4de283e4b5
Andreas Schwab and John Baldwin pointed out some bugs in the header sorting patch; and I noticed that the output was not correct when limited to a subset of files (a bug in my script). So, I'm reverting the patch. I may try again after fixing the issues pointed out. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> Revert the header-sorting patch. * ft32-tdep.c: Revert. * frv-tdep.c: Revert. * frv-linux-tdep.c: Revert. * frame.c: Revert. * frame-unwind.c: Revert. * frame-base.c: Revert. * fork-child.c: Revert. * findvar.c: Revert. * findcmd.c: Revert. * filesystem.c: Revert. * filename-seen-cache.h: Revert. * filename-seen-cache.c: Revert. * fbsd-tdep.c: Revert. * fbsd-nat.h: Revert. * fbsd-nat.c: Revert. * f-valprint.c: Revert. * f-typeprint.c: Revert. * f-lang.c: Revert. * extension.h: Revert. * extension.c: Revert. * extension-priv.h: Revert. * expprint.c: Revert. * exec.h: Revert. * exec.c: Revert. * exceptions.c: Revert. * event-top.c: Revert. * event-loop.c: Revert. * eval.c: Revert. * elfread.c: Revert. * dwarf2read.h: Revert. * dwarf2read.c: Revert. * dwarf2loc.c: Revert. * dwarf2expr.h: Revert. * dwarf2expr.c: Revert. * dwarf2-frame.c: Revert. * dwarf2-frame-tailcall.c: Revert. * dwarf-index-write.h: Revert. * dwarf-index-write.c: Revert. * dwarf-index-common.c: Revert. * dwarf-index-cache.h: Revert. * dwarf-index-cache.c: Revert. * dummy-frame.c: Revert. * dtrace-probe.c: Revert. * disasm.h: Revert. * disasm.c: Revert. * disasm-selftests.c: Revert. * dictionary.c: Revert. * dicos-tdep.c: Revert. * demangle.c: Revert. * dcache.h: Revert. * dcache.c: Revert. * darwin-nat.h: Revert. * darwin-nat.c: Revert. * darwin-nat-info.c: Revert. * d-valprint.c: Revert. * d-namespace.c: Revert. * d-lang.c: Revert. * ctf.c: Revert. * csky-tdep.c: Revert. * csky-linux-tdep.c: Revert. * cris-tdep.c: Revert. * cris-linux-tdep.c: Revert. * cp-valprint.c: Revert. * cp-support.c: Revert. * cp-namespace.c: Revert. * cp-abi.c: Revert. * corelow.c: Revert. * corefile.c: Revert. * continuations.c: Revert. * completer.h: Revert. * completer.c: Revert. * complaints.c: Revert. * coffread.c: Revert. * coff-pe-read.c: Revert. * cli-out.h: Revert. * cli-out.c: Revert. * charset.c: Revert. * c-varobj.c: Revert. * c-valprint.c: Revert. * c-typeprint.c: Revert. * c-lang.c: Revert. * buildsym.c: Revert. * buildsym-legacy.c: Revert. * build-id.h: Revert. * build-id.c: Revert. * btrace.c: Revert. * bsd-uthread.c: Revert. * breakpoint.h: Revert. * breakpoint.c: Revert. * break-catch-throw.c: Revert. * break-catch-syscall.c: Revert. * break-catch-sig.c: Revert. * blockframe.c: Revert. * block.c: Revert. * bfin-tdep.c: Revert. * bfin-linux-tdep.c: Revert. * bfd-target.c: Revert. * bcache.c: Revert. * ax-general.c: Revert. * ax-gdb.h: Revert. * ax-gdb.c: Revert. * avr-tdep.c: Revert. * auxv.c: Revert. * auto-load.c: Revert. * arm-wince-tdep.c: Revert. * arm-tdep.c: Revert. * arm-symbian-tdep.c: Revert. * arm-pikeos-tdep.c: Revert. * arm-obsd-tdep.c: Revert. * arm-nbsd-tdep.c: Revert. * arm-nbsd-nat.c: Revert. * arm-linux-tdep.c: Revert. * arm-linux-nat.c: Revert. * arm-fbsd-tdep.c: Revert. * arm-fbsd-nat.c: Revert. * arm-bsd-tdep.c: Revert. * arch-utils.c: Revert. * arc-tdep.c: Revert. * arc-newlib-tdep.c: Revert. * annotate.h: Revert. * annotate.c: Revert. * amd64-windows-tdep.c: Revert. * amd64-windows-nat.c: Revert. * amd64-tdep.c: Revert. * amd64-sol2-tdep.c: Revert. * amd64-obsd-tdep.c: Revert. * amd64-obsd-nat.c: Revert. * amd64-nbsd-tdep.c: Revert. * amd64-nbsd-nat.c: Revert. * amd64-nat.c: Revert. * amd64-linux-tdep.c: Revert. * amd64-linux-nat.c: Revert. * amd64-fbsd-tdep.c: Revert. * amd64-fbsd-nat.c: Revert. * amd64-dicos-tdep.c: Revert. * amd64-darwin-tdep.c: Revert. * amd64-bsd-nat.c: Revert. * alpha-tdep.c: Revert. * alpha-obsd-tdep.c: Revert. * alpha-nbsd-tdep.c: Revert. * alpha-mdebug-tdep.c: Revert. * alpha-linux-tdep.c: Revert. * alpha-linux-nat.c: Revert. * alpha-bsd-tdep.c: Revert. * alpha-bsd-nat.c: Revert. * aix-thread.c: Revert. * agent.c: Revert. * addrmap.c: Revert. * ada-varobj.c: Revert. * ada-valprint.c: Revert. * ada-typeprint.c: Revert. * ada-tasks.c: Revert. * ada-lang.c: Revert. * aarch64-tdep.c: Revert. * aarch64-ravenscar-thread.c: Revert. * aarch64-newlib-tdep.c: Revert. * aarch64-linux-tdep.c: Revert. * aarch64-linux-nat.c: Revert. * aarch64-fbsd-tdep.c: Revert. * aarch64-fbsd-nat.c: Revert. * aarch32-linux-nat.c: Revert.
624 lines
18 KiB
C
624 lines
18 KiB
C
/* Target-dependent code for FT32.
|
|
|
|
Copyright (C) 2009-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "osabi.h"
|
|
#include "language.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "trad-frame.h"
|
|
#include "dis-asm.h"
|
|
#include "record.h"
|
|
|
|
#include "opcode/ft32.h"
|
|
|
|
#include "ft32-tdep.h"
|
|
#include "gdb/sim-ft32.h"
|
|
#include <algorithm>
|
|
|
|
#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
|
|
|
|
/* Use an invalid address -1 as 'not available' marker. */
|
|
enum { REG_UNAVAIL = (CORE_ADDR) (-1) };
|
|
|
|
struct ft32_frame_cache
|
|
{
|
|
/* Base address of the frame */
|
|
CORE_ADDR base;
|
|
/* Function this frame belongs to */
|
|
CORE_ADDR pc;
|
|
/* Total size of this frame */
|
|
LONGEST framesize;
|
|
/* Saved registers in this frame */
|
|
CORE_ADDR saved_regs[FT32_NUM_REGS];
|
|
/* Saved SP in this frame */
|
|
CORE_ADDR saved_sp;
|
|
/* Has the new frame been LINKed. */
|
|
bfd_boolean established;
|
|
};
|
|
|
|
/* Implement the "frame_align" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
/* Align to the size of an instruction (so that they can safely be
|
|
pushed onto the stack. */
|
|
return sp & ~1;
|
|
}
|
|
|
|
|
|
constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 };
|
|
|
|
typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint;
|
|
|
|
/* FT32 register names. */
|
|
|
|
static const char *const ft32_register_names[] =
|
|
{
|
|
"fp", "sp",
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "cc",
|
|
"pc"
|
|
};
|
|
|
|
/* Implement the "register_name" gdbarch method. */
|
|
|
|
static const char *
|
|
ft32_register_name (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= FT32_NUM_REGS)
|
|
return NULL;
|
|
return ft32_register_names[reg_nr];
|
|
}
|
|
|
|
/* Implement the "register_type" gdbarch method. */
|
|
|
|
static struct type *
|
|
ft32_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr == FT32_PC_REGNUM)
|
|
return gdbarch_tdep (gdbarch)->pc_type;
|
|
else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
else
|
|
return builtin_type (gdbarch)->builtin_int32;
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format. */
|
|
|
|
static void
|
|
ft32_store_return_value (struct type *type, struct regcache *regcache,
|
|
const gdb_byte *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR regval;
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
/* Things always get returned in RET1_REGNUM, RET2_REGNUM. */
|
|
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval);
|
|
if (len > 4)
|
|
{
|
|
regval = extract_unsigned_integer (valbuf + 4,
|
|
len - 4, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval);
|
|
}
|
|
}
|
|
|
|
/* Fetch a single 32-bit instruction from address a. If memory contains
|
|
a compressed instruction pair, return the expanded instruction. */
|
|
|
|
static ULONGEST
|
|
ft32_fetch_instruction (CORE_ADDR a, int *isize,
|
|
enum bfd_endian byte_order)
|
|
{
|
|
unsigned int sc[2];
|
|
ULONGEST inst;
|
|
|
|
CORE_ADDR a4 = a & ~3;
|
|
inst = read_code_unsigned_integer (a4, 4, byte_order);
|
|
*isize = ft32_decode_shortcode (a4, inst, sc) ? 2 : 4;
|
|
if (*isize == 2)
|
|
return sc[1 & (a >> 1)];
|
|
else
|
|
return inst;
|
|
}
|
|
|
|
/* Decode the instructions within the given address range. Decide
|
|
when we must have reached the end of the function prologue. If a
|
|
frame_info pointer is provided, fill in its saved_regs etc.
|
|
|
|
Returns the address of the first instruction after the prologue. */
|
|
|
|
static CORE_ADDR
|
|
ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr,
|
|
struct ft32_frame_cache *cache,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR next_addr;
|
|
ULONGEST inst;
|
|
int isize = 0;
|
|
int regnum, pushreg;
|
|
struct bound_minimal_symbol msymbol;
|
|
const int first_saved_reg = 13; /* The first saved register. */
|
|
/* PROLOGS are addresses of the subroutine prologs, PROLOGS[n]
|
|
is the address of __prolog_$rN.
|
|
__prolog_$rN pushes registers from 13 through n inclusive.
|
|
So for example CALL __prolog_$r15 is equivalent to:
|
|
PUSH $r13
|
|
PUSH $r14
|
|
PUSH $r15
|
|
Note that PROLOGS[0] through PROLOGS[12] are unused. */
|
|
CORE_ADDR prologs[32];
|
|
|
|
cache->saved_regs[FT32_PC_REGNUM] = 0;
|
|
cache->framesize = 0;
|
|
|
|
for (regnum = first_saved_reg; regnum < 32; regnum++)
|
|
{
|
|
char prolog_symbol[32];
|
|
|
|
snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d",
|
|
regnum);
|
|
msymbol = lookup_minimal_symbol (prolog_symbol, NULL, NULL);
|
|
if (msymbol.minsym)
|
|
prologs[regnum] = BMSYMBOL_VALUE_ADDRESS (msymbol);
|
|
else
|
|
prologs[regnum] = 0;
|
|
}
|
|
|
|
if (start_addr >= end_addr)
|
|
return end_addr;
|
|
|
|
cache->established = 0;
|
|
for (next_addr = start_addr; next_addr < end_addr; next_addr += isize)
|
|
{
|
|
inst = ft32_fetch_instruction (next_addr, &isize, byte_order);
|
|
|
|
if (FT32_IS_PUSH (inst))
|
|
{
|
|
pushreg = FT32_PUSH_REG (inst);
|
|
cache->framesize += 4;
|
|
cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize;
|
|
}
|
|
else if (FT32_IS_CALL (inst))
|
|
{
|
|
for (regnum = first_saved_reg; regnum < 32; regnum++)
|
|
{
|
|
if ((4 * (inst & 0x3ffff)) == prologs[regnum])
|
|
{
|
|
for (pushreg = first_saved_reg; pushreg <= regnum;
|
|
pushreg++)
|
|
{
|
|
cache->framesize += 4;
|
|
cache->saved_regs[FT32_R0_REGNUM + pushreg] =
|
|
cache->framesize;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
|
|
{
|
|
if (cache->saved_regs[regnum] != REG_UNAVAIL)
|
|
cache->saved_regs[regnum] =
|
|
cache->framesize - cache->saved_regs[regnum];
|
|
}
|
|
cache->saved_regs[FT32_PC_REGNUM] = cache->framesize;
|
|
|
|
/* It is a LINK? */
|
|
if (next_addr < end_addr)
|
|
{
|
|
inst = ft32_fetch_instruction (next_addr, &isize, byte_order);
|
|
if (FT32_IS_LINK (inst))
|
|
{
|
|
cache->established = 1;
|
|
for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
|
|
{
|
|
if (cache->saved_regs[regnum] != REG_UNAVAIL)
|
|
cache->saved_regs[regnum] += 4;
|
|
}
|
|
cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4;
|
|
cache->saved_regs[FT32_FP_REGNUM] = 0;
|
|
cache->framesize += FT32_LINK_SIZE (inst);
|
|
next_addr += isize;
|
|
}
|
|
}
|
|
|
|
return next_addr;
|
|
}
|
|
|
|
/* Find the end of function prologue. */
|
|
|
|
static CORE_ADDR
|
|
ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr = 0, func_end = 0;
|
|
const char *func_name;
|
|
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
|
|
{
|
|
CORE_ADDR post_prologue_pc
|
|
= skip_prologue_using_sal (gdbarch, func_addr);
|
|
if (post_prologue_pc != 0)
|
|
return std::max (pc, post_prologue_pc);
|
|
else
|
|
{
|
|
/* Can't determine prologue from the symbol table, need to examine
|
|
instructions. */
|
|
struct symtab_and_line sal;
|
|
struct symbol *sym;
|
|
struct ft32_frame_cache cache;
|
|
CORE_ADDR plg_end;
|
|
|
|
memset (&cache, 0, sizeof cache);
|
|
|
|
plg_end = ft32_analyze_prologue (func_addr,
|
|
func_end, &cache, gdbarch);
|
|
/* Found a function. */
|
|
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
|
|
/* Don't use line number debug info for assembly source files. */
|
|
if ((sym != NULL) && SYMBOL_LANGUAGE (sym) != language_asm)
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
if (sal.end && sal.end < func_end)
|
|
{
|
|
/* Found a line number, use it as end of prologue. */
|
|
return sal.end;
|
|
}
|
|
}
|
|
/* No useable line symbol. Use result of prologue parsing method. */
|
|
return plg_end;
|
|
}
|
|
}
|
|
|
|
/* No function symbol -- just return the PC. */
|
|
return pc;
|
|
}
|
|
|
|
/* Implementation of `pointer_to_address' gdbarch method.
|
|
|
|
On FT32 address space zero is RAM, address space 1 is flash.
|
|
RAM appears at address RAM_BIAS, flash at address 0. */
|
|
|
|
static CORE_ADDR
|
|
ft32_pointer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR addr
|
|
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
|
|
|
if (TYPE_ADDRESS_CLASS_1 (type))
|
|
return addr;
|
|
else
|
|
return addr | RAM_BIAS;
|
|
}
|
|
|
|
/* Implementation of `address_class_type_flags' gdbarch method.
|
|
|
|
This method maps DW_AT_address_class attributes to a
|
|
type_instance_flag_value. */
|
|
|
|
static int
|
|
ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
/* The value 1 of the DW_AT_address_class attribute corresponds to the
|
|
__flash__ qualifier, meaning pointer to data in FT32 program memory.
|
|
*/
|
|
if (dwarf2_addr_class == 1)
|
|
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
return 0;
|
|
}
|
|
|
|
/* Implementation of `address_class_type_flags_to_name' gdbarch method.
|
|
|
|
Convert a type_instance_flag_value to an address space qualifier. */
|
|
|
|
static const char*
|
|
ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
|
|
return "flash";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Implementation of `address_class_name_to_type_flags' gdbarch method.
|
|
|
|
Convert an address space qualifier to a type_instance_flag_value. */
|
|
|
|
static int
|
|
ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch,
|
|
const char* name,
|
|
int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "flash") == 0)
|
|
{
|
|
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
static void
|
|
ft32_extract_return_value (struct type *type, struct regcache *regcache,
|
|
gdb_byte *dst)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
bfd_byte *valbuf = dst;
|
|
int len = TYPE_LENGTH (type);
|
|
ULONGEST tmp;
|
|
|
|
/* By using store_unsigned_integer we avoid having to do
|
|
anything special for small big-endian values. */
|
|
regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp);
|
|
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
|
|
|
|
/* Ignore return values more than 8 bytes in size because the ft32
|
|
returns anything more than 8 bytes in the stack. */
|
|
if (len > 4)
|
|
{
|
|
regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp);
|
|
store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
|
|
}
|
|
}
|
|
|
|
/* Implement the "return_value" gdbarch method. */
|
|
|
|
static enum return_value_convention
|
|
ft32_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if (TYPE_LENGTH (valtype) > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else
|
|
{
|
|
if (readbuf != NULL)
|
|
ft32_extract_return_value (valtype, regcache, readbuf);
|
|
if (writebuf != NULL)
|
|
ft32_store_return_value (valtype, regcache, writebuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* Allocate and initialize a ft32_frame_cache object. */
|
|
|
|
static struct ft32_frame_cache *
|
|
ft32_alloc_frame_cache (void)
|
|
{
|
|
struct ft32_frame_cache *cache;
|
|
int i;
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache);
|
|
|
|
for (i = 0; i < FT32_NUM_REGS; ++i)
|
|
cache->saved_regs[i] = REG_UNAVAIL;
|
|
|
|
return cache;
|
|
}
|
|
|
|
/* Populate a ft32_frame_cache object for this_frame. */
|
|
|
|
static struct ft32_frame_cache *
|
|
ft32_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct ft32_frame_cache *cache;
|
|
CORE_ADDR current_pc;
|
|
int i;
|
|
|
|
if (*this_cache)
|
|
return (struct ft32_frame_cache *) *this_cache;
|
|
|
|
cache = ft32_alloc_frame_cache ();
|
|
*this_cache = cache;
|
|
|
|
cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM);
|
|
if (cache->base == 0)
|
|
return cache;
|
|
|
|
cache->pc = get_frame_func (this_frame);
|
|
current_pc = get_frame_pc (this_frame);
|
|
if (cache->pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
|
|
ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch);
|
|
if (!cache->established)
|
|
cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM);
|
|
}
|
|
|
|
cache->saved_sp = cache->base - 4;
|
|
|
|
for (i = 0; i < FT32_NUM_REGS; ++i)
|
|
if (cache->saved_regs[i] != REG_UNAVAIL)
|
|
cache->saved_regs[i] = cache->base + cache->saved_regs[i];
|
|
|
|
return cache;
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
|
ft32_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
|
|
this_prologue_cache);
|
|
|
|
/* This marks the outermost frame. */
|
|
if (cache->base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (cache->saved_sp, cache->pc);
|
|
}
|
|
|
|
/* Get the value of register regnum in the previous stack frame. */
|
|
|
|
static struct value *
|
|
ft32_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
|
|
this_prologue_cache);
|
|
|
|
gdb_assert (regnum >= 0);
|
|
|
|
if (regnum == FT32_SP_REGNUM && cache->saved_sp)
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
|
|
|
if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
|
RAM_BIAS | cache->saved_regs[regnum]);
|
|
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind ft32_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
ft32_frame_this_id,
|
|
ft32_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
/* Return the base address of this_frame. */
|
|
|
|
static CORE_ADDR
|
|
ft32_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
|
|
this_cache);
|
|
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base ft32_frame_base =
|
|
{
|
|
&ft32_frame_unwind,
|
|
ft32_frame_base_address,
|
|
ft32_frame_base_address,
|
|
ft32_frame_base_address
|
|
};
|
|
|
|
/* Allocate and initialize the ft32 gdbarch object. */
|
|
|
|
static struct gdbarch *
|
|
ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
struct type *void_type;
|
|
struct type *func_void_type;
|
|
|
|
/* If there is already a candidate, use it. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* Allocate space for the new architecture. */
|
|
tdep = XCNEW (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Create a type for PC. We can't use builtin types here, as they may not
|
|
be defined. */
|
|
void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
|
|
func_void_type = make_function_type (void_type, NULL);
|
|
tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
|
|
func_void_type);
|
|
TYPE_INSTANCE_FLAGS (tdep->pc_type) |= TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
|
|
set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM);
|
|
set_gdbarch_register_name (gdbarch, ft32_register_name);
|
|
set_gdbarch_register_type (gdbarch, ft32_register_type);
|
|
|
|
set_gdbarch_return_value (gdbarch, ft32_return_value);
|
|
|
|
set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind);
|
|
set_gdbarch_frame_align (gdbarch, ft32_frame_align);
|
|
|
|
frame_base_set_default (gdbarch, &ft32_frame_base);
|
|
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
/* Hook in the default unwinders. */
|
|
frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind);
|
|
|
|
/* Support simple overlay manager. */
|
|
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
|
|
|
|
set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags);
|
|
set_gdbarch_address_class_name_to_type_flags
|
|
(gdbarch, ft32_address_class_name_to_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name
|
|
(gdbarch, ft32_address_class_type_flags_to_name);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* Register this machine's init routine. */
|
|
|
|
void
|
|
_initialize_ft32_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_ft32, ft32_gdbarch_init);
|
|
}
|