676c3ecbad
The method of operation of libctf when the dictionary is writable has before now been that types that are added land in the dynamic type section, which is a linked list and hash of IDs -> dynamic type definitions (and, recently a hash of names): the DTDs are a bit of CTF representing the ctf_type_t and ad hoc C structures representing the vlen. Historically, libctf was unable to do anything with these types, not even look them up by ID, let alone by name: if you wanted to do that say if you were adding a type that depended on one you just added) you called ctf_update, which serializes all the DTDs into a CTF file and reopens it, copying its guts over the fp it's called with. The ctf_updated types are then frozen in amber and unchangeable: all lookups will return the types in the static portion in preference to the dynamic portion, and we will refuse to re-add things that already exist in the static portion (and, of late, in the dynamic portion too). The libctf machinery remembers the boundary between static and dynamic types and looks in the right portion for each type. Lots of things still don't quite work with dynamic types (e.g. getting their size), but enough works to do a bunch of additions and then a ctf_update, most of the time. Except it doesn't, because ctf_add_type finds it necessary to walk the full dynamic type definition list looking for types with matching names, so it gets slower and slower with every type you add: fixing this requires calling ctf_update periodically for no other reason than to avoid massively slowing things down. This is all clunky and very slow but kind of works, until you consider that it is in fact possible and indeed necessary to modify one sort of type after it has been added: forwards. These are necessarily promoted to structs, unions or enums, and when they do so *their type ID does not change*. So all of a sudden we are changing types that already exist in the static portion. ctf_update gets massively confused by this and allocates space enough for the forward (with no members), but then emits the new dynamic type (with all the members) into it. You get an assertion failure after that, if you're lucky, or a coredump. So this commit rejigs things a bit and arranges to exclusively use the dynamic type definitions in writable dictionaries, and the static type definitions in readable dictionaries: we don't at any time have a mixture of static and dynamic types, and you don't need to call ctf_update to make things "appear". The ctf_dtbyname hash I introduced a few months ago, which maps things like "struct foo" to DTDs, is removed, replaced instead by a change of type of the four dictionaries which track names. Rather than just being (unresizable) ctf_hash_t's populated only at ctf_bufopen time, they are now a ctf_names_t structure, which is a pair of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used in readonly dictionaries, and the ctf_dynhash_t being used in writable ones. The decision as to which to use is centralized in the new functions ctf_lookup_by_rawname (which takes a type kind) and ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.) This change lets us switch from using static to dynamic name hashes on the fly across the entirety of libctf without complexifying anything: in fact, because we now centralize the knowledge about how to map from type kind to name hash, it actually simplifies things and lets us throw out quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced by the dynamic half of the name tables), through to ctf_dtnextid (now that a dictionary's static portion is never referenced if the dictionary is writable, we can just use ctf_typemax to indicate the maximum type: dynamic or non-dynamic does not matter, and we no longer need to track the boundary between the types). You can now ctf_rollback() as far as you like, even past a ctf_update or for that matter a full writeout; all the iteration functions work just as well on writable as on read-only dictionaries; ctf_add_type no longer needs expensive duplicated code to run over the dynamic types hunting for ones it might be interested in; and the linker no longer needs a hack to call ctf_update so that calling ctf_add_type is not impossibly expensive. There is still a bit more complexity: some new code paths in ctf-types.c need to know how to extract information from dynamic types. This complexity will go away again in a few months when libctf acquires a proper intermediate representation. You can still call ctf_update if you like (it's public API, after all), but its only effect now is to set the point to which ctf_discard rolls back. Obviously *something* still needs to serialize the CTF file before writeout, and this job is done by ctf_serialize, which does everything ctf_update used to except set the counter used by ctf_discard. It is automatically called by the various functions that do CTF writeout: nobody else ever needs to call it. With this in place, forwards that are promoted to non-forwards no longer crash the link, even if it happens tens of thousands of types later. v5: fix tabdamage. libctf/ * ctf-impl.h (ctf_names_t): New. (ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t. (ctf_file_t) <ctf_structs>: Likewise. <ctf_unions>: Likewise. <ctf_enums>: Likewise. <ctf_names>: Likewise. <ctf_lookups>: Improve comment. <ctf_ptrtab_len>: New. <ctf_prov_strtab>: New. <ctf_str_prov_offset>: New. <ctf_dtbyname>: Remove, redundant to the names hashes. <ctf_dtnextid>: Remove, redundant to ctf_typemax. (ctf_dtdef_t) <dtd_name>: Remove. <dtd_data>: Note that the ctt_name is now populated. (ctf_str_atom_t) <csa_offset>: This is now the strtab offset for internal strings too. <csa_external_offset>: New, the external strtab offset. (CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case. (ctf_name_table): New declaration. (ctf_lookup_by_rawname): Likewise. (ctf_lookup_by_rawhash): Likewise. (ctf_set_ctl_hashes): Likewise. (ctf_serialize): Likewise. (ctf_dtd_insert): Adjust. (ctf_simple_open_internal): Likewise. (ctf_bufopen_internal): Likewise. (ctf_list_empty_p): Likewise. (ctf_str_remove_ref): Likewise. (ctf_str_add): Returns uint32_t now. (ctf_str_add_ref): Likewise. (ctf_str_add_external): Now returns a boolean (int). * ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab for strings in the appropriate range. (ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM when adding the null string to the new strtab. (ctf_str_free_atoms): Destroy the ctf_prov_strtab. (ctf_str_add_ref_internal): Add make_provisional argument. If make_provisional, populate the offset and fill in the ctf_prov_strtab accordingly. (ctf_str_add): Return the offset, not the string. (ctf_str_add_ref): Likewise. (ctf_str_add_external): Return a success integer. (ctf_str_remove_ref): New, remove a single ref. (ctf_str_count_strtab): Do not count the initial null string's length or the existence or length of any unreferenced internal atoms. (ctf_str_populate_sorttab): Skip atoms with no refs. (ctf_str_write_strtab): Populate the nullstr earlier. Add one to the cts_len for the null string, since it is no longer done in ctf_str_count_strtab. Adjust for csa_external_offset rename. Populate the csa_offset for both internal and external cases. Flush the ctf_prov_strtab afterwards, and reset the ctf_str_prov_offset. * ctf-create.c (ctf_grow_ptrtab): New. (ctf_create): Call it. Initialize new fields rather than old ones. Tell ctf_bufopen_internal that this is a writable dictionary. Set the ctl hashes and data model. (ctf_update): Rename to... (ctf_serialize): ... this. Leave a compatibility function behind. Tell ctf_simple_open_internal that this is a writable dictionary. Pass the new fields along from the old dictionary. Drop ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name. Do not zero out the DTD's ctt_name. (ctf_prefixed_name): Rename to... (ctf_name_table): ... this. No longer return a prefixed name: return the applicable name table instead. (ctf_dtd_insert): Use it, and use the right name table. Pass in the kind we're adding. Migrate away from dtd_name. (ctf_dtd_delete): Adjust similarly. Remove the ref to the deleted ctt_name. (ctf_dtd_lookup_type_by_name): Remove. (ctf_dynamic_type): Always return NULL on read-only dictionaries. No longer check ctf_dtnextid: check ctf_typemax instead. (ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead. (ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use ctf_name_table and the right name table, and migrate away from dtd_name as in ctf_dtd_delete. (ctf_add_generic): Pass in the kind explicitly and pass it to ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away from dtd_name to using ctf_str_add_ref to populate the ctt_name. Grow the ptrtab if needed. (ctf_add_encoded): Pass in the kind. (ctf_add_slice): Likewise. (ctf_add_array): Likewise. (ctf_add_function): Likewise. (ctf_add_typedef): Likewise. (ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking ctt_name rather than dtd_name. (ctf_add_struct_sized): Pass in the kind. Use ctf_lookup_by_rawname, not ctf_hash_lookup_type / ctf_dtd_lookup_type_by_name. (ctf_add_union_sized): Likewise. (ctf_add_enum): Likewise. (ctf_add_enum_encoded): Likewise. (ctf_add_forward): Likewise. (ctf_add_type): Likewise. (ctf_compress_write): Call ctf_serialize: adjust for ctf_size not being initialized until after the call. (ctf_write_mem): Likewise. (ctf_write): Likewise. * ctf-archive.c (arc_write_one_ctf): Likewise. * ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not ctf_hash_lookup_type. (ctf_lookup_by_id): No longer check the readonly types if the dictionary is writable. * ctf-open.c (init_types): Assert that this dictionary is not writable. Adjust to use the new name hashes, ctf_name_table, and ctf_ptrtab_len. GNU style fix for the final ptrtab scan. (ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR if set. Drop out early when dictionary is writable. Split the ctf_lookups initialization into... (ctf_set_cth_hashes): ... this new function. (ctf_simple_open_internal): Adjust. New 'writable' parameter. (ctf_simple_open): Adjust accordingly. (ctf_bufopen): Likewise. (ctf_file_close): Destroy the appropriate name hashes. No longer destroy ctf_dtbyname, which is gone. (ctf_getdatasect): Remove spurious "extern". * ctf-types.c (ctf_lookup_by_rawname): New, look up types in the specified name table, given a kind. (ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *. (ctf_member_iter): Add support for iterating over the dynamic type list. (ctf_enum_iter): Likewise. (ctf_variable_iter): Likewise. (ctf_type_rvisit): Likewise. (ctf_member_info): Add support for types in the dynamic type list. (ctf_enum_name): Likewise. (ctf_enum_value): Likewise. (ctf_func_type_info): Likewise. (ctf_func_type_args): Likewise. * ctf-link.c (ctf_accumulate_archive_names): No longer call ctf_update. (ctf_link_write): Likewise. (ctf_link_intern_extern_string): Adjust for new ctf_str_add_external return value. (ctf_link_add_strtab): Likewise. * ctf-util.c (ctf_list_empty_p): New.
433 lines
12 KiB
C
433 lines
12 KiB
C
/* Symbol, variable and name lookup.
|
|
Copyright (C) 2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <elf.h>
|
|
#include <string.h>
|
|
|
|
/* Compare the given input string and length against a table of known C storage
|
|
qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
|
|
do this quickly, we use a pre-computed Perfect Hash Function similar to the
|
|
technique originally described in the classic paper:
|
|
|
|
R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
|
|
Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
|
|
|
|
For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
|
|
for the current set of qualifiers yields a unique H in the range [0 .. 20].
|
|
The hash can be modified when the keyword set changes as necessary. We also
|
|
store the length of each keyword and check it prior to the final strcmp().
|
|
|
|
TODO: just use gperf. */
|
|
|
|
static int
|
|
isqualifier (const char *s, size_t len)
|
|
{
|
|
static const struct qual
|
|
{
|
|
const char *q_name;
|
|
size_t q_len;
|
|
} qhash[] = {
|
|
{"static", 6}, {"", 0}, {"", 0}, {"", 0},
|
|
{"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
|
|
{"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
|
|
{"", 0}, {"", 0}, {"const", 5}, {"register", 8},
|
|
{"", 0}, {"restrict", 8}, {"_Restrict", 9}
|
|
};
|
|
|
|
int h = s[len - 1] + (int) len - 105;
|
|
const struct qual *qp = &qhash[h];
|
|
|
|
return (h >= 0 && (size_t) h < sizeof (qhash) / sizeof (qhash[0])
|
|
&& (size_t) len == qp->q_len &&
|
|
strncmp (qp->q_name, s, qp->q_len) == 0);
|
|
}
|
|
|
|
/* Attempt to convert the given C type name into the corresponding CTF type ID.
|
|
It is not possible to do complete and proper conversion of type names
|
|
without implementing a more full-fledged parser, which is necessary to
|
|
handle things like types that are function pointers to functions that
|
|
have arguments that are function pointers, and fun stuff like that.
|
|
Instead, this function implements a very simple conversion algorithm that
|
|
finds the things that we actually care about: structs, unions, enums,
|
|
integers, floats, typedefs, and pointers to any of these named types. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_by_name (ctf_file_t *fp, const char *name)
|
|
{
|
|
static const char delimiters[] = " \t\n\r\v\f*";
|
|
|
|
const ctf_lookup_t *lp;
|
|
const char *p, *q, *end;
|
|
ctf_id_t type = 0;
|
|
ctf_id_t ntype, ptype;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
for (p = name, end = name + strlen (name); *p != '\0'; p = q)
|
|
{
|
|
while (isspace (*p))
|
|
p++; /* Skip leading whitespace. */
|
|
|
|
if (p == end)
|
|
break;
|
|
|
|
if ((q = strpbrk (p + 1, delimiters)) == NULL)
|
|
q = end; /* Compare until end. */
|
|
|
|
if (*p == '*')
|
|
{
|
|
/* Find a pointer to type by looking in fp->ctf_ptrtab.
|
|
If we can't find a pointer to the given type, see if
|
|
we can compute a pointer to the type resulting from
|
|
resolving the type down to its base type and use
|
|
that instead. This helps with cases where the CTF
|
|
data includes "struct foo *" but not "foo_t *" and
|
|
the user tries to access "foo_t *" in the debugger.
|
|
|
|
TODO need to handle parent containers too. */
|
|
|
|
ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)];
|
|
if (ntype == 0)
|
|
{
|
|
ntype = ctf_type_resolve_unsliced (fp, type);
|
|
if (ntype == CTF_ERR
|
|
|| (ntype =
|
|
fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, ntype)]) == 0)
|
|
{
|
|
(void) ctf_set_errno (fp, ECTF_NOTYPE);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD));
|
|
|
|
q = p + 1;
|
|
continue;
|
|
}
|
|
|
|
if (isqualifier (p, (size_t) (q - p)))
|
|
continue; /* Skip qualifier keyword. */
|
|
|
|
for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
|
|
{
|
|
/* TODO: This is not MT-safe. */
|
|
if ((lp->ctl_prefix[0] == '\0' ||
|
|
strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
|
|
(size_t) (q - p) >= lp->ctl_len)
|
|
{
|
|
for (p += lp->ctl_len; isspace (*p); p++)
|
|
continue; /* Skip prefix and next whitespace. */
|
|
|
|
if ((q = strchr (p, '*')) == NULL)
|
|
q = end; /* Compare until end. */
|
|
|
|
while (isspace (q[-1]))
|
|
q--; /* Exclude trailing whitespace. */
|
|
|
|
/* Expand and/or allocate storage for a slice of the name, then
|
|
copy it in. */
|
|
|
|
if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
|
|
{
|
|
memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
|
|
fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
|
|
}
|
|
else
|
|
{
|
|
free (fp->ctf_tmp_typeslice);
|
|
fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
|
|
if (fp->ctf_tmp_typeslice == NULL)
|
|
{
|
|
(void) ctf_set_errno (fp, ENOMEM);
|
|
return CTF_ERR;
|
|
}
|
|
}
|
|
|
|
if ((type = ctf_lookup_by_rawhash (fp, lp->ctl_hash,
|
|
fp->ctf_tmp_typeslice)) == 0)
|
|
{
|
|
(void) ctf_set_errno (fp, ECTF_NOTYPE);
|
|
goto err;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lp->ctl_prefix == NULL)
|
|
{
|
|
(void) ctf_set_errno (fp, ECTF_NOTYPE);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (*p != '\0' || type == 0)
|
|
return (ctf_set_errno (fp, ECTF_SYNTAX));
|
|
|
|
return type;
|
|
|
|
err:
|
|
if (fp->ctf_parent != NULL
|
|
&& (ptype = ctf_lookup_by_name (fp->ctf_parent, name)) != CTF_ERR)
|
|
return ptype;
|
|
|
|
return CTF_ERR;
|
|
}
|
|
|
|
typedef struct ctf_lookup_var_key
|
|
{
|
|
ctf_file_t *clvk_fp;
|
|
const char *clvk_name;
|
|
} ctf_lookup_var_key_t;
|
|
|
|
/* A bsearch function for variable names. */
|
|
|
|
static int
|
|
ctf_lookup_var (const void *key_, const void *memb_)
|
|
{
|
|
const ctf_lookup_var_key_t *key = key_;
|
|
const ctf_varent_t *memb = memb_;
|
|
|
|
return (strcmp (key->clvk_name, ctf_strptr (key->clvk_fp, memb->ctv_name)));
|
|
}
|
|
|
|
/* Given a variable name, return the type of the variable with that name. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_variable (ctf_file_t *fp, const char *name)
|
|
{
|
|
ctf_varent_t *ent;
|
|
ctf_lookup_var_key_t key = { fp, name };
|
|
|
|
/* This array is sorted, so we can bsearch for it. */
|
|
|
|
ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
|
|
ctf_lookup_var);
|
|
|
|
if (ent == NULL)
|
|
{
|
|
if (fp->ctf_parent != NULL)
|
|
return ctf_lookup_variable (fp->ctf_parent, name);
|
|
|
|
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
|
|
}
|
|
|
|
return ent->ctv_type;
|
|
}
|
|
|
|
/* Given a symbol table index, return the name of that symbol from the secondary
|
|
string table, or the null string (never NULL). */
|
|
const char *
|
|
ctf_lookup_symbol_name (ctf_file_t *fp, unsigned long symidx)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
Elf64_Sym sym, *gsp;
|
|
|
|
if (sp->cts_data == NULL)
|
|
{
|
|
ctf_set_errno (fp, ECTF_NOSYMTAB);
|
|
return _CTF_NULLSTR;
|
|
}
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
{
|
|
ctf_set_errno (fp, EINVAL);
|
|
return _CTF_NULLSTR;
|
|
}
|
|
|
|
if (sp->cts_entsize == sizeof (Elf32_Sym))
|
|
{
|
|
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
|
|
gsp = ctf_sym_to_elf64 (symp, &sym);
|
|
}
|
|
else
|
|
gsp = (Elf64_Sym *) sp->cts_data + symidx;
|
|
|
|
if (gsp->st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
|
|
return (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + gsp->st_name;
|
|
|
|
return _CTF_NULLSTR;
|
|
}
|
|
|
|
/* Given a symbol table index, return the type of the data object described
|
|
by the corresponding entry in the symbol table. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_by_symbol (ctf_file_t *fp, unsigned long symidx)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
ctf_id_t type;
|
|
|
|
if (sp->cts_data == NULL)
|
|
return (ctf_set_errno (fp, ECTF_NOSYMTAB));
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (sp->cts_entsize == sizeof (Elf32_Sym))
|
|
{
|
|
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
|
|
if (ELF32_ST_TYPE (symp->st_info) != STT_OBJECT)
|
|
return (ctf_set_errno (fp, ECTF_NOTDATA));
|
|
}
|
|
else
|
|
{
|
|
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
|
|
if (ELF64_ST_TYPE (symp->st_info) != STT_OBJECT)
|
|
return (ctf_set_errno (fp, ECTF_NOTDATA));
|
|
}
|
|
|
|
if (fp->ctf_sxlate[symidx] == -1u)
|
|
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
|
|
|
|
type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
|
|
if (type == 0)
|
|
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Return the pointer to the internal CTF type data corresponding to the
|
|
given type ID. If the ID is invalid, the function returns NULL.
|
|
This function is not exported outside of the library. */
|
|
|
|
const ctf_type_t *
|
|
ctf_lookup_by_id (ctf_file_t **fpp, ctf_id_t type)
|
|
{
|
|
ctf_file_t *fp = *fpp; /* Caller passes in starting CTF container. */
|
|
ctf_id_t idx;
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)
|
|
&& (fp = fp->ctf_parent) == NULL)
|
|
{
|
|
(void) ctf_set_errno (*fpp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
/* If this container is writable, check for a dynamic type. */
|
|
|
|
if (fp->ctf_flags & LCTF_RDWR)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
|
|
{
|
|
*fpp = fp;
|
|
return &dtd->dtd_data;
|
|
}
|
|
(void) ctf_set_errno (*fpp, ECTF_BADID);
|
|
return NULL;
|
|
}
|
|
|
|
/* Check for a type in the static portion. */
|
|
|
|
idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
|
|
{
|
|
*fpp = fp; /* Function returns ending CTF container. */
|
|
return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
|
|
}
|
|
|
|
(void) ctf_set_errno (*fpp, ECTF_BADID);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a symbol table index, return the info for the function described
|
|
by the corresponding entry in the symbol table. */
|
|
|
|
int
|
|
ctf_func_info (ctf_file_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
const uint32_t *dp;
|
|
uint32_t info, kind, n;
|
|
|
|
if (sp->cts_data == NULL)
|
|
return (ctf_set_errno (fp, ECTF_NOSYMTAB));
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (sp->cts_entsize == sizeof (Elf32_Sym))
|
|
{
|
|
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
|
|
if (ELF32_ST_TYPE (symp->st_info) != STT_FUNC)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
}
|
|
else
|
|
{
|
|
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
|
|
if (ELF64_ST_TYPE (symp->st_info) != STT_FUNC)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
}
|
|
|
|
if (fp->ctf_sxlate[symidx] == -1u)
|
|
return (ctf_set_errno (fp, ECTF_NOFUNCDAT));
|
|
|
|
dp = (uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
|
|
|
|
info = *dp++;
|
|
kind = LCTF_INFO_KIND (fp, info);
|
|
n = LCTF_INFO_VLEN (fp, info);
|
|
|
|
if (kind == CTF_K_UNKNOWN && n == 0)
|
|
return (ctf_set_errno (fp, ECTF_NOFUNCDAT));
|
|
|
|
if (kind != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_CORRUPT));
|
|
|
|
fip->ctc_return = *dp++;
|
|
fip->ctc_argc = n;
|
|
fip->ctc_flags = 0;
|
|
|
|
if (n != 0 && dp[n - 1] == 0)
|
|
{
|
|
fip->ctc_flags |= CTF_FUNC_VARARG;
|
|
fip->ctc_argc--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Given a symbol table index, return the arguments for the function described
|
|
by the corresponding entry in the symbol table. */
|
|
|
|
int
|
|
ctf_func_args (ctf_file_t * fp, unsigned long symidx, uint32_t argc,
|
|
ctf_id_t * argv)
|
|
{
|
|
const uint32_t *dp;
|
|
ctf_funcinfo_t f;
|
|
|
|
if (ctf_func_info (fp, symidx, &f) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
/* The argument data is two uint32_t's past the translation table
|
|
offset: one for the function info, and one for the return type. */
|
|
|
|
dp = (uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]) + 2;
|
|
|
|
for (argc = MIN (argc, f.ctc_argc); argc != 0; argc--)
|
|
*argv++ = *dp++;
|
|
|
|
return 0;
|
|
}
|