1aa20aa88f
* eval.c, findvar.c, gnu-v2-abi.c, gnu-v3-abi.c, jv-lang.c, jv-valprint.c, printcmd.c, stack.c, top.c, valarith.c, valops.c, values.c: Update.
1378 lines
36 KiB
C
1378 lines
36 KiB
C
/* Perform arithmetic and other operations on values, for GDB.
|
||
Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "value.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "gdb_string.h"
|
||
#include "doublest.h"
|
||
#include <math.h>
|
||
|
||
/* Define whether or not the C operator '/' truncates towards zero for
|
||
differently signed operands (truncation direction is undefined in C). */
|
||
|
||
#ifndef TRUNCATION_TOWARDS_ZERO
|
||
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
|
||
#endif
|
||
|
||
static value_ptr value_subscripted_rvalue (value_ptr, value_ptr, int);
|
||
|
||
void _initialize_valarith (void);
|
||
|
||
|
||
value_ptr
|
||
value_add (value_ptr arg1, value_ptr arg2)
|
||
{
|
||
register value_ptr valint, valptr;
|
||
register int len;
|
||
struct type *type1, *type2, *valptrtype;
|
||
|
||
COERCE_NUMBER (arg1);
|
||
COERCE_NUMBER (arg2);
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
|
||
if ((TYPE_CODE (type1) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (type2) == TYPE_CODE_PTR)
|
||
&&
|
||
(TYPE_CODE (type1) == TYPE_CODE_INT
|
||
|| TYPE_CODE (type2) == TYPE_CODE_INT))
|
||
/* Exactly one argument is a pointer, and one is an integer. */
|
||
{
|
||
value_ptr retval;
|
||
|
||
if (TYPE_CODE (type1) == TYPE_CODE_PTR)
|
||
{
|
||
valptr = arg1;
|
||
valint = arg2;
|
||
valptrtype = type1;
|
||
}
|
||
else
|
||
{
|
||
valptr = arg2;
|
||
valint = arg1;
|
||
valptrtype = type2;
|
||
}
|
||
len = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (valptrtype)));
|
||
if (len == 0)
|
||
len = 1; /* For (void *) */
|
||
retval = value_from_pointer (valptrtype,
|
||
value_as_address (valptr)
|
||
+ (len * value_as_long (valint)));
|
||
VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr);
|
||
return retval;
|
||
}
|
||
|
||
return value_binop (arg1, arg2, BINOP_ADD);
|
||
}
|
||
|
||
value_ptr
|
||
value_sub (value_ptr arg1, value_ptr arg2)
|
||
{
|
||
struct type *type1, *type2;
|
||
COERCE_NUMBER (arg1);
|
||
COERCE_NUMBER (arg2);
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
|
||
if (TYPE_CODE (type1) == TYPE_CODE_PTR)
|
||
{
|
||
if (TYPE_CODE (type2) == TYPE_CODE_INT)
|
||
{
|
||
/* pointer - integer. */
|
||
LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
|
||
return value_from_pointer (type1,
|
||
(value_as_address (arg1)
|
||
- (sz * value_as_long (arg2))));
|
||
}
|
||
else if (TYPE_CODE (type2) == TYPE_CODE_PTR
|
||
&& TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
|
||
== TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
|
||
{
|
||
/* pointer to <type x> - pointer to <type x>. */
|
||
LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
|
||
return value_from_longest
|
||
(builtin_type_long, /* FIXME -- should be ptrdiff_t */
|
||
(value_as_long (arg1) - value_as_long (arg2)) / sz);
|
||
}
|
||
else
|
||
{
|
||
error ("\
|
||
First argument of `-' is a pointer and second argument is neither\n\
|
||
an integer nor a pointer of the same type.");
|
||
}
|
||
}
|
||
|
||
return value_binop (arg1, arg2, BINOP_SUB);
|
||
}
|
||
|
||
/* Return the value of ARRAY[IDX].
|
||
See comments in value_coerce_array() for rationale for reason for
|
||
doing lower bounds adjustment here rather than there.
|
||
FIXME: Perhaps we should validate that the index is valid and if
|
||
verbosity is set, warn about invalid indices (but still use them). */
|
||
|
||
value_ptr
|
||
value_subscript (value_ptr array, value_ptr idx)
|
||
{
|
||
value_ptr bound;
|
||
int c_style = current_language->c_style_arrays;
|
||
struct type *tarray;
|
||
|
||
COERCE_REF (array);
|
||
tarray = check_typedef (VALUE_TYPE (array));
|
||
COERCE_VARYING_ARRAY (array, tarray);
|
||
|
||
if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (tarray) == TYPE_CODE_STRING)
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (tarray);
|
||
LONGEST lowerbound, upperbound;
|
||
get_discrete_bounds (range_type, &lowerbound, &upperbound);
|
||
|
||
if (VALUE_LVAL (array) != lval_memory)
|
||
return value_subscripted_rvalue (array, idx, lowerbound);
|
||
|
||
if (c_style == 0)
|
||
{
|
||
LONGEST index = value_as_long (idx);
|
||
if (index >= lowerbound && index <= upperbound)
|
||
return value_subscripted_rvalue (array, idx, lowerbound);
|
||
warning ("array or string index out of range");
|
||
/* fall doing C stuff */
|
||
c_style = 1;
|
||
}
|
||
|
||
if (lowerbound != 0)
|
||
{
|
||
bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
|
||
idx = value_sub (idx, bound);
|
||
}
|
||
|
||
array = value_coerce_array (array);
|
||
}
|
||
|
||
if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (tarray);
|
||
LONGEST index = value_as_long (idx);
|
||
value_ptr v;
|
||
int offset, byte, bit_index;
|
||
LONGEST lowerbound, upperbound;
|
||
get_discrete_bounds (range_type, &lowerbound, &upperbound);
|
||
if (index < lowerbound || index > upperbound)
|
||
error ("bitstring index out of range");
|
||
index -= lowerbound;
|
||
offset = index / TARGET_CHAR_BIT;
|
||
byte = *((char *) VALUE_CONTENTS (array) + offset);
|
||
bit_index = index % TARGET_CHAR_BIT;
|
||
byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
|
||
v = value_from_longest (LA_BOOL_TYPE, byte & 1);
|
||
VALUE_BITPOS (v) = bit_index;
|
||
VALUE_BITSIZE (v) = 1;
|
||
VALUE_LVAL (v) = VALUE_LVAL (array);
|
||
if (VALUE_LVAL (array) == lval_internalvar)
|
||
VALUE_LVAL (v) = lval_internalvar_component;
|
||
VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
|
||
VALUE_OFFSET (v) = offset + VALUE_OFFSET (array);
|
||
return v;
|
||
}
|
||
|
||
if (c_style)
|
||
return value_ind (value_add (array, idx));
|
||
else
|
||
error ("not an array or string");
|
||
}
|
||
|
||
/* Return the value of EXPR[IDX], expr an aggregate rvalue
|
||
(eg, a vector register). This routine used to promote floats
|
||
to doubles, but no longer does. */
|
||
|
||
static value_ptr
|
||
value_subscripted_rvalue (value_ptr array, value_ptr idx, int lowerbound)
|
||
{
|
||
struct type *array_type = check_typedef (VALUE_TYPE (array));
|
||
struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
|
||
unsigned int elt_size = TYPE_LENGTH (elt_type);
|
||
LONGEST index = value_as_long (idx);
|
||
unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
|
||
value_ptr v;
|
||
|
||
if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
|
||
error ("no such vector element");
|
||
|
||
v = allocate_value (elt_type);
|
||
if (VALUE_LAZY (array))
|
||
VALUE_LAZY (v) = 1;
|
||
else
|
||
memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
|
||
|
||
if (VALUE_LVAL (array) == lval_internalvar)
|
||
VALUE_LVAL (v) = lval_internalvar_component;
|
||
else
|
||
VALUE_LVAL (v) = VALUE_LVAL (array);
|
||
VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
|
||
VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
|
||
return v;
|
||
}
|
||
|
||
/* Check to see if either argument is a structure. This is called so
|
||
we know whether to go ahead with the normal binop or look for a
|
||
user defined function instead.
|
||
|
||
For now, we do not overload the `=' operator. */
|
||
|
||
int
|
||
binop_user_defined_p (enum exp_opcode op, value_ptr arg1, value_ptr arg2)
|
||
{
|
||
struct type *type1, *type2;
|
||
if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
|
||
return 0;
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type2) == TYPE_CODE_STRUCT
|
||
|| (TYPE_CODE (type1) == TYPE_CODE_REF
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
|
||
|| (TYPE_CODE (type2) == TYPE_CODE_REF
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
|
||
}
|
||
|
||
/* Check to see if argument is a structure. This is called so
|
||
we know whether to go ahead with the normal unop or look for a
|
||
user defined function instead.
|
||
|
||
For now, we do not overload the `&' operator. */
|
||
|
||
int
|
||
unop_user_defined_p (enum exp_opcode op, value_ptr arg1)
|
||
{
|
||
struct type *type1;
|
||
if (op == UNOP_ADDR)
|
||
return 0;
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
for (;;)
|
||
{
|
||
if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
|
||
return 1;
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_REF)
|
||
type1 = TYPE_TARGET_TYPE (type1);
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* We know either arg1 or arg2 is a structure, so try to find the right
|
||
user defined function. Create an argument vector that calls
|
||
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
|
||
binary operator which is legal for GNU C++).
|
||
|
||
OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
|
||
is the opcode saying how to modify it. Otherwise, OTHEROP is
|
||
unused. */
|
||
|
||
value_ptr
|
||
value_x_binop (value_ptr arg1, value_ptr arg2, enum exp_opcode op,
|
||
enum exp_opcode otherop, enum noside noside)
|
||
{
|
||
value_ptr *argvec;
|
||
char *ptr;
|
||
char tstr[13];
|
||
int static_memfuncp;
|
||
|
||
COERCE_REF (arg1);
|
||
COERCE_REF (arg2);
|
||
COERCE_ENUM (arg1);
|
||
COERCE_ENUM (arg2);
|
||
|
||
/* now we know that what we have to do is construct our
|
||
arg vector and find the right function to call it with. */
|
||
|
||
if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
|
||
error ("Can't do that binary op on that type"); /* FIXME be explicit */
|
||
|
||
argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4);
|
||
argvec[1] = value_addr (arg1);
|
||
argvec[2] = arg2;
|
||
argvec[3] = 0;
|
||
|
||
/* make the right function name up */
|
||
strcpy (tstr, "operator__");
|
||
ptr = tstr + 8;
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
strcpy (ptr, "+");
|
||
break;
|
||
case BINOP_SUB:
|
||
strcpy (ptr, "-");
|
||
break;
|
||
case BINOP_MUL:
|
||
strcpy (ptr, "*");
|
||
break;
|
||
case BINOP_DIV:
|
||
strcpy (ptr, "/");
|
||
break;
|
||
case BINOP_REM:
|
||
strcpy (ptr, "%");
|
||
break;
|
||
case BINOP_LSH:
|
||
strcpy (ptr, "<<");
|
||
break;
|
||
case BINOP_RSH:
|
||
strcpy (ptr, ">>");
|
||
break;
|
||
case BINOP_BITWISE_AND:
|
||
strcpy (ptr, "&");
|
||
break;
|
||
case BINOP_BITWISE_IOR:
|
||
strcpy (ptr, "|");
|
||
break;
|
||
case BINOP_BITWISE_XOR:
|
||
strcpy (ptr, "^");
|
||
break;
|
||
case BINOP_LOGICAL_AND:
|
||
strcpy (ptr, "&&");
|
||
break;
|
||
case BINOP_LOGICAL_OR:
|
||
strcpy (ptr, "||");
|
||
break;
|
||
case BINOP_MIN:
|
||
strcpy (ptr, "<?");
|
||
break;
|
||
case BINOP_MAX:
|
||
strcpy (ptr, ">?");
|
||
break;
|
||
case BINOP_ASSIGN:
|
||
strcpy (ptr, "=");
|
||
break;
|
||
case BINOP_ASSIGN_MODIFY:
|
||
switch (otherop)
|
||
{
|
||
case BINOP_ADD:
|
||
strcpy (ptr, "+=");
|
||
break;
|
||
case BINOP_SUB:
|
||
strcpy (ptr, "-=");
|
||
break;
|
||
case BINOP_MUL:
|
||
strcpy (ptr, "*=");
|
||
break;
|
||
case BINOP_DIV:
|
||
strcpy (ptr, "/=");
|
||
break;
|
||
case BINOP_REM:
|
||
strcpy (ptr, "%=");
|
||
break;
|
||
case BINOP_BITWISE_AND:
|
||
strcpy (ptr, "&=");
|
||
break;
|
||
case BINOP_BITWISE_IOR:
|
||
strcpy (ptr, "|=");
|
||
break;
|
||
case BINOP_BITWISE_XOR:
|
||
strcpy (ptr, "^=");
|
||
break;
|
||
case BINOP_MOD: /* invalid */
|
||
default:
|
||
error ("Invalid binary operation specified.");
|
||
}
|
||
break;
|
||
case BINOP_SUBSCRIPT:
|
||
strcpy (ptr, "[]");
|
||
break;
|
||
case BINOP_EQUAL:
|
||
strcpy (ptr, "==");
|
||
break;
|
||
case BINOP_NOTEQUAL:
|
||
strcpy (ptr, "!=");
|
||
break;
|
||
case BINOP_LESS:
|
||
strcpy (ptr, "<");
|
||
break;
|
||
case BINOP_GTR:
|
||
strcpy (ptr, ">");
|
||
break;
|
||
case BINOP_GEQ:
|
||
strcpy (ptr, ">=");
|
||
break;
|
||
case BINOP_LEQ:
|
||
strcpy (ptr, "<=");
|
||
break;
|
||
case BINOP_MOD: /* invalid */
|
||
default:
|
||
error ("Invalid binary operation specified.");
|
||
}
|
||
|
||
argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
|
||
|
||
if (argvec[0])
|
||
{
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
argvec++;
|
||
}
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *return_type;
|
||
return_type
|
||
= TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
|
||
return value_zero (return_type, VALUE_LVAL (arg1));
|
||
}
|
||
return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
|
||
}
|
||
error ("member function %s not found", tstr);
|
||
#ifdef lint
|
||
return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
|
||
#endif
|
||
}
|
||
|
||
/* We know that arg1 is a structure, so try to find a unary user
|
||
defined operator that matches the operator in question.
|
||
Create an argument vector that calls arg1.operator @ (arg1)
|
||
and return that value (where '@' is (almost) any unary operator which
|
||
is legal for GNU C++). */
|
||
|
||
value_ptr
|
||
value_x_unop (value_ptr arg1, enum exp_opcode op, enum noside noside)
|
||
{
|
||
value_ptr *argvec;
|
||
char *ptr, *mangle_ptr;
|
||
char tstr[13], mangle_tstr[13];
|
||
int static_memfuncp;
|
||
|
||
COERCE_REF (arg1);
|
||
COERCE_ENUM (arg1);
|
||
|
||
/* now we know that what we have to do is construct our
|
||
arg vector and find the right function to call it with. */
|
||
|
||
if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
|
||
error ("Can't do that unary op on that type"); /* FIXME be explicit */
|
||
|
||
argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3);
|
||
argvec[1] = value_addr (arg1);
|
||
argvec[2] = 0;
|
||
|
||
/* make the right function name up */
|
||
strcpy (tstr, "operator__");
|
||
ptr = tstr + 8;
|
||
strcpy (mangle_tstr, "__");
|
||
mangle_ptr = mangle_tstr + 2;
|
||
switch (op)
|
||
{
|
||
case UNOP_PREINCREMENT:
|
||
strcpy (ptr, "++");
|
||
break;
|
||
case UNOP_PREDECREMENT:
|
||
strcpy (ptr, "++");
|
||
break;
|
||
case UNOP_POSTINCREMENT:
|
||
strcpy (ptr, "++");
|
||
break;
|
||
case UNOP_POSTDECREMENT:
|
||
strcpy (ptr, "++");
|
||
break;
|
||
case UNOP_LOGICAL_NOT:
|
||
strcpy (ptr, "!");
|
||
break;
|
||
case UNOP_COMPLEMENT:
|
||
strcpy (ptr, "~");
|
||
break;
|
||
case UNOP_NEG:
|
||
strcpy (ptr, "-");
|
||
break;
|
||
case UNOP_IND:
|
||
strcpy (ptr, "*");
|
||
break;
|
||
default:
|
||
error ("Invalid unary operation specified.");
|
||
}
|
||
|
||
argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
|
||
|
||
if (argvec[0])
|
||
{
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
argvec++;
|
||
}
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *return_type;
|
||
return_type
|
||
= TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
|
||
return value_zero (return_type, VALUE_LVAL (arg1));
|
||
}
|
||
return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1);
|
||
}
|
||
error ("member function %s not found", tstr);
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
|
||
|
||
/* Concatenate two values with the following conditions:
|
||
|
||
(1) Both values must be either bitstring values or character string
|
||
values and the resulting value consists of the concatenation of
|
||
ARG1 followed by ARG2.
|
||
|
||
or
|
||
|
||
One value must be an integer value and the other value must be
|
||
either a bitstring value or character string value, which is
|
||
to be repeated by the number of times specified by the integer
|
||
value.
|
||
|
||
|
||
(2) Boolean values are also allowed and are treated as bit string
|
||
values of length 1.
|
||
|
||
(3) Character values are also allowed and are treated as character
|
||
string values of length 1.
|
||
*/
|
||
|
||
value_ptr
|
||
value_concat (value_ptr arg1, value_ptr arg2)
|
||
{
|
||
register value_ptr inval1, inval2, outval = NULL;
|
||
int inval1len, inval2len;
|
||
int count, idx;
|
||
char *ptr;
|
||
char inchar;
|
||
struct type *type1 = check_typedef (VALUE_TYPE (arg1));
|
||
struct type *type2 = check_typedef (VALUE_TYPE (arg2));
|
||
|
||
COERCE_VARYING_ARRAY (arg1, type1);
|
||
COERCE_VARYING_ARRAY (arg2, type2);
|
||
|
||
/* First figure out if we are dealing with two values to be concatenated
|
||
or a repeat count and a value to be repeated. INVAL1 is set to the
|
||
first of two concatenated values, or the repeat count. INVAL2 is set
|
||
to the second of the two concatenated values or the value to be
|
||
repeated. */
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_INT)
|
||
{
|
||
struct type *tmp = type1;
|
||
type1 = tmp;
|
||
tmp = type2;
|
||
inval1 = arg2;
|
||
inval2 = arg1;
|
||
}
|
||
else
|
||
{
|
||
inval1 = arg1;
|
||
inval2 = arg2;
|
||
}
|
||
|
||
/* Now process the input values. */
|
||
|
||
if (TYPE_CODE (type1) == TYPE_CODE_INT)
|
||
{
|
||
/* We have a repeat count. Validate the second value and then
|
||
construct a value repeated that many times. */
|
||
if (TYPE_CODE (type2) == TYPE_CODE_STRING
|
||
|| TYPE_CODE (type2) == TYPE_CODE_CHAR)
|
||
{
|
||
count = longest_to_int (value_as_long (inval1));
|
||
inval2len = TYPE_LENGTH (type2);
|
||
ptr = (char *) alloca (count * inval2len);
|
||
if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
|
||
{
|
||
inchar = (char) unpack_long (type2,
|
||
VALUE_CONTENTS (inval2));
|
||
for (idx = 0; idx < count; idx++)
|
||
{
|
||
*(ptr + idx) = inchar;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (idx = 0; idx < count; idx++)
|
||
{
|
||
memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
|
||
inval2len);
|
||
}
|
||
}
|
||
outval = value_string (ptr, count * inval2len);
|
||
}
|
||
else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
|
||
|| TYPE_CODE (type2) == TYPE_CODE_BOOL)
|
||
{
|
||
error ("unimplemented support for bitstring/boolean repeats");
|
||
}
|
||
else
|
||
{
|
||
error ("can't repeat values of that type");
|
||
}
|
||
}
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_STRING
|
||
|| TYPE_CODE (type1) == TYPE_CODE_CHAR)
|
||
{
|
||
/* We have two character strings to concatenate. */
|
||
if (TYPE_CODE (type2) != TYPE_CODE_STRING
|
||
&& TYPE_CODE (type2) != TYPE_CODE_CHAR)
|
||
{
|
||
error ("Strings can only be concatenated with other strings.");
|
||
}
|
||
inval1len = TYPE_LENGTH (type1);
|
||
inval2len = TYPE_LENGTH (type2);
|
||
ptr = (char *) alloca (inval1len + inval2len);
|
||
if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
|
||
{
|
||
*ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1));
|
||
}
|
||
else
|
||
{
|
||
memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
|
||
}
|
||
if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
|
||
{
|
||
*(ptr + inval1len) =
|
||
(char) unpack_long (type2, VALUE_CONTENTS (inval2));
|
||
}
|
||
else
|
||
{
|
||
memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
|
||
}
|
||
outval = value_string (ptr, inval1len + inval2len);
|
||
}
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
|
||
|| TYPE_CODE (type1) == TYPE_CODE_BOOL)
|
||
{
|
||
/* We have two bitstrings to concatenate. */
|
||
if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
|
||
&& TYPE_CODE (type2) != TYPE_CODE_BOOL)
|
||
{
|
||
error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
|
||
}
|
||
error ("unimplemented support for bitstring/boolean concatenation.");
|
||
}
|
||
else
|
||
{
|
||
/* We don't know how to concatenate these operands. */
|
||
error ("illegal operands for concatenation.");
|
||
}
|
||
return (outval);
|
||
}
|
||
|
||
|
||
|
||
/* Perform a binary operation on two operands which have reasonable
|
||
representations as integers or floats. This includes booleans,
|
||
characters, integers, or floats.
|
||
Does not support addition and subtraction on pointers;
|
||
use value_add or value_sub if you want to handle those possibilities. */
|
||
|
||
value_ptr
|
||
value_binop (value_ptr arg1, value_ptr arg2, enum exp_opcode op)
|
||
{
|
||
register value_ptr val;
|
||
struct type *type1, *type2;
|
||
|
||
COERCE_REF (arg1);
|
||
COERCE_REF (arg2);
|
||
COERCE_ENUM (arg1);
|
||
COERCE_ENUM (arg2);
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
|
||
if ((TYPE_CODE (type1) != TYPE_CODE_FLT
|
||
&& TYPE_CODE (type1) != TYPE_CODE_CHAR
|
||
&& TYPE_CODE (type1) != TYPE_CODE_INT
|
||
&& TYPE_CODE (type1) != TYPE_CODE_BOOL
|
||
&& TYPE_CODE (type1) != TYPE_CODE_RANGE)
|
||
||
|
||
(TYPE_CODE (type2) != TYPE_CODE_FLT
|
||
&& TYPE_CODE (type2) != TYPE_CODE_CHAR
|
||
&& TYPE_CODE (type2) != TYPE_CODE_INT
|
||
&& TYPE_CODE (type2) != TYPE_CODE_BOOL
|
||
&& TYPE_CODE (type2) != TYPE_CODE_RANGE))
|
||
error ("Argument to arithmetic operation not a number or boolean.");
|
||
|
||
if (TYPE_CODE (type1) == TYPE_CODE_FLT
|
||
||
|
||
TYPE_CODE (type2) == TYPE_CODE_FLT)
|
||
{
|
||
/* FIXME-if-picky-about-floating-accuracy: Should be doing this
|
||
in target format. real.c in GCC probably has the necessary
|
||
code. */
|
||
DOUBLEST v1, v2, v = 0;
|
||
v1 = value_as_double (arg1);
|
||
v2 = value_as_double (arg2);
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
break;
|
||
|
||
case BINOP_EXP:
|
||
v = pow (v1, v2);
|
||
if (errno)
|
||
error ("Cannot perform exponentiation: %s", strerror (errno));
|
||
break;
|
||
|
||
default:
|
||
error ("Integer-only operation on floating point number.");
|
||
}
|
||
|
||
/* If either arg was long double, make sure that value is also long
|
||
double. */
|
||
|
||
if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
|
||
|| TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
|
||
val = allocate_value (builtin_type_long_double);
|
||
else
|
||
val = allocate_value (builtin_type_double);
|
||
|
||
store_typed_floating (VALUE_CONTENTS_RAW (val), VALUE_TYPE (val), v);
|
||
}
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
|
||
&&
|
||
TYPE_CODE (type2) == TYPE_CODE_BOOL)
|
||
{
|
||
LONGEST v1, v2, v = 0;
|
||
v1 = value_as_long (arg1);
|
||
v2 = value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
v = v1 == v2;
|
||
break;
|
||
|
||
case BINOP_NOTEQUAL:
|
||
v = v1 != v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid operation on booleans.");
|
||
}
|
||
|
||
val = allocate_value (type1);
|
||
store_signed_integer (VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (type1),
|
||
v);
|
||
}
|
||
else
|
||
/* Integral operations here. */
|
||
/* FIXME: Also mixed integral/booleans, with result an integer. */
|
||
/* FIXME: This implements ANSI C rules (also correct for C++).
|
||
What about FORTRAN and chill? */
|
||
{
|
||
unsigned int promoted_len1 = TYPE_LENGTH (type1);
|
||
unsigned int promoted_len2 = TYPE_LENGTH (type2);
|
||
int is_unsigned1 = TYPE_UNSIGNED (type1);
|
||
int is_unsigned2 = TYPE_UNSIGNED (type2);
|
||
unsigned int result_len;
|
||
int unsigned_operation;
|
||
|
||
/* Determine type length and signedness after promotion for
|
||
both operands. */
|
||
if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
|
||
{
|
||
is_unsigned1 = 0;
|
||
promoted_len1 = TYPE_LENGTH (builtin_type_int);
|
||
}
|
||
if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
|
||
{
|
||
is_unsigned2 = 0;
|
||
promoted_len2 = TYPE_LENGTH (builtin_type_int);
|
||
}
|
||
|
||
/* Determine type length of the result, and if the operation should
|
||
be done unsigned.
|
||
Use the signedness of the operand with the greater length.
|
||
If both operands are of equal length, use unsigned operation
|
||
if one of the operands is unsigned. */
|
||
if (promoted_len1 > promoted_len2)
|
||
{
|
||
unsigned_operation = is_unsigned1;
|
||
result_len = promoted_len1;
|
||
}
|
||
else if (promoted_len2 > promoted_len1)
|
||
{
|
||
unsigned_operation = is_unsigned2;
|
||
result_len = promoted_len2;
|
||
}
|
||
else
|
||
{
|
||
unsigned_operation = is_unsigned1 || is_unsigned2;
|
||
result_len = promoted_len1;
|
||
}
|
||
|
||
if (unsigned_operation)
|
||
{
|
||
ULONGEST v1, v2, v = 0;
|
||
v1 = (ULONGEST) value_as_long (arg1);
|
||
v2 = (ULONGEST) value_as_long (arg2);
|
||
|
||
/* Truncate values to the type length of the result. */
|
||
if (result_len < sizeof (ULONGEST))
|
||
{
|
||
v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
|
||
v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
|
||
}
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
break;
|
||
|
||
case BINOP_EXP:
|
||
v = pow (v1, v2);
|
||
if (errno)
|
||
error ("Cannot perform exponentiation: %s", strerror (errno));
|
||
break;
|
||
|
||
case BINOP_REM:
|
||
v = v1 % v2;
|
||
break;
|
||
|
||
case BINOP_MOD:
|
||
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
||
v1 mod 0 has a defined value, v1. */
|
||
/* Chill specifies that v2 must be > 0, so check for that. */
|
||
if (current_language->la_language == language_chill
|
||
&& value_as_long (arg2) <= 0)
|
||
{
|
||
error ("Second operand of MOD must be greater than zero.");
|
||
}
|
||
if (v2 == 0)
|
||
{
|
||
v = v1;
|
||
}
|
||
else
|
||
{
|
||
v = v1 / v2;
|
||
/* Note floor(v1/v2) == v1/v2 for unsigned. */
|
||
v = v1 - (v2 * v);
|
||
}
|
||
break;
|
||
|
||
case BINOP_LSH:
|
||
v = v1 << v2;
|
||
break;
|
||
|
||
case BINOP_RSH:
|
||
v = v1 >> v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
v = v1 && v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
v = v1 || v2;
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
v = v1 < v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
v = v1 > v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
v = v1 == v2;
|
||
break;
|
||
|
||
case BINOP_NOTEQUAL:
|
||
v = v1 != v2;
|
||
break;
|
||
|
||
case BINOP_LESS:
|
||
v = v1 < v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid binary operation on numbers.");
|
||
}
|
||
|
||
/* This is a kludge to get around the fact that we don't
|
||
know how to determine the result type from the types of
|
||
the operands. (I'm not really sure how much we feel the
|
||
need to duplicate the exact rules of the current
|
||
language. They can get really hairy. But not to do so
|
||
makes it hard to document just what we *do* do). */
|
||
|
||
/* Can't just call init_type because we wouldn't know what
|
||
name to give the type. */
|
||
val = allocate_value
|
||
(result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
|
||
? builtin_type_unsigned_long_long
|
||
: builtin_type_unsigned_long);
|
||
store_unsigned_integer (VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)),
|
||
v);
|
||
}
|
||
else
|
||
{
|
||
LONGEST v1, v2, v = 0;
|
||
v1 = value_as_long (arg1);
|
||
v2 = value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
break;
|
||
|
||
case BINOP_EXP:
|
||
v = pow (v1, v2);
|
||
if (errno)
|
||
error ("Cannot perform exponentiation: %s", strerror (errno));
|
||
break;
|
||
|
||
case BINOP_REM:
|
||
v = v1 % v2;
|
||
break;
|
||
|
||
case BINOP_MOD:
|
||
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
||
X mod 0 has a defined value, X. */
|
||
/* Chill specifies that v2 must be > 0, so check for that. */
|
||
if (current_language->la_language == language_chill
|
||
&& v2 <= 0)
|
||
{
|
||
error ("Second operand of MOD must be greater than zero.");
|
||
}
|
||
if (v2 == 0)
|
||
{
|
||
v = v1;
|
||
}
|
||
else
|
||
{
|
||
v = v1 / v2;
|
||
/* Compute floor. */
|
||
if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
|
||
{
|
||
v--;
|
||
}
|
||
v = v1 - (v2 * v);
|
||
}
|
||
break;
|
||
|
||
case BINOP_LSH:
|
||
v = v1 << v2;
|
||
break;
|
||
|
||
case BINOP_RSH:
|
||
v = v1 >> v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
v = v1 && v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
v = v1 || v2;
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
v = v1 < v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
v = v1 > v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
v = v1 == v2;
|
||
break;
|
||
|
||
case BINOP_LESS:
|
||
v = v1 < v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid binary operation on numbers.");
|
||
}
|
||
|
||
/* This is a kludge to get around the fact that we don't
|
||
know how to determine the result type from the types of
|
||
the operands. (I'm not really sure how much we feel the
|
||
need to duplicate the exact rules of the current
|
||
language. They can get really hairy. But not to do so
|
||
makes it hard to document just what we *do* do). */
|
||
|
||
/* Can't just call init_type because we wouldn't know what
|
||
name to give the type. */
|
||
val = allocate_value
|
||
(result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
|
||
? builtin_type_long_long
|
||
: builtin_type_long);
|
||
store_signed_integer (VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)),
|
||
v);
|
||
}
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
|
||
|
||
int
|
||
value_logical_not (value_ptr arg1)
|
||
{
|
||
register int len;
|
||
register char *p;
|
||
struct type *type1;
|
||
|
||
COERCE_NUMBER (arg1);
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (TYPE_CODE (type1) == TYPE_CODE_FLT)
|
||
return 0 == value_as_double (arg1);
|
||
|
||
len = TYPE_LENGTH (type1);
|
||
p = VALUE_CONTENTS (arg1);
|
||
|
||
while (--len >= 0)
|
||
{
|
||
if (*p++)
|
||
break;
|
||
}
|
||
|
||
return len < 0;
|
||
}
|
||
|
||
/* Perform a comparison on two string values (whose content are not
|
||
necessarily null terminated) based on their length */
|
||
|
||
static int
|
||
value_strcmp (register value_ptr arg1, register value_ptr arg2)
|
||
{
|
||
int len1 = TYPE_LENGTH (VALUE_TYPE (arg1));
|
||
int len2 = TYPE_LENGTH (VALUE_TYPE (arg2));
|
||
char *s1 = VALUE_CONTENTS (arg1);
|
||
char *s2 = VALUE_CONTENTS (arg2);
|
||
int i, len = len1 < len2 ? len1 : len2;
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (s1[i] < s2[i])
|
||
return -1;
|
||
else if (s1[i] > s2[i])
|
||
return 1;
|
||
else
|
||
continue;
|
||
}
|
||
|
||
if (len1 < len2)
|
||
return -1;
|
||
else if (len1 > len2)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Simulate the C operator == by returning a 1
|
||
iff ARG1 and ARG2 have equal contents. */
|
||
|
||
int
|
||
value_equal (register value_ptr arg1, register value_ptr arg2)
|
||
{
|
||
register int len;
|
||
register char *p1, *p2;
|
||
struct type *type1, *type2;
|
||
enum type_code code1;
|
||
enum type_code code2;
|
||
|
||
COERCE_NUMBER (arg1);
|
||
COERCE_NUMBER (arg2);
|
||
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
code1 = TYPE_CODE (type1);
|
||
code2 = TYPE_CODE (type2);
|
||
|
||
if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
|
||
(code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
|
||
return longest_to_int (value_as_long (value_binop (arg1, arg2,
|
||
BINOP_EQUAL)));
|
||
else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
|
||
&& (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
|
||
return value_as_double (arg1) == value_as_double (arg2);
|
||
|
||
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
||
is bigger. */
|
||
else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
|
||
return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
|
||
else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
|
||
return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
|
||
|
||
else if (code1 == code2
|
||
&& ((len = (int) TYPE_LENGTH (type1))
|
||
== (int) TYPE_LENGTH (type2)))
|
||
{
|
||
p1 = VALUE_CONTENTS (arg1);
|
||
p2 = VALUE_CONTENTS (arg2);
|
||
while (--len >= 0)
|
||
{
|
||
if (*p1++ != *p2++)
|
||
break;
|
||
}
|
||
return len < 0;
|
||
}
|
||
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
|
||
{
|
||
return value_strcmp (arg1, arg2) == 0;
|
||
}
|
||
else
|
||
{
|
||
error ("Invalid type combination in equality test.");
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
}
|
||
|
||
/* Simulate the C operator < by returning 1
|
||
iff ARG1's contents are less than ARG2's. */
|
||
|
||
int
|
||
value_less (register value_ptr arg1, register value_ptr arg2)
|
||
{
|
||
register enum type_code code1;
|
||
register enum type_code code2;
|
||
struct type *type1, *type2;
|
||
|
||
COERCE_NUMBER (arg1);
|
||
COERCE_NUMBER (arg2);
|
||
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
code1 = TYPE_CODE (type1);
|
||
code2 = TYPE_CODE (type2);
|
||
|
||
if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
|
||
(code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
|
||
return longest_to_int (value_as_long (value_binop (arg1, arg2,
|
||
BINOP_LESS)));
|
||
else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
|
||
&& (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
|
||
return value_as_double (arg1) < value_as_double (arg2);
|
||
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
||
return value_as_address (arg1) < value_as_address (arg2);
|
||
|
||
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
||
is bigger. */
|
||
else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
|
||
return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
|
||
else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
|
||
return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
|
||
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
|
||
return value_strcmp (arg1, arg2) < 0;
|
||
else
|
||
{
|
||
error ("Invalid type combination in ordering comparison.");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* The unary operators - and ~. Both free the argument ARG1. */
|
||
|
||
value_ptr
|
||
value_neg (register value_ptr arg1)
|
||
{
|
||
register struct type *type;
|
||
register struct type *result_type = VALUE_TYPE (arg1);
|
||
|
||
COERCE_REF (arg1);
|
||
COERCE_ENUM (arg1);
|
||
|
||
type = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
return value_from_double (result_type, -value_as_double (arg1));
|
||
else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL)
|
||
{
|
||
/* Perform integral promotion for ANSI C/C++.
|
||
FIXME: What about FORTRAN and chill ? */
|
||
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
|
||
result_type = builtin_type_int;
|
||
|
||
return value_from_longest (result_type, -value_as_long (arg1));
|
||
}
|
||
else
|
||
{
|
||
error ("Argument to negate operation not a number.");
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
}
|
||
|
||
value_ptr
|
||
value_complement (register value_ptr arg1)
|
||
{
|
||
register struct type *type;
|
||
register struct type *result_type = VALUE_TYPE (arg1);
|
||
int typecode;
|
||
|
||
COERCE_REF (arg1);
|
||
COERCE_ENUM (arg1);
|
||
|
||
type = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
typecode = TYPE_CODE (type);
|
||
if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL))
|
||
error ("Argument to complement operation not an integer or boolean.");
|
||
|
||
/* Perform integral promotion for ANSI C/C++.
|
||
FIXME: What about FORTRAN ? */
|
||
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
|
||
result_type = builtin_type_int;
|
||
|
||
return value_from_longest (result_type, ~value_as_long (arg1));
|
||
}
|
||
|
||
/* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE,
|
||
and whose VALUE_CONTENTS is valaddr.
|
||
Return -1 if out of range, -2 other error. */
|
||
|
||
int
|
||
value_bit_index (struct type *type, char *valaddr, int index)
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
LONGEST word;
|
||
unsigned rel_index;
|
||
struct type *range = TYPE_FIELD_TYPE (type, 0);
|
||
if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
|
||
return -2;
|
||
if (index < low_bound || index > high_bound)
|
||
return -1;
|
||
rel_index = index - low_bound;
|
||
word = unpack_long (builtin_type_unsigned_char,
|
||
valaddr + (rel_index / TARGET_CHAR_BIT));
|
||
rel_index %= TARGET_CHAR_BIT;
|
||
if (BITS_BIG_ENDIAN)
|
||
rel_index = TARGET_CHAR_BIT - 1 - rel_index;
|
||
return (word >> rel_index) & 1;
|
||
}
|
||
|
||
value_ptr
|
||
value_in (value_ptr element, value_ptr set)
|
||
{
|
||
int member;
|
||
struct type *settype = check_typedef (VALUE_TYPE (set));
|
||
struct type *eltype = check_typedef (VALUE_TYPE (element));
|
||
if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
|
||
eltype = TYPE_TARGET_TYPE (eltype);
|
||
if (TYPE_CODE (settype) != TYPE_CODE_SET)
|
||
error ("Second argument of 'IN' has wrong type");
|
||
if (TYPE_CODE (eltype) != TYPE_CODE_INT
|
||
&& TYPE_CODE (eltype) != TYPE_CODE_CHAR
|
||
&& TYPE_CODE (eltype) != TYPE_CODE_ENUM
|
||
&& TYPE_CODE (eltype) != TYPE_CODE_BOOL)
|
||
error ("First argument of 'IN' has wrong type");
|
||
member = value_bit_index (settype, VALUE_CONTENTS (set),
|
||
value_as_long (element));
|
||
if (member < 0)
|
||
error ("First argument of 'IN' not in range");
|
||
return value_from_longest (LA_BOOL_TYPE, member);
|
||
}
|
||
|
||
void
|
||
_initialize_valarith (void)
|
||
{
|
||
}
|