binutils-gdb/gdb/s390-linux-nat.c
Simon Marchi 466eeceef4 lwp_info: Make the arch code free arch_lwp_info
I have the goal of "poisoning" the XNEW/xfree-family of functions, so
that we catch their usages with non-POD types.  A few things need to be
fixed in the mean time, this is one.

The common lwp code in linux-nat.c and gdbserver/linux-low.c xfrees the
private lwp data of type arch_lwp_info.  However, that type is opaque
from its point of view, as its defined differently in each arch-specific
implementation.  This trips on the std::is_pod<T> check, since the
compiler can't tell whether the type is POD or not if it doesn't know
about it.

My initial patch [1] made a class hierarchy with a virtual destructor.
However, as Pedro pointed out, we only have one native architecture at
the time built in gdb and gdbserver, so that's overkill.  Instead, we
can move the responsibility of free'ing arch_lwp_info to the arch code
(which is also the one that allocated it in the first place).  This is
what this patch does.

Also, I had the concern that if we wanted to use C++ features in these
structures, we would have a problem with the one-definition rule.
However, since a build will only have one version of arch_lwp_info,
that's not a problem.

There are changes in arch-specific files, I was only able to built-test
this patch with the following cross-compilers:

  aarch64-linux-gnu
  alpha-linux-gnu
  arm-linux-gnueabihf
  hppa-linux-gnu
  m68k-linux-gnu
  mips64el-linux-gnuabi64
  powerpc64-linux-gnu
  s390x-linux-gnu
  sh4-linux-gnu
  sparc64-linux-gnu
  x86_64-linux-gnu
  x86_64-w64-mingw32

A buildbot run didn't find any regression.

[1] https://sourceware.org/ml/gdb-patches/2017-08/msg00255.html

gdb/ChangeLog:

	* linux-nat.h (linux_nat_set_delete_thread): New declaration.
	* linux-nat.c (linux_nat_delete_thread): New variable.
	(lwp_free): Invoke linux_nat_delete_thread if set.
	(linux_nat_set_delete_thread): New function.
	* aarch64-linux-nat.c (_initialize_aarch64_linux_nat): Assign
	thread delete callback.
	* arm-linux-nat.c (arm_linux_delete_thread): New function.
	(_initialize_arm_linux_nat): Assign thread delete callback.
	* s390-linux-nat.c (s390_delete_thread): New function.
	(_initialize_s390_nat): Assign thread delete callback.
	* x86-linux-nat.c (x86_linux_add_target): Likewise.
	* nat/aarch64-linux.c (aarch64_linux_delete_thread): New
	function.
	* nat/aarch64-linux.h (aarch64_linux_delete_thread): New
	declaration.
	* nat/x86-linux.c (x86_linux_delete_thread): New function.
	* nat/x86-linux.h (x86_linux_delete_thread): New declaration.

gdb/gdbserver/ChangeLog:

	* linux-aarch64-low.c (the_low_target): Add thread delete
	callback.
	* linux-arm-low.c (arm_delete_thread): New function.
	(the_low_target): Add thread delete callback.
	* linux-bfin-low.c (the_low_target): Likewise.
	* linux-crisv32-low.c (the_low_target): Likewise.
	* linux-low.c (delete_lwp): Invoke delete_thread callback if
	set.
	* linux-low.h (struct linux_target_ops) <delete_thread>: New
	field.
	* linux-m32r-low.c (the_low_target): Add thread delete callback.
	* linux-mips-low.c (mips_linux_delete_thread): New function.
	(the_low_target): Add thread delete callback.
	* linux-ppc-low.c (the_low_target): Likewise.
	* linux-s390-low.c (the_low_target): Likewise.
	* linux-sh-low.c (the_low_target): Likewise.
	* linux-tic6x-low.c (the_low_target): Likewise.
	* linux-tile-low.c (the_low_target): Likewise.
	* linux-x86-low.c (the_low_target): Likewise.
	* linux-xtensa-low.c (the_low_target): Likewise.
2017-10-12 16:48:22 -04:00

1079 lines
32 KiB
C

/* S390 native-dependent code for GDB, the GNU debugger.
Copyright (C) 2001-2017 Free Software Foundation, Inc.
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "regcache.h"
#include "inferior.h"
#include "target.h"
#include "linux-nat.h"
#include "auxv.h"
#include "gregset.h"
#include "regset.h"
#include "nat/linux-ptrace.h"
#include "gdbcmd.h"
#include "s390-linux-tdep.h"
#include "elf/common.h"
#include <asm/ptrace.h>
#include "nat/gdb_ptrace.h"
#include <asm/types.h>
#include <sys/procfs.h>
#include <sys/ucontext.h>
#include <elf.h>
#include <algorithm>
#include "inf-ptrace.h"
/* Per-thread arch-specific data. */
struct arch_lwp_info
{
/* Non-zero if the thread's PER info must be re-written. */
int per_info_changed;
};
static int have_regset_last_break = 0;
static int have_regset_system_call = 0;
static int have_regset_tdb = 0;
static int have_regset_vxrs = 0;
static int have_regset_gs = 0;
/* Register map for 32-bit executables running under a 64-bit
kernel. */
#ifdef __s390x__
static const struct regcache_map_entry s390_64_regmap_gregset[] =
{
/* Skip PSWM and PSWA, since they must be handled specially. */
{ 2, REGCACHE_MAP_SKIP, 8 },
{ 1, S390_R0_UPPER_REGNUM, 4 }, { 1, S390_R0_REGNUM, 4 },
{ 1, S390_R1_UPPER_REGNUM, 4 }, { 1, S390_R1_REGNUM, 4 },
{ 1, S390_R2_UPPER_REGNUM, 4 }, { 1, S390_R2_REGNUM, 4 },
{ 1, S390_R3_UPPER_REGNUM, 4 }, { 1, S390_R3_REGNUM, 4 },
{ 1, S390_R4_UPPER_REGNUM, 4 }, { 1, S390_R4_REGNUM, 4 },
{ 1, S390_R5_UPPER_REGNUM, 4 }, { 1, S390_R5_REGNUM, 4 },
{ 1, S390_R6_UPPER_REGNUM, 4 }, { 1, S390_R6_REGNUM, 4 },
{ 1, S390_R7_UPPER_REGNUM, 4 }, { 1, S390_R7_REGNUM, 4 },
{ 1, S390_R8_UPPER_REGNUM, 4 }, { 1, S390_R8_REGNUM, 4 },
{ 1, S390_R9_UPPER_REGNUM, 4 }, { 1, S390_R9_REGNUM, 4 },
{ 1, S390_R10_UPPER_REGNUM, 4 }, { 1, S390_R10_REGNUM, 4 },
{ 1, S390_R11_UPPER_REGNUM, 4 }, { 1, S390_R11_REGNUM, 4 },
{ 1, S390_R12_UPPER_REGNUM, 4 }, { 1, S390_R12_REGNUM, 4 },
{ 1, S390_R13_UPPER_REGNUM, 4 }, { 1, S390_R13_REGNUM, 4 },
{ 1, S390_R14_UPPER_REGNUM, 4 }, { 1, S390_R14_REGNUM, 4 },
{ 1, S390_R15_UPPER_REGNUM, 4 }, { 1, S390_R15_REGNUM, 4 },
{ 16, S390_A0_REGNUM, 4 },
{ 1, REGCACHE_MAP_SKIP, 4 }, { 1, S390_ORIG_R2_REGNUM, 4 },
{ 0 }
};
static const struct regset s390_64_gregset =
{
s390_64_regmap_gregset,
regcache_supply_regset,
regcache_collect_regset
};
#define S390_PSWM_OFFSET 0
#define S390_PSWA_OFFSET 8
#endif
/* PER-event mask bits and PER control bits (CR9). */
#define PER_BIT(n) (1UL << (63 - (n)))
#define PER_EVENT_BRANCH PER_BIT (32)
#define PER_EVENT_IFETCH PER_BIT (33)
#define PER_EVENT_STORE PER_BIT (34)
#define PER_EVENT_NULLIFICATION PER_BIT (39)
#define PER_CONTROL_BRANCH_ADDRESS PER_BIT (40)
#define PER_CONTROL_SUSPENSION PER_BIT (41)
#define PER_CONTROL_ALTERATION PER_BIT (42)
/* Fill GDB's register array with the general-purpose register values
in *REGP.
When debugging a 32-bit executable running under a 64-bit kernel,
we have to fix up the 64-bit registers we get from the kernel to
make them look like 32-bit registers. */
void
supply_gregset (struct regcache *regcache, const gregset_t *regp)
{
#ifdef __s390x__
struct gdbarch *gdbarch = get_regcache_arch (regcache);
if (gdbarch_ptr_bit (gdbarch) == 32)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST pswm, pswa;
gdb_byte buf[4];
regcache_supply_regset (&s390_64_gregset, regcache, -1,
regp, sizeof (gregset_t));
pswm = extract_unsigned_integer ((const gdb_byte *) regp
+ S390_PSWM_OFFSET, 8, byte_order);
pswa = extract_unsigned_integer ((const gdb_byte *) regp
+ S390_PSWA_OFFSET, 8, byte_order);
store_unsigned_integer (buf, 4, byte_order, (pswm >> 32) | 0x80000);
regcache_raw_supply (regcache, S390_PSWM_REGNUM, buf);
store_unsigned_integer (buf, 4, byte_order,
(pswa & 0x7fffffff) | (pswm & 0x80000000));
regcache_raw_supply (regcache, S390_PSWA_REGNUM, buf);
return;
}
#endif
regcache_supply_regset (&s390_gregset, regcache, -1, regp,
sizeof (gregset_t));
}
/* Fill register REGNO (if it is a general-purpose register) in
*REGP with the value in GDB's register array. If REGNO is -1,
do this for all registers. */
void
fill_gregset (const struct regcache *regcache, gregset_t *regp, int regno)
{
#ifdef __s390x__
struct gdbarch *gdbarch = get_regcache_arch (regcache);
if (gdbarch_ptr_bit (gdbarch) == 32)
{
regcache_collect_regset (&s390_64_gregset, regcache, regno,
regp, sizeof (gregset_t));
if (regno == -1
|| regno == S390_PSWM_REGNUM || regno == S390_PSWA_REGNUM)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST pswa, pswm;
gdb_byte buf[4];
gdb_byte *pswm_p = (gdb_byte *) regp + S390_PSWM_OFFSET;
gdb_byte *pswa_p = (gdb_byte *) regp + S390_PSWA_OFFSET;
pswm = extract_unsigned_integer (pswm_p, 8, byte_order);
if (regno == -1 || regno == S390_PSWM_REGNUM)
{
pswm &= 0x80000000;
regcache_raw_collect (regcache, S390_PSWM_REGNUM, buf);
pswm |= (extract_unsigned_integer (buf, 4, byte_order)
& 0xfff7ffff) << 32;
}
if (regno == -1 || regno == S390_PSWA_REGNUM)
{
regcache_raw_collect (regcache, S390_PSWA_REGNUM, buf);
pswa = extract_unsigned_integer (buf, 4, byte_order);
pswm ^= (pswm ^ pswa) & 0x80000000;
pswa &= 0x7fffffff;
store_unsigned_integer (pswa_p, 8, byte_order, pswa);
}
store_unsigned_integer (pswm_p, 8, byte_order, pswm);
}
return;
}
#endif
regcache_collect_regset (&s390_gregset, regcache, regno, regp,
sizeof (gregset_t));
}
/* Fill GDB's register array with the floating-point register values
in *REGP. */
void
supply_fpregset (struct regcache *regcache, const fpregset_t *regp)
{
regcache_supply_regset (&s390_fpregset, regcache, -1, regp,
sizeof (fpregset_t));
}
/* Fill register REGNO (if it is a general-purpose register) in
*REGP with the value in GDB's register array. If REGNO is -1,
do this for all registers. */
void
fill_fpregset (const struct regcache *regcache, fpregset_t *regp, int regno)
{
regcache_collect_regset (&s390_fpregset, regcache, regno, regp,
sizeof (fpregset_t));
}
/* Find the TID for the current inferior thread to use with ptrace. */
static int
s390_inferior_tid (void)
{
/* GNU/Linux LWP ID's are process ID's. */
int tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */
return tid;
}
/* Fetch all general-purpose registers from process/thread TID and
store their values in GDB's register cache. */
static void
fetch_regs (struct regcache *regcache, int tid)
{
gregset_t regs;
ptrace_area parea;
parea.len = sizeof (regs);
parea.process_addr = (addr_t) &regs;
parea.kernel_addr = offsetof (struct user_regs_struct, psw);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get registers"));
supply_gregset (regcache, (const gregset_t *) &regs);
}
/* Store all valid general-purpose registers in GDB's register cache
into the process/thread specified by TID. */
static void
store_regs (const struct regcache *regcache, int tid, int regnum)
{
gregset_t regs;
ptrace_area parea;
parea.len = sizeof (regs);
parea.process_addr = (addr_t) &regs;
parea.kernel_addr = offsetof (struct user_regs_struct, psw);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get registers"));
fill_gregset (regcache, &regs, regnum);
if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't write registers"));
}
/* Fetch all floating-point registers from process/thread TID and store
their values in GDB's register cache. */
static void
fetch_fpregs (struct regcache *regcache, int tid)
{
fpregset_t fpregs;
ptrace_area parea;
parea.len = sizeof (fpregs);
parea.process_addr = (addr_t) &fpregs;
parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get floating point status"));
supply_fpregset (regcache, (const fpregset_t *) &fpregs);
}
/* Store all valid floating-point registers in GDB's register cache
into the process/thread specified by TID. */
static void
store_fpregs (const struct regcache *regcache, int tid, int regnum)
{
fpregset_t fpregs;
ptrace_area parea;
parea.len = sizeof (fpregs);
parea.process_addr = (addr_t) &fpregs;
parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get floating point status"));
fill_fpregset (regcache, &fpregs, regnum);
if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't write floating point status"));
}
/* Fetch all registers in the kernel's register set whose number is
REGSET_ID, whose size is REGSIZE, and whose layout is described by
REGSET, from process/thread TID and store their values in GDB's
register cache. */
static void
fetch_regset (struct regcache *regcache, int tid,
int regset_id, int regsize, const struct regset *regset)
{
void *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
{
if (errno == ENODATA)
regcache_supply_regset (regset, regcache, -1, NULL, regsize);
else
perror_with_name (_("Couldn't get register set"));
}
else
regcache_supply_regset (regset, regcache, -1, buf, regsize);
}
/* Store all registers in the kernel's register set whose number is
REGSET_ID, whose size is REGSIZE, and whose layout is described by
REGSET, from GDB's register cache back to process/thread TID. */
static void
store_regset (struct regcache *regcache, int tid,
int regset_id, int regsize, const struct regset *regset)
{
void *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
perror_with_name (_("Couldn't get register set"));
regcache_collect_regset (regset, regcache, -1, buf, regsize);
if (ptrace (PTRACE_SETREGSET, tid, (long) regset_id, (long) &iov) < 0)
perror_with_name (_("Couldn't set register set"));
}
/* Check whether the kernel provides a register set with number REGSET
of size REGSIZE for process/thread TID. */
static int
check_regset (int tid, int regset, int regsize)
{
void *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset, (long) &iov) >= 0
|| errno == ENODATA)
return 1;
return 0;
}
/* Fetch register REGNUM from the child process. If REGNUM is -1, do
this for all registers. */
static void
s390_linux_fetch_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
fetch_regs (regcache, tid);
if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
fetch_fpregs (regcache, tid);
if (have_regset_last_break)
if (regnum == -1 || regnum == S390_LAST_BREAK_REGNUM)
fetch_regset (regcache, tid, NT_S390_LAST_BREAK, 8,
(gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32
? &s390_last_break_regset : &s390x_last_break_regset));
if (have_regset_system_call)
if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
fetch_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
&s390_system_call_regset);
if (have_regset_tdb)
if (regnum == -1 || S390_IS_TDBREGSET_REGNUM (regnum))
fetch_regset (regcache, tid, NT_S390_TDB, s390_sizeof_tdbregset,
&s390_tdb_regset);
if (have_regset_vxrs)
{
if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
&& regnum <= S390_V15_LOWER_REGNUM))
fetch_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
&s390_vxrs_low_regset);
if (regnum == -1 || (regnum >= S390_V16_REGNUM
&& regnum <= S390_V31_REGNUM))
fetch_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
&s390_vxrs_high_regset);
}
if (have_regset_gs)
{
if (regnum == -1 || (regnum >= S390_GSD_REGNUM
&& regnum <= S390_GSEPLA_REGNUM))
fetch_regset (regcache, tid, NT_S390_GS_CB, 4 * 8,
&s390_gs_regset);
if (regnum == -1 || (regnum >= S390_BC_GSD_REGNUM
&& regnum <= S390_BC_GSEPLA_REGNUM))
fetch_regset (regcache, tid, NT_S390_GS_BC, 4 * 8,
&s390_gsbc_regset);
}
}
/* Store register REGNUM back into the child process. If REGNUM is
-1, do this for all registers. */
static void
s390_linux_store_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
store_regs (regcache, tid, regnum);
if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
store_fpregs (regcache, tid, regnum);
/* S390_LAST_BREAK_REGNUM is read-only. */
if (have_regset_system_call)
if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
store_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
&s390_system_call_regset);
if (have_regset_vxrs)
{
if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
&& regnum <= S390_V15_LOWER_REGNUM))
store_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
&s390_vxrs_low_regset);
if (regnum == -1 || (regnum >= S390_V16_REGNUM
&& regnum <= S390_V31_REGNUM))
store_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
&s390_vxrs_high_regset);
}
}
/* Hardware-assisted watchpoint handling. */
/* For each process we maintain a list of all currently active
watchpoints, in order to properly handle watchpoint removal.
The only thing we actually need is the total address space area
spanned by the watchpoints. */
typedef struct watch_area
{
CORE_ADDR lo_addr;
CORE_ADDR hi_addr;
} s390_watch_area;
DEF_VEC_O (s390_watch_area);
/* Hardware debug state. */
struct s390_debug_reg_state
{
VEC_s390_watch_area *watch_areas;
VEC_s390_watch_area *break_areas;
};
/* Per-process data. */
struct s390_process_info
{
struct s390_process_info *next;
pid_t pid;
struct s390_debug_reg_state state;
};
static struct s390_process_info *s390_process_list = NULL;
/* Find process data for process PID. */
static struct s390_process_info *
s390_find_process_pid (pid_t pid)
{
struct s390_process_info *proc;
for (proc = s390_process_list; proc; proc = proc->next)
if (proc->pid == pid)
return proc;
return NULL;
}
/* Add process data for process PID. Returns newly allocated info
object. */
static struct s390_process_info *
s390_add_process (pid_t pid)
{
struct s390_process_info *proc = XCNEW (struct s390_process_info);
proc->pid = pid;
proc->next = s390_process_list;
s390_process_list = proc;
return proc;
}
/* Get data specific info for process PID, creating it if necessary.
Never returns NULL. */
static struct s390_process_info *
s390_process_info_get (pid_t pid)
{
struct s390_process_info *proc;
proc = s390_find_process_pid (pid);
if (proc == NULL)
proc = s390_add_process (pid);
return proc;
}
/* Get hardware debug state for process PID. */
static struct s390_debug_reg_state *
s390_get_debug_reg_state (pid_t pid)
{
return &s390_process_info_get (pid)->state;
}
/* Called whenever GDB is no longer debugging process PID. It deletes
data structures that keep track of hardware debug state. */
static void
s390_forget_process (pid_t pid)
{
struct s390_process_info *proc, **proc_link;
proc = s390_process_list;
proc_link = &s390_process_list;
while (proc != NULL)
{
if (proc->pid == pid)
{
VEC_free (s390_watch_area, proc->state.watch_areas);
VEC_free (s390_watch_area, proc->state.break_areas);
*proc_link = proc->next;
xfree (proc);
return;
}
proc_link = &proc->next;
proc = *proc_link;
}
}
/* linux_nat_new_fork hook. */
static void
s390_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
{
pid_t parent_pid;
struct s390_debug_reg_state *parent_state;
struct s390_debug_reg_state *child_state;
/* NULL means no watchpoint has ever been set in the parent. In
that case, there's nothing to do. */
if (lwp_arch_private_info (parent) == NULL)
return;
/* GDB core assumes the child inherits the watchpoints/hw breakpoints of
the parent. So copy the debug state from parent to child. */
parent_pid = ptid_get_pid (parent->ptid);
parent_state = s390_get_debug_reg_state (parent_pid);
child_state = s390_get_debug_reg_state (child_pid);
child_state->watch_areas = VEC_copy (s390_watch_area,
parent_state->watch_areas);
child_state->break_areas = VEC_copy (s390_watch_area,
parent_state->break_areas);
}
/* Dump PER state. */
static void
s390_show_debug_regs (int tid, const char *where)
{
per_struct per_info;
ptrace_area parea;
parea.len = sizeof (per_info);
parea.process_addr = (addr_t) &per_info;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, &parea, 0) < 0)
perror_with_name (_("Couldn't retrieve debug regs"));
debug_printf ("PER (debug) state for %d -- %s\n"
" cr9-11: %lx %lx %lx\n"
" start, end: %lx %lx\n"
" code/ATMID: %x address: %lx PAID: %x\n",
tid,
where,
per_info.control_regs.words.cr[0],
per_info.control_regs.words.cr[1],
per_info.control_regs.words.cr[2],
per_info.starting_addr,
per_info.ending_addr,
per_info.lowcore.words.perc_atmid,
per_info.lowcore.words.address,
per_info.lowcore.words.access_id);
}
static int
s390_stopped_by_watchpoint (struct target_ops *ops)
{
struct s390_debug_reg_state *state
= s390_get_debug_reg_state (ptid_get_pid (inferior_ptid));
per_lowcore_bits per_lowcore;
ptrace_area parea;
int result;
if (show_debug_regs)
s390_show_debug_regs (s390_inferior_tid (), "stop");
/* Speed up common case. */
if (VEC_empty (s390_watch_area, state->watch_areas))
return 0;
parea.len = sizeof (per_lowcore);
parea.process_addr = (addr_t) & per_lowcore;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info.lowcore);
if (ptrace (PTRACE_PEEKUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
perror_with_name (_("Couldn't retrieve watchpoint status"));
result = (per_lowcore.perc_storage_alteration == 1
&& per_lowcore.perc_store_real_address == 0);
if (result)
{
/* Do not report this watchpoint again. */
memset (&per_lowcore, 0, sizeof (per_lowcore));
if (ptrace (PTRACE_POKEUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
perror_with_name (_("Couldn't clear watchpoint status"));
}
return result;
}
/* Each time before resuming a thread, update its PER info. */
static void
s390_prepare_to_resume (struct lwp_info *lp)
{
int tid;
pid_t pid = ptid_get_pid (ptid_of_lwp (lp));
per_struct per_info;
ptrace_area parea;
CORE_ADDR watch_lo_addr = (CORE_ADDR)-1, watch_hi_addr = 0;
unsigned ix;
s390_watch_area *area;
struct arch_lwp_info *lp_priv = lwp_arch_private_info (lp);
struct s390_debug_reg_state *state = s390_get_debug_reg_state (pid);
int step = lwp_is_stepping (lp);
/* Nothing to do if there was never any PER info for this thread. */
if (lp_priv == NULL)
return;
/* If PER info has changed, update it. When single-stepping, disable
hardware breakpoints (if any). Otherwise we're done. */
if (!lp_priv->per_info_changed)
{
if (!step || VEC_empty (s390_watch_area, state->break_areas))
return;
}
lp_priv->per_info_changed = 0;
tid = ptid_get_lwp (ptid_of_lwp (lp));
if (tid == 0)
tid = pid;
parea.len = sizeof (per_info);
parea.process_addr = (addr_t) & per_info;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
/* Clear PER info, but adjust the single_step field (used by older
kernels only). */
memset (&per_info, 0, sizeof (per_info));
per_info.single_step = (step != 0);
if (!VEC_empty (s390_watch_area, state->watch_areas))
{
for (ix = 0;
VEC_iterate (s390_watch_area, state->watch_areas, ix, area);
ix++)
{
watch_lo_addr = std::min (watch_lo_addr, area->lo_addr);
watch_hi_addr = std::max (watch_hi_addr, area->hi_addr);
}
/* Enable storage-alteration events. */
per_info.control_regs.words.cr[0] |= (PER_EVENT_STORE
| PER_CONTROL_ALTERATION);
}
if (!VEC_empty (s390_watch_area, state->break_areas))
{
/* Don't install hardware breakpoints while single-stepping, since
our PER settings (e.g. the nullification bit) might then conflict
with the kernel's. But re-install them afterwards. */
if (step)
lp_priv->per_info_changed = 1;
else
{
for (ix = 0;
VEC_iterate (s390_watch_area, state->break_areas, ix, area);
ix++)
{
watch_lo_addr = std::min (watch_lo_addr, area->lo_addr);
watch_hi_addr = std::max (watch_hi_addr, area->hi_addr);
}
/* If there's just one breakpoint, enable instruction-fetching
nullification events for the breakpoint address (fast).
Otherwise stop after any instruction within the PER area and
after any branch into it (slow). */
if (watch_hi_addr == watch_lo_addr)
per_info.control_regs.words.cr[0] |= (PER_EVENT_NULLIFICATION
| PER_EVENT_IFETCH);
else
{
/* The PER area must include the instruction before the
first breakpoint address. */
watch_lo_addr = watch_lo_addr > 6 ? watch_lo_addr - 6 : 0;
per_info.control_regs.words.cr[0]
|= (PER_EVENT_BRANCH
| PER_EVENT_IFETCH
| PER_CONTROL_BRANCH_ADDRESS);
}
}
}
per_info.starting_addr = watch_lo_addr;
per_info.ending_addr = watch_hi_addr;
if (ptrace (PTRACE_POKEUSR_AREA, tid, &parea, 0) < 0)
perror_with_name (_("Couldn't modify watchpoint status"));
if (show_debug_regs)
s390_show_debug_regs (tid, "resume");
}
/* Mark the PER info as changed, so the next resume will update it. */
static void
s390_mark_per_info_changed (struct lwp_info *lp)
{
if (lwp_arch_private_info (lp) == NULL)
lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
lwp_arch_private_info (lp)->per_info_changed = 1;
}
/* When attaching to a new thread, mark its PER info as changed. */
static void
s390_new_thread (struct lwp_info *lp)
{
s390_mark_per_info_changed (lp);
}
/* Function to call when a thread is being deleted. */
static void
s390_delete_thread (struct arch_lwp_info *arch_lwp)
{
xfree (arch_lwp);
}
/* Iterator callback for s390_refresh_per_info. */
static int
s390_refresh_per_info_cb (struct lwp_info *lp, void *arg)
{
s390_mark_per_info_changed (lp);
if (!lwp_is_stopped (lp))
linux_stop_lwp (lp);
return 0;
}
/* Make sure that threads are stopped and mark PER info as changed. */
static int
s390_refresh_per_info (void)
{
ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (current_lwp_ptid ()));
iterate_over_lwps (pid_ptid, s390_refresh_per_info_cb, NULL);
return 0;
}
static int
s390_insert_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len, enum target_hw_bp_type type,
struct expression *cond)
{
s390_watch_area area;
struct s390_debug_reg_state *state
= s390_get_debug_reg_state (ptid_get_pid (inferior_ptid));
area.lo_addr = addr;
area.hi_addr = addr + len - 1;
VEC_safe_push (s390_watch_area, state->watch_areas, &area);
return s390_refresh_per_info ();
}
static int
s390_remove_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len, enum target_hw_bp_type type,
struct expression *cond)
{
unsigned ix;
s390_watch_area *area;
struct s390_debug_reg_state *state
= s390_get_debug_reg_state (ptid_get_pid (inferior_ptid));
for (ix = 0;
VEC_iterate (s390_watch_area, state->watch_areas, ix, area);
ix++)
{
if (area->lo_addr == addr && area->hi_addr == addr + len - 1)
{
VEC_unordered_remove (s390_watch_area, state->watch_areas, ix);
return s390_refresh_per_info ();
}
}
fprintf_unfiltered (gdb_stderr,
"Attempt to remove nonexistent watchpoint.\n");
return -1;
}
/* Implement the "can_use_hw_breakpoint" target_ops method. */
static int
s390_can_use_hw_breakpoint (struct target_ops *self,
enum bptype type, int cnt, int othertype)
{
if (type == bp_hardware_watchpoint || type == bp_hardware_breakpoint)
return 1;
return 0;
}
/* Implement the "insert_hw_breakpoint" target_ops method. */
static int
s390_insert_hw_breakpoint (struct target_ops *self,
struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
s390_watch_area area;
struct s390_debug_reg_state *state;
area.lo_addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
area.hi_addr = area.lo_addr;
state = s390_get_debug_reg_state (ptid_get_pid (inferior_ptid));
VEC_safe_push (s390_watch_area, state->break_areas, &area);
return s390_refresh_per_info ();
}
/* Implement the "remove_hw_breakpoint" target_ops method. */
static int
s390_remove_hw_breakpoint (struct target_ops *self,
struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
unsigned ix;
struct watch_area *area;
struct s390_debug_reg_state *state;
state = s390_get_debug_reg_state (ptid_get_pid (inferior_ptid));
for (ix = 0;
VEC_iterate (s390_watch_area, state->break_areas, ix, area);
ix++)
{
if (area->lo_addr == bp_tgt->placed_address)
{
VEC_unordered_remove (s390_watch_area, state->break_areas, ix);
return s390_refresh_per_info ();
}
}
fprintf_unfiltered (gdb_stderr,
"Attempt to remove nonexistent breakpoint.\n");
return -1;
}
static int
s390_region_ok_for_hw_watchpoint (struct target_ops *self,
CORE_ADDR addr, int cnt)
{
return 1;
}
static int
s390_target_wordsize (void)
{
int wordsize = 4;
/* Check for 64-bit inferior process. This is the case when the host is
64-bit, and in addition bit 32 of the PSW mask is set. */
#ifdef __s390x__
long pswm;
errno = 0;
pswm = (long) ptrace (PTRACE_PEEKUSER, s390_inferior_tid (), PT_PSWMASK, 0);
if (errno == 0 && (pswm & 0x100000000ul) != 0)
wordsize = 8;
#endif
return wordsize;
}
static int
s390_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
{
int sizeof_auxv_field = s390_target_wordsize ();
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
gdb_byte *ptr = *readptr;
if (endptr == ptr)
return 0;
if (endptr - ptr < sizeof_auxv_field * 2)
return -1;
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*readptr = ptr;
return 1;
}
static const struct target_desc *
s390_read_description (struct target_ops *ops)
{
int tid = s390_inferior_tid ();
have_regset_last_break
= check_regset (tid, NT_S390_LAST_BREAK, 8);
have_regset_system_call
= check_regset (tid, NT_S390_SYSTEM_CALL, 4);
/* If GDB itself is compiled as 64-bit, we are running on a machine in
z/Architecture mode. If the target is running in 64-bit addressing
mode, report s390x architecture. If the target is running in 31-bit
addressing mode, but the kernel supports using 64-bit registers in
that mode, report s390 architecture with 64-bit GPRs. */
#ifdef __s390x__
{
CORE_ADDR hwcap = 0;
target_auxv_search (&current_target, AT_HWCAP, &hwcap);
have_regset_tdb = (hwcap & HWCAP_S390_TE)
&& check_regset (tid, NT_S390_TDB, s390_sizeof_tdbregset);
have_regset_vxrs = (hwcap & HWCAP_S390_VX)
&& check_regset (tid, NT_S390_VXRS_LOW, 16 * 8)
&& check_regset (tid, NT_S390_VXRS_HIGH, 16 * 16);
have_regset_gs = (hwcap & HWCAP_S390_GS)
&& check_regset (tid, NT_S390_GS_CB, 4 * 8)
&& check_regset (tid, NT_S390_GS_BC, 4 * 8);
if (s390_target_wordsize () == 8)
return (have_regset_gs ? tdesc_s390x_gs_linux64 :
have_regset_vxrs ?
(have_regset_tdb ? tdesc_s390x_tevx_linux64 :
tdesc_s390x_vx_linux64) :
have_regset_tdb ? tdesc_s390x_te_linux64 :
have_regset_system_call ? tdesc_s390x_linux64v2 :
have_regset_last_break ? tdesc_s390x_linux64v1 :
tdesc_s390x_linux64);
if (hwcap & HWCAP_S390_HIGH_GPRS)
return (have_regset_gs ? tdesc_s390_gs_linux64 :
have_regset_vxrs ?
(have_regset_tdb ? tdesc_s390_tevx_linux64 :
tdesc_s390_vx_linux64) :
have_regset_tdb ? tdesc_s390_te_linux64 :
have_regset_system_call ? tdesc_s390_linux64v2 :
have_regset_last_break ? tdesc_s390_linux64v1 :
tdesc_s390_linux64);
}
#endif
/* If GDB itself is compiled as 31-bit, or if we're running a 31-bit inferior
on a 64-bit kernel that does not support using 64-bit registers in 31-bit
mode, report s390 architecture with 32-bit GPRs. */
return (have_regset_system_call? tdesc_s390_linux32v2 :
have_regset_last_break? tdesc_s390_linux32v1 :
tdesc_s390_linux32);
}
void
_initialize_s390_nat (void)
{
struct target_ops *t;
/* Fill in the generic GNU/Linux methods. */
t = linux_target ();
/* Add our register access methods. */
t->to_fetch_registers = s390_linux_fetch_inferior_registers;
t->to_store_registers = s390_linux_store_inferior_registers;
/* Add our watchpoint methods. */
t->to_can_use_hw_breakpoint = s390_can_use_hw_breakpoint;
t->to_insert_hw_breakpoint = s390_insert_hw_breakpoint;
t->to_remove_hw_breakpoint = s390_remove_hw_breakpoint;
t->to_region_ok_for_hw_watchpoint = s390_region_ok_for_hw_watchpoint;
t->to_have_continuable_watchpoint = 1;
t->to_stopped_by_watchpoint = s390_stopped_by_watchpoint;
t->to_insert_watchpoint = s390_insert_watchpoint;
t->to_remove_watchpoint = s390_remove_watchpoint;
/* Detect target architecture. */
t->to_read_description = s390_read_description;
t->to_auxv_parse = s390_auxv_parse;
/* Register the target. */
linux_nat_add_target (t);
linux_nat_set_new_thread (t, s390_new_thread);
linux_nat_set_delete_thread (t, s390_delete_thread);
linux_nat_set_prepare_to_resume (t, s390_prepare_to_resume);
linux_nat_set_forget_process (t, s390_forget_process);
linux_nat_set_new_fork (t, s390_linux_new_fork);
/* A maintenance command to enable showing the PER state. */
add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
&show_debug_regs, _("\
Set whether to show the PER (debug) hardware state."), _("\
Show whether to show the PER (debug) hardware state."), _("\
Use \"on\" to enable, \"off\" to disable.\n\
If enabled, the PER state is shown after it is changed by GDB,\n\
and when the inferior triggers a breakpoint or watchpoint."),
NULL,
NULL,
&maintenance_set_cmdlist,
&maintenance_show_cmdlist);
}