
||
case R_MICROMIPS_26_S1:
|
||
case R_MICROMIPS_GPREL16:
|
||
case R_MICROMIPS_LITERAL:
|
||
case R_MICROMIPS_GPREL7_S2:
|
||
if (SGI_COMPAT (abfd))
|
||
mips_elf_hash_table (info)->compact_rel_size +=
|
||
sizeof (Elf32_External_crinfo);
|
||
break;
|
||
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_MIPS_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_MIPS_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* We must not create a stub for a symbol that has relocations
|
||
related to taking the function's address. This doesn't apply to
|
||
VxWorks, where CALL relocs refer to a .got.plt entry instead of
|
||
a normal .got entry. */
|
||
if (!htab->is_vxworks && h != NULL)
|
||
switch (r_type)
|
||
{
|
||
default:
|
||
((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
|
||
break;
|
||
case R_MIPS16_CALL16:
|
||
case R_MIPS_CALL16:
|
||
case R_MIPS_CALL_HI16:
|
||
case R_MIPS_CALL_LO16:
|
||
case R_MIPS_JALR:
|
||
case R_MICROMIPS_CALL16:
|
||
case R_MICROMIPS_CALL_HI16:
|
||
case R_MICROMIPS_CALL_LO16:
|
||
case R_MICROMIPS_JALR:
|
||
break;
|
||
}
|
||
|
||
/* See if this reloc would need to refer to a MIPS16 hard-float stub,
|
||
if there is one. We only need to handle global symbols here;
|
||
we decide whether to keep or delete stubs for local symbols
|
||
when processing the stub's relocations. */
|
||
if (h != NULL
|
||
&& !mips16_call_reloc_p (r_type)
|
||
&& !section_allows_mips16_refs_p (sec))
|
||
{
|
||
struct mips_elf_link_hash_entry *mh;
|
||
|
||
mh = (struct mips_elf_link_hash_entry *) h;
|
||
mh->need_fn_stub = TRUE;
|
||
}
|
||
|
||
/* Refuse some position-dependent relocations when creating a
|
||
shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
|
||
not PIC, but we can create dynamic relocations and the result
|
||
will be fine. Also do not refuse R_MIPS_LO16, which can be
|
||
combined with R_MIPS_GOT16. */
|
||
if (info->shared)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_MIPS16_HI16:
|
||
case R_MIPS_HI16:
|
||
case R_MIPS_HIGHER:
|
||
case R_MIPS_HIGHEST:
|
||
case R_MICROMIPS_HI16:
|
||
case R_MICROMIPS_HIGHER:
|
||
case R_MICROMIPS_HIGHEST:
|
||
/* Don't refuse a high part relocation if it's against
|
||
no symbol (e.g. part of a compound relocation). */
|
||
if (r_symndx == STN_UNDEF)
|
||
break;
|
||
|
||
/* R_MIPS_HI16 against _gp_disp is used for $gp setup,
|
||
and has a special meaning. */
|
||
if (!NEWABI_P (abfd) && h != NULL
|
||
&& strcmp (h->root.root.string, "_gp_disp") == 0)
|
||
break;
|
||
|
||
/* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
|
||
if (is_gott_symbol (info, h))
|
||
break;
|
||
|
||
/* FALLTHROUGH */
|
||
|
||
case R_MIPS16_26:
|
||
case R_MIPS_26:
|
||
case R_MICROMIPS_26_S1:
|
||
howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
|
||
abfd, howto->name,
|
||
(h) ? h->root.root.string : "a local symbol");
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_relax_section (bfd *abfd, asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
bfd_byte *contents = NULL;
|
||
size_t extsymoff;
|
||
bfd_boolean changed_contents = FALSE;
|
||
bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
|
||
/* We are not currently changing any sizes, so only one pass. */
|
||
*again = FALSE;
|
||
|
||
if (link_info->relocatable)
|
||
return TRUE;
|
||
|
||
internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
return TRUE;
|
||
|
||
irelend = internal_relocs + sec->reloc_count
|
||
* get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
|
||
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma symval;
|
||
bfd_signed_vma sym_offset;
|
||
unsigned int r_type;
|
||
unsigned long r_symndx;
|
||
asection *sym_sec;
|
||
unsigned long instruction;
|
||
|
||
/* Turn jalr into bgezal, and jr into beq, if they're marked
|
||
with a JALR relocation, that indicate where they jump to.
|
||
This saves some pipeline bubbles. */
|
||
r_type = ELF_R_TYPE (abfd, irel->r_info);
|
||
if (r_type != R_MIPS_JALR)
|
||
continue;
|
||
|
||
r_symndx = ELF_R_SYM (abfd, irel->r_info);
|
||
/* Compute the address of the jump target. */
|
||
if (r_symndx >= extsymoff)
|
||
{
|
||
struct mips_elf_link_hash_entry *h
|
||
= ((struct mips_elf_link_hash_entry *)
|
||
elf_sym_hashes (abfd) [r_symndx - extsymoff]);
|
||
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
||
|
||
/* If a symbol is undefined, or if it may be overridden,
|
||
skip it. */
|
||
if (! ((h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
&& h->root.root.u.def.section)
|
||
|| (link_info->shared && ! link_info->symbolic
|
||
&& !h->root.forced_local))
|
||
continue;
|
||
|
||
sym_sec = h->root.root.u.def.section;
|
||
if (sym_sec->output_section)
|
||
symval = (h->root.root.u.def.value
|
||
+ sym_sec->output_section->vma
|
||
+ sym_sec->output_offset);
|
||
else
|
||
symval = h->root.root.u.def.value;
|
||
}
|
||
else
|
||
{
|
||
Elf_Internal_Sym *isym;
|
||
|
||
/* Read this BFD's symbols if we haven't done so already. */
|
||
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto relax_return;
|
||
}
|
||
|
||
isym = isymbuf + r_symndx;
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
continue;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec
|
||
= bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
symval = isym->st_value
|
||
+ sym_sec->output_section->vma
|
||
+ sym_sec->output_offset;
|
||
}
|
||
|
||
/* Compute branch offset, from delay slot of the jump to the
|
||
branch target. */
|
||
sym_offset = (symval + irel->r_addend)
|
||
- (sec_start + irel->r_offset + 4);
|
||
|
||
/* Branch offset must be properly aligned. */
|
||
if ((sym_offset & 3) != 0)
|
||
continue;
|
||
|
||
sym_offset >>= 2;
|
||
|
||
/* Check that it's in range. */
|
||
if (sym_offset < -0x8000 || sym_offset >= 0x8000)
|
||
continue;
|
||
|
||
/* Get the section contents if we haven't done so already. */
|
||
if (!mips_elf_get_section_contents (abfd, sec, &contents))
|
||
goto relax_return;
|
||
|
||
instruction = bfd_get_32 (abfd, contents + irel->r_offset);
|
||
|
||
/* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
|
||
if ((instruction & 0xfc1fffff) == 0x0000f809)
|
||
instruction = 0x04110000;
|
||
/* If it was jr <reg>, turn it into b <target>. */
|
||
else if ((instruction & 0xfc1fffff) == 0x00000008)
|
||
instruction = 0x10000000;
|
||
else
|
||
continue;
|
||
|
||
instruction |= (sym_offset & 0xffff);
|
||
bfd_put_32 (abfd, instruction, contents + irel->r_offset);
|
||
changed_contents = TRUE;
|
||
}
|
||
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
{
|
||
if (!changed_contents && !link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
return TRUE;
|
||
|
||
relax_return:
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
free (contents);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Allocate space for global sym dynamic relocs. */
|
||
|
||
static bfd_boolean
|
||
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
|
||
{
|
||
struct bfd_link_info *info = inf;
|
||
bfd *dynobj;
|
||
struct mips_elf_link_hash_entry *hmips;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
|
||
/* VxWorks executables are handled elsewhere; we only need to
|
||
allocate relocations in shared objects. */
|
||
if (htab->is_vxworks && !info->shared)
|
||
return TRUE;
|
||
|
||
/* Ignore indirect symbols. All relocations against such symbols
|
||
will be redirected to the target symbol. */
|
||
if (h->root.type == bfd_link_hash_indirect)
|
||
return TRUE;
|
||
|
||
/* If this symbol is defined in a dynamic object, or we are creating
|
||
a shared library, we will need to copy any R_MIPS_32 or
|
||
R_MIPS_REL32 relocs against it into the output file. */
|
||
if (! info->relocatable
|
||
&& hmips->possibly_dynamic_relocs != 0
|
||
&& (h->root.type == bfd_link_hash_defweak
|
||
|| !h->def_regular
|
||
|| info->shared))
|
||
{
|
||
bfd_boolean do_copy = TRUE;
|
||
|
||
if (h->root.type == bfd_link_hash_undefweak)
|
||
{
|
||
/* Do not copy relocations for undefined weak symbols with
|
||
non-default visibility. */
|
||
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
||
do_copy = FALSE;
|
||
|
||
/* Make sure undefined weak symbols are output as a dynamic
|
||
symbol in PIEs. */
|
||
else if (h->dynindx == -1 && !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (do_copy)
|
||
{
|
||
/* Even though we don't directly need a GOT entry for this symbol,
|
||
the SVR4 psABI requires it to have a dynamic symbol table
|
||
index greater that DT_MIPS_GOTSYM if there are dynamic
|
||
relocations against it.
|
||
|
||
VxWorks does not enforce the same mapping between the GOT
|
||
and the symbol table, so the same requirement does not
|
||
apply there. */
|
||
if (!htab->is_vxworks)
|
||
{
|
||
if (hmips->global_got_area > GGA_RELOC_ONLY)
|
||
hmips->global_got_area = GGA_RELOC_ONLY;
|
||
hmips->got_only_for_calls = FALSE;
|
||
}
|
||
|
||
mips_elf_allocate_dynamic_relocations
|
||
(dynobj, info, hmips->possibly_dynamic_relocs);
|
||
if (hmips->readonly_reloc)
|
||
/* We tell the dynamic linker that there are relocations
|
||
against the text segment. */
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
bfd *dynobj;
|
||
struct mips_elf_link_hash_entry *hmips;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
|
||
/* Make sure we know what is going on here. */
|
||
BFD_ASSERT (dynobj != NULL
|
||
&& (h->needs_plt
|
||
|| h->u.weakdef != NULL
|
||
|| (h->def_dynamic
|
||
&& h->ref_regular
|
||
&& !h->def_regular)));
|
||
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
|
||
/* If there are call relocations against an externally-defined symbol,
|
||
see whether we can create a MIPS lazy-binding stub for it. We can
|
||
only do this if all references to the function are through call
|
||
relocations, and in that case, the traditional lazy-binding stubs
|
||
are much more efficient than PLT entries.
|
||
|
||
Traditional stubs are only available on SVR4 psABI-based systems;
|
||
VxWorks always uses PLTs instead. */
|
||
if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
|
||
{
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
return TRUE;
|
||
|
||
/* If this symbol is not defined in a regular file, then set
|
||
the symbol to the stub location. This is required to make
|
||
function pointers compare as equal between the normal
|
||
executable and the shared library. */
|
||
if (!h->def_regular)
|
||
{
|
||
hmips->needs_lazy_stub = TRUE;
|
||
htab->lazy_stub_count++;
|
||
return TRUE;
|
||
}
|
||
}
|
||
/* As above, VxWorks requires PLT entries for externally-defined
|
||
functions that are only accessed through call relocations.
|
||
|
||
Both VxWorks and non-VxWorks targets also need PLT entries if there
|
||
are static-only relocations against an externally-defined function.
|
||
This can technically occur for shared libraries if there are
|
||
branches to the symbol, although it is unlikely that this will be
|
||
used in practice due to the short ranges involved. It can occur
|
||
for any relative or absolute relocation in executables; in that
|
||
case, the PLT entry becomes the function's canonical address. */
|
||
else if (((h->needs_plt && !hmips->no_fn_stub)
|
||
|| (h->type == STT_FUNC && hmips->has_static_relocs))
|
||
&& htab->use_plts_and_copy_relocs
|
||
&& !SYMBOL_CALLS_LOCAL (info, h)
|
||
&& !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
{
|
||
/* If this is the first symbol to need a PLT entry, allocate room
|
||
for the header. */
|
||
if (htab->splt->size == 0)
|
||
{
|
||
BFD_ASSERT (htab->sgotplt->size == 0);
|
||
|
||
/* If we're using the PLT additions to the psABI, each PLT
|
||
entry is 16 bytes and the PLT0 entry is 32 bytes.
|
||
Encourage better cache usage by aligning. We do this
|
||
lazily to avoid pessimizing traditional objects. */
|
||
if (!htab->is_vxworks
|
||
&& !bfd_set_section_alignment (dynobj, htab->splt, 5))
|
||
return FALSE;
|
||
|
||
/* Make sure that .got.plt is word-aligned. We do this lazily
|
||
for the same reason as above. */
|
||
if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
|
||
MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
|
||
return FALSE;
|
||
|
||
htab->splt->size += htab->plt_header_size;
|
||
|
||
/* On non-VxWorks targets, the first two entries in .got.plt
|
||
are reserved. */
|
||
if (!htab->is_vxworks)
|
||
htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
|
||
|
||
/* On VxWorks, also allocate room for the header's
|
||
.rela.plt.unloaded entries. */
|
||
if (htab->is_vxworks && !info->shared)
|
||
htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
|
||
}
|
||
|
||
/* Assign the next .plt entry to this symbol. */
|
||
h->plt.offset = htab->splt->size;
|
||
htab->splt->size += htab->plt_entry_size;
|
||
|
||
/* If the output file has no definition of the symbol, set the
|
||
symbol's value to the address of the stub. */
|
||
if (!info->shared && !h->def_regular)
|
||
{
|
||
h->root.u.def.section = htab->splt;
|
||
h->root.u.def.value = h->plt.offset;
|
||
/* For VxWorks, point at the PLT load stub rather than the
|
||
lazy resolution stub; this stub will become the canonical
|
||
function address. */
|
||
if (htab->is_vxworks)
|
||
h->root.u.def.value += 8;
|
||
}
|
||
|
||
/* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
|
||
relocation. */
|
||
htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
|
||
htab->srelplt->size += (htab->is_vxworks
|
||
? MIPS_ELF_RELA_SIZE (dynobj)
|
||
: MIPS_ELF_REL_SIZE (dynobj));
|
||
|
||
/* Make room for the .rela.plt.unloaded relocations. */
|
||
if (htab->is_vxworks && !info->shared)
|
||
htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
|
||
|
||
/* All relocations against this symbol that could have been made
|
||
dynamic will now refer to the PLT entry instead. */
|
||
hmips->possibly_dynamic_relocs = 0;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->u.weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
||
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Otherwise, there is nothing further to do for symbols defined
|
||
in regular objects. */
|
||
if (h->def_regular)
|
||
return TRUE;
|
||
|
||
/* There's also nothing more to do if we'll convert all relocations
|
||
against this symbol into dynamic relocations. */
|
||
if (!hmips->has_static_relocs)
|
||
return TRUE;
|
||
|
||
/* We're now relying on copy relocations. Complain if we have
|
||
some that we can't convert. */
|
||
if (!htab->use_plts_and_copy_relocs || info->shared)
|
||
{
|
||
(*_bfd_error_handler) (_("non-dynamic relocations refer to "
|
||
"dynamic symbol %s"),
|
||
h->root.root.string);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* We must allocate the symbol in our .dynbss section, which will
|
||
become part of the .bss section of the executable. There will be
|
||
an entry for this symbol in the .dynsym section. The dynamic
|
||
object will contain position independent code, so all references
|
||
from the dynamic object to this symbol will go through the global
|
||
offset table. The dynamic linker will use the .dynsym entry to
|
||
determine the address it must put in the global offset table, so
|
||
both the dynamic object and the regular object will refer to the
|
||
same memory location for the variable. */
|
||
|
||
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
if (htab->is_vxworks)
|
||
htab->srelbss->size += sizeof (Elf32_External_Rela);
|
||
else
|
||
mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
|
||
h->needs_copy = 1;
|
||
}
|
||
|
||
/* All relocations against this symbol that could have been made
|
||
dynamic will now refer to the local copy instead. */
|
||
hmips->possibly_dynamic_relocs = 0;
|
||
|
||
return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
|
||
}
|
||
|
||
/* This function is called after all the input files have been read,
|
||
and the input sections have been assigned to output sections. We
|
||
check for any mips16 stub sections that we can discard. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_always_size_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *ri;
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_htab_traverse_info hti;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
/* The .reginfo section has a fixed size. */
|
||
ri = bfd_get_section_by_name (output_bfd, ".reginfo");
|
||
if (ri != NULL)
|
||
bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
|
||
|
||
hti.info = info;
|
||
hti.output_bfd = output_bfd;
|
||
hti.error = FALSE;
|
||
mips_elf_link_hash_traverse (mips_elf_hash_table (info),
|
||
mips_elf_check_symbols, &hti);
|
||
if (hti.error)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* If the link uses a GOT, lay it out and work out its size. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *dynobj;
|
||
asection *s;
|
||
struct mips_got_info *g;
|
||
bfd_size_type loadable_size = 0;
|
||
bfd_size_type page_gotno;
|
||
bfd *sub;
|
||
struct mips_elf_count_tls_arg count_tls_arg;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
s = htab->sgot;
|
||
if (s == NULL)
|
||
return TRUE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
g = htab->got_info;
|
||
|
||
/* Allocate room for the reserved entries. VxWorks always reserves
|
||
3 entries; other objects only reserve 2 entries. */
|
||
BFD_ASSERT (g->assigned_gotno == 0);
|
||
if (htab->is_vxworks)
|
||
htab->reserved_gotno = 3;
|
||
else
|
||
htab->reserved_gotno = 2;
|
||
g->local_gotno += htab->reserved_gotno;
|
||
g->assigned_gotno = htab->reserved_gotno;
|
||
|
||
/* Replace entries for indirect and warning symbols with entries for
|
||
the target symbol. */
|
||
if (!mips_elf_resolve_final_got_entries (g))
|
||
return FALSE;
|
||
|
||
/* Count the number of GOT symbols. */
|
||
mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
|
||
|
||
/* Calculate the total loadable size of the output. That
|
||
will give us the maximum number of GOT_PAGE entries
|
||
required. */
|
||
for (sub = info->input_bfds; sub; sub = sub->link_next)
|
||
{
|
||
asection *subsection;
|
||
|
||
for (subsection = sub->sections;
|
||
subsection;
|
||
subsection = subsection->next)
|
||
{
|
||
if ((subsection->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
loadable_size += ((subsection->size + 0xf)
|
||
&~ (bfd_size_type) 0xf);
|
||
}
|
||
}
|
||
|
||
if (htab->is_vxworks)
|
||
/* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
|
||
relocations against local symbols evaluate to "G", and the EABI does
|
||
not include R_MIPS_GOT_PAGE. */
|
||
page_gotno = 0;
|
||
else
|
||
/* Assume there are two loadable segments consisting of contiguous
|
||
sections. Is 5 enough? */
|
||
page_gotno = (loadable_size >> 16) + 5;
|
||
|
||
/* Choose the smaller of the two estimates; both are intended to be
|
||
conservative. */
|
||
if (page_gotno > g->page_gotno)
|
||
page_gotno = g->page_gotno;
|
||
|
||
g->local_gotno += page_gotno;
|
||
s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
|
||
s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
|
||
|
||
/* We need to calculate tls_gotno for global symbols at this point
|
||
instead of building it up earlier, to avoid doublecounting
|
||
entries for one global symbol from multiple input files. */
|
||
count_tls_arg.info = info;
|
||
count_tls_arg.needed = 0;
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
mips_elf_count_global_tls_entries,
|
||
&count_tls_arg);
|
||
g->tls_gotno += count_tls_arg.needed;
|
||
s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
|
||
|
||
/* VxWorks does not support multiple GOTs. It initializes $gp to
|
||
__GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
|
||
dynamic loader. */
|
||
if (htab->is_vxworks)
|
||
{
|
||
/* VxWorks executables do not need a GOT. */
|
||
if (info->shared)
|
||
{
|
||
/* Each VxWorks GOT entry needs an explicit relocation. */
|
||
unsigned int count;
|
||
|
||
count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
|
||
if (count)
|
||
mips_elf_allocate_dynamic_relocations (dynobj, info, count);
|
||
}
|
||
}
|
||
else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
|
||
{
|
||
if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
struct mips_elf_count_tls_arg arg;
|
||
|
||
/* Set up TLS entries. */
|
||
g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
|
||
htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
|
||
|
||
/* Allocate room for the TLS relocations. */
|
||
arg.info = info;
|
||
arg.needed = 0;
|
||
htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
mips_elf_count_global_tls_relocs,
|
||
&arg);
|
||
if (arg.needed)
|
||
mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Estimate the size of the .MIPS.stubs section. */
|
||
|
||
static void
|
||
mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
bfd_size_type dynsymcount;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
if (htab->lazy_stub_count == 0)
|
||
return;
|
||
|
||
/* IRIX rld assumes that a function stub isn't at the end of the .text
|
||
section, so add a dummy entry to the end. */
|
||
htab->lazy_stub_count++;
|
||
|
||
/* Get a worst-case estimate of the number of dynamic symbols needed.
|
||
At this point, dynsymcount does not account for section symbols
|
||
and count_section_dynsyms may overestimate the number that will
|
||
be needed. */
|
||
dynsymcount = (elf_hash_table (info)->dynsymcount
|
||
+ count_section_dynsyms (output_bfd, info));
|
||
|
||
/* Determine the size of one stub entry. */
|
||
htab->function_stub_size = (dynsymcount > 0x10000
|
||
? MIPS_FUNCTION_STUB_BIG_SIZE
|
||
: MIPS_FUNCTION_STUB_NORMAL_SIZE);
|
||
|
||
htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
|
||
}
|
||
|
||
/* A mips_elf_link_hash_traverse callback for which DATA points to the
|
||
MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
|
||
allocate an entry in the stubs section. */
|
||
|
||
static bfd_boolean
|
||
mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = (struct mips_elf_link_hash_table *) data;
|
||
if (h->needs_lazy_stub)
|
||
{
|
||
h->root.root.u.def.section = htab->sstubs;
|
||
h->root.root.u.def.value = htab->sstubs->size;
|
||
h->root.plt.offset = htab->sstubs->size;
|
||
htab->sstubs->size += htab->function_stub_size;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Allocate offsets in the stubs section to each symbol that needs one.
|
||
Set the final size of the .MIPS.stub section. */
|
||
|
||
static void
|
||
mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
if (htab->lazy_stub_count == 0)
|
||
return;
|
||
|
||
htab->sstubs->size = 0;
|
||
mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
|
||
htab->sstubs->size += htab->function_stub_size;
|
||
BFD_ASSERT (htab->sstubs->size
|
||
== htab->lazy_stub_count * htab->function_stub_size);
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
bfd *dynobj;
|
||
asection *s, *sreldyn;
|
||
bfd_boolean reltext;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
BFD_ASSERT (dynobj != NULL);
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (info->executable)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size
|
||
= strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
|
||
s->contents
|
||
= (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
|
||
}
|
||
|
||
/* Create a symbol for the PLT, if we know that we are using it. */
|
||
if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
BFD_ASSERT (htab->use_plts_and_copy_relocs);
|
||
|
||
h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
|
||
"_PROCEDURE_LINKAGE_TABLE_");
|
||
htab->root.hplt = h;
|
||
if (h == NULL)
|
||
return FALSE;
|
||
h->type = STT_FUNC;
|
||
}
|
||
}
|
||
|
||
/* Allocate space for global sym dynamic relocs. */
|
||
elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
|
||
|
||
mips_elf_estimate_stub_size (output_bfd, info);
|
||
|
||
if (!mips_elf_lay_out_got (output_bfd, info))
|
||
return FALSE;
|
||
|
||
mips_elf_lay_out_lazy_stubs (info);
|
||
|
||
/* The check_relocs and adjust_dynamic_symbol entry points have
|
||
determined the sizes of the various dynamic sections. Allocate
|
||
memory for them. */
|
||
reltext = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
if (CONST_STRNEQ (name, ".rel"))
|
||
{
|
||
if (s->size != 0)
|
||
{
|
||
const char *outname;
|
||
asection *target;
|
||
|
||
/* If this relocation section applies to a read only
|
||
section, then we probably need a DT_TEXTREL entry.
|
||
If the relocation section is .rel(a).dyn, we always
|
||
assert a DT_TEXTREL entry rather than testing whether
|
||
there exists a relocation to a read only section or
|
||
not. */
|
||
outname = bfd_get_section_name (output_bfd,
|
||
s->output_section);
|
||
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
||
if ((target != NULL
|
||
&& (target->flags & SEC_READONLY) != 0
|
||
&& (target->flags & SEC_ALLOC) != 0)
|
||
|| strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
|
||
reltext = TRUE;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
|
||
s->reloc_count = 0;
|
||
|
||
/* If combreloc is enabled, elf_link_sort_relocs() will
|
||
sort relocations, but in a different way than we do,
|
||
and before we're done creating relocations. Also, it
|
||
will move them around between input sections'
|
||
relocation's contents, so our sorting would be
|
||
broken, so don't let it run. */
|
||
info->combreloc = 0;
|
||
}
|
||
}
|
||
else if (! info->shared
|
||
&& ! mips_elf_hash_table (info)->use_rld_obj_head
|
||
&& CONST_STRNEQ (name, ".rld_map"))
|
||
{
|
||
/* We add a room for __rld_map. It will be filled in by the
|
||
rtld to contain a pointer to the _r_debug structure. */
|
||
s->size += 4;
|
||
}
|
||
else if (SGI_COMPAT (output_bfd)
|
||
&& CONST_STRNEQ (name, ".compact_rel"))
|
||
s->size += mips_elf_hash_table (info)->compact_rel_size;
|
||
else if (s == htab->splt)
|
||
{
|
||
/* If the last PLT entry has a branch delay slot, allocate
|
||
room for an extra nop to fill the delay slot. This is
|
||
for CPUs without load interlocking. */
|
||
if (! LOAD_INTERLOCKS_P (output_bfd)
|
||
&& ! htab->is_vxworks && s->size > 0)
|
||
s->size += 4;
|
||
}
|
||
else if (! CONST_STRNEQ (name, ".init")
|
||
&& s != htab->sgot
|
||
&& s != htab->sgotplt
|
||
&& s != htab->sstubs
|
||
&& s != htab->sdynbss)
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (s->size == 0)
|
||
{
|
||
s->flags |= SEC_EXCLUDE;
|
||
continue;
|
||
}
|
||
|
||
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
||
continue;
|
||
|
||
/* Allocate memory for the section contents. */
|
||
s->contents = bfd_zalloc (dynobj, s->size);
|
||
if (s->contents == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in _bfd_mips_elf_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. */
|
||
|
||
/* SGI object has the equivalence of DT_DEBUG in the
|
||
DT_MIPS_RLD_MAP entry. This must come first because glibc
|
||
only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
|
||
looks at the first one it sees. */
|
||
if (!info->shared
|
||
&& !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
|
||
return FALSE;
|
||
|
||
/* The DT_DEBUG entry may be filled in by the dynamic linker and
|
||
used by the debugger. */
|
||
if (info->executable
|
||
&& !SGI_COMPAT (output_bfd)
|
||
&& !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
|
||
return FALSE;
|
||
|
||
if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
if ((info->flags & DF_TEXTREL) != 0)
|
||
{
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
|
||
return FALSE;
|
||
|
||
/* Clear the DF_TEXTREL flag. It will be set again if we
|
||
write out an actual text relocation; we may not, because
|
||
at this point we do not know whether e.g. any .eh_frame
|
||
absolute relocations have been converted to PC-relative. */
|
||
info->flags &= ~DF_TEXTREL;
|
||
}
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
|
||
return FALSE;
|
||
|
||
sreldyn = mips_elf_rel_dyn_section (info, FALSE);
|
||
if (htab->is_vxworks)
|
||
{
|
||
/* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
|
||
use any of the DT_MIPS_* tags. */
|
||
if (sreldyn && sreldyn->size > 0)
|
||
{
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (sreldyn && sreldyn->size > 0)
|
||
{
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
|
||
return FALSE;
|
||
|
||
if (IRIX_COMPAT (dynobj) == ict_irix5
|
||
&& ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
|
||
return FALSE;
|
||
|
||
if (IRIX_COMPAT (dynobj) == ict_irix6
|
||
&& (bfd_get_section_by_name
|
||
(dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
|
||
&& !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
|
||
return FALSE;
|
||
}
|
||
if (htab->splt->size > 0)
|
||
{
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
|
||
return FALSE;
|
||
|
||
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
|
||
return FALSE;
|
||
}
|
||
if (htab->is_vxworks
|
||
&& !elf_vxworks_add_dynamic_entries (output_bfd, info))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
|
||
Adjust its R_ADDEND field so that it is correct for the output file.
|
||
LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
|
||
and sections respectively; both use symbol indexes. */
|
||
|
||
static void
|
||
mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
|
||
bfd *input_bfd, Elf_Internal_Sym *local_syms,
|
||
asection **local_sections, Elf_Internal_Rela *rel)
|
||
{
|
||
unsigned int r_type, r_symndx;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
|
||
if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
|
||
{
|
||
r_type = ELF_R_TYPE (output_bfd, rel->r_info);
|
||
if (gprel16_reloc_p (r_type)
|
||
|| r_type == R_MIPS_GPREL32
|
||
|| literal_reloc_p (r_type))
|
||
{
|
||
rel->r_addend += _bfd_get_gp_value (input_bfd);
|
||
rel->r_addend -= _bfd_get_gp_value (output_bfd);
|
||
}
|
||
|
||
r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
|
||
sym = local_syms + r_symndx;
|
||
|
||
/* Adjust REL's addend to account for section merging. */
|
||
if (!info->relocatable)
|
||
{
|
||
sec = local_sections[r_symndx];
|
||
_bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
}
|
||
|
||
/* This would normally be done by the rela_normal code in elflink.c. */
|
||
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
rel->r_addend += local_sections[r_symndx]->output_offset;
|
||
}
|
||
}
|
||
|
||
/* Relocate a MIPS ELF section. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
|
||
bfd *input_bfd, asection *input_section,
|
||
bfd_byte *contents, Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *relend;
|
||
bfd_vma addend = 0;
|
||
bfd_boolean use_saved_addend_p = FALSE;
|
||
const struct elf_backend_data *bed;
|
||
|
||
bed = get_elf_backend_data (output_bfd);
|
||
relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
|
||
for (rel = relocs; rel < relend; ++rel)
|
||
{
|
||
const char *name;
|
||
bfd_vma value = 0;
|
||
reloc_howto_type *howto;
|
||
bfd_boolean cross_mode_jump_p;
|
||
/* TRUE if the relocation is a RELA relocation, rather than a
|
||
REL relocation. */
|
||
bfd_boolean rela_relocation_p = TRUE;
|
||
unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
|
||
const char *msg;
|
||
unsigned long r_symndx;
|
||
asection *sec;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_boolean rel_reloc;
|
||
|
||
rel_reloc = (NEWABI_P (input_bfd)
|
||
&& mips_elf_rel_relocation_p (input_bfd, input_section,
|
||
relocs, rel));
|
||
/* Find the relocation howto for this relocation. */
|
||
howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
|
||
|
||
r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
|
||
{
|
||
sec = local_sections[r_symndx];
|
||
h = NULL;
|
||
}
|
||
else
|
||
{
|
||
unsigned long extsymoff;
|
||
|
||
extsymoff = 0;
|
||
if (!elf_bad_symtab (input_bfd))
|
||
extsymoff = symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
sec = NULL;
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
sec = h->root.u.def.section;
|
||
}
|
||
|
||
if (sec != NULL && elf_discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, relend, howto, contents);
|
||
|
||
if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
|
||
{
|
||
/* Some 32-bit code uses R_MIPS_64. In particular, people use
|
||
64-bit code, but make sure all their addresses are in the
|
||
lowermost or uppermost 32-bit section of the 64-bit address
|
||
space. Thus, when they use an R_MIPS_64 they mean what is
|
||
usually meant by R_MIPS_32, with the exception that the
|
||
stored value is sign-extended to 64 bits. */
|
||
howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
|
||
|
||
/* On big-endian systems, we need to lie about the position
|
||
of the reloc. */
|
||
if (bfd_big_endian (input_bfd))
|
||
rel->r_offset += 4;
|
||
}
|
||
|
||
if (!use_saved_addend_p)
|
||
{
|
||
/* If these relocations were originally of the REL variety,
|
||
we must pull the addend out of the field that will be
|
||
relocated. Otherwise, we simply use the contents of the
|
||
RELA relocation. */
|
||
if (mips_elf_rel_relocation_p (input_bfd, input_section,
|
||
relocs, rel))
|
||
{
|
||
rela_relocation_p = FALSE;
|
||
addend = mips_elf_read_rel_addend (input_bfd, rel,
|
||
howto, contents);
|
||
if (hi16_reloc_p (r_type)
|
||
|| (got16_reloc_p (r_type)
|
||
&& mips_elf_local_relocation_p (input_bfd, rel,
|
||
local_sections)))
|
||
{
|
||
if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
|
||
contents, &addend))
|
||
{
|
||
if (h)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (input_bfd, symtab_hdr,
|
||
local_syms + r_symndx,
|
||
sec);
|
||
(*_bfd_error_handler)
|
||
(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
|
||
input_bfd, input_section, name, howto->name,
|
||
rel->r_offset);
|
||
}
|
||
}
|
||
else
|
||
addend <<= howto->rightshift;
|
||
}
|
||
else
|
||
addend = rel->r_addend;
|
||
mips_elf_adjust_addend (output_bfd, info, input_bfd,
|
||
local_syms, local_sections, rel);
|
||
}
|
||
|
||
if (info->relocatable)
|
||
{
|
||
if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
|
||
&& bfd_big_endian (input_bfd))
|
||
rel->r_offset -= 4;
|
||
|
||
if (!rela_relocation_p && rel->r_addend)
|
||
{
|
||
addend += rel->r_addend;
|
||
if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
|
||
addend = mips_elf_high (addend);
|
||
else if (r_type == R_MIPS_HIGHER)
|
||
addend = mips_elf_higher (addend);
|
||
else if (r_type == R_MIPS_HIGHEST)
|
||
addend = mips_elf_highest (addend);
|
||
else
|
||
addend >>= howto->rightshift;
|
||
|
||
/* We use the source mask, rather than the destination
|
||
mask because the place to which we are writing will be
|
||
source of the addend in the final link. */
|
||
addend &= howto->src_mask;
|
||
|
||
if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
|
||
/* See the comment above about using R_MIPS_64 in the 32-bit
|
||
ABI. Here, we need to update the addend. It would be
|
||
possible to get away with just using the R_MIPS_32 reloc
|
||
but for endianness. */
|
||
{
|
||
bfd_vma sign_bits;
|
||
bfd_vma low_bits;
|
||
bfd_vma high_bits;
|
||
|
||
if (addend & ((bfd_vma) 1 << 31))
|
||
#ifdef BFD64
|
||
sign_bits = ((bfd_vma) 1 << 32) - 1;
|
||
#else
|
||
sign_bits = -1;
|
||
#endif
|
||
else
|
||
sign_bits = 0;
|
||
|
||
/* If we don't know that we have a 64-bit type,
|
||
do two separate stores. */
|
||
if (bfd_big_endian (input_bfd))
|
||
{
|
||
/* Store the sign-bits (which are most significant)
|
||
first. */
|
||
low_bits = sign_bits;
|
||
high_bits = addend;
|
||
}
|
||
else
|
||
{
|
||
low_bits = addend;
|
||
high_bits = sign_bits;
|
||
}
|
||
bfd_put_32 (input_bfd, low_bits,
|
||
contents + rel->r_offset);
|
||
bfd_put_32 (input_bfd, high_bits,
|
||
contents + rel->r_offset + 4);
|
||
continue;
|
||
}
|
||
|
||
if (! mips_elf_perform_relocation (info, howto, rel, addend,
|
||
input_bfd, input_section,
|
||
contents, FALSE))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Go on to the next relocation. */
|
||
continue;
|
||
}
|
||
|
||
/* In the N32 and 64-bit ABIs there may be multiple consecutive
|
||
relocations for the same offset. In that case we are
|
||
supposed to treat the output of each relocation as the addend
|
||
for the next. */
|
||
if (rel + 1 < relend
|
||
&& rel->r_offset == rel[1].r_offset
|
||
&& ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
|
||
use_saved_addend_p = TRUE;
|
||
else
|
||
use_saved_addend_p = FALSE;
|
||
|
||
/* Figure out what value we are supposed to relocate. */
|
||
switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
|
||
input_section, info, rel,
|
||
addend, howto, local_syms,
|
||
local_sections, &value,
|
||
&name, &cross_mode_jump_p,
|
||
use_saved_addend_p))
|
||
{
|
||
case bfd_reloc_continue:
|
||
/* There's nothing to do. */
|
||
continue;
|
||
|
||
case bfd_reloc_undefined:
|
||
/* mips_elf_calculate_relocation already called the
|
||
undefined_symbol callback. There's no real point in
|
||
trying to perform the relocation at this point, so we
|
||
just skip ahead to the next relocation. */
|
||
continue;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("internal error: unsupported relocation error");
|
||
info->callbacks->warning
|
||
(info, msg, name, input_bfd, input_section, rel->r_offset);
|
||
return FALSE;
|
||
|
||
case bfd_reloc_overflow:
|
||
if (use_saved_addend_p)
|
||
/* Ignore overflow until we reach the last relocation for
|
||
a given location. */
|
||
;
|
||
else
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
BFD_ASSERT (name != NULL);
|
||
if (!htab->small_data_overflow_reported
|
||
&& (gprel16_reloc_p (howto->type)
|
||
|| literal_reloc_p (howto->type)))
|
||
{
|
||
msg = _("small-data section exceeds 64KB;"
|
||
" lower small-data size limit (see option -G)");
|
||
|
||
htab->small_data_overflow_reported = TRUE;
|
||
(*info->callbacks->einfo) ("%P: %s\n", msg);
|
||
}
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, NULL, name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case bfd_reloc_ok:
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
if (jal_reloc_p (howto->type))
|
||
{
|
||
msg = _("JALX to a non-word-aligned address");
|
||
info->callbacks->warning
|
||
(info, msg, name, input_bfd, input_section, rel->r_offset);
|
||
return FALSE;
|
||
}
|
||
/* Fall through. */
|
||
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
/* If we've got another relocation for the address, keep going
|
||
until we reach the last one. */
|
||
if (use_saved_addend_p)
|
||
{
|
||
addend = value;
|
||
continue;
|
||
}
|
||
|
||
if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
|
||
/* See the comment above about using R_MIPS_64 in the 32-bit
|
||
ABI. Until now, we've been using the HOWTO for R_MIPS_32;
|
||
that calculated the right value. Now, however, we
|
||
sign-extend the 32-bit result to 64-bits, and store it as a
|
||
64-bit value. We are especially generous here in that we
|
||
go to extreme lengths to support this usage on systems with
|
||
only a 32-bit VMA. */
|
||
{
|
||
bfd_vma sign_bits;
|
||
bfd_vma low_bits;
|
||
bfd_vma high_bits;
|
||
|
||
if (value & ((bfd_vma) 1 << 31))
|
||
#ifdef BFD64
|
||
sign_bits = ((bfd_vma) 1 << 32) - 1;
|
||
#else
|
||
sign_bits = -1;
|
||
#endif
|
||
else
|
||
sign_bits = 0;
|
||
|
||
/* If we don't know that we have a 64-bit type,
|
||
do two separate stores. */
|
||
if (bfd_big_endian (input_bfd))
|
||
{
|
||
/* Undo what we did above. */
|
||
rel->r_offset -= 4;
|
||
/* Store the sign-bits (which are most significant)
|
||
first. */
|
||
low_bits = sign_bits;
|
||
high_bits = value;
|
||
}
|
||
else
|
||
{
|
||
low_bits = value;
|
||
high_bits = sign_bits;
|
||
}
|
||
bfd_put_32 (input_bfd, low_bits,
|
||
contents + rel->r_offset);
|
||
bfd_put_32 (input_bfd, high_bits,
|
||
contents + rel->r_offset + 4);
|
||
continue;
|
||
}
|
||
|
||
/* Actually perform the relocation. */
|
||
if (! mips_elf_perform_relocation (info, howto, rel, value,
|
||
input_bfd, input_section,
|
||
contents, cross_mode_jump_p))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* A function that iterates over each entry in la25_stubs and fills
|
||
in the code for each one. DATA points to a mips_htab_traverse_info. */
|
||
|
||
static int
|
||
mips_elf_create_la25_stub (void **slot, void *data)
|
||
{
|
||
struct mips_htab_traverse_info *hti;
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_la25_stub *stub;
|
||
asection *s;
|
||
bfd_byte *loc;
|
||
bfd_vma offset, target, target_high, target_low;
|
||
|
||
stub = (struct mips_elf_la25_stub *) *slot;
|
||
hti = (struct mips_htab_traverse_info *) data;
|
||
htab = mips_elf_hash_table (hti->info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
/* Create the section contents, if we haven't already. */
|
||
s = stub->stub_section;
|
||
loc = s->contents;
|
||
if (loc == NULL)
|
||
{
|
||
loc = bfd_malloc (s->size);
|
||
if (loc == NULL)
|
||
{
|
||
hti->error = TRUE;
|
||
return FALSE;
|
||
}
|
||
s->contents = loc;
|
||
}
|
||
|
||
/* Work out where in the section this stub should go. */
|
||
offset = stub->offset;
|
||
|
||
/* Work out the target address. */
|
||
target = (stub->h->root.root.u.def.section->output_section->vma
|
||
+ stub->h->root.root.u.def.section->output_offset
|
||
+ stub->h->root.root.u.def.value);
|
||
target_high = ((target + 0x8000) >> 16) & 0xffff;
|
||
target_low = (target & 0xffff);
|
||
|
||
if (stub->stub_section != htab->strampoline)
|
||
{
|
||
/* This is a simple LUI/ADDIU stub. Zero out the beginning
|
||
of the section and write the two instructions at the end. */
|
||
memset (loc, 0, offset);
|
||
loc += offset;
|
||
if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
|
||
{
|
||
bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
|
||
loc);
|
||
bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
|
||
loc + 2);
|
||
bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
|
||
loc + 4);
|
||
bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
|
||
loc + 6);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
|
||
bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is trampoline. */
|
||
loc += offset;
|
||
if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
|
||
{
|
||
bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
|
||
loc);
|
||
bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
|
||
loc + 2);
|
||
bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
|
||
bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
|
||
bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
|
||
loc + 8);
|
||
bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
|
||
loc + 10);
|
||
bfd_put_32 (hti->output_bfd, 0, loc + 12);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
|
||
bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
|
||
bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
|
||
bfd_put_32 (hti->output_bfd, 0, loc + 12);
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* If NAME is one of the special IRIX6 symbols defined by the linker,
|
||
adjust it appropriately now. */
|
||
|
||
static void
|
||
mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *name, Elf_Internal_Sym *sym)
|
||
{
|
||
/* The linker script takes care of providing names and values for
|
||
these, but we must place them into the right sections. */
|
||
static const char* const text_section_symbols[] = {
|
||
"_ftext",
|
||
"_etext",
|
||
"__dso_displacement",
|
||
"__elf_header",
|
||
"__program_header_table",
|
||
NULL
|
||
};
|
||
|
||
static const char* const data_section_symbols[] = {
|
||
"_fdata",
|
||
"_edata",
|
||
"_end",
|
||
"_fbss",
|
||
NULL
|
||
};
|
||
|
||
const char* const *p;
|
||
int i;
|
||
|
||
for (i = 0; i < 2; ++i)
|
||
for (p = (i == 0) ? text_section_symbols : data_section_symbols;
|
||
*p;
|
||
++p)
|
||
if (strcmp (*p, name) == 0)
|
||
{
|
||
/* All of these symbols are given type STT_SECTION by the
|
||
IRIX6 linker. */
|
||
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
||
sym->st_other = STO_PROTECTED;
|
||
|
||
/* The IRIX linker puts these symbols in special sections. */
|
||
if (i == 0)
|
||
sym->st_shndx = SHN_MIPS_TEXT;
|
||
else
|
||
sym->st_shndx = SHN_MIPS_DATA;
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
bfd *dynobj;
|
||
asection *sgot;
|
||
struct mips_got_info *g, *gg;
|
||
const char *name;
|
||
int idx;
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_link_hash_entry *hmips;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
|
||
BFD_ASSERT (!htab->is_vxworks);
|
||
|
||
if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
|
||
{
|
||
/* We've decided to create a PLT entry for this symbol. */
|
||
bfd_byte *loc;
|
||
bfd_vma header_address, plt_index, got_address;
|
||
bfd_vma got_address_high, got_address_low, load;
|
||
const bfd_vma *plt_entry;
|
||
|
||
BFD_ASSERT (htab->use_plts_and_copy_relocs);
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
BFD_ASSERT (htab->splt != NULL);
|
||
BFD_ASSERT (h->plt.offset <= htab->splt->size);
|
||
BFD_ASSERT (!h->def_regular);
|
||
|
||
/* Calculate the address of the PLT header. */
|
||
header_address = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset);
|
||
|
||
/* Calculate the index of the entry. */
|
||
plt_index = ((h->plt.offset - htab->plt_header_size)
|
||
/ htab->plt_entry_size);
|
||
|
||
/* Calculate the address of the .got.plt entry. */
|
||
got_address = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
|
||
got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
|
||
got_address_low = got_address & 0xffff;
|
||
|
||
/* Initially point the .got.plt entry at the PLT header. */
|
||
loc = (htab->sgotplt->contents
|
||
+ (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
|
||
if (ABI_64_P (output_bfd))
|
||
bfd_put_64 (output_bfd, header_address, loc);
|
||
else
|
||
bfd_put_32 (output_bfd, header_address, loc);
|
||
|
||
/* Find out where the .plt entry should go. */
|
||
loc = htab->splt->contents + h->plt.offset;
|
||
|
||
/* Pick the load opcode. */
|
||
load = MIPS_ELF_LOAD_WORD (output_bfd);
|
||
|
||
/* Fill in the PLT entry itself. */
|
||
plt_entry = mips_exec_plt_entry;
|
||
bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
|
||
bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
|
||
|
||
if (! LOAD_INTERLOCKS_P (output_bfd))
|
||
{
|
||
bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
|
||
bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
|
||
bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
|
||
}
|
||
|
||
/* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
|
||
mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
|
||
plt_index, h->dynindx,
|
||
R_MIPS_JUMP_SLOT, got_address);
|
||
|
||
/* We distinguish between PLT entries and lazy-binding stubs by
|
||
giving the former an st_other value of STO_MIPS_PLT. Set the
|
||
flag and leave the value if there are any relocations in the
|
||
binary where pointer equality matters. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
if (h->pointer_equality_needed)
|
||
sym->st_other = STO_MIPS_PLT;
|
||
else
|
||
sym->st_value = 0;
|
||
}
|
||
else if (h->plt.offset != MINUS_ONE)
|
||
{
|
||
/* We've decided to create a lazy-binding stub. */
|
||
bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
|
||
|
||
/* This symbol has a stub. Set it up. */
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
|
||
BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
|
||
|| (h->dynindx <= 0xffff));
|
||
|
||
/* Values up to 2^31 - 1 are allowed. Larger values would cause
|
||
sign extension at runtime in the stub, resulting in a negative
|
||
index value. */
|
||
if (h->dynindx & ~0x7fffffff)
|
||
return FALSE;
|
||
|
||
/* Fill the stub. */
|
||
idx = 0;
|
||
bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
|
||
idx += 4;
|
||
bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
|
||
idx += 4;
|
||
if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
|
||
{
|
||
bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
|
||
stub + idx);
|
||
idx += 4;
|
||
}
|
||
bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
|
||
idx += 4;
|
||
|
||
/* If a large stub is not required and sign extension is not a
|
||
problem, then use legacy code in the stub. */
|
||
if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
|
||
bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
|
||
else if (h->dynindx & ~0x7fff)
|
||
bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
|
||
else
|
||
bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
|
||
stub + idx);
|
||
|
||
BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
|
||
memcpy (htab->sstubs->contents + h->plt.offset,
|
||
stub, htab->function_stub_size);
|
||
|
||
/* Mark the symbol as undefined. plt.offset != -1 occurs
|
||
only for the referenced symbol. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
|
||
/* The run-time linker uses the st_value field of the symbol
|
||
to reset the global offset table entry for this external
|
||
to its stub address when unlinking a shared object. */
|
||
sym->st_value = (htab->sstubs->output_section->vma
|
||
+ htab->sstubs->output_offset
|
||
+ h->plt.offset);
|
||
}
|
||
|
||
/* If we have a MIPS16 function with a stub, the dynamic symbol must
|
||
refer to the stub, since only the stub uses the standard calling
|
||
conventions. */
|
||
if (h->dynindx != -1 && hmips->fn_stub != NULL)
|
||
{
|
||
BFD_ASSERT (hmips->need_fn_stub);
|
||
sym->st_value = (hmips->fn_stub->output_section->vma
|
||
+ hmips->fn_stub->output_offset);
|
||
sym->st_size = hmips->fn_stub->size;
|
||
sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
|
||
}
|
||
|
||
BFD_ASSERT (h->dynindx != -1
|
||
|| h->forced_local);
|
||
|
||
sgot = htab->sgot;
|
||
g = htab->got_info;
|
||
BFD_ASSERT (g != NULL);
|
||
|
||
/* Run through the global symbol table, creating GOT entries for all
|
||
the symbols that need them. */
|
||
if (hmips->global_got_area != GGA_NONE)
|
||
{
|
||
bfd_vma offset;
|
||
bfd_vma value;
|
||
|
||
value = sym->st_value;
|
||
offset = mips_elf_global_got_index (dynobj, output_bfd, h,
|
||
R_MIPS_GOT16, info);
|
||
MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
|
||
}
|
||
|
||
if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
|
||
{
|
||
struct mips_got_entry e, *p;
|
||
bfd_vma entry;
|
||
bfd_vma offset;
|
||
|
||
gg = g;
|
||
|
||
e.abfd = output_bfd;
|
||
e.symndx = -1;
|
||
e.d.h = hmips;
|
||
e.tls_type = 0;
|
||
|
||
for (g = g->next; g->next != gg; g = g->next)
|
||
{
|
||
if (g->got_entries
|
||
&& (p = (struct mips_got_entry *) htab_find (g->got_entries,
|
||
&e)))
|
||
{
|
||
offset = p->gotidx;
|
||
if (info->shared
|
||
|| (elf_hash_table (info)->dynamic_sections_created
|
||
&& p->d.h != NULL
|
||
&& p->d.h->root.def_dynamic
|
||
&& !p->d.h->root.def_regular))
|
||
{
|
||
/* Create an R_MIPS_REL32 relocation for this entry. Due to
|
||
the various compatibility problems, it's easier to mock
|
||
up an R_MIPS_32 or R_MIPS_64 relocation and leave
|
||
mips_elf_create_dynamic_relocation to calculate the
|
||
appropriate addend. */
|
||
Elf_Internal_Rela rel[3];
|
||
|
||
memset (rel, 0, sizeof (rel));
|
||
if (ABI_64_P (output_bfd))
|
||
rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
|
||
else
|
||
rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
|
||
rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
|
||
|
||
entry = 0;
|
||
if (! (mips_elf_create_dynamic_relocation
|
||
(output_bfd, info, rel,
|
||
e.d.h, NULL, sym->st_value, &entry, sgot)))
|
||
return FALSE;
|
||
}
|
||
else
|
||
entry = sym->st_value;
|
||
MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
||
name = h->root.root.string;
|
||
if (strcmp (name, "_DYNAMIC") == 0
|
||
|| h == elf_hash_table (info)->hgot)
|
||
sym->st_shndx = SHN_ABS;
|
||
else if (strcmp (name, "_DYNAMIC_LINK") == 0
|
||
|| strcmp (name, "_DYNAMIC_LINKING") == 0)
|
||
{
|
||
sym->st_shndx = SHN_ABS;
|
||
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
||
sym->st_value = 1;
|
||
}
|
||
else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
|
||
{
|
||
sym->st_shndx = SHN_ABS;
|
||
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
||
sym->st_value = elf_gp (output_bfd);
|
||
}
|
||
else if (SGI_COMPAT (output_bfd))
|
||
{
|
||
if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
|
||
|| strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
|
||
{
|
||
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
||
sym->st_other = STO_PROTECTED;
|
||
sym->st_value = 0;
|
||
sym->st_shndx = SHN_MIPS_DATA;
|
||
}
|
||
else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
|
||
{
|
||
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
||
sym->st_other = STO_PROTECTED;
|
||
sym->st_value = mips_elf_hash_table (info)->procedure_count;
|
||
sym->st_shndx = SHN_ABS;
|
||
}
|
||
else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
|
||
{
|
||
if (h->type == STT_FUNC)
|
||
sym->st_shndx = SHN_MIPS_TEXT;
|
||
else if (h->type == STT_OBJECT)
|
||
sym->st_shndx = SHN_MIPS_DATA;
|
||
}
|
||
}
|
||
|
||
/* Emit a copy reloc, if needed. */
|
||
if (h->needs_copy)
|
||
{
|
||
asection *s;
|
||
bfd_vma symval;
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
BFD_ASSERT (htab->use_plts_and_copy_relocs);
|
||
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
symval = (h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset
|
||
+ h->root.u.def.value);
|
||
mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
|
||
h->dynindx, R_MIPS_COPY, symval);
|
||
}
|
||
|
||
/* Handle the IRIX6-specific symbols. */
|
||
if (IRIX_COMPAT (output_bfd) == ict_irix6)
|
||
mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
|
||
|
||
if (! info->shared)
|
||
{
|
||
if (! mips_elf_hash_table (info)->use_rld_obj_head
|
||
&& (strcmp (name, "__rld_map") == 0
|
||
|| strcmp (name, "__RLD_MAP") == 0))
|
||
{
|
||
asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
|
||
BFD_ASSERT (s != NULL);
|
||
sym->st_value = s->output_section->vma + s->output_offset;
|
||
bfd_put_32 (output_bfd, 0, s->contents);
|
||
if (mips_elf_hash_table (info)->rld_value == 0)
|
||
mips_elf_hash_table (info)->rld_value = sym->st_value;
|
||
}
|
||
else if (mips_elf_hash_table (info)->use_rld_obj_head
|
||
&& strcmp (name, "__rld_obj_head") == 0)
|
||
{
|
||
/* IRIX6 does not use a .rld_map section. */
|
||
if (IRIX_COMPAT (output_bfd) == ict_irix5
|
||
|| IRIX_COMPAT (output_bfd) == ict_none)
|
||
BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
|
||
!= NULL);
|
||
mips_elf_hash_table (info)->rld_value = sym->st_value;
|
||
}
|
||
}
|
||
|
||
/* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
|
||
treat MIPS16 symbols like any other. */
|
||
if (ELF_ST_IS_MIPS16 (sym->st_other))
|
||
{
|
||
BFD_ASSERT (sym->st_value & 1);
|
||
sym->st_other -= STO_MIPS16;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Likewise, for VxWorks. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
bfd *dynobj;
|
||
asection *sgot;
|
||
struct mips_got_info *g;
|
||
struct mips_elf_link_hash_table *htab;
|
||
struct mips_elf_link_hash_entry *hmips;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
hmips = (struct mips_elf_link_hash_entry *) h;
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
bfd_byte *loc;
|
||
bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
|
||
Elf_Internal_Rela rel;
|
||
static const bfd_vma *plt_entry;
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
BFD_ASSERT (htab->splt != NULL);
|
||
BFD_ASSERT (h->plt.offset <= htab->splt->size);
|
||
|
||
/* Calculate the address of the .plt entry. */
|
||
plt_address = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ h->plt.offset);
|
||
|
||
/* Calculate the index of the entry. */
|
||
plt_index = ((h->plt.offset - htab->plt_header_size)
|
||
/ htab->plt_entry_size);
|
||
|
||
/* Calculate the address of the .got.plt entry. */
|
||
got_address = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ plt_index * 4);
|
||
|
||
/* Calculate the offset of the .got.plt entry from
|
||
_GLOBAL_OFFSET_TABLE_. */
|
||
got_offset = mips_elf_gotplt_index (info, h);
|
||
|
||
/* Calculate the offset for the branch at the start of the PLT
|
||
entry. The branch jumps to the beginning of .plt. */
|
||
branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
|
||
|
||
/* Fill in the initial value of the .got.plt entry. */
|
||
bfd_put_32 (output_bfd, plt_address,
|
||
htab->sgotplt->contents + plt_index * 4);
|
||
|
||
/* Find out where the .plt entry should go. */
|
||
loc = htab->splt->contents + h->plt.offset;
|
||
|
||
if (info->shared)
|
||
{
|
||
plt_entry = mips_vxworks_shared_plt_entry;
|
||
bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
|
||
bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
|
||
}
|
||
else
|
||
{
|
||
bfd_vma got_address_high, got_address_low;
|
||
|
||
plt_entry = mips_vxworks_exec_plt_entry;
|
||
got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
|
||
got_address_low = got_address & 0xffff;
|
||
|
||
bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
|
||
bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
|
||
bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
|
||
bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
|
||
bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
|
||
bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
|
||
bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
|
||
bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
|
||
|
||
loc = (htab->srelplt2->contents
|
||
+ (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
|
||
|
||
/* Emit a relocation for the .got.plt entry. */
|
||
rel.r_offset = got_address;
|
||
rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
|
||
rel.r_addend = h->plt.offset;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
|
||
/* Emit a relocation for the lui of %hi(<.got.plt slot>). */
|
||
loc += sizeof (Elf32_External_Rela);
|
||
rel.r_offset = plt_address + 8;
|
||
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
|
||
rel.r_addend = got_offset;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
|
||
/* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
|
||
loc += sizeof (Elf32_External_Rela);
|
||
rel.r_offset += 4;
|
||
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
}
|
||
|
||
/* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
|
||
loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
|
||
rel.r_offset = got_address;
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
|
||
rel.r_addend = 0;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
|
||
if (!h->def_regular)
|
||
sym->st_shndx = SHN_UNDEF;
|
||
}
|
||
|
||
BFD_ASSERT (h->dynindx != -1 || h->forced_local);
|
||
|
||
sgot = htab->sgot;
|
||
g = htab->got_info;
|
||
BFD_ASSERT (g != NULL);
|
||
|
||
/* See if this symbol has an entry in the GOT. */
|
||
if (hmips->global_got_area != GGA_NONE)
|
||
{
|
||
bfd_vma offset;
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
asection *s;
|
||
|
||
/* Install the symbol value in the GOT. */
|
||
offset = mips_elf_global_got_index (dynobj, output_bfd, h,
|
||
R_MIPS_GOT16, info);
|
||
MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
|
||
|
||
/* Add a dynamic relocation for it. */
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
|
||
outrel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ offset);
|
||
outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
|
||
outrel.r_addend = 0;
|
||
bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
|
||
}
|
||
|
||
/* Emit a copy reloc, if needed. */
|
||
if (h->needs_copy)
|
||
{
|
||
Elf_Internal_Rela rel;
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
|
||
rel.r_offset = (h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset
|
||
+ h->root.u.def.value);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
|
||
rel.r_addend = 0;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel,
|
||
htab->srelbss->contents
|
||
+ (htab->srelbss->reloc_count
|
||
* sizeof (Elf32_External_Rela)));
|
||
++htab->srelbss->reloc_count;
|
||
}
|
||
|
||
/* If this is a mips16/microMIPS symbol, force the value to be even. */
|
||
if (ELF_ST_IS_COMPRESSED (sym->st_other))
|
||
sym->st_value &= ~1;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Write out a plt0 entry to the beginning of .plt. */
|
||
|
||
static void
|
||
mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
bfd_byte *loc;
|
||
bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
|
||
static const bfd_vma *plt_entry;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
if (ABI_64_P (output_bfd))
|
||
plt_entry = mips_n64_exec_plt0_entry;
|
||
else if (ABI_N32_P (output_bfd))
|
||
plt_entry = mips_n32_exec_plt0_entry;
|
||
else
|
||
plt_entry = mips_o32_exec_plt0_entry;
|
||
|
||
/* Calculate the value of .got.plt. */
|
||
gotplt_value = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset);
|
||
gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
|
||
gotplt_value_low = gotplt_value & 0xffff;
|
||
|
||
/* The PLT sequence is not safe for N64 if .got.plt's address can
|
||
not be loaded in two instructions. */
|
||
BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
|
||
|| ~(gotplt_value | 0x7fffffff) == 0);
|
||
|
||
/* Install the PLT header. */
|
||
loc = htab->splt->contents;
|
||
bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
|
||
bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
|
||
bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
|
||
bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
|
||
bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
|
||
bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
|
||
bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
|
||
bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
|
||
}
|
||
|
||
/* Install the PLT header for a VxWorks executable and finalize the
|
||
contents of .rela.plt.unloaded. */
|
||
|
||
static void
|
||
mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
Elf_Internal_Rela rela;
|
||
bfd_byte *loc;
|
||
bfd_vma got_value, got_value_high, got_value_low, plt_address;
|
||
static const bfd_vma *plt_entry;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
plt_entry = mips_vxworks_exec_plt0_entry;
|
||
|
||
/* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
|
||
got_value = (htab->root.hgot->root.u.def.section->output_section->vma
|
||
+ htab->root.hgot->root.u.def.section->output_offset
|
||
+ htab->root.hgot->root.u.def.value);
|
||
|
||
got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
|
||
got_value_low = got_value & 0xffff;
|
||
|
||
/* Calculate the address of the PLT header. */
|
||
plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
|
||
|
||
/* Install the PLT header. */
|
||
loc = htab->splt->contents;
|
||
bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
|
||
bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
|
||
bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
|
||
bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
|
||
bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
|
||
bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
|
||
|
||
/* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
|
||
loc = htab->srelplt2->contents;
|
||
rela.r_offset = plt_address;
|
||
rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
|
||
rela.r_addend = 0;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
||
loc += sizeof (Elf32_External_Rela);
|
||
|
||
/* Output the relocation for the following addiu of
|
||
%lo(_GLOBAL_OFFSET_TABLE_). */
|
||
rela.r_offset += 4;
|
||
rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
||
loc += sizeof (Elf32_External_Rela);
|
||
|
||
/* Fix up the remaining relocations. They may have the wrong
|
||
symbol index for _G_O_T_ or _P_L_T_ depending on the order
|
||
in which symbols were output. */
|
||
while (loc < htab->srelplt2->contents + htab->srelplt2->size)
|
||
{
|
||
Elf_Internal_Rela rel;
|
||
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
|
||
rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
loc += sizeof (Elf32_External_Rela);
|
||
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
|
||
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
loc += sizeof (Elf32_External_Rela);
|
||
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
|
||
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
||
loc += sizeof (Elf32_External_Rela);
|
||
}
|
||
}
|
||
|
||
/* Install the PLT header for a VxWorks shared library. */
|
||
|
||
static void
|
||
mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
unsigned int i;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
/* We just need to copy the entry byte-by-byte. */
|
||
for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
|
||
bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
|
||
htab->splt->contents + i * 4);
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
bfd *dynobj;
|
||
asection *sdyn;
|
||
asection *sgot;
|
||
struct mips_got_info *gg, *g;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
sgot = htab->sgot;
|
||
gg = htab->got_info;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
bfd_byte *b;
|
||
int dyn_to_skip = 0, dyn_skipped = 0;
|
||
|
||
BFD_ASSERT (sdyn != NULL);
|
||
BFD_ASSERT (gg != NULL);
|
||
|
||
g = mips_elf_got_for_ibfd (gg, output_bfd);
|
||
BFD_ASSERT (g != NULL);
|
||
|
||
for (b = sdyn->contents;
|
||
b < sdyn->contents + sdyn->size;
|
||
b += MIPS_ELF_DYN_SIZE (dynobj))
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
size_t elemsize;
|
||
asection *s;
|
||
bfd_boolean swap_out_p;
|
||
|
||
/* Read in the current dynamic entry. */
|
||
(*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
|
||
|
||
/* Assume that we're going to modify it and write it out. */
|
||
swap_out_p = TRUE;
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
case DT_RELENT:
|
||
dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
|
||
break;
|
||
|
||
case DT_RELAENT:
|
||
BFD_ASSERT (htab->is_vxworks);
|
||
dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
|
||
break;
|
||
|
||
case DT_STRSZ:
|
||
/* Rewrite DT_STRSZ. */
|
||
dyn.d_un.d_val =
|
||
_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
|
||
break;
|
||
|
||
case DT_PLTGOT:
|
||
s = htab->sgot;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
break;
|
||
|
||
case DT_MIPS_PLTGOT:
|
||
s = htab->sgotplt;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
break;
|
||
|
||
case DT_MIPS_RLD_VERSION:
|
||
dyn.d_un.d_val = 1; /* XXX */
|
||
break;
|
||
|
||
case DT_MIPS_FLAGS:
|
||
dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
|
||
break;
|
||
|
||
case DT_MIPS_TIME_STAMP:
|
||
{
|
||
time_t t;
|
||
time (&t);
|
||
dyn.d_un.d_val = t;
|
||
}
|
||
break;
|
||
|
||
case DT_MIPS_ICHECKSUM:
|
||
/* XXX FIXME: */
|
||
swap_out_p = FALSE;
|
||
break;
|
||
|
||
case DT_MIPS_IVERSION:
|
||
/* XXX FIXME: */
|
||
swap_out_p = FALSE;
|
||
break;
|
||
|
||
case DT_MIPS_BASE_ADDRESS:
|
||
s = output_bfd->sections;
|
||
BFD_ASSERT (s != NULL);
|
||
dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
|
||
break;
|
||
|
||
case DT_MIPS_LOCAL_GOTNO:
|
||
dyn.d_un.d_val = g->local_gotno;
|
||
break;
|
||
|
||
case DT_MIPS_UNREFEXTNO:
|
||
/* The index into the dynamic symbol table which is the
|
||
entry of the first external symbol that is not
|
||
referenced within the same object. */
|
||
dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
|
||
break;
|
||
|
||
case DT_MIPS_GOTSYM:
|
||
if (gg->global_gotsym)
|
||
{
|
||
dyn.d_un.d_val = gg->global_gotsym->dynindx;
|
||
break;
|
||
}
|
||
/* In case if we don't have global got symbols we default
|
||
to setting DT_MIPS_GOTSYM to the same value as
|
||
DT_MIPS_SYMTABNO, so we just fall through. */
|
||
|
||
case DT_MIPS_SYMTABNO:
|
||
name = ".dynsym";
|
||
elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
|
||
s = bfd_get_section_by_name (output_bfd, name);
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
dyn.d_un.d_val = s->size / elemsize;
|
||
break;
|
||
|
||
case DT_MIPS_HIPAGENO:
|
||
dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
|
||
break;
|
||
|
||
case DT_MIPS_RLD_MAP:
|
||
dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
|
||
break;
|
||
|
||
case DT_MIPS_OPTIONS:
|
||
s = (bfd_get_section_by_name
|
||
(output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
|
||
dyn.d_un.d_ptr = s->vma;
|
||
break;
|
||
|
||
case DT_RELASZ:
|
||
BFD_ASSERT (htab->is_vxworks);
|
||
/* The count does not include the JUMP_SLOT relocations. */
|
||
if (htab->srelplt)
|
||
dyn.d_un.d_val -= htab->srelplt->size;
|
||
break;
|
||
|
||
case DT_PLTREL:
|
||
BFD_ASSERT (htab->use_plts_and_copy_relocs);
|
||
if (htab->is_vxworks)
|
||
dyn.d_un.d_val = DT_RELA;
|
||
else
|
||
dyn.d_un.d_val = DT_REL;
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
BFD_ASSERT (htab->use_plts_and_copy_relocs);
|
||
dyn.d_un.d_val = htab->srelplt->size;
|
||
break;
|
||
|
||
case DT_JMPREL:
|
||
BFD_ASSERT (htab->use_plts_and_copy_relocs);
|
||
dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
|
||
+ htab->srelplt->output_offset);
|
||
break;
|
||
|
||
case DT_TEXTREL:
|
||
/* If we didn't need any text relocations after all, delete
|
||
the dynamic tag. */
|
||
if (!(info->flags & DF_TEXTREL))
|
||
{
|
||
dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
|
||
swap_out_p = FALSE;
|
||
}
|
||
break;
|
||
|
||
case DT_FLAGS:
|
||
/* If we didn't need any text relocations after all, clear
|
||
DF_TEXTREL from DT_FLAGS. */
|
||
if (!(info->flags & DF_TEXTREL))
|
||
dyn.d_un.d_val &= ~DF_TEXTREL;
|
||
else
|
||
swap_out_p = FALSE;
|
||
break;
|
||
|
||
default:
|
||
swap_out_p = FALSE;
|
||
if (htab->is_vxworks
|
||
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
|
||
swap_out_p = TRUE;
|
||
break;
|
||
}
|
||
|
||
if (swap_out_p || dyn_skipped)
|
||
(*get_elf_backend_data (dynobj)->s->swap_dyn_out)
|
||
(dynobj, &dyn, b - dyn_skipped);
|
||
|
||
if (dyn_to_skip)
|
||
{
|
||
dyn_skipped += dyn_to_skip;
|
||
dyn_to_skip = 0;
|
||
}
|
||
}
|
||
|
||
/* Wipe out any trailing entries if we shifted down a dynamic tag. */
|
||
if (dyn_skipped > 0)
|
||
memset (b - dyn_skipped, 0, dyn_skipped);
|
||
}
|
||
|
||
if (sgot != NULL && sgot->size > 0
|
||
&& !bfd_is_abs_section (sgot->output_section))
|
||
{
|
||
if (htab->is_vxworks)
|
||
{
|
||
/* The first entry of the global offset table points to the
|
||
".dynamic" section. The second is initialized by the
|
||
loader and contains the shared library identifier.
|
||
The third is also initialized by the loader and points
|
||
to the lazy resolution stub. */
|
||
MIPS_ELF_PUT_WORD (output_bfd,
|
||
sdyn->output_offset + sdyn->output_section->vma,
|
||
sgot->contents);
|
||
MIPS_ELF_PUT_WORD (output_bfd, 0,
|
||
sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
|
||
MIPS_ELF_PUT_WORD (output_bfd, 0,
|
||
sgot->contents
|
||
+ 2 * MIPS_ELF_GOT_SIZE (output_bfd));
|
||
}
|
||
else
|
||
{
|
||
/* The first entry of the global offset table will be filled at
|
||
runtime. The second entry will be used by some runtime loaders.
|
||
This isn't the case of IRIX rld. */
|
||
MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
|
||
MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
|
||
sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
|
||
}
|
||
|
||
elf_section_data (sgot->output_section)->this_hdr.sh_entsize
|
||
= MIPS_ELF_GOT_SIZE (output_bfd);
|
||
}
|
||
|
||
/* Generate dynamic relocations for the non-primary gots. */
|
||
if (gg != NULL && gg->next)
|
||
{
|
||
Elf_Internal_Rela rel[3];
|
||
bfd_vma addend = 0;
|
||
|
||
memset (rel, 0, sizeof (rel));
|
||
rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
|
||
|
||
for (g = gg->next; g->next != gg; g = g->next)
|
||
{
|
||
bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
|
||
+ g->next->tls_gotno;
|
||
|
||
MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
|
||
+ got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
|
||
MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
|
||
sgot->contents
|
||
+ got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
|
||
|
||
if (! info->shared)
|
||
continue;
|
||
|
||
while (got_index < g->assigned_gotno)
|
||
{
|
||
rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
|
||
= got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
|
||
if (!(mips_elf_create_dynamic_relocation
|
||
(output_bfd, info, rel, NULL,
|
||
bfd_abs_section_ptr,
|
||
0, &addend, sgot)))
|
||
return FALSE;
|
||
BFD_ASSERT (addend == 0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The generation of dynamic relocations for the non-primary gots
|
||
adds more dynamic relocations. We cannot count them until
|
||
here. */
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
bfd_byte *b;
|
||
bfd_boolean swap_out_p;
|
||
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
for (b = sdyn->contents;
|
||
b < sdyn->contents + sdyn->size;
|
||
b += MIPS_ELF_DYN_SIZE (dynobj))
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
asection *s;
|
||
|
||
/* Read in the current dynamic entry. */
|
||
(*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
|
||
|
||
/* Assume that we're going to modify it and write it out. */
|
||
swap_out_p = TRUE;
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
case DT_RELSZ:
|
||
/* Reduce DT_RELSZ to account for any relocations we
|
||
decided not to make. This is for the n64 irix rld,
|
||
which doesn't seem to apply any relocations if there
|
||
are trailing null entries. */
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
dyn.d_un.d_val = (s->reloc_count
|
||
* (ABI_64_P (output_bfd)
|
||
? sizeof (Elf64_Mips_External_Rel)
|
||
: sizeof (Elf32_External_Rel)));
|
||
/* Adjust the section size too. Tools like the prelinker
|
||
can reasonably expect the values to the same. */
|
||
elf_section_data (s->output_section)->this_hdr.sh_size
|
||
= dyn.d_un.d_val;
|
||
break;
|
||
|
||
default:
|
||
swap_out_p = FALSE;
|
||
break;
|
||
}
|
||
|
||
if (swap_out_p)
|
||
(*get_elf_backend_data (dynobj)->s->swap_dyn_out)
|
||
(dynobj, &dyn, b);
|
||
}
|
||
}
|
||
|
||
{
|
||
asection *s;
|
||
Elf32_compact_rel cpt;
|
||
|
||
if (SGI_COMPAT (output_bfd))
|
||
{
|
||
/* Write .compact_rel section out. */
|
||
s = bfd_get_section_by_name (dynobj, ".compact_rel");
|
||
if (s != NULL)
|
||
{
|
||
cpt.id1 = 1;
|
||
cpt.num = s->reloc_count;
|
||
cpt.id2 = 2;
|
||
cpt.offset = (s->output_section->filepos
|
||
+ sizeof (Elf32_External_compact_rel));
|
||
cpt.reserved0 = 0;
|
||
cpt.reserved1 = 0;
|
||
bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
|
||
((Elf32_External_compact_rel *)
|
||
s->contents));
|
||
|
||
/* Clean up a dummy stub function entry in .text. */
|
||
if (htab->sstubs != NULL)
|
||
{
|
||
file_ptr dummy_offset;
|
||
|
||
BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
|
||
dummy_offset = htab->sstubs->size - htab->function_stub_size;
|
||
memset (htab->sstubs->contents + dummy_offset, 0,
|
||
htab->function_stub_size);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The psABI says that the dynamic relocations must be sorted in
|
||
increasing order of r_symndx. The VxWorks EABI doesn't require
|
||
this, and because the code below handles REL rather than RELA
|
||
relocations, using it for VxWorks would be outright harmful. */
|
||
if (!htab->is_vxworks)
|
||
{
|
||
s = mips_elf_rel_dyn_section (info, FALSE);
|
||
if (s != NULL
|
||
&& s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
|
||
{
|
||
reldyn_sorting_bfd = output_bfd;
|
||
|
||
if (ABI_64_P (output_bfd))
|
||
qsort ((Elf64_External_Rel *) s->contents + 1,
|
||
s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
|
||
sort_dynamic_relocs_64);
|
||
else
|
||
qsort ((Elf32_External_Rel *) s->contents + 1,
|
||
s->reloc_count - 1, sizeof (Elf32_External_Rel),
|
||
sort_dynamic_relocs);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (htab->splt && htab->splt->size > 0)
|
||
{
|
||
if (htab->is_vxworks)
|
||
{
|
||
if (info->shared)
|
||
mips_vxworks_finish_shared_plt (output_bfd, info);
|
||
else
|
||
mips_vxworks_finish_exec_plt (output_bfd, info);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (!info->shared);
|
||
mips_finish_exec_plt (output_bfd, info);
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
|
||
|
||
static void
|
||
mips_set_isa_flags (bfd *abfd)
|
||
{
|
||
flagword val;
|
||
|
||
switch (bfd_get_mach (abfd))
|
||
{
|
||
default:
|
||
case bfd_mach_mips3000:
|
||
val = E_MIPS_ARCH_1;
|
||
break;
|
||
|
||
case bfd_mach_mips3900:
|
||
val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
|
||
break;
|
||
|
||
case bfd_mach_mips6000:
|
||
val = E_MIPS_ARCH_2;
|
||
break;
|
||
|
||
case bfd_mach_mips4000:
|
||
case bfd_mach_mips4300:
|
||
case bfd_mach_mips4400:
|
||
case bfd_mach_mips4600:
|
||
val = E_MIPS_ARCH_3;
|
||
break;
|
||
|
||
case bfd_mach_mips4010:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
|
||
break;
|
||
|
||
case bfd_mach_mips4100:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
|
||
break;
|
||
|
||
case bfd_mach_mips4111:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
|
||
break;
|
||
|
||
case bfd_mach_mips4120:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
|
||
break;
|
||
|
||
case bfd_mach_mips4650:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
|
||
break;
|
||
|
||
case bfd_mach_mips5400:
|
||
val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
|
||
break;
|
||
|
||
case bfd_mach_mips5500:
|
||
val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
|
||
break;
|
||
|
||
case bfd_mach_mips9000:
|
||
val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
|
||
break;
|
||
|
||
case bfd_mach_mips5000:
|
||
case bfd_mach_mips7000:
|
||
case bfd_mach_mips8000:
|
||
case bfd_mach_mips10000:
|
||
case bfd_mach_mips12000:
|
||
case bfd_mach_mips14000:
|
||
case bfd_mach_mips16000:
|
||
val = E_MIPS_ARCH_4;
|
||
break;
|
||
|
||
case bfd_mach_mips5:
|
||
val = E_MIPS_ARCH_5;
|
||
break;
|
||
|
||
case bfd_mach_mips_loongson_2e:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
|
||
break;
|
||
|
||
case bfd_mach_mips_loongson_2f:
|
||
val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
|
||
break;
|
||
|
||
case bfd_mach_mips_sb1:
|
||
val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
|
||
break;
|
||
|
||
case bfd_mach_mips_loongson_3a:
|
||
val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
|
||
break;
|
||
|
||
case bfd_mach_mips_octeon:
|
||
case bfd_mach_mips_octeonp:
|
||
val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
|
||
break;
|
||
|
||
case bfd_mach_mips_xlr:
|
||
val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
|
||
break;
|
||
|
||
case bfd_mach_mips_octeon2:
|
||
val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
|
||
break;
|
||
|
||
case bfd_mach_mipsisa32:
|
||
val = E_MIPS_ARCH_32;
|
||
break;
|
||
|
||
case bfd_mach_mipsisa64:
|
||
val = E_MIPS_ARCH_64;
|
||
break;
|
||
|
||
case bfd_mach_mipsisa32r2:
|
||
val = E_MIPS_ARCH_32R2;
|
||
break;
|
||
|
||
case bfd_mach_mipsisa64r2:
|
||
val = E_MIPS_ARCH_64R2;
|
||
break;
|
||
}
|
||
elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
|
||
elf_elfheader (abfd)->e_flags |= val;
|
||
|
||
}
|
||
|
||
|
||
/* The final processing done just before writing out a MIPS ELF object
|
||
file. This gets the MIPS architecture right based on the machine
|
||
number. This is used by both the 32-bit and the 64-bit ABI. */
|
||
|
||
void
|
||
_bfd_mips_elf_final_write_processing (bfd *abfd,
|
||
bfd_boolean linker ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
const char *name;
|
||
asection *sec;
|
||
|
||
/* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
|
||
is nonzero. This is for compatibility with old objects, which used
|
||
a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
|
||
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
|
||
mips_set_isa_flags (abfd);
|
||
|
||
/* Set the sh_info field for .gptab sections and other appropriate
|
||
info for each special section. */
|
||
for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
|
||
i < elf_numsections (abfd);
|
||
i++, hdrpp++)
|
||
{
|
||
switch ((*hdrpp)->sh_type)
|
||
{
|
||
case SHT_MIPS_MSYM:
|
||
case SHT_MIPS_LIBLIST:
|
||
sec = bfd_get_section_by_name (abfd, ".dynstr");
|
||
if (sec != NULL)
|
||
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
||
break;
|
||
|
||
case SHT_MIPS_GPTAB:
|
||
BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
|
||
name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
|
||
BFD_ASSERT (name != NULL
|
||
&& CONST_STRNEQ (name, ".gptab."));
|
||
sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
|
||
BFD_ASSERT (sec != NULL);
|
||
(*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
|
||
break;
|
||
|
||
case SHT_MIPS_CONTENT:
|
||
BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
|
||
name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
|
||
BFD_ASSERT (name != NULL
|
||
&& CONST_STRNEQ (name, ".MIPS.content"));
|
||
sec = bfd_get_section_by_name (abfd,
|
||
name + sizeof ".MIPS.content" - 1);
|
||
BFD_ASSERT (sec != NULL);
|
||
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
||
break;
|
||
|
||
case SHT_MIPS_SYMBOL_LIB:
|
||
sec = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (sec != NULL)
|
||
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
||
sec = bfd_get_section_by_name (abfd, ".liblist");
|
||
if (sec != NULL)
|
||
(*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
|
||
break;
|
||
|
||
case SHT_MIPS_EVENTS:
|
||
BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
|
||
name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
|
||
BFD_ASSERT (name != NULL);
|
||
if (CONST_STRNEQ (name, ".MIPS.events"))
|
||
sec = bfd_get_section_by_name (abfd,
|
||
name + sizeof ".MIPS.events" - 1);
|
||
else
|
||
{
|
||
BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
|
||
sec = bfd_get_section_by_name (abfd,
|
||
(name
|
||
+ sizeof ".MIPS.post_rel" - 1));
|
||
}
|
||
BFD_ASSERT (sec != NULL);
|
||
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
||
break;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
/* When creating an IRIX5 executable, we need REGINFO and RTPROC
|
||
segments. */
|
||
|
||
int
|
||
_bfd_mips_elf_additional_program_headers (bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
asection *s;
|
||
int ret = 0;
|
||
|
||
/* See if we need a PT_MIPS_REGINFO segment. */
|
||
s = bfd_get_section_by_name (abfd, ".reginfo");
|
||
if (s && (s->flags & SEC_LOAD))
|
||
++ret;
|
||
|
||
/* See if we need a PT_MIPS_OPTIONS segment. */
|
||
if (IRIX_COMPAT (abfd) == ict_irix6
|
||
&& bfd_get_section_by_name (abfd,
|
||
MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
|
||
++ret;
|
||
|
||
/* See if we need a PT_MIPS_RTPROC segment. */
|
||
if (IRIX_COMPAT (abfd) == ict_irix5
|
||
&& bfd_get_section_by_name (abfd, ".dynamic")
|
||
&& bfd_get_section_by_name (abfd, ".mdebug"))
|
||
++ret;
|
||
|
||
/* Allocate a PT_NULL header in dynamic objects. See
|
||
_bfd_mips_elf_modify_segment_map for details. */
|
||
if (!SGI_COMPAT (abfd)
|
||
&& bfd_get_section_by_name (abfd, ".dynamic"))
|
||
++ret;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Modify the segment map for an IRIX5 executable. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_modify_segment_map (bfd *abfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *s;
|
||
struct elf_segment_map *m, **pm;
|
||
bfd_size_type amt;
|
||
|
||
/* If there is a .reginfo section, we need a PT_MIPS_REGINFO
|
||
segment. */
|
||
s = bfd_get_section_by_name (abfd, ".reginfo");
|
||
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
||
if (m->p_type == PT_MIPS_REGINFO)
|
||
break;
|
||
if (m == NULL)
|
||
{
|
||
amt = sizeof *m;
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
return FALSE;
|
||
|
||
m->p_type = PT_MIPS_REGINFO;
|
||
m->count = 1;
|
||
m->sections[0] = s;
|
||
|
||
/* We want to put it after the PHDR and INTERP segments. */
|
||
pm = &elf_tdata (abfd)->segment_map;
|
||
while (*pm != NULL
|
||
&& ((*pm)->p_type == PT_PHDR
|
||
|| (*pm)->p_type == PT_INTERP))
|
||
pm = &(*pm)->next;
|
||
|
||
m->next = *pm;
|
||
*pm = m;
|
||
}
|
||
}
|
||
|
||
/* For IRIX 6, we don't have .mdebug sections, nor does anything but
|
||
.dynamic end up in PT_DYNAMIC. However, we do have to insert a
|
||
PT_MIPS_OPTIONS segment immediately following the program header
|
||
table. */
|
||
if (NEWABI_P (abfd)
|
||
/* On non-IRIX6 new abi, we'll have already created a segment
|
||
for this section, so don't create another. I'm not sure this
|
||
is not also the case for IRIX 6, but I can't test it right
|
||
now. */
|
||
&& IRIX_COMPAT (abfd) == ict_irix6)
|
||
{
|
||
for (s = abfd->sections; s; s = s->next)
|
||
if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
|
||
break;
|
||
|
||
if (s)
|
||
{
|
||
struct elf_segment_map *options_segment;
|
||
|
||
pm = &elf_tdata (abfd)->segment_map;
|
||
while (*pm != NULL
|
||
&& ((*pm)->p_type == PT_PHDR
|
||
|| (*pm)->p_type == PT_INTERP))
|
||
pm = &(*pm)->next;
|
||
|
||
if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
|
||
{
|
||
amt = sizeof (struct elf_segment_map);
|
||
options_segment = bfd_zalloc (abfd, amt);
|
||
options_segment->next = *pm;
|
||
options_segment->p_type = PT_MIPS_OPTIONS;
|
||
options_segment->p_flags = PF_R;
|
||
options_segment->p_flags_valid = TRUE;
|
||
options_segment->count = 1;
|
||
options_segment->sections[0] = s;
|
||
*pm = options_segment;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (IRIX_COMPAT (abfd) == ict_irix5)
|
||
{
|
||
/* If there are .dynamic and .mdebug sections, we make a room
|
||
for the RTPROC header. FIXME: Rewrite without section names. */
|
||
if (bfd_get_section_by_name (abfd, ".interp") == NULL
|
||
&& bfd_get_section_by_name (abfd, ".dynamic") != NULL
|
||
&& bfd_get_section_by_name (abfd, ".mdebug") != NULL)
|
||
{
|
||
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
||
if (m->p_type == PT_MIPS_RTPROC)
|
||
break;
|
||
if (m == NULL)
|
||
{
|
||
amt = sizeof *m;
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
return FALSE;
|
||
|
||
m->p_type = PT_MIPS_RTPROC;
|
||
|
||
s = bfd_get_section_by_name (abfd, ".rtproc");
|
||
if (s == NULL)
|
||
{
|
||
m->count = 0;
|
||
m->p_flags = 0;
|
||
m->p_flags_valid = 1;
|
||
}
|
||
else
|
||
{
|
||
m->count = 1;
|
||
m->sections[0] = s;
|
||
}
|
||
|
||
/* We want to put it after the DYNAMIC segment. */
|
||
pm = &elf_tdata (abfd)->segment_map;
|
||
while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
|
||
pm = &(*pm)->next;
|
||
if (*pm != NULL)
|
||
pm = &(*pm)->next;
|
||
|
||
m->next = *pm;
|
||
*pm = m;
|
||
}
|
||
}
|
||
}
|
||
/* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
|
||
.dynstr, .dynsym, and .hash sections, and everything in
|
||
between. */
|
||
for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
|
||
pm = &(*pm)->next)
|
||
if ((*pm)->p_type == PT_DYNAMIC)
|
||
break;
|
||
m = *pm;
|
||
if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
|
||
{
|
||
/* For a normal mips executable the permissions for the PT_DYNAMIC
|
||
segment are read, write and execute. We do that here since
|
||
the code in elf.c sets only the read permission. This matters
|
||
sometimes for the dynamic linker. */
|
||
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
|
||
{
|
||
m->p_flags = PF_R | PF_W | PF_X;
|
||
m->p_flags_valid = 1;
|
||
}
|
||
}
|
||
/* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
|
||
glibc's dynamic linker has traditionally derived the number of
|
||
tags from the p_filesz field, and sometimes allocates stack
|
||
arrays of that size. An overly-big PT_DYNAMIC segment can
|
||
be actively harmful in such cases. Making PT_DYNAMIC contain
|
||
other sections can also make life hard for the prelinker,
|
||
which might move one of the other sections to a different
|
||
PT_LOAD segment. */
|
||
if (SGI_COMPAT (abfd)
|
||
&& m != NULL
|
||
&& m->count == 1
|
||
&& strcmp (m->sections[0]->name, ".dynamic") == 0)
|
||
{
|
||
static const char *sec_names[] =
|
||
{
|
||
".dynamic", ".dynstr", ".dynsym", ".hash"
|
||
};
|
||
bfd_vma low, high;
|
||
unsigned int i, c;
|
||
struct elf_segment_map *n;
|
||
|
||
low = ~(bfd_vma) 0;
|
||
high = 0;
|
||
for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
|
||
{
|
||
s = bfd_get_section_by_name (abfd, sec_names[i]);
|
||
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
bfd_size_type sz;
|
||
|
||
if (low > s->vma)
|
||
low = s->vma;
|
||
sz = s->size;
|
||
if (high < s->vma + sz)
|
||
high = s->vma + sz;
|
||
}
|
||
}
|
||
|
||
c = 0;
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
if ((s->flags & SEC_LOAD) != 0
|
||
&& s->vma >= low
|
||
&& s->vma + s->size <= high)
|
||
++c;
|
||
|
||
amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
|
||
n = bfd_zalloc (abfd, amt);
|
||
if (n == NULL)
|
||
return FALSE;
|
||
*n = *m;
|
||
n->count = c;
|
||
|
||
i = 0;
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_LOAD) != 0
|
||
&& s->vma >= low
|
||
&& s->vma + s->size <= high)
|
||
{
|
||
n->sections[i] = s;
|
||
++i;
|
||
}
|
||
}
|
||
|
||
*pm = n;
|
||
}
|
||
}
|
||
|
||
/* Allocate a spare program header in dynamic objects so that tools
|
||
like the prelinker can add an extra PT_LOAD entry.
|
||
|
||
If the prelinker needs to make room for a new PT_LOAD entry, its
|
||
standard procedure is to move the first (read-only) sections into
|
||
the new (writable) segment. However, the MIPS ABI requires
|
||
.dynamic to be in a read-only segment, and the section will often
|
||
start within sizeof (ElfNN_Phdr) bytes of the last program header.
|
||
|
||
Although the prelinker could in principle move .dynamic to a
|
||
writable segment, it seems better to allocate a spare program
|
||
header instead, and avoid the need to move any sections.
|
||
There is a long tradition of allocating spare dynamic tags,
|
||
so allocating a spare program header seems like a natural
|
||
extension.
|
||
|
||
If INFO is NULL, we may be copying an already prelinked binary
|
||
with objcopy or strip, so do not add this header. */
|
||
if (info != NULL
|
||
&& !SGI_COMPAT (abfd)
|
||
&& bfd_get_section_by_name (abfd, ".dynamic"))
|
||
{
|
||
for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
|
||
if ((*pm)->p_type == PT_NULL)
|
||
break;
|
||
if (*pm == NULL)
|
||
{
|
||
m = bfd_zalloc (abfd, sizeof (*m));
|
||
if (m == NULL)
|
||
return FALSE;
|
||
|
||
m->p_type = PT_NULL;
|
||
*pm = m;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
asection *
|
||
_bfd_mips_elf_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
/* ??? Do mips16 stub sections need to be handled special? */
|
||
|
||
if (h != NULL)
|
||
switch (ELF_R_TYPE (sec->owner, rel->r_info))
|
||
{
|
||
case R_MIPS_GNU_VTINHERIT:
|
||
case R_MIPS_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
/* Update the got entry reference counts for the section being removed. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
asection *sec ATTRIBUTE_UNUSED,
|
||
const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
|
||
{
|
||
#if 0
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_signed_vma *local_got_refcounts;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; rel++)
|
||
switch (ELF_R_TYPE (abfd, rel->r_info))
|
||
{
|
||
case R_MIPS16_GOT16:
|
||
case R_MIPS16_CALL16:
|
||
case R_MIPS_GOT16:
|
||
case R_MIPS_CALL16:
|
||
case R_MIPS_CALL_HI16:
|
||
case R_MIPS_CALL_LO16:
|
||
case R_MIPS_GOT_HI16:
|
||
case R_MIPS_GOT_LO16:
|
||
case R_MIPS_GOT_DISP:
|
||
case R_MIPS_GOT_PAGE:
|
||
case R_MIPS_GOT_OFST:
|
||
case R_MICROMIPS_GOT16:
|
||
case R_MICROMIPS_CALL16:
|
||
case R_MICROMIPS_CALL_HI16:
|
||
case R_MICROMIPS_CALL_LO16:
|
||
case R_MICROMIPS_GOT_HI16:
|
||
case R_MICROMIPS_GOT_LO16:
|
||
case R_MICROMIPS_GOT_DISP:
|
||
case R_MICROMIPS_GOT_PAGE:
|
||
case R_MICROMIPS_GOT_OFST:
|
||
/* ??? It would seem that the existing MIPS code does no sort
|
||
of reference counting or whatnot on its GOT and PLT entries,
|
||
so it is not possible to garbage collect them at this time. */
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
|
||
hiding the old indirect symbol. Process additional relocation
|
||
information. Also called for weakdefs, in which case we just let
|
||
_bfd_elf_link_hash_copy_indirect copy the flags for us. */
|
||
|
||
void
|
||
_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *dir,
|
||
struct elf_link_hash_entry *ind)
|
||
{
|
||
struct mips_elf_link_hash_entry *dirmips, *indmips;
|
||
|
||
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
||
|
||
dirmips = (struct mips_elf_link_hash_entry *) dir;
|
||
indmips = (struct mips_elf_link_hash_entry *) ind;
|
||
/* Any absolute non-dynamic relocations against an indirect or weak
|
||
definition will be against the target symbol. */
|
||
if (indmips->has_static_relocs)
|
||
dirmips->has_static_relocs = TRUE;
|
||
|
||
if (ind->root.type != bfd_link_hash_indirect)
|
||
return;
|
||
|
||
dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
|
||
if (indmips->readonly_reloc)
|
||
dirmips->readonly_reloc = TRUE;
|
||
if (indmips->no_fn_stub)
|
||
dirmips->no_fn_stub = TRUE;
|
||
if (indmips->fn_stub)
|
||
{
|
||
dirmips->fn_stub = indmips->fn_stub;
|
||
indmips->fn_stub = NULL;
|
||
}
|
||
if (indmips->need_fn_stub)
|
||
{
|
||
dirmips->need_fn_stub = TRUE;
|
||
indmips->need_fn_stub = FALSE;
|
||
}
|
||
if (indmips->call_stub)
|
||
{
|
||
dirmips->call_stub = indmips->call_stub;
|
||
indmips->call_stub = NULL;
|
||
}
|
||
if (indmips->call_fp_stub)
|
||
{
|
||
dirmips->call_fp_stub = indmips->call_fp_stub;
|
||
indmips->call_fp_stub = NULL;
|
||
}
|
||
if (indmips->global_got_area < dirmips->global_got_area)
|
||
dirmips->global_got_area = indmips->global_got_area;
|
||
if (indmips->global_got_area < GGA_NONE)
|
||
indmips->global_got_area = GGA_NONE;
|
||
if (indmips->has_nonpic_branches)
|
||
dirmips->has_nonpic_branches = TRUE;
|
||
|
||
if (dirmips->tls_type == 0)
|
||
dirmips->tls_type = indmips->tls_type;
|
||
}
|
||
|
||
#define PDR_SIZE 32
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *o;
|
||
bfd_boolean ret = FALSE;
|
||
unsigned char *tdata;
|
||
size_t i, skip;
|
||
|
||
o = bfd_get_section_by_name (abfd, ".pdr");
|
||
if (! o)
|
||
return FALSE;
|
||
if (o->size == 0)
|
||
return FALSE;
|
||
if (o->size % PDR_SIZE != 0)
|
||
return FALSE;
|
||
if (o->output_section != NULL
|
||
&& bfd_is_abs_section (o->output_section))
|
||
return FALSE;
|
||
|
||
tdata = bfd_zmalloc (o->size / PDR_SIZE);
|
||
if (! tdata)
|
||
return FALSE;
|
||
|
||
cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
||
info->keep_memory);
|
||
if (!cookie->rels)
|
||
{
|
||
free (tdata);
|
||
return FALSE;
|
||
}
|
||
|
||
cookie->rel = cookie->rels;
|
||
cookie->relend = cookie->rels + o->reloc_count;
|
||
|
||
for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
|
||
{
|
||
if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
|
||
{
|
||
tdata[i] = 1;
|
||
skip ++;
|
||
}
|
||
}
|
||
|
||
if (skip != 0)
|
||
{
|
||
mips_elf_section_data (o)->u.tdata = tdata;
|
||
o->size -= skip * PDR_SIZE;
|
||
ret = TRUE;
|
||
}
|
||
else
|
||
free (tdata);
|
||
|
||
if (! info->keep_memory)
|
||
free (cookie->rels);
|
||
|
||
return ret;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
|
||
{
|
||
if (strcmp (sec->name, ".pdr") == 0)
|
||
return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_write_section (bfd *output_bfd,
|
||
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
|
||
asection *sec, bfd_byte *contents)
|
||
{
|
||
bfd_byte *to, *from, *end;
|
||
int i;
|
||
|
||
if (strcmp (sec->name, ".pdr") != 0)
|
||
return FALSE;
|
||
|
||
if (mips_elf_section_data (sec)->u.tdata == NULL)
|
||
return FALSE;
|
||
|
||
to = contents;
|
||
end = contents + sec->size;
|
||
for (from = contents, i = 0;
|
||
from < end;
|
||
from += PDR_SIZE, i++)
|
||
{
|
||
if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
|
||
continue;
|
||
if (to != from)
|
||
memcpy (to, from, PDR_SIZE);
|
||
to += PDR_SIZE;
|
||
}
|
||
bfd_set_section_contents (output_bfd, sec->output_section, contents,
|
||
sec->output_offset, sec->size);
|
||
return TRUE;
|
||
}
|
||
|
||
/* microMIPS code retains local labels for linker relaxation. Omit them
|
||
from output by default for clarity. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
|
||
{
|
||
return _bfd_elf_is_local_label_name (abfd, sym->name);
|
||
}
|
||
|
||
/* MIPS ELF uses a special find_nearest_line routine in order the
|
||
handle the ECOFF debugging information. */
|
||
|
||
struct mips_elf_find_line
|
||
{
|
||
struct ecoff_debug_info d;
|
||
struct ecoff_find_line i;
|
||
};
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
|
||
asymbol **symbols, bfd_vma offset,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr,
|
||
unsigned int *line_ptr)
|
||
{
|
||
asection *msec;
|
||
|
||
if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr))
|
||
return TRUE;
|
||
|
||
if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
|
||
section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr, ABI_64_P (abfd) ? 8 : 0,
|
||
&elf_tdata (abfd)->dwarf2_find_line_info))
|
||
return TRUE;
|
||
|
||
msec = bfd_get_section_by_name (abfd, ".mdebug");
|
||
if (msec != NULL)
|
||
{
|
||
flagword origflags;
|
||
struct mips_elf_find_line *fi;
|
||
const struct ecoff_debug_swap * const swap =
|
||
get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
|
||
/* If we are called during a link, mips_elf_final_link may have
|
||
cleared the SEC_HAS_CONTENTS field. We force it back on here
|
||
if appropriate (which it normally will be). */
|
||
origflags = msec->flags;
|
||
if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
|
||
msec->flags |= SEC_HAS_CONTENTS;
|
||
|
||
fi = elf_tdata (abfd)->find_line_info;
|
||
if (fi == NULL)
|
||
{
|
||
bfd_size_type external_fdr_size;
|
||
char *fraw_src;
|
||
char *fraw_end;
|
||
struct fdr *fdr_ptr;
|
||
bfd_size_type amt = sizeof (struct mips_elf_find_line);
|
||
|
||
fi = bfd_zalloc (abfd, amt);
|
||
if (fi == NULL)
|
||
{
|
||
msec->flags = origflags;
|
||
return FALSE;
|
||
}
|
||
|
||
if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
|
||
{
|
||
msec->flags = origflags;
|
||
return FALSE;
|
||
}
|
||
|
||
/* Swap in the FDR information. */
|
||
amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
|
||
fi->d.fdr = bfd_alloc (abfd, amt);
|
||
if (fi->d.fdr == NULL)
|
||
{
|
||
msec->flags = origflags;
|
||
return FALSE;
|
||
}
|
||
external_fdr_size = swap->external_fdr_size;
|
||
fdr_ptr = fi->d.fdr;
|
||
fraw_src = (char *) fi->d.external_fdr;
|
||
fraw_end = (fraw_src
|
||
+ fi->d.symbolic_header.ifdMax * external_fdr_size);
|
||
for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
|
||
(*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
|
||
|
||
elf_tdata (abfd)->find_line_info = fi;
|
||
|
||
/* Note that we don't bother to ever free this information.
|
||
find_nearest_line is either called all the time, as in
|
||
objdump -l, so the information should be saved, or it is
|
||
rarely called, as in ld error messages, so the memory
|
||
wasted is unimportant. Still, it would probably be a
|
||
good idea for free_cached_info to throw it away. */
|
||
}
|
||
|
||
if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
|
||
&fi->i, filename_ptr, functionname_ptr,
|
||
line_ptr))
|
||
{
|
||
msec->flags = origflags;
|
||
return TRUE;
|
||
}
|
||
|
||
msec->flags = origflags;
|
||
}
|
||
|
||
/* Fall back on the generic ELF find_nearest_line routine. */
|
||
|
||
return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr);
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_find_inliner_info (bfd *abfd,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr,
|
||
unsigned int *line_ptr)
|
||
{
|
||
bfd_boolean found;
|
||
found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
|
||
functionname_ptr, line_ptr,
|
||
& elf_tdata (abfd)->dwarf2_find_line_info);
|
||
return found;
|
||
}
|
||
|
||
|
||
/* When are writing out the .options or .MIPS.options section,
|
||
remember the bytes we are writing out, so that we can install the
|
||
GP value in the section_processing routine. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
|
||
const void *location,
|
||
file_ptr offset, bfd_size_type count)
|
||
{
|
||
if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
|
||
{
|
||
bfd_byte *c;
|
||
|
||
if (elf_section_data (section) == NULL)
|
||
{
|
||
bfd_size_type amt = sizeof (struct bfd_elf_section_data);
|
||
section->used_by_bfd = bfd_zalloc (abfd, amt);
|
||
if (elf_section_data (section) == NULL)
|
||
return FALSE;
|
||
}
|
||
c = mips_elf_section_data (section)->u.tdata;
|
||
if (c == NULL)
|
||
{
|
||
c = bfd_zalloc (abfd, section->size);
|
||
if (c == NULL)
|
||
return FALSE;
|
||
mips_elf_section_data (section)->u.tdata = c;
|
||
}
|
||
|
||
memcpy (c + offset, location, count);
|
||
}
|
||
|
||
return _bfd_elf_set_section_contents (abfd, section, location, offset,
|
||
count);
|
||
}
|
||
|
||
/* This is almost identical to bfd_generic_get_... except that some
|
||
MIPS relocations need to be handled specially. Sigh. */
|
||
|
||
bfd_byte *
|
||
_bfd_elf_mips_get_relocated_section_contents
|
||
(bfd *abfd,
|
||
struct bfd_link_info *link_info,
|
||
struct bfd_link_order *link_order,
|
||
bfd_byte *data,
|
||
bfd_boolean relocatable,
|
||
asymbol **symbols)
|
||
{
|
||
/* Get enough memory to hold the stuff */
|
||
bfd *input_bfd = link_order->u.indirect.section->owner;
|
||
asection *input_section = link_order->u.indirect.section;
|
||
bfd_size_type sz;
|
||
|
||
long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
|
||
arelent **reloc_vector = NULL;
|
||
long reloc_count;
|
||
|
||
if (reloc_size < 0)
|
||
goto error_return;
|
||
|
||
reloc_vector = bfd_malloc (reloc_size);
|
||
if (reloc_vector == NULL && reloc_size != 0)
|
||
goto error_return;
|
||
|
||
/* read in the section */
|
||
sz = input_section->rawsize ? input_section->rawsize : input_section->size;
|
||
if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
|
||
goto error_return;
|
||
|
||
reloc_count = bfd_canonicalize_reloc (input_bfd,
|
||
input_section,
|
||
reloc_vector,
|
||
symbols);
|
||
if (reloc_count < 0)
|
||
goto error_return;
|
||
|
||
if (reloc_count > 0)
|
||
{
|
||
arelent **parent;
|
||
/* for mips */
|
||
int gp_found;
|
||
bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
|
||
|
||
{
|
||
struct bfd_hash_entry *h;
|
||
struct bfd_link_hash_entry *lh;
|
||
/* Skip all this stuff if we aren't mixing formats. */
|
||
if (abfd && input_bfd
|
||
&& abfd->xvec == input_bfd->xvec)
|
||
lh = 0;
|
||
else
|
||
{
|
||
h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
|
||
lh = (struct bfd_link_hash_entry *) h;
|
||
}
|
||
lookup:
|
||
if (lh)
|
||
{
|
||
switch (lh->type)
|
||
{
|
||
case bfd_link_hash_undefined:
|
||
case bfd_link_hash_undefweak:
|
||
case bfd_link_hash_common:
|
||
gp_found = 0;
|
||
break;
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
gp_found = 1;
|
||
gp = lh->u.def.value;
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
case bfd_link_hash_warning:
|
||
lh = lh->u.i.link;
|
||
/* @@FIXME ignoring warning for now */
|
||
goto lookup;
|
||
case bfd_link_hash_new:
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
gp_found = 0;
|
||
}
|
||
/* end mips */
|
||
for (parent = reloc_vector; *parent != NULL; parent++)
|
||
{
|
||
char *error_message = NULL;
|
||
bfd_reloc_status_type r;
|
||
|
||
/* Specific to MIPS: Deal with relocation types that require
|
||
knowing the gp of the output bfd. */
|
||
asymbol *sym = *(*parent)->sym_ptr_ptr;
|
||
|
||
/* If we've managed to find the gp and have a special
|
||
function for the relocation then go ahead, else default
|
||
to the generic handling. */
|
||
if (gp_found
|
||
&& (*parent)->howto->special_function
|
||
== _bfd_mips_elf32_gprel16_reloc)
|
||
r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
|
||
input_section, relocatable,
|
||
data, gp);
|
||
else
|
||
r = bfd_perform_relocation (input_bfd, *parent, data,
|
||
input_section,
|
||
relocatable ? abfd : NULL,
|
||
&error_message);
|
||
|
||
if (relocatable)
|
||
{
|
||
asection *os = input_section->output_section;
|
||
|
||
/* A partial link, so keep the relocs */
|
||
os->orelocation[os->reloc_count] = *parent;
|
||
os->reloc_count++;
|
||
}
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_undefined:
|
||
if (!((*link_info->callbacks->undefined_symbol)
|
||
(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
|
||
input_bfd, input_section, (*parent)->address, TRUE)))
|
||
goto error_return;
|
||
break;
|
||
case bfd_reloc_dangerous:
|
||
BFD_ASSERT (error_message != NULL);
|
||
if (!((*link_info->callbacks->reloc_dangerous)
|
||
(link_info, error_message, input_bfd, input_section,
|
||
(*parent)->address)))
|
||
goto error_return;
|
||
break;
|
||
case bfd_reloc_overflow:
|
||
if (!((*link_info->callbacks->reloc_overflow)
|
||
(link_info, NULL,
|
||
bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
|
||
(*parent)->howto->name, (*parent)->addend,
|
||
input_bfd, input_section, (*parent)->address)))
|
||
goto error_return;
|
||
break;
|
||
case bfd_reloc_outofrange:
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
}
|
||
}
|
||
}
|
||
if (reloc_vector != NULL)
|
||
free (reloc_vector);
|
||
return data;
|
||
|
||
error_return:
|
||
if (reloc_vector != NULL)
|
||
free (reloc_vector);
|
||
return NULL;
|
||
}
|
||
|
||
static bfd_boolean
|
||
mips_elf_relax_delete_bytes (bfd *abfd,
|
||
asection *sec, bfd_vma addr, int count)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
unsigned int sec_shndx;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
Elf_Internal_Sym *isym;
|
||
Elf_Internal_Sym *isymend;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
struct elf_link_hash_entry **start_hashes;
|
||
unsigned int symcount;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
irel = elf_section_data (sec)->relocs;
|
||
irelend = irel + sec->reloc_count;
|
||
|
||
/* Actually delete the bytes. */
|
||
memmove (contents + addr, contents + addr + count,
|
||
(size_t) (sec->size - addr - count));
|
||
sec->size -= count;
|
||
|
||
/* Adjust all the relocs. */
|
||
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
||
{
|
||
/* Get the new reloc address. */
|
||
if (irel->r_offset > addr)
|
||
irel->r_offset -= count;
|
||
}
|
||
|
||
BFD_ASSERT (addr % 2 == 0);
|
||
BFD_ASSERT (count % 2 == 0);
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
|
||
if (isym->st_shndx == sec_shndx && isym->st_value > addr)
|
||
isym->st_value -= count;
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = start_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec)
|
||
{
|
||
bfd_vma value = sym_hash->root.u.def.value;
|
||
|
||
if (ELF_ST_IS_MICROMIPS (sym_hash->other))
|
||
value &= MINUS_TWO;
|
||
if (value > addr)
|
||
sym_hash->root.u.def.value -= count;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Opcodes needed for microMIPS relaxation as found in
|
||
opcodes/micromips-opc.c. */
|
||
|
||
struct opcode_descriptor {
|
||
unsigned long match;
|
||
unsigned long mask;
|
||
};
|
||
|
||
/* The $ra register aka $31. */
|
||
|
||
#define RA 31
|
||
|
||
/* 32-bit instruction format register fields. */
|
||
|
||
#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
|
||
#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
|
||
|
||
/* Check if a 5-bit register index can be abbreviated to 3 bits. */
|
||
|
||
#define OP16_VALID_REG(r) \
|
||
((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
|
||
|
||
|
||
/* 32-bit and 16-bit branches. */
|
||
|
||
static const struct opcode_descriptor b_insns_32[] = {
|
||
{ /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
|
||
{ /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
static const struct opcode_descriptor bc_insn_32 =
|
||
{ /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
|
||
|
||
static const struct opcode_descriptor bz_insn_32 =
|
||
{ /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
|
||
|
||
static const struct opcode_descriptor bzal_insn_32 =
|
||
{ /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
|
||
|
||
static const struct opcode_descriptor beq_insn_32 =
|
||
{ /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
|
||
|
||
static const struct opcode_descriptor b_insn_16 =
|
||
{ /* "b", "mD", */ 0xcc00, 0xfc00 };
|
||
|
||
static const struct opcode_descriptor bz_insn_16 =
|
||
{ /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
|
||
|
||
|
||
/* 32-bit and 16-bit branch EQ and NE zero. */
|
||
|
||
/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
|
||
eq and second the ne. This convention is used when replacing a
|
||
32-bit BEQ/BNE with the 16-bit version. */
|
||
|
||
#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
|
||
|
||
static const struct opcode_descriptor bz_rs_insns_32[] = {
|
||
{ /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
|
||
{ /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
static const struct opcode_descriptor bz_rt_insns_32[] = {
|
||
{ /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
|
||
{ /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
static const struct opcode_descriptor bzc_insns_32[] = {
|
||
{ /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
|
||
{ /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
static const struct opcode_descriptor bz_insns_16[] = {
|
||
{ /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
|
||
{ /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
/* Switch between a 5-bit register index and its 3-bit shorthand. */
|
||
|
||
#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
|
||
#define BZ16_REG_FIELD(r) \
|
||
(((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
|
||
|
||
|
||
/* 32-bit instructions with a delay slot. */
|
||
|
||
static const struct opcode_descriptor jal_insn_32_bd16 =
|
||
{ /* "jals", "a", */ 0x74000000, 0xfc000000 };
|
||
|
||
static const struct opcode_descriptor jal_insn_32_bd32 =
|
||
{ /* "jal", "a", */ 0xf4000000, 0xfc000000 };
|
||
|
||
static const struct opcode_descriptor jal_x_insn_32_bd32 =
|
||
{ /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
|
||
|
||
static const struct opcode_descriptor j_insn_32 =
|
||
{ /* "j", "a", */ 0xd4000000, 0xfc000000 };
|
||
|
||
static const struct opcode_descriptor jalr_insn_32 =
|
||
{ /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
|
||
|
||
/* This table can be compacted, because no opcode replacement is made. */
|
||
|
||
static const struct opcode_descriptor ds_insns_32_bd16[] = {
|
||
{ /* "jals", "a", */ 0x74000000, 0xfc000000 },
|
||
|
||
{ /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
|
||
{ /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
|
||
|
||
{ /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
|
||
{ /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
|
||
{ /* "j", "a", */ 0xd4000000, 0xfc000000 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
/* This table can be compacted, because no opcode replacement is made. */
|
||
|
||
static const struct opcode_descriptor ds_insns_32_bd32[] = {
|
||
{ /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
|
||
|
||
{ /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
|
||
{ /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
|
||
/* 16-bit instructions with a delay slot. */
|
||
|
||
static const struct opcode_descriptor jalr_insn_16_bd16 =
|
||
{ /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
|
||
|
||
static const struct opcode_descriptor jalr_insn_16_bd32 =
|
||
{ /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
|
||
|
||
static const struct opcode_descriptor jr_insn_16 =
|
||
{ /* "jr", "mj", */ 0x4580, 0xffe0 };
|
||
|
||
#define JR16_REG(opcode) ((opcode) & 0x1f)
|
||
|
||
/* This table can be compacted, because no opcode replacement is made. */
|
||
|
||
static const struct opcode_descriptor ds_insns_16_bd16[] = {
|
||
{ /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
|
||
|
||
{ /* "b", "mD", */ 0xcc00, 0xfc00 },
|
||
{ /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
|
||
{ /* "jr", "mj", */ 0x4580, 0xffe0 },
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
|
||
/* LUI instruction. */
|
||
|
||
static const struct opcode_descriptor lui_insn =
|
||
{ /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
|
||
|
||
|
||
/* ADDIU instruction. */
|
||
|
||
static const struct opcode_descriptor addiu_insn =
|
||
{ /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
|
||
|
||
static const struct opcode_descriptor addiupc_insn =
|
||
{ /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
|
||
|
||
#define ADDIUPC_REG_FIELD(r) \
|
||
(((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
|
||
|
||
|
||
/* Relaxable instructions in a JAL delay slot: MOVE. */
|
||
|
||
/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
|
||
(ADDU, OR) have rd in 15:11 and rs in 10:16. */
|
||
#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
|
||
#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
|
||
|
||
#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
|
||
#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
|
||
|
||
static const struct opcode_descriptor move_insns_32[] = {
|
||
{ /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
|
||
{ /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
|
||
{ 0, 0 } /* End marker for find_match(). */
|
||
};
|
||
|
||
static const struct opcode_descriptor move_insn_16 =
|
||
{ /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
|
||
|
||
|
||
/* NOP instructions. */
|
||
|
||
static const struct opcode_descriptor nop_insn_32 =
|
||
{ /* "nop", "", */ 0x00000000, 0xffffffff };
|
||
|
||
static const struct opcode_descriptor nop_insn_16 =
|
||
{ /* "nop", "", */ 0x0c00, 0xffff };
|
||
|
||
|
||
/* Instruction match support. */
|
||
|
||
#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
|
||
|
||
static int
|
||
find_match (unsigned long opcode, const struct opcode_descriptor insn[])
|
||
{
|
||
unsigned long indx;
|
||
|
||
for (indx = 0; insn[indx].mask != 0; indx++)
|
||
if (MATCH (opcode, insn[indx]))
|
||
return indx;
|
||
|
||
return -1;
|
||
}
|
||
|
||
|
||
/* Branch and delay slot decoding support. */
|
||
|
||
/* If PTR points to what *might* be a 16-bit branch or jump, then
|
||
return the minimum length of its delay slot, otherwise return 0.
|
||
Non-zero results are not definitive as we might be checking against
|
||
the second half of another instruction. */
|
||
|
||
static int
|
||
check_br16_dslot (bfd *abfd, bfd_byte *ptr)
|
||
{
|
||
unsigned long opcode;
|
||
int bdsize;
|
||
|
||
opcode = bfd_get_16 (abfd, ptr);
|
||
if (MATCH (opcode, jalr_insn_16_bd32) != 0)
|
||
/* 16-bit branch/jump with a 32-bit delay slot. */
|
||
bdsize = 4;
|
||
else if (MATCH (opcode, jalr_insn_16_bd16) != 0
|
||
|| find_match (opcode, ds_insns_16_bd16) >= 0)
|
||
/* 16-bit branch/jump with a 16-bit delay slot. */
|
||
bdsize = 2;
|
||
else
|
||
/* No delay slot. */
|
||
bdsize = 0;
|
||
|
||
return bdsize;
|
||
}
|
||
|
||
/* If PTR points to what *might* be a 32-bit branch or jump, then
|
||
return the minimum length of its delay slot, otherwise return 0.
|
||
Non-zero results are not definitive as we might be checking against
|
||
the second half of another instruction. */
|
||
|
||
static int
|
||
check_br32_dslot (bfd *abfd, bfd_byte *ptr)
|
||
{
|
||
unsigned long opcode;
|
||
int bdsize;
|
||
|
||
opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
|
||
if (find_match (opcode, ds_insns_32_bd32) >= 0)
|
||
/* 32-bit branch/jump with a 32-bit delay slot. */
|
||
bdsize = 4;
|
||
else if (find_match (opcode, ds_insns_32_bd16) >= 0)
|
||
/* 32-bit branch/jump with a 16-bit delay slot. */
|
||
bdsize = 2;
|
||
else
|
||
/* No delay slot. */
|
||
bdsize = 0;
|
||
|
||
return bdsize;
|
||
}
|
||
|
||
/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
|
||
that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
|
||
|
||
static bfd_boolean
|
||
check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
|
||
{
|
||
unsigned long opcode;
|
||
|
||
opcode = bfd_get_16 (abfd, ptr);
|
||
if (MATCH (opcode, b_insn_16)
|
||
/* B16 */
|
||
|| (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
|
||
/* JR16 */
|
||
|| (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
|
||
/* BEQZ16, BNEZ16 */
|
||
|| (MATCH (opcode, jalr_insn_16_bd32)
|
||
/* JALR16 */
|
||
&& reg != JR16_REG (opcode) && reg != RA))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
|
||
then return TRUE, otherwise FALSE. */
|
||
|
||
static bfd_boolean
|
||
check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
|
||
{
|
||
unsigned long opcode;
|
||
|
||
opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
|
||
if (MATCH (opcode, j_insn_32)
|
||
/* J */
|
||
|| MATCH (opcode, bc_insn_32)
|
||
/* BC1F, BC1T, BC2F, BC2T */
|
||
|| (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
|
||
/* JAL, JALX */
|
||
|| (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
|
||
/* BGEZ, BGTZ, BLEZ, BLTZ */
|
||
|| (MATCH (opcode, bzal_insn_32)
|
||
/* BGEZAL, BLTZAL */
|
||
&& reg != OP32_SREG (opcode) && reg != RA)
|
||
|| ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
|
||
/* JALR, JALR.HB, BEQ, BNE */
|
||
&& reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
|
||
IRELEND) at OFFSET indicate that there must be a compact branch there,
|
||
then return TRUE, otherwise FALSE. */
|
||
|
||
static bfd_boolean
|
||
check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
|
||
const Elf_Internal_Rela *internal_relocs,
|
||
const Elf_Internal_Rela *irelend)
|
||
{
|
||
const Elf_Internal_Rela *irel;
|
||
unsigned long opcode;
|
||
|
||
opcode = bfd_get_16 (abfd, ptr);
|
||
opcode <<= 16;
|
||
opcode |= bfd_get_16 (abfd, ptr + 2);
|
||
if (find_match (opcode, bzc_insns_32) < 0)
|
||
return FALSE;
|
||
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
if (irel->r_offset == offset
|
||
&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Bitsize checking. */
|
||
#define IS_BITSIZE(val, N) \
|
||
(((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
|
||
- (1ULL << ((N) - 1))) == (val))
|
||
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *contents = NULL;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
/* We don't have to do anything for a relocatable link, if
|
||
this section does not have relocs, or if this is not a
|
||
code section. */
|
||
|
||
if (link_info->relocatable
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
/* Walk through them looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
|
||
unsigned int r_type = ELF32_R_TYPE (irel->r_info);
|
||
bfd_boolean target_is_micromips_code_p;
|
||
unsigned long opcode;
|
||
bfd_vma symval;
|
||
bfd_vma pcrval;
|
||
bfd_byte *ptr;
|
||
int fndopc;
|
||
|
||
/* The number of bytes to delete for relaxation and from where
|
||
to delete these bytes starting at irel->r_offset. */
|
||
int delcnt = 0;
|
||
int deloff = 0;
|
||
|
||
/* If this isn't something that can be relaxed, then ignore
|
||
this reloc. */
|
||
if (r_type != R_MICROMIPS_HI16
|
||
&& r_type != R_MICROMIPS_PC16_S1
|
||
&& r_type != R_MICROMIPS_26_S1)
|
||
continue;
|
||
|
||
/* Get the section contents if we haven't done so already. */
|
||
if (contents == NULL)
|
||
{
|
||
/* Get cached copy if it exists. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
/* Go get them off disk. */
|
||
else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
}
|
||
ptr = contents + irel->r_offset;
|
||
|
||
/* Read this BFD's local symbols if we haven't done so already. */
|
||
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
asection *sym_sec;
|
||
|
||
isym = isymbuf + r_symndx;
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
symval = (isym->st_value
|
||
+ sym_sec->output_section->vma
|
||
+ sym_sec->output_offset);
|
||
target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
/* An external symbol. */
|
||
indx = r_symndx - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
|
||
if (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it -- it will be caught by the
|
||
regular reloc processing. */
|
||
continue;
|
||
|
||
symval = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
target_is_micromips_code_p = (!h->needs_plt
|
||
&& ELF_ST_IS_MICROMIPS (h->other));
|
||
}
|
||
|
||
|
||
/* For simplicity of coding, we are going to modify the
|
||
section contents, the section relocs, and the BFD symbol
|
||
table. We must tell the rest of the code not to free up this
|
||
information. It would be possible to instead create a table
|
||
of changes which have to be made, as is done in coff-mips.c;
|
||
that would be more work, but would require less memory when
|
||
the linker is run. */
|
||
|
||
/* Only 32-bit instructions relaxed. */
|
||
if (irel->r_offset + 4 > sec->size)
|
||
continue;
|
||
|
||
opcode = bfd_get_16 (abfd, ptr ) << 16;
|
||
opcode |= bfd_get_16 (abfd, ptr + 2);
|
||
|
||
/* This is the pc-relative distance from the instruction the
|
||
relocation is applied to, to the symbol referred. */
|
||
pcrval = (symval
|
||
- (sec->output_section->vma + sec->output_offset)
|
||
- irel->r_offset);
|
||
|
||
/* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
|
||
of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
|
||
R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
|
||
|
||
(symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
|
||
|
||
where pcrval has first to be adjusted to apply against the LO16
|
||
location (we make the adjustment later on, when we have figured
|
||
out the offset). */
|
||
if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
|
||
{
|
||
bfd_boolean bzc = FALSE;
|
||
unsigned long nextopc;
|
||
unsigned long reg;
|
||
bfd_vma offset;
|
||
|
||
/* Give up if the previous reloc was a HI16 against this symbol
|
||
too. */
|
||
if (irel > internal_relocs
|
||
&& ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
|
||
&& ELF32_R_SYM (irel[-1].r_info) == r_symndx)
|
||
continue;
|
||
|
||
/* Or if the next reloc is not a LO16 against this symbol. */
|
||
if (irel + 1 >= irelend
|
||
|| ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
|
||
|| ELF32_R_SYM (irel[1].r_info) != r_symndx)
|
||
continue;
|
||
|
||
/* Or if the second next reloc is a LO16 against this symbol too. */
|
||
if (irel + 2 >= irelend
|
||
&& ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
|
||
&& ELF32_R_SYM (irel[2].r_info) == r_symndx)
|
||
continue;
|
||
|
||
/* See if the LUI instruction *might* be in a branch delay slot.
|
||
We check whether what looks like a 16-bit branch or jump is
|
||
actually an immediate argument to a compact branch, and let
|
||
it through if so. */
|
||
if (irel->r_offset >= 2
|
||
&& check_br16_dslot (abfd, ptr - 2)
|
||
&& !(irel->r_offset >= 4
|
||
&& (bzc = check_relocated_bzc (abfd,
|
||
ptr - 4, irel->r_offset - 4,
|
||
internal_relocs, irelend))))
|
||
continue;
|
||
if (irel->r_offset >= 4
|
||
&& !bzc
|
||
&& check_br32_dslot (abfd, ptr - 4))
|
||
continue;
|
||
|
||
reg = OP32_SREG (opcode);
|
||
|
||
/* We only relax adjacent instructions or ones separated with
|
||
a branch or jump that has a delay slot. The branch or jump
|
||
must not fiddle with the register used to hold the address.
|
||
Subtract 4 for the LUI itself. */
|
||
offset = irel[1].r_offset - irel[0].r_offset;
|
||
switch (offset - 4)
|
||
{
|
||
case 0:
|
||
break;
|
||
case 2:
|
||
if (check_br16 (abfd, ptr + 4, reg))
|
||
break;
|
||
continue;
|
||
case 4:
|
||
if (check_br32 (abfd, ptr + 4, reg))
|
||
break;
|
||
continue;
|
||
default:
|
||
continue;
|
||
}
|
||
|
||
nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
|
||
nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
|
||
|
||
/* Give up unless the same register is used with both
|
||
relocations. */
|
||
if (OP32_SREG (nextopc) != reg)
|
||
continue;
|
||
|
||
/* Now adjust pcrval, subtracting the offset to the LO16 reloc
|
||
and rounding up to take masking of the two LSBs into account. */
|
||
pcrval = ((pcrval - offset + 3) | 3) ^ 3;
|
||
|
||
/* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
|
||
if (IS_BITSIZE (symval, 16))
|
||
{
|
||
/* Fix the relocation's type. */
|
||
irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
|
||
|
||
/* Instructions using R_MICROMIPS_LO16 have the base or
|
||
source register in bits 20:16. This register becomes $0
|
||
(zero) as the result of the R_MICROMIPS_HI16 being 0. */
|
||
nextopc &= ~0x001f0000;
|
||
bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
|
||
contents + irel[1].r_offset);
|
||
}
|
||
|
||
/* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
|
||
We add 4 to take LUI deletion into account while checking
|
||
the PC-relative distance. */
|
||
else if (symval % 4 == 0
|
||
&& IS_BITSIZE (pcrval + 4, 25)
|
||
&& MATCH (nextopc, addiu_insn)
|
||
&& OP32_TREG (nextopc) == OP32_SREG (nextopc)
|
||
&& OP16_VALID_REG (OP32_TREG (nextopc)))
|
||
{
|
||
/* Fix the relocation's type. */
|
||
irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
|
||
|
||
/* Replace ADDIU with the ADDIUPC version. */
|
||
nextopc = (addiupc_insn.match
|
||
| ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
|
||
|
||
bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
|
||
contents + irel[1].r_offset);
|
||
bfd_put_16 (abfd, nextopc & 0xffff,
|
||
contents + irel[1].r_offset + 2);
|
||
}
|
||
|
||
/* Can't do anything, give up, sigh... */
|
||
else
|
||
continue;
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
|
||
|
||
/* Delete the LUI instruction: 4 bytes at irel->r_offset. */
|
||
delcnt = 4;
|
||
deloff = 0;
|
||
}
|
||
|
||
/* Compact branch relaxation -- due to the multitude of macros
|
||
employed by the compiler/assembler, compact branches are not
|
||
always generated. Obviously, this can/will be fixed elsewhere,
|
||
but there is no drawback in double checking it here. */
|
||
else if (r_type == R_MICROMIPS_PC16_S1
|
||
&& irel->r_offset + 5 < sec->size
|
||
&& ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
|
||
|| (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
|
||
&& MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
|
||
{
|
||
unsigned long reg;
|
||
|
||
reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
|
||
|
||
/* Replace BEQZ/BNEZ with the compact version. */
|
||
opcode = (bzc_insns_32[fndopc].match
|
||
| BZC32_REG_FIELD (reg)
|
||
| (opcode & 0xffff)); /* Addend value. */
|
||
|
||
bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
|
||
bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
|
||
|
||
/* Delete the 16-bit delay slot NOP: two bytes from
|
||
irel->offset + 4. */
|
||
delcnt = 2;
|
||
deloff = 4;
|
||
}
|
||
|
||
/* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
|
||
to check the distance from the next instruction, so subtract 2. */
|
||
else if (r_type == R_MICROMIPS_PC16_S1
|
||
&& IS_BITSIZE (pcrval - 2, 11)
|
||
&& find_match (opcode, b_insns_32) >= 0)
|
||
{
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
|
||
|
||
/* Replace the the 32-bit opcode with a 16-bit opcode. */
|
||
bfd_put_16 (abfd,
|
||
(b_insn_16.match
|
||
| (opcode & 0x3ff)), /* Addend value. */
|
||
ptr);
|
||
|
||
/* Delete 2 bytes from irel->r_offset + 2. */
|
||
delcnt = 2;
|
||
deloff = 2;
|
||
}
|
||
|
||
/* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
|
||
to check the distance from the next instruction, so subtract 2. */
|
||
else if (r_type == R_MICROMIPS_PC16_S1
|
||
&& IS_BITSIZE (pcrval - 2, 8)
|
||
&& (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
|
||
&& OP16_VALID_REG (OP32_SREG (opcode)))
|
||
|| ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
|
||
&& OP16_VALID_REG (OP32_TREG (opcode)))))
|
||
{
|
||
unsigned long reg;
|
||
|
||
reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
|
||
|
||
/* Replace the the 32-bit opcode with a 16-bit opcode. */
|
||
bfd_put_16 (abfd,
|
||
(bz_insns_16[fndopc].match
|
||
| BZ16_REG_FIELD (reg)
|
||
| (opcode & 0x7f)), /* Addend value. */
|
||
ptr);
|
||
|
||
/* Delete 2 bytes from irel->r_offset + 2. */
|
||
delcnt = 2;
|
||
deloff = 2;
|
||
}
|
||
|
||
/* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
|
||
else if (r_type == R_MICROMIPS_26_S1
|
||
&& target_is_micromips_code_p
|
||
&& irel->r_offset + 7 < sec->size
|
||
&& MATCH (opcode, jal_insn_32_bd32))
|
||
{
|
||
unsigned long n32opc;
|
||
bfd_boolean relaxed = FALSE;
|
||
|
||
n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
|
||
n32opc |= bfd_get_16 (abfd, ptr + 6);
|
||
|
||
if (MATCH (n32opc, nop_insn_32))
|
||
{
|
||
/* Replace delay slot 32-bit NOP with a 16-bit NOP. */
|
||
bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
|
||
|
||
relaxed = TRUE;
|
||
}
|
||
else if (find_match (n32opc, move_insns_32) >= 0)
|
||
{
|
||
/* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
|
||
bfd_put_16 (abfd,
|
||
(move_insn_16.match
|
||
| MOVE16_RD_FIELD (MOVE32_RD (n32opc))
|
||
| MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
|
||
ptr + 4);
|
||
|
||
relaxed = TRUE;
|
||
}
|
||
/* Other 32-bit instructions relaxable to 16-bit
|
||
instructions will be handled here later. */
|
||
|
||
if (relaxed)
|
||
{
|
||
/* JAL with 32-bit delay slot that is changed to a JALS
|
||
with 16-bit delay slot. */
|
||
bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
|
||
ptr);
|
||
bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
|
||
ptr + 2);
|
||
|
||
/* Delete 2 bytes from irel->r_offset + 6. */
|
||
delcnt = 2;
|
||
deloff = 6;
|
||
}
|
||
}
|
||
|
||
if (delcnt != 0)
|
||
{
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Delete bytes depending on the delcnt and deloff. */
|
||
if (!mips_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + deloff, delcnt))
|
||
goto error_return;
|
||
|
||
/* That will change things, so we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (isymbuf);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
}
|
||
}
|
||
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
free (contents);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Create a MIPS ELF linker hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_mips_elf_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct mips_elf_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
|
||
|
||
ret = bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
mips_elf_link_hash_newfunc,
|
||
sizeof (struct mips_elf_link_hash_entry),
|
||
MIPS_ELF_DATA))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
#if 0
|
||
/* We no longer use this. */
|
||
for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
|
||
ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
|
||
#endif
|
||
ret->procedure_count = 0;
|
||
ret->compact_rel_size = 0;
|
||
ret->use_rld_obj_head = FALSE;
|
||
ret->rld_value = 0;
|
||
ret->mips16_stubs_seen = FALSE;
|
||
ret->use_plts_and_copy_relocs = FALSE;
|
||
ret->is_vxworks = FALSE;
|
||
ret->small_data_overflow_reported = FALSE;
|
||
ret->srelbss = NULL;
|
||
ret->sdynbss = NULL;
|
||
ret->srelplt = NULL;
|
||
ret->srelplt2 = NULL;
|
||
ret->sgotplt = NULL;
|
||
ret->splt = NULL;
|
||
ret->sstubs = NULL;
|
||
ret->sgot = NULL;
|
||
ret->got_info = NULL;
|
||
ret->plt_header_size = 0;
|
||
ret->plt_entry_size = 0;
|
||
ret->lazy_stub_count = 0;
|
||
ret->function_stub_size = 0;
|
||
ret->strampoline = NULL;
|
||
ret->la25_stubs = NULL;
|
||
ret->add_stub_section = NULL;
|
||
|
||
return &ret->root.root;
|
||
}
|
||
|
||
/* Likewise, but indicate that the target is VxWorks. */
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct bfd_link_hash_table *ret;
|
||
|
||
ret = _bfd_mips_elf_link_hash_table_create (abfd);
|
||
if (ret)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
htab = (struct mips_elf_link_hash_table *) ret;
|
||
htab->use_plts_and_copy_relocs = TRUE;
|
||
htab->is_vxworks = TRUE;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* A function that the linker calls if we are allowed to use PLTs
|
||
and copy relocs. */
|
||
|
||
void
|
||
_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
|
||
{
|
||
mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
|
||
}
|
||
|
||
/* We need to use a special link routine to handle the .reginfo and
|
||
the .mdebug sections. We need to merge all instances of these
|
||
sections together, not write them all out sequentially. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
asection *o;
|
||
struct bfd_link_order *p;
|
||
asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
|
||
asection *rtproc_sec;
|
||
Elf32_RegInfo reginfo;
|
||
struct ecoff_debug_info debug;
|
||
struct mips_htab_traverse_info hti;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
|
||
HDRR *symhdr = &debug.symbolic_header;
|
||
void *mdebug_handle = NULL;
|
||
asection *s;
|
||
EXTR esym;
|
||
unsigned int i;
|
||
bfd_size_type amt;
|
||
struct mips_elf_link_hash_table *htab;
|
||
|
||
static const char * const secname[] =
|
||
{
|
||
".text", ".init", ".fini", ".data",
|
||
".rodata", ".sdata", ".sbss", ".bss"
|
||
};
|
||
static const int sc[] =
|
||
{
|
||
scText, scInit, scFini, scData,
|
||
scRData, scSData, scSBss, scBss
|
||
};
|
||
|
||
/* Sort the dynamic symbols so that those with GOT entries come after
|
||
those without. */
|
||
htab = mips_elf_hash_table (info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
if (!mips_elf_sort_hash_table (abfd, info))
|
||
return FALSE;
|
||
|
||
/* Create any scheduled LA25 stubs. */
|
||
hti.info = info;
|
||
hti.output_bfd = abfd;
|
||
hti.error = FALSE;
|
||
htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
|
||
if (hti.error)
|
||
return FALSE;
|
||
|
||
/* Get a value for the GP register. */
|
||
if (elf_gp (abfd) == 0)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
|
||
if (h != NULL && h->type == bfd_link_hash_defined)
|
||
elf_gp (abfd) = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
else if (htab->is_vxworks
|
||
&& (h = bfd_link_hash_lookup (info->hash,
|
||
"_GLOBAL_OFFSET_TABLE_",
|
||
FALSE, FALSE, TRUE))
|
||
&& h->type == bfd_link_hash_defined)
|
||
elf_gp (abfd) = (h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset
|
||
+ h->u.def.value);
|
||
else if (info->relocatable)
|
||
{
|
||
bfd_vma lo = MINUS_ONE;
|
||
|
||
/* Find the GP-relative section with the lowest offset. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
if (o->vma < lo
|
||
&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
|
||
lo = o->vma;
|
||
|
||
/* And calculate GP relative to that. */
|
||
elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
|
||
}
|
||
else
|
||
{
|
||
/* If the relocate_section function needs to do a reloc
|
||
involving the GP value, it should make a reloc_dangerous
|
||
callback to warn that GP is not defined. */
|
||
}
|
||
}
|
||
|
||
/* Go through the sections and collect the .reginfo and .mdebug
|
||
information. */
|
||
reginfo_sec = NULL;
|
||
mdebug_sec = NULL;
|
||
gptab_data_sec = NULL;
|
||
gptab_bss_sec = NULL;
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if (strcmp (o->name, ".reginfo") == 0)
|
||
{
|
||
memset (®info, 0, sizeof reginfo);
|
||
|
||
/* We have found the .reginfo section in the output file.
|
||
Look through all the link_orders comprising it and merge
|
||
the information together. */
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
Elf32_External_RegInfo ext;
|
||
Elf32_RegInfo sub;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_data_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
|
||
if (! bfd_get_section_contents (input_bfd, input_section,
|
||
&ext, 0, sizeof ext))
|
||
return FALSE;
|
||
|
||
bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
|
||
|
||
reginfo.ri_gprmask |= sub.ri_gprmask;
|
||
reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
|
||
reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
|
||
reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
|
||
reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
|
||
|
||
/* ri_gp_value is set by the function
|
||
mips_elf32_section_processing when the section is
|
||
finally written out. */
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &= ~SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* Size has been set in _bfd_mips_elf_always_size_sections. */
|
||
BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
o->map_head.link_order = NULL;
|
||
|
||
reginfo_sec = o;
|
||
}
|
||
|
||
if (strcmp (o->name, ".mdebug") == 0)
|
||
{
|
||
struct extsym_info einfo;
|
||
bfd_vma last;
|
||
|
||
/* We have found the .mdebug section in the output file.
|
||
Look through all the link_orders comprising it and merge
|
||
the information together. */
|
||
symhdr->magic = swap->sym_magic;
|
||
/* FIXME: What should the version stamp be? */
|
||
symhdr->vstamp = 0;
|
||
symhdr->ilineMax = 0;
|
||
symhdr->cbLine = 0;
|
||
symhdr->idnMax = 0;
|
||
symhdr->ipdMax = 0;
|
||
symhdr->isymMax = 0;
|
||
symhdr->ioptMax = 0;
|
||
symhdr->iauxMax = 0;
|
||
symhdr->issMax = 0;
|
||
symhdr->issExtMax = 0;
|
||
symhdr->ifdMax = 0;
|
||
symhdr->crfd = 0;
|
||
symhdr->iextMax = 0;
|
||
|
||
/* We accumulate the debugging information itself in the
|
||
debug_info structure. */
|
||
debug.line = NULL;
|
||
debug.external_dnr = NULL;
|
||
debug.external_pdr = NULL;
|
||
debug.external_sym = NULL;
|
||
debug.external_opt = NULL;
|
||
debug.external_aux = NULL;
|
||
debug.ss = NULL;
|
||
debug.ssext = debug.ssext_end = NULL;
|
||
debug.external_fdr = NULL;
|
||
debug.external_rfd = NULL;
|
||
debug.external_ext = debug.external_ext_end = NULL;
|
||
|
||
mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
|
||
if (mdebug_handle == NULL)
|
||
return FALSE;
|
||
|
||
esym.jmptbl = 0;
|
||
esym.cobol_main = 0;
|
||
esym.weakext = 0;
|
||
esym.reserved = 0;
|
||
esym.ifd = ifdNil;
|
||
esym.asym.iss = issNil;
|
||
esym.asym.st = stLocal;
|
||
esym.asym.reserved = 0;
|
||
esym.asym.index = indexNil;
|
||
last = 0;
|
||
for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
|
||
{
|
||
esym.asym.sc = sc[i];
|
||
s = bfd_get_section_by_name (abfd, secname[i]);
|
||
if (s != NULL)
|
||
{
|
||
esym.asym.value = s->vma;
|
||
last = s->vma + s->size;
|
||
}
|
||
else
|
||
esym.asym.value = last;
|
||
if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
|
||
secname[i], &esym))
|
||
return FALSE;
|
||
}
|
||
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
const struct ecoff_debug_swap *input_swap;
|
||
struct ecoff_debug_info input_debug;
|
||
char *eraw_src;
|
||
char *eraw_end;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_data_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
|
||
if (!is_mips_elf (input_bfd))
|
||
{
|
||
/* I don't know what a non MIPS ELF bfd would be
|
||
doing with a .mdebug section, but I don't really
|
||
want to deal with it. */
|
||
continue;
|
||
}
|
||
|
||
input_swap = (get_elf_backend_data (input_bfd)
|
||
->elf_backend_ecoff_debug_swap);
|
||
|
||
BFD_ASSERT (p->size == input_section->size);
|
||
|
||
/* The ECOFF linking code expects that we have already
|
||
read in the debugging information and set up an
|
||
ecoff_debug_info structure, so we do that now. */
|
||
if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
|
||
&input_debug))
|
||
return FALSE;
|
||
|
||
if (! (bfd_ecoff_debug_accumulate
|
||
(mdebug_handle, abfd, &debug, swap, input_bfd,
|
||
&input_debug, input_swap, info)))
|
||
return FALSE;
|
||
|
||
/* Loop through the external symbols. For each one with
|
||
interesting information, try to find the symbol in
|
||
the linker global hash table and save the information
|
||
for the output external symbols. */
|
||
eraw_src = input_debug.external_ext;
|
||
eraw_end = (eraw_src
|
||
+ (input_debug.symbolic_header.iextMax
|
||
* input_swap->external_ext_size));
|
||
for (;
|
||
eraw_src < eraw_end;
|
||
eraw_src += input_swap->external_ext_size)
|
||
{
|
||
EXTR ext;
|
||
const char *name;
|
||
struct mips_elf_link_hash_entry *h;
|
||
|
||
(*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
|
||
if (ext.asym.sc == scNil
|
||
|| ext.asym.sc == scUndefined
|
||
|| ext.asym.sc == scSUndefined)
|
||
continue;
|
||
|
||
name = input_debug.ssext + ext.asym.iss;
|
||
h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
|
||
name, FALSE, FALSE, TRUE);
|
||
if (h == NULL || h->esym.ifd != -2)
|
||
continue;
|
||
|
||
if (ext.ifd != -1)
|
||
{
|
||
BFD_ASSERT (ext.ifd
|
||
< input_debug.symbolic_header.ifdMax);
|
||
ext.ifd = input_debug.ifdmap[ext.ifd];
|
||
}
|
||
|
||
h->esym = ext;
|
||
}
|
||
|
||
/* Free up the information we just read. */
|
||
free (input_debug.line);
|
||
free (input_debug.external_dnr);
|
||
free (input_debug.external_pdr);
|
||
free (input_debug.external_sym);
|
||
free (input_debug.external_opt);
|
||
free (input_debug.external_aux);
|
||
free (input_debug.ss);
|
||
free (input_debug.ssext);
|
||
free (input_debug.external_fdr);
|
||
free (input_debug.external_rfd);
|
||
free (input_debug.external_ext);
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &= ~SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
if (SGI_COMPAT (abfd) && info->shared)
|
||
{
|
||
/* Create .rtproc section. */
|
||
rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
|
||
if (rtproc_sec == NULL)
|
||
{
|
||
flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED | SEC_READONLY);
|
||
|
||
rtproc_sec = bfd_make_section_with_flags (abfd,
|
||
".rtproc",
|
||
flags);
|
||
if (rtproc_sec == NULL
|
||
|| ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
|
||
return FALSE;
|
||
}
|
||
|
||
if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
|
||
info, rtproc_sec,
|
||
&debug))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Build the external symbol information. */
|
||
einfo.abfd = abfd;
|
||
einfo.info = info;
|
||
einfo.debug = &debug;
|
||
einfo.swap = swap;
|
||
einfo.failed = FALSE;
|
||
mips_elf_link_hash_traverse (mips_elf_hash_table (info),
|
||
mips_elf_output_extsym, &einfo);
|
||
if (einfo.failed)
|
||
return FALSE;
|
||
|
||
/* Set the size of the .mdebug section. */
|
||
o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
o->map_head.link_order = NULL;
|
||
|
||
mdebug_sec = o;
|
||
}
|
||
|
||
if (CONST_STRNEQ (o->name, ".gptab."))
|
||
{
|
||
const char *subname;
|
||
unsigned int c;
|
||
Elf32_gptab *tab;
|
||
Elf32_External_gptab *ext_tab;
|
||
unsigned int j;
|
||
|
||
/* The .gptab.sdata and .gptab.sbss sections hold
|
||
information describing how the small data area would
|
||
change depending upon the -G switch. These sections
|
||
not used in executables files. */
|
||
if (! info->relocatable)
|
||
{
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
asection *input_section;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_data_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &= ~SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* Skip this section later on (I don't think this
|
||
currently matters, but someday it might). */
|
||
o->map_head.link_order = NULL;
|
||
|
||
/* Really remove the section. */
|
||
bfd_section_list_remove (abfd, o);
|
||
--abfd->section_count;
|
||
|
||
continue;
|
||
}
|
||
|
||
/* There is one gptab for initialized data, and one for
|
||
uninitialized data. */
|
||
if (strcmp (o->name, ".gptab.sdata") == 0)
|
||
gptab_data_sec = o;
|
||
else if (strcmp (o->name, ".gptab.sbss") == 0)
|
||
gptab_bss_sec = o;
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s: illegal section name `%s'"),
|
||
bfd_get_filename (abfd), o->name);
|
||
bfd_set_error (bfd_error_nonrepresentable_section);
|
||
return FALSE;
|
||
}
|
||
|
||
/* The linker script always combines .gptab.data and
|
||
.gptab.sdata into .gptab.sdata, and likewise for
|
||
.gptab.bss and .gptab.sbss. It is possible that there is
|
||
no .sdata or .sbss section in the output file, in which
|
||
case we must change the name of the output section. */
|
||
subname = o->name + sizeof ".gptab" - 1;
|
||
if (bfd_get_section_by_name (abfd, subname) == NULL)
|
||
{
|
||
if (o == gptab_data_sec)
|
||
o->name = ".gptab.data";
|
||
else
|
||
o->name = ".gptab.bss";
|
||
subname = o->name + sizeof ".gptab" - 1;
|
||
BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
|
||
}
|
||
|
||
/* Set up the first entry. */
|
||
c = 1;
|
||
amt = c * sizeof (Elf32_gptab);
|
||
tab = bfd_malloc (amt);
|
||
if (tab == NULL)
|
||
return FALSE;
|
||
tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
|
||
tab[0].gt_header.gt_unused = 0;
|
||
|
||
/* Combine the input sections. */
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
bfd_size_type size;
|
||
unsigned long last;
|
||
bfd_size_type gpentry;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_data_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
|
||
/* Combine the gptab entries for this input section one
|
||
by one. We know that the input gptab entries are
|
||
sorted by ascending -G value. */
|
||
size = input_section->size;
|
||
last = 0;
|
||
for (gpentry = sizeof (Elf32_External_gptab);
|
||
gpentry < size;
|
||
gpentry += sizeof (Elf32_External_gptab))
|
||
{
|
||
Elf32_External_gptab ext_gptab;
|
||
Elf32_gptab int_gptab;
|
||
unsigned long val;
|
||
unsigned long add;
|
||
bfd_boolean exact;
|
||
unsigned int look;
|
||
|
||
if (! (bfd_get_section_contents
|
||
(input_bfd, input_section, &ext_gptab, gpentry,
|
||
sizeof (Elf32_External_gptab))))
|
||
{
|
||
free (tab);
|
||
return FALSE;
|
||
}
|
||
|
||
bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
|
||
&int_gptab);
|
||
val = int_gptab.gt_entry.gt_g_value;
|
||
add = int_gptab.gt_entry.gt_bytes - last;
|
||
|
||
exact = FALSE;
|
||
for (look = 1; look < c; look++)
|
||
{
|
||
if (tab[look].gt_entry.gt_g_value >= val)
|
||
tab[look].gt_entry.gt_bytes += add;
|
||
|
||
if (tab[look].gt_entry.gt_g_value == val)
|
||
exact = TRUE;
|
||
}
|
||
|
||
if (! exact)
|
||
{
|
||
Elf32_gptab *new_tab;
|
||
unsigned int max;
|
||
|
||
/* We need a new table entry. */
|
||
amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
|
||
new_tab = bfd_realloc (tab, amt);
|
||
if (new_tab == NULL)
|
||
{
|
||
free (tab);
|
||
return FALSE;
|
||
}
|
||
tab = new_tab;
|
||
tab[c].gt_entry.gt_g_value = val;
|
||
tab[c].gt_entry.gt_bytes = add;
|
||
|
||
/* Merge in the size for the next smallest -G
|
||
value, since that will be implied by this new
|
||
value. */
|
||
max = 0;
|
||
for (look = 1; look < c; look++)
|
||
{
|
||
if (tab[look].gt_entry.gt_g_value < val
|
||
&& (max == 0
|
||
|| (tab[look].gt_entry.gt_g_value
|
||
> tab[max].gt_entry.gt_g_value)))
|
||
max = look;
|
||
}
|
||
if (max != 0)
|
||
tab[c].gt_entry.gt_bytes +=
|
||
tab[max].gt_entry.gt_bytes;
|
||
|
||
++c;
|
||
}
|
||
|
||
last = int_gptab.gt_entry.gt_bytes;
|
||
}
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &= ~SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* The table must be sorted by -G value. */
|
||
if (c > 2)
|
||
qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
|
||
|
||
/* Swap out the table. */
|
||
amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
|
||
ext_tab = bfd_alloc (abfd, amt);
|
||
if (ext_tab == NULL)
|
||
{
|
||
free (tab);
|
||
return FALSE;
|
||
}
|
||
|
||
for (j = 0; j < c; j++)
|
||
bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
|
||
free (tab);
|
||
|
||
o->size = c * sizeof (Elf32_External_gptab);
|
||
o->contents = (bfd_byte *) ext_tab;
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
o->map_head.link_order = NULL;
|
||
}
|
||
}
|
||
|
||
/* Invoke the regular ELF backend linker to do all the work. */
|
||
if (!bfd_elf_final_link (abfd, info))
|
||
return FALSE;
|
||
|
||
/* Now write out the computed sections. */
|
||
|
||
if (reginfo_sec != NULL)
|
||
{
|
||
Elf32_External_RegInfo ext;
|
||
|
||
bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
|
||
if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
|
||
return FALSE;
|
||
}
|
||
|
||
if (mdebug_sec != NULL)
|
||
{
|
||
BFD_ASSERT (abfd->output_has_begun);
|
||
if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
|
||
swap, info,
|
||
mdebug_sec->filepos))
|
||
return FALSE;
|
||
|
||
bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
|
||
}
|
||
|
||
if (gptab_data_sec != NULL)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, gptab_data_sec,
|
||
gptab_data_sec->contents,
|
||
0, gptab_data_sec->size))
|
||
return FALSE;
|
||
}
|
||
|
||
if (gptab_bss_sec != NULL)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, gptab_bss_sec,
|
||
gptab_bss_sec->contents,
|
||
0, gptab_bss_sec->size))
|
||
return FALSE;
|
||
}
|
||
|
||
if (SGI_COMPAT (abfd))
|
||
{
|
||
rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
|
||
if (rtproc_sec != NULL)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, rtproc_sec,
|
||
rtproc_sec->contents,
|
||
0, rtproc_sec->size))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Structure for saying that BFD machine EXTENSION extends BASE. */
|
||
|
||
struct mips_mach_extension {
|
||
unsigned long extension, base;
|
||
};
|
||
|
||
|
||
/* An array describing how BFD machines relate to one another. The entries
|
||
are ordered topologically with MIPS I extensions listed last. */
|
||
|
||
static const struct mips_mach_extension mips_mach_extensions[] = {
|
||
/* MIPS64r2 extensions. */
|
||
{ bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
|
||
{ bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
|
||
{ bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
|
||
|
||
/* MIPS64 extensions. */
|
||
{ bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
|
||
{ bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
|
||
{ bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
|
||
{ bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
|
||
|
||
/* MIPS V extensions. */
|
||
{ bfd_mach_mipsisa64, bfd_mach_mips5 },
|
||
|
||
/* R10000 extensions. */
|
||
{ bfd_mach_mips12000, bfd_mach_mips10000 },
|
||
{ bfd_mach_mips14000, bfd_mach_mips10000 },
|
||
{ bfd_mach_mips16000, bfd_mach_mips10000 },
|
||
|
||
/* R5000 extensions. Note: the vr5500 ISA is an extension of the core
|
||
vr5400 ISA, but doesn't include the multimedia stuff. It seems
|
||
better to allow vr5400 and vr5500 code to be merged anyway, since
|
||
many libraries will just use the core ISA. Perhaps we could add
|
||
some sort of ASE flag if this ever proves a problem. */
|
||
{ bfd_mach_mips5500, bfd_mach_mips5400 },
|
||
{ bfd_mach_mips5400, bfd_mach_mips5000 },
|
||
|
||
/* MIPS IV extensions. */
|
||
{ bfd_mach_mips5, bfd_mach_mips8000 },
|
||
{ bfd_mach_mips10000, bfd_mach_mips8000 },
|
||
{ bfd_mach_mips5000, bfd_mach_mips8000 },
|
||
{ bfd_mach_mips7000, bfd_mach_mips8000 },
|
||
{ bfd_mach_mips9000, bfd_mach_mips8000 },
|
||
|
||
/* VR4100 extensions. */
|
||
{ bfd_mach_mips4120, bfd_mach_mips4100 },
|
||
{ bfd_mach_mips4111, bfd_mach_mips4100 },
|
||
|
||
/* MIPS III extensions. */
|
||
{ bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips8000, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips4650, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips4600, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips4400, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips4300, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips4100, bfd_mach_mips4000 },
|
||
{ bfd_mach_mips4010, bfd_mach_mips4000 },
|
||
|
||
/* MIPS32 extensions. */
|
||
{ bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
|
||
|
||
/* MIPS II extensions. */
|
||
{ bfd_mach_mips4000, bfd_mach_mips6000 },
|
||
{ bfd_mach_mipsisa32, bfd_mach_mips6000 },
|
||
|
||
/* MIPS I extensions. */
|
||
{ bfd_mach_mips6000, bfd_mach_mips3000 },
|
||
{ bfd_mach_mips3900, bfd_mach_mips3000 }
|
||
};
|
||
|
||
|
||
/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
|
||
|
||
static bfd_boolean
|
||
mips_mach_extends_p (unsigned long base, unsigned long extension)
|
||
{
|
||
size_t i;
|
||
|
||
if (extension == base)
|
||
return TRUE;
|
||
|
||
if (base == bfd_mach_mipsisa32
|
||
&& mips_mach_extends_p (bfd_mach_mipsisa64, extension))
|
||
return TRUE;
|
||
|
||
if (base == bfd_mach_mipsisa32r2
|
||
&& mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
|
||
return TRUE;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
|
||
if (extension == mips_mach_extensions[i].extension)
|
||
{
|
||
extension = mips_mach_extensions[i].base;
|
||
if (extension == base)
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Return true if the given ELF header flags describe a 32-bit binary. */
|
||
|
||
static bfd_boolean
|
||
mips_32bit_flags_p (flagword flags)
|
||
{
|
||
return ((flags & EF_MIPS_32BITMODE) != 0
|
||
|| (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
|
||
|| (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
|
||
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
|
||
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
|
||
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
|
||
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
|
||
}
|
||
|
||
|
||
/* Merge object attributes from IBFD into OBFD. Raise an error if
|
||
there are conflicting attributes. */
|
||
static bfd_boolean
|
||
mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
|
||
{
|
||
obj_attribute *in_attr;
|
||
obj_attribute *out_attr;
|
||
|
||
if (!elf_known_obj_attributes_proc (obfd)[0].i)
|
||
{
|
||
/* This is the first object. Copy the attributes. */
|
||
_bfd_elf_copy_obj_attributes (ibfd, obfd);
|
||
|
||
/* Use the Tag_null value to indicate the attributes have been
|
||
initialized. */
|
||
elf_known_obj_attributes_proc (obfd)[0].i = 1;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
|
||
non-conflicting ones. */
|
||
in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
|
||
out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
|
||
if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
|
||
{
|
||
out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
|
||
if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
|
||
out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
|
||
else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
|
||
;
|
||
else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses unknown floating point ABI %d"), ibfd,
|
||
in_attr[Tag_GNU_MIPS_ABI_FP].i);
|
||
else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses unknown floating point ABI %d"), obfd,
|
||
out_attr[Tag_GNU_MIPS_ABI_FP].i);
|
||
else
|
||
switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
|
||
{
|
||
case 1:
|
||
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
||
{
|
||
case 2:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
|
||
obfd, ibfd);
|
||
break;
|
||
|
||
case 3:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses hard float, %B uses soft float"),
|
||
obfd, ibfd);
|
||
break;
|
||
|
||
case 4:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
|
||
obfd, ibfd);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case 2:
|
||
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
||
{
|
||
case 1:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
|
||
ibfd, obfd);
|
||
break;
|
||
|
||
case 3:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses hard float, %B uses soft float"),
|
||
obfd, ibfd);
|
||
break;
|
||
|
||
case 4:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
|
||
obfd, ibfd);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case 3:
|
||
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
||
{
|
||
case 1:
|
||
case 2:
|
||
case 4:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses hard float, %B uses soft float"),
|
||
ibfd, obfd);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case 4:
|
||
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
||
{
|
||
case 1:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
|
||
ibfd, obfd);
|
||
break;
|
||
|
||
case 2:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
|
||
ibfd, obfd);
|
||
break;
|
||
|
||
case 3:
|
||
_bfd_error_handler
|
||
(_("Warning: %B uses hard float, %B uses soft float"),
|
||
obfd, ibfd);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Merge Tag_compatibility attributes and any common GNU ones. */
|
||
_bfd_elf_merge_object_attributes (ibfd, obfd);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
flagword old_flags;
|
||
flagword new_flags;
|
||
bfd_boolean ok;
|
||
bfd_boolean null_input_bfd = TRUE;
|
||
asection *sec;
|
||
|
||
/* Check if we have the same endianness. */
|
||
if (! _bfd_generic_verify_endian_match (ibfd, obfd))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: endianness incompatible with that of the selected emulation"),
|
||
ibfd);
|
||
return FALSE;
|
||
}
|
||
|
||
if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
|
||
return TRUE;
|
||
|
||
if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: ABI is incompatible with that of the selected emulation"),
|
||
ibfd);
|
||
return FALSE;
|
||
}
|
||
|
||
if (!mips_elf_merge_obj_attributes (ibfd, obfd))
|
||
return FALSE;
|
||
|
||
new_flags = elf_elfheader (ibfd)->e_flags;
|
||
elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
|
||
old_flags = elf_elfheader (obfd)->e_flags;
|
||
|
||
if (! elf_flags_init (obfd))
|
||
{
|
||
elf_flags_init (obfd) = TRUE;
|
||
elf_elfheader (obfd)->e_flags = new_flags;
|
||
elf_elfheader (obfd)->e_ident[EI_CLASS]
|
||
= elf_elfheader (ibfd)->e_ident[EI_CLASS];
|
||
|
||
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
||
&& (bfd_get_arch_info (obfd)->the_default
|
||
|| mips_mach_extends_p (bfd_get_mach (obfd),
|
||
bfd_get_mach (ibfd))))
|
||
{
|
||
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
||
bfd_get_mach (ibfd)))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Check flag compatibility. */
|
||
|
||
new_flags &= ~EF_MIPS_NOREORDER;
|
||
old_flags &= ~EF_MIPS_NOREORDER;
|
||
|
||
/* Some IRIX 6 BSD-compatibility objects have this bit set. It
|
||
doesn't seem to matter. */
|
||
new_flags &= ~EF_MIPS_XGOT;
|
||
old_flags &= ~EF_MIPS_XGOT;
|
||
|
||
/* MIPSpro generates ucode info in n64 objects. Again, we should
|
||
just be able to ignore this. */
|
||
new_flags &= ~EF_MIPS_UCODE;
|
||
old_flags &= ~EF_MIPS_UCODE;
|
||
|
||
/* DSOs should only be linked with CPIC code. */
|
||
if ((ibfd->flags & DYNAMIC) != 0)
|
||
new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
|
||
|
||
if (new_flags == old_flags)
|
||
return TRUE;
|
||
|
||
/* Check to see if the input BFD actually contains any sections.
|
||
If not, its flags may not have been initialised either, but it cannot
|
||
actually cause any incompatibility. */
|
||
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
/* Ignore synthetic sections and empty .text, .data and .bss sections
|
||
which are automatically generated by gas. Also ignore fake
|
||
(s)common sections, since merely defining a common symbol does
|
||
not affect compatibility. */
|
||
if ((sec->flags & SEC_IS_COMMON) == 0
|
||
&& strcmp (sec->name, ".reginfo")
|
||
&& strcmp (sec->name, ".mdebug")
|
||
&& (sec->size != 0
|
||
|| (strcmp (sec->name, ".text")
|
||
&& strcmp (sec->name, ".data")
|
||
&& strcmp (sec->name, ".bss"))))
|
||
{
|
||
null_input_bfd = FALSE;
|
||
break;
|
||
}
|
||
}
|
||
if (null_input_bfd)
|
||
return TRUE;
|
||
|
||
ok = TRUE;
|
||
|
||
if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
|
||
!= ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: warning: linking abicalls files with non-abicalls files"),
|
||
ibfd);
|
||
ok = TRUE;
|
||
}
|
||
|
||
if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
|
||
elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
|
||
if (! (new_flags & EF_MIPS_PIC))
|
||
elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
|
||
|
||
new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
|
||
old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
|
||
|
||
/* Compare the ISAs. */
|
||
if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: linking 32-bit code with 64-bit code"),
|
||
ibfd);
|
||
ok = FALSE;
|
||
}
|
||
else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
|
||
{
|
||
/* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
|
||
if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
|
||
{
|
||
/* Copy the architecture info from IBFD to OBFD. Also copy
|
||
the 32-bit flag (if set) so that we continue to recognise
|
||
OBFD as a 32-bit binary. */
|
||
bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
|
||
elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
|
||
elf_elfheader (obfd)->e_flags
|
||
|= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
|
||
|
||
/* Copy across the ABI flags if OBFD doesn't use them
|
||
and if that was what caused us to treat IBFD as 32-bit. */
|
||
if ((old_flags & EF_MIPS_ABI) == 0
|
||
&& mips_32bit_flags_p (new_flags)
|
||
&& !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
|
||
elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
|
||
}
|
||
else
|
||
{
|
||
/* The ISAs aren't compatible. */
|
||
(*_bfd_error_handler)
|
||
(_("%B: linking %s module with previous %s modules"),
|
||
ibfd,
|
||
bfd_printable_name (ibfd),
|
||
bfd_printable_name (obfd));
|
||
ok = FALSE;
|
||
}
|
||
}
|
||
|
||
new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
|
||
old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
|
||
|
||
/* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
|
||
does set EI_CLASS differently from any 32-bit ABI. */
|
||
if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
|
||
|| (elf_elfheader (ibfd)->e_ident[EI_CLASS]
|
||
!= elf_elfheader (obfd)->e_ident[EI_CLASS]))
|
||
{
|
||
/* Only error if both are set (to different values). */
|
||
if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
|
||
|| (elf_elfheader (ibfd)->e_ident[EI_CLASS]
|
||
!= elf_elfheader (obfd)->e_ident[EI_CLASS]))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: ABI mismatch: linking %s module with previous %s modules"),
|
||
ibfd,
|
||
elf_mips_abi_name (ibfd),
|
||
elf_mips_abi_name (obfd));
|
||
ok = FALSE;
|
||
}
|
||
new_flags &= ~EF_MIPS_ABI;
|
||
old_flags &= ~EF_MIPS_ABI;
|
||
}
|
||
|
||
/* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
|
||
and allow arbitrary mixing of the remaining ASEs (retain the union). */
|
||
if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
|
||
{
|
||
int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
|
||
int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
|
||
int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
|
||
int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
|
||
int micro_mis = old_m16 && new_micro;
|
||
int m16_mis = old_micro && new_m16;
|
||
|
||
if (m16_mis || micro_mis)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: ASE mismatch: linking %s module with previous %s modules"),
|
||
ibfd,
|
||
m16_mis ? "MIPS16" : "microMIPS",
|
||
m16_mis ? "microMIPS" : "MIPS16");
|
||
ok = FALSE;
|
||
}
|
||
|
||
elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
|
||
|
||
new_flags &= ~ EF_MIPS_ARCH_ASE;
|
||
old_flags &= ~ EF_MIPS_ARCH_ASE;
|
||
}
|
||
|
||
/* Warn about any other mismatches */
|
||
if (new_flags != old_flags)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
|
||
ibfd, (unsigned long) new_flags,
|
||
(unsigned long) old_flags);
|
||
ok = FALSE;
|
||
}
|
||
|
||
if (! ok)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
|
||
{
|
||
BFD_ASSERT (!elf_flags_init (abfd)
|
||
|| elf_elfheader (abfd)->e_flags == flags);
|
||
|
||
elf_elfheader (abfd)->e_flags = flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
char *
|
||
_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
|
||
{
|
||
switch (dtag)
|
||
{
|
||
default: return "";
|
||
case DT_MIPS_RLD_VERSION:
|
||
return "MIPS_RLD_VERSION";
|
||
case DT_MIPS_TIME_STAMP:
|
||
return "MIPS_TIME_STAMP";
|
||
case DT_MIPS_ICHECKSUM:
|
||
return "MIPS_ICHECKSUM";
|
||
case DT_MIPS_IVERSION:
|
||
return "MIPS_IVERSION";
|
||
case DT_MIPS_FLAGS:
|
||
return "MIPS_FLAGS";
|
||
case DT_MIPS_BASE_ADDRESS:
|
||
return "MIPS_BASE_ADDRESS";
|
||
case DT_MIPS_MSYM:
|
||
return "MIPS_MSYM";
|
||
case DT_MIPS_CONFLICT:
|
||
return "MIPS_CONFLICT";
|
||
case DT_MIPS_LIBLIST:
|
||
return "MIPS_LIBLIST";
|
||
case DT_MIPS_LOCAL_GOTNO:
|
||
return "MIPS_LOCAL_GOTNO";
|
||
case DT_MIPS_CONFLICTNO:
|
||
return "MIPS_CONFLICTNO";
|
||
case DT_MIPS_LIBLISTNO:
|
||
return "MIPS_LIBLISTNO";
|
||
case DT_MIPS_SYMTABNO:
|
||
return "MIPS_SYMTABNO";
|
||
case DT_MIPS_UNREFEXTNO:
|
||
return "MIPS_UNREFEXTNO";
|
||
case DT_MIPS_GOTSYM:
|
||
return "MIPS_GOTSYM";
|
||
case DT_MIPS_HIPAGENO:
|
||
return "MIPS_HIPAGENO";
|
||
case DT_MIPS_RLD_MAP:
|
||
return "MIPS_RLD_MAP";
|
||
case DT_MIPS_DELTA_CLASS:
|
||
return "MIPS_DELTA_CLASS";
|
||
case DT_MIPS_DELTA_CLASS_NO:
|
||
return "MIPS_DELTA_CLASS_NO";
|
||
case DT_MIPS_DELTA_INSTANCE:
|
||
return "MIPS_DELTA_INSTANCE";
|
||
case DT_MIPS_DELTA_INSTANCE_NO:
|
||
return "MIPS_DELTA_INSTANCE_NO";
|
||
case DT_MIPS_DELTA_RELOC:
|
||
return "MIPS_DELTA_RELOC";
|
||
case DT_MIPS_DELTA_RELOC_NO:
|
||
return "MIPS_DELTA_RELOC_NO";
|
||
case DT_MIPS_DELTA_SYM:
|
||
return "MIPS_DELTA_SYM";
|
||
case DT_MIPS_DELTA_SYM_NO:
|
||
return "MIPS_DELTA_SYM_NO";
|
||
case DT_MIPS_DELTA_CLASSSYM:
|
||
return "MIPS_DELTA_CLASSSYM";
|
||
case DT_MIPS_DELTA_CLASSSYM_NO:
|
||
return "MIPS_DELTA_CLASSSYM_NO";
|
||
case DT_MIPS_CXX_FLAGS:
|
||
return "MIPS_CXX_FLAGS";
|
||
case DT_MIPS_PIXIE_INIT:
|
||
return "MIPS_PIXIE_INIT";
|
||
case DT_MIPS_SYMBOL_LIB:
|
||
return "MIPS_SYMBOL_LIB";
|
||
case DT_MIPS_LOCALPAGE_GOTIDX:
|
||
return "MIPS_LOCALPAGE_GOTIDX";
|
||
case DT_MIPS_LOCAL_GOTIDX:
|
||
return "MIPS_LOCAL_GOTIDX";
|
||
case DT_MIPS_HIDDEN_GOTIDX:
|
||
return "MIPS_HIDDEN_GOTIDX";
|
||
case DT_MIPS_PROTECTED_GOTIDX:
|
||
return "MIPS_PROTECTED_GOT_IDX";
|
||
case DT_MIPS_OPTIONS:
|
||
return "MIPS_OPTIONS";
|
||
case DT_MIPS_INTERFACE:
|
||
return "MIPS_INTERFACE";
|
||
case DT_MIPS_DYNSTR_ALIGN:
|
||
return "DT_MIPS_DYNSTR_ALIGN";
|
||
case DT_MIPS_INTERFACE_SIZE:
|
||
return "DT_MIPS_INTERFACE_SIZE";
|
||
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
|
||
return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
|
||
case DT_MIPS_PERF_SUFFIX:
|
||
return "DT_MIPS_PERF_SUFFIX";
|
||
case DT_MIPS_COMPACT_SIZE:
|
||
return "DT_MIPS_COMPACT_SIZE";
|
||
case DT_MIPS_GP_VALUE:
|
||
return "DT_MIPS_GP_VALUE";
|
||
case DT_MIPS_AUX_DYNAMIC:
|
||
return "DT_MIPS_AUX_DYNAMIC";
|
||
case DT_MIPS_PLTGOT:
|
||
return "DT_MIPS_PLTGOT";
|
||
case DT_MIPS_RWPLT:
|
||
return "DT_MIPS_RWPLT";
|
||
}
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
|
||
{
|
||
FILE *file = ptr;
|
||
|
||
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
||
|
||
/* Print normal ELF private data. */
|
||
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
||
|
||
/* xgettext:c-format */
|
||
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
||
|
||
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
|
||
fprintf (file, _(" [abi=O32]"));
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
|
||
fprintf (file, _(" [abi=O64]"));
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
|
||
fprintf (file, _(" [abi=EABI32]"));
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
|
||
fprintf (file, _(" [abi=EABI64]"));
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
|
||
fprintf (file, _(" [abi unknown]"));
|
||
else if (ABI_N32_P (abfd))
|
||
fprintf (file, _(" [abi=N32]"));
|
||
else if (ABI_64_P (abfd))
|
||
fprintf (file, _(" [abi=64]"));
|
||
else
|
||
fprintf (file, _(" [no abi set]"));
|
||
|
||
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
|
||
fprintf (file, " [mips1]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
|
||
fprintf (file, " [mips2]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
|
||
fprintf (file, " [mips3]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
|
||
fprintf (file, " [mips4]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
|
||
fprintf (file, " [mips5]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
|
||
fprintf (file, " [mips32]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
|
||
fprintf (file, " [mips64]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
|
||
fprintf (file, " [mips32r2]");
|
||
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
|
||
fprintf (file, " [mips64r2]");
|
||
else
|
||
fprintf (file, _(" [unknown ISA]"));
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
|
||
fprintf (file, " [mdmx]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
|
||
fprintf (file, " [mips16]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
|
||
fprintf (file, " [micromips]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
|
||
fprintf (file, " [32bitmode]");
|
||
else
|
||
fprintf (file, _(" [not 32bitmode]"));
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
|
||
fprintf (file, " [noreorder]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
|
||
fprintf (file, " [PIC]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
|
||
fprintf (file, " [CPIC]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
|
||
fprintf (file, " [XGOT]");
|
||
|
||
if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
|
||
fprintf (file, " [UCODE]");
|
||
|
||
fputc ('\n', file);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
|
||
{
|
||
{ STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
||
{ STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
||
{ STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
|
||
{ STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
||
{ STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
||
{ STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
/* Merge non visibility st_other attributes. Ensure that the
|
||
STO_OPTIONAL flag is copied into h->other, even if this is not a
|
||
definiton of the symbol. */
|
||
void
|
||
_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
|
||
const Elf_Internal_Sym *isym,
|
||
bfd_boolean definition,
|
||
bfd_boolean dynamic ATTRIBUTE_UNUSED)
|
||
{
|
||
if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
|
||
{
|
||
unsigned char other;
|
||
|
||
other = (definition ? isym->st_other : h->other);
|
||
other &= ~ELF_ST_VISIBILITY (-1);
|
||
h->other = other | ELF_ST_VISIBILITY (h->other);
|
||
}
|
||
|
||
if (!definition
|
||
&& ELF_MIPS_IS_OPTIONAL (isym->st_other))
|
||
h->other |= STO_OPTIONAL;
|
||
}
|
||
|
||
/* Decide whether an undefined symbol is special and can be ignored.
|
||
This is the case for OPTIONAL symbols on IRIX. */
|
||
bfd_boolean
|
||
_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
|
||
{
|
||
return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
|
||
{
|
||
return (sym->st_shndx == SHN_COMMON
|
||
|| sym->st_shndx == SHN_MIPS_ACOMMON
|
||
|| sym->st_shndx == SHN_MIPS_SCOMMON);
|
||
}
|
||
|
||
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
||
or (bfd_vma) -1 if it should not be included. */
|
||
|
||
bfd_vma
|
||
_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
|
||
const arelent *rel ATTRIBUTE_UNUSED)
|
||
{
|
||
return (plt->vma
|
||
+ 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
|
||
+ i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
|
||
}
|
||
|
||
void
|
||
_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
|
||
{
|
||
struct mips_elf_link_hash_table *htab;
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
if (link_info)
|
||
{
|
||
htab = mips_elf_hash_table (link_info);
|
||
BFD_ASSERT (htab != NULL);
|
||
|
||
if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
|
||
i_ehdrp->e_ident[EI_ABIVERSION] = 1;
|
||
}
|
||
}
|