5f034a78b9
When we're looking at a tracefile trace frame where registers are not available, and the tracepoint has only one location, we supply the location's address as the PC register. However, this only works if PC is not a pseudo register, and individual architectures may want to guess more registers. Add a gdbarch hook that will handle that. gdb/ChangeLog: * arch-utils.c (default_guess_tracepoint_registers): New function. * arch-utils.h (default_guess_tracepoint_registers): New prototype. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh: Add guess_tracepoint_registers hook. * tracefile.c (tracefile_fetch_registers): Use the new gdbarch hook.
936 lines
26 KiB
C
936 lines
26 KiB
C
/* Dynamic architecture support for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1998-2016 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
|
||
#include "arch-utils.h"
|
||
#include "buildsym.h"
|
||
#include "gdbcmd.h"
|
||
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */
|
||
#include "infrun.h"
|
||
#include "regcache.h"
|
||
#include "sim-regno.h"
|
||
#include "gdbcore.h"
|
||
#include "osabi.h"
|
||
#include "target-descriptions.h"
|
||
#include "objfiles.h"
|
||
#include "language.h"
|
||
#include "symtab.h"
|
||
|
||
#include "version.h"
|
||
|
||
#include "floatformat.h"
|
||
|
||
|
||
struct displaced_step_closure *
|
||
simple_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
size_t len = gdbarch_max_insn_length (gdbarch);
|
||
gdb_byte *buf = (gdb_byte *) xmalloc (len);
|
||
|
||
read_memory (from, buf, len);
|
||
write_memory (to, buf, len);
|
||
|
||
if (debug_displaced)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
|
||
paddress (gdbarch, from), paddress (gdbarch, to));
|
||
displaced_step_dump_bytes (gdb_stdlog, buf, len);
|
||
}
|
||
|
||
return (struct displaced_step_closure *) buf;
|
||
}
|
||
|
||
|
||
void
|
||
simple_displaced_step_free_closure (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *closure)
|
||
{
|
||
xfree (closure);
|
||
}
|
||
|
||
int
|
||
default_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *closure)
|
||
{
|
||
return !gdbarch_software_single_step_p (gdbarch);
|
||
}
|
||
|
||
CORE_ADDR
|
||
displaced_step_at_entry_point (struct gdbarch *gdbarch)
|
||
{
|
||
CORE_ADDR addr;
|
||
int bp_len;
|
||
|
||
addr = entry_point_address ();
|
||
|
||
/* Inferior calls also use the entry point as a breakpoint location.
|
||
We don't want displaced stepping to interfere with those
|
||
breakpoints, so leave space. */
|
||
gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
|
||
addr += bp_len * 2;
|
||
|
||
return addr;
|
||
}
|
||
|
||
int
|
||
legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
/* Only makes sense to supply raw registers. */
|
||
gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
|
||
/* NOTE: cagney/2002-05-13: The old code did it this way and it is
|
||
suspected that some GDB/SIM combinations may rely on this
|
||
behavour. The default should be one2one_register_sim_regno
|
||
(below). */
|
||
if (gdbarch_register_name (gdbarch, regnum) != NULL
|
||
&& gdbarch_register_name (gdbarch, regnum)[0] != '\0')
|
||
return regnum;
|
||
else
|
||
return LEGACY_SIM_REGNO_IGNORE;
|
||
}
|
||
|
||
CORE_ADDR
|
||
generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, const char *name)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Helper functions for gdbarch_inner_than */
|
||
|
||
int
|
||
core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
return (lhs < rhs);
|
||
}
|
||
|
||
int
|
||
core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
return (lhs > rhs);
|
||
}
|
||
|
||
/* Misc helper functions for targets. */
|
||
|
||
CORE_ADDR
|
||
core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
CORE_ADDR
|
||
convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
struct target_ops *targ)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
int
|
||
no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
return reg;
|
||
}
|
||
|
||
void
|
||
default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
void
|
||
default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
CORE_ADDR
|
||
default_adjust_dwarf2_addr (CORE_ADDR pc)
|
||
{
|
||
return pc;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
CORE_ADDR
|
||
default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
int
|
||
cannot_register_not (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Legacy version of target_virtual_frame_pointer(). Assumes that
|
||
there is an gdbarch_deprecated_fp_regnum and that it is the same,
|
||
cooked or raw. */
|
||
|
||
void
|
||
legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc,
|
||
int *frame_regnum,
|
||
LONGEST *frame_offset)
|
||
{
|
||
/* FIXME: cagney/2002-09-13: This code is used when identifying the
|
||
frame pointer of the current PC. It is assuming that a single
|
||
register and an offset can determine this. I think it should
|
||
instead generate a byte code expression as that would work better
|
||
with things like Dwarf2's CFI. */
|
||
if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
|
||
&& gdbarch_deprecated_fp_regnum (gdbarch)
|
||
< gdbarch_num_regs (gdbarch))
|
||
*frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
|
||
else if (gdbarch_sp_regnum (gdbarch) >= 0
|
||
&& gdbarch_sp_regnum (gdbarch)
|
||
< gdbarch_num_regs (gdbarch))
|
||
*frame_regnum = gdbarch_sp_regnum (gdbarch);
|
||
else
|
||
/* Should this be an internal error? I guess so, it is reflecting
|
||
an architectural limitation in the current design. */
|
||
internal_error (__FILE__, __LINE__,
|
||
_("No virtual frame pointer available"));
|
||
*frame_offset = 0;
|
||
}
|
||
|
||
|
||
int
|
||
generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
|
||
struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_instruction_nullified (struct gdbarch *gdbarch,
|
||
struct regcache *regcache)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_remote_register_number (struct gdbarch *gdbarch,
|
||
int regno)
|
||
{
|
||
return regno;
|
||
}
|
||
|
||
/* See arch-utils.h. */
|
||
|
||
int
|
||
default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Functions to manipulate the endianness of the target. */
|
||
|
||
static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;
|
||
|
||
static const char endian_big[] = "big";
|
||
static const char endian_little[] = "little";
|
||
static const char endian_auto[] = "auto";
|
||
static const char *const endian_enum[] =
|
||
{
|
||
endian_big,
|
||
endian_little,
|
||
endian_auto,
|
||
NULL,
|
||
};
|
||
static const char *set_endian_string;
|
||
|
||
enum bfd_endian
|
||
selected_byte_order (void)
|
||
{
|
||
return target_byte_order_user;
|
||
}
|
||
|
||
/* Called by ``show endian''. */
|
||
|
||
static void
|
||
show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
|
||
if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
|
||
fprintf_unfiltered (file, _("The target endianness is set automatically "
|
||
"(currently big endian)\n"));
|
||
else
|
||
fprintf_unfiltered (file, _("The target endianness is set automatically "
|
||
"(currently little endian)\n"));
|
||
else
|
||
if (target_byte_order_user == BFD_ENDIAN_BIG)
|
||
fprintf_unfiltered (file,
|
||
_("The target is assumed to be big endian\n"));
|
||
else
|
||
fprintf_unfiltered (file,
|
||
_("The target is assumed to be little endian\n"));
|
||
}
|
||
|
||
static void
|
||
set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
gdbarch_info_init (&info);
|
||
|
||
if (set_endian_string == endian_auto)
|
||
{
|
||
target_byte_order_user = BFD_ENDIAN_UNKNOWN;
|
||
if (! gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_endian: architecture update failed"));
|
||
}
|
||
else if (set_endian_string == endian_little)
|
||
{
|
||
info.byte_order = BFD_ENDIAN_LITTLE;
|
||
if (! gdbarch_update_p (info))
|
||
printf_unfiltered (_("Little endian target not supported by GDB\n"));
|
||
else
|
||
target_byte_order_user = BFD_ENDIAN_LITTLE;
|
||
}
|
||
else if (set_endian_string == endian_big)
|
||
{
|
||
info.byte_order = BFD_ENDIAN_BIG;
|
||
if (! gdbarch_update_p (info))
|
||
printf_unfiltered (_("Big endian target not supported by GDB\n"));
|
||
else
|
||
target_byte_order_user = BFD_ENDIAN_BIG;
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_endian: bad value"));
|
||
|
||
show_endian (gdb_stdout, from_tty, NULL, NULL);
|
||
}
|
||
|
||
/* Given SELECTED, a currently selected BFD architecture, and
|
||
TARGET_DESC, the current target description, return what
|
||
architecture to use.
|
||
|
||
SELECTED may be NULL, in which case we return the architecture
|
||
associated with TARGET_DESC. If SELECTED specifies a variant
|
||
of the architecture associtated with TARGET_DESC, return the
|
||
more specific of the two.
|
||
|
||
If SELECTED is a different architecture, but it is accepted as
|
||
compatible by the target, we can use the target architecture.
|
||
|
||
If SELECTED is obviously incompatible, warn the user. */
|
||
|
||
static const struct bfd_arch_info *
|
||
choose_architecture_for_target (const struct target_desc *target_desc,
|
||
const struct bfd_arch_info *selected)
|
||
{
|
||
const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
|
||
const struct bfd_arch_info *compat1, *compat2;
|
||
|
||
if (selected == NULL)
|
||
return from_target;
|
||
|
||
if (from_target == NULL)
|
||
return selected;
|
||
|
||
/* struct bfd_arch_info objects are singletons: that is, there's
|
||
supposed to be exactly one instance for a given machine. So you
|
||
can tell whether two are equivalent by comparing pointers. */
|
||
if (from_target == selected)
|
||
return selected;
|
||
|
||
/* BFD's 'A->compatible (A, B)' functions return zero if A and B are
|
||
incompatible. But if they are compatible, it returns the 'more
|
||
featureful' of the two arches. That is, if A can run code
|
||
written for B, but B can't run code written for A, then it'll
|
||
return A.
|
||
|
||
Some targets (e.g. MIPS as of 2006-12-04) don't fully
|
||
implement this, instead always returning NULL or the first
|
||
argument. We detect that case by checking both directions. */
|
||
|
||
compat1 = selected->compatible (selected, from_target);
|
||
compat2 = from_target->compatible (from_target, selected);
|
||
|
||
if (compat1 == NULL && compat2 == NULL)
|
||
{
|
||
/* BFD considers the architectures incompatible. Check our
|
||
target description whether it accepts SELECTED as compatible
|
||
anyway. */
|
||
if (tdesc_compatible_p (target_desc, selected))
|
||
return from_target;
|
||
|
||
warning (_("Selected architecture %s is not compatible "
|
||
"with reported target architecture %s"),
|
||
selected->printable_name, from_target->printable_name);
|
||
return selected;
|
||
}
|
||
|
||
if (compat1 == NULL)
|
||
return compat2;
|
||
if (compat2 == NULL)
|
||
return compat1;
|
||
if (compat1 == compat2)
|
||
return compat1;
|
||
|
||
/* If the two didn't match, but one of them was a default
|
||
architecture, assume the more specific one is correct. This
|
||
handles the case where an executable or target description just
|
||
says "mips", but the other knows which MIPS variant. */
|
||
if (compat1->the_default)
|
||
return compat2;
|
||
if (compat2->the_default)
|
||
return compat1;
|
||
|
||
/* We have no idea which one is better. This is a bug, but not
|
||
a critical problem; warn the user. */
|
||
warning (_("Selected architecture %s is ambiguous with "
|
||
"reported target architecture %s"),
|
||
selected->printable_name, from_target->printable_name);
|
||
return selected;
|
||
}
|
||
|
||
/* Functions to manipulate the architecture of the target. */
|
||
|
||
enum set_arch { set_arch_auto, set_arch_manual };
|
||
|
||
static const struct bfd_arch_info *target_architecture_user;
|
||
|
||
static const char *set_architecture_string;
|
||
|
||
const char *
|
||
selected_architecture_name (void)
|
||
{
|
||
if (target_architecture_user == NULL)
|
||
return NULL;
|
||
else
|
||
return set_architecture_string;
|
||
}
|
||
|
||
/* Called if the user enters ``show architecture'' without an
|
||
argument. */
|
||
|
||
static void
|
||
show_architecture (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
if (target_architecture_user == NULL)
|
||
fprintf_filtered (file, _("The target architecture is set "
|
||
"automatically (currently %s)\n"),
|
||
gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
|
||
else
|
||
fprintf_filtered (file, _("The target architecture is assumed to be %s\n"),
|
||
set_architecture_string);
|
||
}
|
||
|
||
|
||
/* Called if the user enters ``set architecture'' with or without an
|
||
argument. */
|
||
|
||
static void
|
||
set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
gdbarch_info_init (&info);
|
||
|
||
if (strcmp (set_architecture_string, "auto") == 0)
|
||
{
|
||
target_architecture_user = NULL;
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not select an architecture automatically"));
|
||
}
|
||
else
|
||
{
|
||
info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
|
||
if (info.bfd_arch_info == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_architecture: bfd_scan_arch failed"));
|
||
if (gdbarch_update_p (info))
|
||
target_architecture_user = info.bfd_arch_info;
|
||
else
|
||
printf_unfiltered (_("Architecture `%s' not recognized.\n"),
|
||
set_architecture_string);
|
||
}
|
||
show_architecture (gdb_stdout, from_tty, NULL, NULL);
|
||
}
|
||
|
||
/* Try to select a global architecture that matches "info". Return
|
||
non-zero if the attempt succeeds. */
|
||
int
|
||
gdbarch_update_p (struct gdbarch_info info)
|
||
{
|
||
struct gdbarch *new_gdbarch;
|
||
|
||
/* Check for the current file. */
|
||
if (info.abfd == NULL)
|
||
info.abfd = exec_bfd;
|
||
if (info.abfd == NULL)
|
||
info.abfd = core_bfd;
|
||
|
||
/* Check for the current target description. */
|
||
if (info.target_desc == NULL)
|
||
info.target_desc = target_current_description ();
|
||
|
||
new_gdbarch = gdbarch_find_by_info (info);
|
||
|
||
/* If there no architecture by that name, reject the request. */
|
||
if (new_gdbarch == NULL)
|
||
{
|
||
if (gdbarch_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
|
||
"Architecture not found\n");
|
||
return 0;
|
||
}
|
||
|
||
/* If it is the same old architecture, accept the request (but don't
|
||
swap anything). */
|
||
if (new_gdbarch == target_gdbarch ())
|
||
{
|
||
if (gdbarch_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
|
||
"Architecture %s (%s) unchanged\n",
|
||
host_address_to_string (new_gdbarch),
|
||
gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
|
||
return 1;
|
||
}
|
||
|
||
/* It's a new architecture, swap it in. */
|
||
if (gdbarch_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
|
||
"New architecture %s (%s) selected\n",
|
||
host_address_to_string (new_gdbarch),
|
||
gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
|
||
set_target_gdbarch (new_gdbarch);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the architecture for ABFD. If no suitable architecture
|
||
could be find, return NULL. */
|
||
|
||
struct gdbarch *
|
||
gdbarch_from_bfd (bfd *abfd)
|
||
{
|
||
struct gdbarch_info info;
|
||
gdbarch_info_init (&info);
|
||
|
||
info.abfd = abfd;
|
||
return gdbarch_find_by_info (info);
|
||
}
|
||
|
||
/* Set the dynamic target-system-dependent parameters (architecture,
|
||
byte-order) using information found in the BFD */
|
||
|
||
void
|
||
set_gdbarch_from_file (bfd *abfd)
|
||
{
|
||
struct gdbarch_info info;
|
||
struct gdbarch *gdbarch;
|
||
|
||
gdbarch_info_init (&info);
|
||
info.abfd = abfd;
|
||
info.target_desc = target_current_description ();
|
||
gdbarch = gdbarch_find_by_info (info);
|
||
|
||
if (gdbarch == NULL)
|
||
error (_("Architecture of file not recognized."));
|
||
set_target_gdbarch (gdbarch);
|
||
}
|
||
|
||
/* Initialize the current architecture. Update the ``set
|
||
architecture'' command so that it specifies a list of valid
|
||
architectures. */
|
||
|
||
#ifdef DEFAULT_BFD_ARCH
|
||
extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
|
||
static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
|
||
#else
|
||
static const bfd_arch_info_type *default_bfd_arch;
|
||
#endif
|
||
|
||
#ifdef DEFAULT_BFD_VEC
|
||
extern const bfd_target DEFAULT_BFD_VEC;
|
||
static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
|
||
#else
|
||
static const bfd_target *default_bfd_vec;
|
||
#endif
|
||
|
||
static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;
|
||
|
||
void
|
||
initialize_current_architecture (void)
|
||
{
|
||
const char **arches = gdbarch_printable_names ();
|
||
struct gdbarch_info info;
|
||
|
||
/* determine a default architecture and byte order. */
|
||
gdbarch_info_init (&info);
|
||
|
||
/* Find a default architecture. */
|
||
if (default_bfd_arch == NULL)
|
||
{
|
||
/* Choose the architecture by taking the first one
|
||
alphabetically. */
|
||
const char *chosen = arches[0];
|
||
const char **arch;
|
||
for (arch = arches; *arch != NULL; arch++)
|
||
{
|
||
if (strcmp (*arch, chosen) < 0)
|
||
chosen = *arch;
|
||
}
|
||
if (chosen == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("initialize_current_architecture: No arch"));
|
||
default_bfd_arch = bfd_scan_arch (chosen);
|
||
if (default_bfd_arch == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("initialize_current_architecture: Arch not found"));
|
||
}
|
||
|
||
info.bfd_arch_info = default_bfd_arch;
|
||
|
||
/* Take several guesses at a byte order. */
|
||
if (default_byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& default_bfd_vec != NULL)
|
||
{
|
||
/* Extract BFD's default vector's byte order. */
|
||
switch (default_bfd_vec->byteorder)
|
||
{
|
||
case BFD_ENDIAN_BIG:
|
||
default_byte_order = BFD_ENDIAN_BIG;
|
||
break;
|
||
case BFD_ENDIAN_LITTLE:
|
||
default_byte_order = BFD_ENDIAN_LITTLE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
if (default_byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
/* look for ``*el-*'' in the target name. */
|
||
const char *chp;
|
||
chp = strchr (target_name, '-');
|
||
if (chp != NULL
|
||
&& chp - 2 >= target_name
|
||
&& startswith (chp - 2, "el"))
|
||
default_byte_order = BFD_ENDIAN_LITTLE;
|
||
}
|
||
if (default_byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
/* Wire it to big-endian!!! */
|
||
default_byte_order = BFD_ENDIAN_BIG;
|
||
}
|
||
|
||
info.byte_order = default_byte_order;
|
||
info.byte_order_for_code = info.byte_order;
|
||
|
||
if (! gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("initialize_current_architecture: Selection of "
|
||
"initial architecture failed"));
|
||
|
||
/* Create the ``set architecture'' command appending ``auto'' to the
|
||
list of architectures. */
|
||
{
|
||
/* Append ``auto''. */
|
||
int nr;
|
||
for (nr = 0; arches[nr] != NULL; nr++);
|
||
arches = XRESIZEVEC (const char *, arches, nr + 2);
|
||
arches[nr + 0] = "auto";
|
||
arches[nr + 1] = NULL;
|
||
add_setshow_enum_cmd ("architecture", class_support,
|
||
arches, &set_architecture_string,
|
||
_("Set architecture of target."),
|
||
_("Show architecture of target."), NULL,
|
||
set_architecture, show_architecture,
|
||
&setlist, &showlist);
|
||
add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
|
||
}
|
||
}
|
||
|
||
|
||
/* Initialize a gdbarch info to values that will be automatically
|
||
overridden. Note: Originally, this ``struct info'' was initialized
|
||
using memset(0). Unfortunately, that ran into problems, namely
|
||
BFD_ENDIAN_BIG is zero. An explicit initialization function that
|
||
can explicitly set each field to a well defined value is used. */
|
||
|
||
void
|
||
gdbarch_info_init (struct gdbarch_info *info)
|
||
{
|
||
memset (info, 0, sizeof (struct gdbarch_info));
|
||
info->byte_order = BFD_ENDIAN_UNKNOWN;
|
||
info->byte_order_for_code = info->byte_order;
|
||
info->osabi = GDB_OSABI_UNINITIALIZED;
|
||
}
|
||
|
||
/* Similar to init, but this time fill in the blanks. Information is
|
||
obtained from the global "set ..." options and explicitly
|
||
initialized INFO fields. */
|
||
|
||
void
|
||
gdbarch_info_fill (struct gdbarch_info *info)
|
||
{
|
||
/* "(gdb) set architecture ...". */
|
||
if (info->bfd_arch_info == NULL
|
||
&& target_architecture_user)
|
||
info->bfd_arch_info = target_architecture_user;
|
||
/* From the file. */
|
||
if (info->bfd_arch_info == NULL
|
||
&& info->abfd != NULL
|
||
&& bfd_get_arch (info->abfd) != bfd_arch_unknown
|
||
&& bfd_get_arch (info->abfd) != bfd_arch_obscure)
|
||
info->bfd_arch_info = bfd_get_arch_info (info->abfd);
|
||
/* From the target. */
|
||
if (info->target_desc != NULL)
|
||
info->bfd_arch_info = choose_architecture_for_target
|
||
(info->target_desc, info->bfd_arch_info);
|
||
/* From the default. */
|
||
if (info->bfd_arch_info == NULL)
|
||
info->bfd_arch_info = default_bfd_arch;
|
||
|
||
/* "(gdb) set byte-order ...". */
|
||
if (info->byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& target_byte_order_user != BFD_ENDIAN_UNKNOWN)
|
||
info->byte_order = target_byte_order_user;
|
||
/* From the INFO struct. */
|
||
if (info->byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& info->abfd != NULL)
|
||
info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
|
||
: bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
|
||
: BFD_ENDIAN_UNKNOWN);
|
||
/* From the default. */
|
||
if (info->byte_order == BFD_ENDIAN_UNKNOWN)
|
||
info->byte_order = default_byte_order;
|
||
info->byte_order_for_code = info->byte_order;
|
||
|
||
/* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
|
||
/* From the manual override, or from file. */
|
||
if (info->osabi == GDB_OSABI_UNINITIALIZED)
|
||
info->osabi = gdbarch_lookup_osabi (info->abfd);
|
||
/* From the target. */
|
||
if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
|
||
info->osabi = tdesc_osabi (info->target_desc);
|
||
/* From the configured default. */
|
||
#ifdef GDB_OSABI_DEFAULT
|
||
if (info->osabi == GDB_OSABI_UNKNOWN)
|
||
info->osabi = GDB_OSABI_DEFAULT;
|
||
#endif
|
||
|
||
/* Must have at least filled in the architecture. */
|
||
gdb_assert (info->bfd_arch_info != NULL);
|
||
}
|
||
|
||
/* Return "current" architecture. If the target is running, this is
|
||
the architecture of the selected frame. Otherwise, the "current"
|
||
architecture defaults to the target architecture.
|
||
|
||
This function should normally be called solely by the command
|
||
interpreter routines to determine the architecture to execute a
|
||
command in. */
|
||
struct gdbarch *
|
||
get_current_arch (void)
|
||
{
|
||
if (has_stack_frames ())
|
||
return get_frame_arch (get_selected_frame (NULL));
|
||
else
|
||
return target_gdbarch ();
|
||
}
|
||
|
||
int
|
||
default_has_shared_address_space (struct gdbarch *gdbarch)
|
||
{
|
||
/* Simply say no. In most unix-like targets each inferior/process
|
||
has its own address space. */
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
char **msg)
|
||
{
|
||
/* We don't know if maybe the target has some way to do fast
|
||
tracepoints that doesn't need gdbarch, so always say yes. */
|
||
if (msg)
|
||
*msg = NULL;
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
default_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
||
int *kindptr)
|
||
{
|
||
gdbarch_breakpoint_from_pc (gdbarch, pcptr, kindptr);
|
||
}
|
||
|
||
void
|
||
default_gen_return_address (struct gdbarch *gdbarch,
|
||
struct agent_expr *ax, struct axs_value *value,
|
||
CORE_ADDR scope)
|
||
{
|
||
error (_("This architecture has no method to collect a return address."));
|
||
}
|
||
|
||
int
|
||
default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
|
||
struct type *type)
|
||
{
|
||
/* Usually, the return value's address is stored the in the "first hidden"
|
||
parameter if the return value should be passed by reference, as
|
||
specified in ABI. */
|
||
return language_pass_by_reference (type);
|
||
}
|
||
|
||
int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
default_skip_permanent_breakpoint (struct regcache *regcache)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
CORE_ADDR current_pc = regcache_read_pc (regcache);
|
||
const gdb_byte *bp_insn;
|
||
int bp_len;
|
||
|
||
bp_insn = gdbarch_breakpoint_from_pc (gdbarch, ¤t_pc, &bp_len);
|
||
current_pc += bp_len;
|
||
regcache_write_pc (regcache, current_pc);
|
||
}
|
||
|
||
CORE_ADDR
|
||
default_infcall_mmap (CORE_ADDR size, unsigned prot)
|
||
{
|
||
error (_("This target does not support inferior memory allocation by mmap."));
|
||
}
|
||
|
||
void
|
||
default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
|
||
{
|
||
/* Memory reserved by inferior mmap is kept leaked. */
|
||
}
|
||
|
||
/* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
|
||
created in inferior memory by GDB (normally it is set by ld.so). */
|
||
|
||
char *
|
||
default_gcc_target_options (struct gdbarch *gdbarch)
|
||
{
|
||
return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
|
||
gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : "");
|
||
}
|
||
|
||
/* gdbarch gnu_triplet_regexp method. */
|
||
|
||
const char *
|
||
default_gnu_triplet_regexp (struct gdbarch *gdbarch)
|
||
{
|
||
return gdbarch_bfd_arch_info (gdbarch)->arch_name;
|
||
}
|
||
|
||
/* Default method for gdbarch_addressable_memory_unit_size. By default, a memory byte has
|
||
a size of 1 octet. */
|
||
|
||
int
|
||
default_addressable_memory_unit_size (struct gdbarch *gdbarch)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
default_guess_tracepoint_registers (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
CORE_ADDR addr)
|
||
{
|
||
int pc_regno = gdbarch_pc_regnum (gdbarch);
|
||
gdb_byte *regs;
|
||
|
||
/* This guessing code below only works if the PC register isn't
|
||
a pseudo-register. The value of a pseudo-register isn't stored
|
||
in the (non-readonly) regcache -- instead it's recomputed
|
||
(probably from some other cached raw register) whenever the
|
||
register is read. In this case, a custom method implementation
|
||
should be used by the architecture. */
|
||
if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
|
||
return;
|
||
|
||
regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
|
||
store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
|
||
gdbarch_byte_order (gdbarch), addr);
|
||
regcache_raw_supply (regcache, pc_regno, regs);
|
||
}
|
||
|
||
/* -Wmissing-prototypes */
|
||
extern initialize_file_ftype _initialize_gdbarch_utils;
|
||
|
||
void
|
||
_initialize_gdbarch_utils (void)
|
||
{
|
||
add_setshow_enum_cmd ("endian", class_support,
|
||
endian_enum, &set_endian_string,
|
||
_("Set endianness of target."),
|
||
_("Show endianness of target."),
|
||
NULL, set_endian, show_endian,
|
||
&setlist, &showlist);
|
||
}
|