binutils-gdb/sim/arm/armsupp.c

713 lines
26 KiB
C

/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "armdefs.h"
#include "armemu.h"
/***************************************************************************\
* Definitions for the support routines *
\***************************************************************************/
ARMword ARMul_GetReg(ARMul_State *state, unsigned mode, unsigned reg) ;
void ARMul_SetReg(ARMul_State *state, unsigned mode, unsigned reg, ARMword value) ;
ARMword ARMul_GetPC(ARMul_State *state) ;
ARMword ARMul_GetNextPC(ARMul_State *state) ;
void ARMul_SetPC(ARMul_State *state, ARMword value) ;
ARMword ARMul_GetR15(ARMul_State *state) ;
void ARMul_SetR15(ARMul_State *state, ARMword value) ;
ARMword ARMul_GetCPSR(ARMul_State *state) ;
void ARMul_SetCPSR(ARMul_State *state, ARMword value) ;
void ARMul_FixCPSR(ARMul_State *state, ARMword instr, ARMword rhs) ;
ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode) ;
void ARMul_SetSPSR(ARMul_State *state, ARMword mode, ARMword value) ;
void ARMul_FixSPSR(ARMul_State *state, ARMword instr, ARMword rhs) ;
void ARMul_CPSRAltered(ARMul_State *state) ;
void ARMul_R15Altered(ARMul_State *state) ;
ARMword ARMul_SwitchMode(ARMul_State *state,ARMword oldmode, ARMword newmode) ;
static ARMword ModeToBank(ARMul_State *state,ARMword mode) ;
unsigned ARMul_NthReg(ARMword instr, unsigned number) ;
void ARMul_NegZero(ARMul_State *state, ARMword result) ;
void ARMul_AddCarry(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_AddOverflow(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_SubCarry(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_SubOverflow(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_LDC(ARMul_State *state,ARMword instr,ARMword address) ;
void ARMul_STC(ARMul_State *state,ARMword instr,ARMword address) ;
void ARMul_MCR(ARMul_State *state,ARMword instr, ARMword source) ;
ARMword ARMul_MRC(ARMul_State *state,ARMword instr) ;
void ARMul_CDP(ARMul_State *state,ARMword instr) ;
void ARMul_UndefInstr(ARMul_State *state,ARMword instr) ;
unsigned IntPending(ARMul_State *state) ;
ARMword ARMul_Align(ARMul_State *state, ARMword address, ARMword data) ;
void ARMul_ScheduleEvent(ARMul_State *state, unsigned long delay,
unsigned (*what)()) ;
void ARMul_EnvokeEvent(ARMul_State *state) ;
unsigned long ARMul_Time(ARMul_State *state) ;
static void EnvokeList(ARMul_State *state, unsigned long from, unsigned long to) ;
struct EventNode { /* An event list node */
unsigned (*func)() ; /* The function to call */
struct EventNode *next ;
} ;
/***************************************************************************\
* This routine returns the value of a register from a mode. *
\***************************************************************************/
ARMword ARMul_GetReg(ARMul_State *state, unsigned mode, unsigned reg)
{mode &= MODEBITS ;
if (mode != state->Mode)
return(state->RegBank[ModeToBank(state,(ARMword)mode)][reg]) ;
else
return(state->Reg[reg]) ;
}
/***************************************************************************\
* This routine sets the value of a register for a mode. *
\***************************************************************************/
void ARMul_SetReg(ARMul_State *state, unsigned mode, unsigned reg, ARMword value)
{mode &= MODEBITS ;
if (mode != state->Mode)
state->RegBank[ModeToBank(state,(ARMword)mode)][reg] = value ;
else
state->Reg[reg] = value ;
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword ARMul_GetPC(ARMul_State *state)
{if (state->Mode > SVC26MODE)
return(state->Reg[15]) ;
else
return(R15PC) ;
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword ARMul_GetNextPC(ARMul_State *state)
{if (state->Mode > SVC26MODE)
return(state->Reg[15] + isize) ;
else
return((state->Reg[15] + isize) & R15PCBITS) ;
}
/***************************************************************************\
* This routine sets the value of the PC. *
\***************************************************************************/
void ARMul_SetPC(ARMul_State *state, ARMword value)
{if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS ;
else
state->Reg[15] = R15CCINTMODE | (value & R15PCBITS) ;
FLUSHPIPE ;
}
/***************************************************************************\
* This routine returns the value of register 15, mode independently. *
\***************************************************************************/
ARMword ARMul_GetR15(ARMul_State *state)
{if (state->Mode > SVC26MODE)
return(state->Reg[15]) ;
else
return(R15PC | ECC | ER15INT | EMODE) ;
}
/***************************************************************************\
* This routine sets the value of Register 15. *
\***************************************************************************/
void ARMul_SetR15(ARMul_State *state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS ;
else {
state->Reg[15] = value ;
ARMul_R15Altered(state) ;
}
FLUSHPIPE ;
}
/***************************************************************************\
* This routine returns the value of the CPSR *
\***************************************************************************/
ARMword ARMul_GetCPSR(ARMul_State *state)
{
return(CPSR) ;
}
/***************************************************************************\
* This routine sets the value of the CPSR *
\***************************************************************************/
void ARMul_SetCPSR(ARMul_State *state, ARMword value)
{state->Cpsr = CPSR ;
SETPSR(state->Cpsr,value) ;
ARMul_CPSRAltered(state) ;
}
/***************************************************************************\
* This routine does all the nasty bits involved in a write to the CPSR, *
* including updating the register bank, given a MSR instruction. *
\***************************************************************************/
void ARMul_FixCPSR(ARMul_State *state, ARMword instr, ARMword rhs)
{state->Cpsr = CPSR ;
if (state->Bank==USERBANK) { /* Only write flags in user mode */
if (BIT(19)) {
SETCC(state->Cpsr,rhs) ;
}
}
else { /* Not a user mode */
if (BITS(16,19)==9) SETPSR(state->Cpsr,rhs) ;
else if (BIT(16)) SETINTMODE(state->Cpsr,rhs) ;
else if (BIT(19)) SETCC(state->Cpsr,rhs) ;
}
ARMul_CPSRAltered(state) ;
}
/***************************************************************************\
* Get an SPSR from the specified mode *
\***************************************************************************/
ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode)
{ARMword bank = ModeToBank(state,mode & MODEBITS) ;
if (bank == USERBANK || bank == DUMMYBANK)
return(CPSR) ;
else
return(state->Spsr[bank]) ;
}
/***************************************************************************\
* This routine does a write to an SPSR *
\***************************************************************************/
void ARMul_SetSPSR(ARMul_State *state, ARMword mode, ARMword value)
{ARMword bank = ModeToBank(state,mode & MODEBITS) ;
if (bank != USERBANK && bank !=DUMMYBANK)
state->Spsr[bank] = value ;
}
/***************************************************************************\
* This routine does a write to the current SPSR, given an MSR instruction *
\***************************************************************************/
void ARMul_FixSPSR(ARMul_State *state, ARMword instr, ARMword rhs)
{if (state->Bank != USERBANK && state->Bank !=DUMMYBANK) {
if (BITS(16,19)==9) SETPSR(state->Spsr[state->Bank],rhs) ;
else if (BIT(16)) SETINTMODE(state->Spsr[state->Bank],rhs) ;
else if (BIT(19)) SETCC(state->Spsr[state->Bank],rhs) ;
}
}
/***************************************************************************\
* This routine updates the state of the emulator after the Cpsr has been *
* changed. Both the processor flags and register bank are updated. *
\***************************************************************************/
void ARMul_CPSRAltered(ARMul_State *state)
{ARMword oldmode ;
if (state->prog32Sig == LOW)
state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS) ;
oldmode = state->Mode ;
if (state->Mode != (state->Cpsr & MODEBITS)) {
state->Mode = ARMul_SwitchMode(state,state->Mode,state->Cpsr & MODEBITS) ;
state->NtransSig = (state->Mode & 3)?HIGH:LOW ;
}
ASSIGNINT(state->Cpsr & INTBITS) ;
ASSIGNN((state->Cpsr & NBIT) != 0) ;
ASSIGNZ((state->Cpsr & ZBIT) != 0) ;
ASSIGNC((state->Cpsr & CBIT) != 0) ;
ASSIGNV((state->Cpsr & VBIT) != 0) ;
#ifdef MODET
ASSIGNT((state->Cpsr & TBIT) != 0);
#endif
if (oldmode > SVC26MODE) {
if (state->Mode <= SVC26MODE) {
state->Emulate = CHANGEMODE ;
state->Reg[15] = ECC | ER15INT | EMODE | R15PC ;
}
}
else {
if (state->Mode > SVC26MODE) {
state->Emulate = CHANGEMODE ;
state->Reg[15] = R15PC ;
}
else
state->Reg[15] = ECC | ER15INT | EMODE | R15PC ;
}
}
/***************************************************************************\
* This routine updates the state of the emulator after register 15 has *
* been changed. Both the processor flags and register bank are updated. *
* This routine should only be called from a 26 bit mode. *
\***************************************************************************/
void ARMul_R15Altered(ARMul_State *state)
{
if (state->Mode != R15MODE) {
state->Mode = ARMul_SwitchMode(state,state->Mode,R15MODE) ;
state->NtransSig = (state->Mode & 3)?HIGH:LOW ;
}
if (state->Mode > SVC26MODE)
state->Emulate = CHANGEMODE ;
ASSIGNR15INT(R15INT) ;
ASSIGNN((state->Reg[15] & NBIT) != 0) ;
ASSIGNZ((state->Reg[15] & ZBIT) != 0) ;
ASSIGNC((state->Reg[15] & CBIT) != 0) ;
ASSIGNV((state->Reg[15] & VBIT) != 0) ;
}
/***************************************************************************\
* This routine controls the saving and restoring of registers across mode *
* changes. The regbank matrix is largely unused, only rows 13 and 14 are *
* used across all modes, 8 to 14 are used for FIQ, all others use the USER *
* column. It's easier this way. old and new parameter are modes numbers. *
* Notice the side effect of changing the Bank variable. *
\***************************************************************************/
ARMword ARMul_SwitchMode(ARMul_State *state,ARMword oldmode, ARMword newmode)
{unsigned i ;
oldmode = ModeToBank(state,oldmode) ;
state->Bank = ModeToBank(state,newmode) ;
if (oldmode != state->Bank) { /* really need to do it */
switch (oldmode) { /* save away the old registers */
case USERBANK :
case IRQBANK :
case SVCBANK :
case ABORTBANK :
case UNDEFBANK : if (state->Bank == FIQBANK)
for (i = 8 ; i < 13 ; i++)
state->RegBank[USERBANK][i] = state->Reg[i] ;
state->RegBank[oldmode][13] = state->Reg[13] ;
state->RegBank[oldmode][14] = state->Reg[14] ;
break ;
case FIQBANK : for (i = 8 ; i < 15 ; i++)
state->RegBank[FIQBANK][i] = state->Reg[i] ;
break ;
case DUMMYBANK : for (i = 8 ; i < 15 ; i++)
state->RegBank[DUMMYBANK][i] = 0 ;
break ;
}
switch (state->Bank) { /* restore the new registers */
case USERBANK :
case IRQBANK :
case SVCBANK :
case ABORTBANK :
case UNDEFBANK : if (oldmode == FIQBANK)
for (i = 8 ; i < 13 ; i++)
state->Reg[i] = state->RegBank[USERBANK][i] ;
state->Reg[13] = state->RegBank[state->Bank][13] ;
state->Reg[14] = state->RegBank[state->Bank][14] ;
break ;
case FIQBANK : for (i = 8 ; i < 15 ; i++)
state->Reg[i] = state->RegBank[FIQBANK][i] ;
break ;
case DUMMYBANK : for (i = 8 ; i < 15 ; i++)
state->Reg[i] = 0 ;
break ;
} /* switch */
} /* if */
return(newmode) ;
}
/***************************************************************************\
* Given a processor mode, this routine returns the register bank that *
* will be accessed in that mode. *
\***************************************************************************/
static ARMword ModeToBank(ARMul_State *state, ARMword mode)
{static ARMword bankofmode[] = {USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK
} ;
if (mode > UNDEF32MODE)
return(DUMMYBANK) ;
else
return(bankofmode[mode]) ;
}
/***************************************************************************\
* Returns the register number of the nth register in a reg list. *
\***************************************************************************/
unsigned ARMul_NthReg(ARMword instr, unsigned number)
{unsigned bit, upto ;
for (bit = 0, upto = 0 ; upto <= number ; bit++)
if (BIT(bit)) upto++ ;
return(bit - 1) ;
}
/***************************************************************************\
* Assigns the N and Z flags depending on the value of result *
\***************************************************************************/
void ARMul_NegZero(ARMul_State *state, ARMword result)
{
if (NEG(result)) { SETN ; CLEARZ ; }
else if (result == 0) { CLEARN ; SETZ ; }
else { CLEARN ; CLEARZ ; } ;
}
/***************************************************************************\
* Assigns the C flag after an addition of a and b to give result *
\***************************************************************************/
void ARMul_AddCarry(ARMul_State *state, ARMword a,ARMword b,ARMword result)
{
ASSIGNC( (NEG(a) && NEG(b)) ||
(NEG(a) && POS(result)) ||
(NEG(b) && POS(result)) ) ;
}
/***************************************************************************\
* Assigns the V flag after an addition of a and b to give result *
\***************************************************************************/
void ARMul_AddOverflow(ARMul_State *state, ARMword a,ARMword b,ARMword result)
{
ASSIGNV( (NEG(a) && NEG(b) && POS(result)) ||
(POS(a) && POS(b) && NEG(result)) ) ;
}
/***************************************************************************\
* Assigns the C flag after an subtraction of a and b to give result *
\***************************************************************************/
void ARMul_SubCarry(ARMul_State *state, ARMword a,ARMword b,ARMword result)
{
ASSIGNC( (NEG(a) && POS(b)) ||
(NEG(a) && POS(result)) ||
(POS(b) && POS(result)) ) ;
}
/***************************************************************************\
* Assigns the V flag after an subtraction of a and b to give result *
\***************************************************************************/
void ARMul_SubOverflow(ARMul_State *state,ARMword a,ARMword b,ARMword result)
{
ASSIGNV( (NEG(a) && POS(b) && POS(result)) ||
(POS(a) && NEG(b) && NEG(result)) ) ;
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* LDC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void ARMul_LDC(ARMul_State *state,ARMword instr,ARMword address)
{unsigned cpab ;
ARMword data ;
UNDEF_LSCPCBaseWb ;
if (ADDREXCEPT(address)) {
INTERNALABORT(address) ;
}
cpab = (state->LDC[CPNum])(state,ARMul_FIRST,instr,0) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->LDC[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return ;
}
else
cpab = (state->LDC[CPNum])(state,ARMul_BUSY,instr,0) ;
}
if (cpab == ARMul_CANT) {
CPTAKEABORT ;
return ;
}
cpab = (state->LDC[CPNum])(state,ARMul_TRANSFER,instr,0) ;
data = ARMul_LoadWordN(state,address) ;
BUSUSEDINCPCN ;
if (BIT(21))
LSBase = state->Base ;
cpab = (state->LDC[CPNum])(state,ARMul_DATA,instr,data) ;
while (cpab == ARMul_INC) {
address += 4 ;
data = ARMul_LoadWordN(state,address) ;
cpab = (state->LDC[CPNum])(state,ARMul_DATA,instr,data) ;
}
if (state->abortSig || state->Aborted) {
TAKEABORT ;
}
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* STC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void ARMul_STC(ARMul_State *state,ARMword instr,ARMword address)
{unsigned cpab ;
ARMword data ;
UNDEF_LSCPCBaseWb ;
if (ADDREXCEPT(address) || VECTORACCESS(address)) {
INTERNALABORT(address) ;
}
cpab = (state->STC[CPNum])(state,ARMul_FIRST,instr,&data) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->STC[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return ;
}
else
cpab = (state->STC[CPNum])(state,ARMul_BUSY,instr,&data) ;
}
if (cpab == ARMul_CANT) {
CPTAKEABORT ;
return ;
}
#ifndef MODE32
if (ADDREXCEPT(address) || VECTORACCESS(address)) {
INTERNALABORT(address) ;
}
#endif
BUSUSEDINCPCN ;
if (BIT(21))
LSBase = state->Base ;
cpab = (state->STC[CPNum])(state,ARMul_DATA,instr,&data) ;
ARMul_StoreWordN(state,address,data) ;
while (cpab == ARMul_INC) {
address += 4 ;
cpab = (state->STC[CPNum])(state,ARMul_DATA,instr,&data) ;
ARMul_StoreWordN(state,address,data) ;
}
if (state->abortSig || state->Aborted) {
TAKEABORT ;
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MCR instruction. *
\***************************************************************************/
void ARMul_MCR(ARMul_State *state,ARMword instr, ARMword source)
{unsigned cpab ;
cpab = (state->MCR[CPNum])(state,ARMul_FIRST,instr,source) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->MCR[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return ;
}
else
cpab = (state->MCR[CPNum])(state,ARMul_BUSY,instr,source) ;
}
if (cpab == ARMul_CANT)
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
else {
BUSUSEDINCPCN ;
ARMul_Ccycles(state,1,0) ;
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MRC instruction. *
\***************************************************************************/
ARMword ARMul_MRC(ARMul_State *state,ARMword instr)
{unsigned cpab ;
ARMword result = 0 ;
cpab = (state->MRC[CPNum])(state,ARMul_FIRST,instr,&result) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->MRC[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return(0) ;
}
else
cpab = (state->MRC[CPNum])(state,ARMul_BUSY,instr,&result) ;
}
if (cpab == ARMul_CANT) {
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
result = ECC ; /* Parent will destroy the flags otherwise */
}
else {
BUSUSEDINCPCN ;
ARMul_Ccycles(state,1,0) ;
ARMul_Icycles(state,1,0) ;
}
return(result) ;
}
/***************************************************************************\
* This function does the Busy-Waiting for an CDP instruction. *
\***************************************************************************/
void ARMul_CDP(ARMul_State *state,ARMword instr)
{unsigned cpab ;
cpab = (state->CDP[CPNum])(state,ARMul_FIRST,instr) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->CDP[CPNum])(state,ARMul_INTERRUPT,instr) ;
return ;
}
else
cpab = (state->CDP[CPNum])(state,ARMul_BUSY,instr) ;
}
if (cpab == ARMul_CANT)
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
else
BUSUSEDN ;
}
/***************************************************************************\
* This function handles Undefined instructions, as CP isntruction *
\***************************************************************************/
void ARMul_UndefInstr(ARMul_State *state,ARMword instr)
{
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
}
/***************************************************************************\
* Return TRUE if an interrupt is pending, FALSE otherwise. *
\***************************************************************************/
unsigned IntPending(ARMul_State *state)
{
if (state->Exception) { /* Any exceptions */
if (state->NresetSig == LOW) {
ARMul_Abort(state,ARMul_ResetV) ;
return(TRUE) ;
}
else if (!state->NfiqSig && !FFLAG) {
ARMul_Abort(state,ARMul_FIQV) ;
return(TRUE) ;
}
else if (!state->NirqSig && !IFLAG) {
ARMul_Abort(state,ARMul_IRQV) ;
return(TRUE) ;
}
}
return(FALSE) ;
}
/***************************************************************************\
* Align a word access to a non word boundary *
\***************************************************************************/
ARMword ARMul_Align(ARMul_State *state, ARMword address, ARMword data)
{/* this code assumes the address is really unaligned,
as a shift by 32 is undefined in C */
address = (address & 3) << 3 ; /* get the word address */
return( ( data >> address) | (data << (32 - address)) ) ; /* rot right */
}
/***************************************************************************\
* This routine is used to call another routine after a certain number of *
* cycles have been executed. The first parameter is the number of cycles *
* delay before the function is called, the second argument is a pointer *
* to the function. A delay of zero doesn't work, just call the function. *
\***************************************************************************/
void ARMul_ScheduleEvent(ARMul_State *state, unsigned long delay, unsigned (*what)())
{unsigned long when ;
struct EventNode *event ;
if (state->EventSet++ == 0)
state->Now = ARMul_Time(state) ;
when = (state->Now + delay) % EVENTLISTSIZE ;
event = (struct EventNode *)malloc(sizeof(struct EventNode)) ;
event->func = what ;
event->next = *(state->EventPtr + when) ;
*(state->EventPtr + when) = event ;
}
/***************************************************************************\
* This routine is called at the beginning of every cycle, to envoke *
* scheduled events. *
\***************************************************************************/
void ARMul_EnvokeEvent(ARMul_State *state)
{static unsigned long then ;
then = state->Now ;
state->Now = ARMul_Time(state) % EVENTLISTSIZE ;
if (then < state->Now) /* schedule events */
EnvokeList(state,then,state->Now) ;
else if (then > state->Now) { /* need to wrap around the list */
EnvokeList(state,then,EVENTLISTSIZE-1L) ;
EnvokeList(state,0L,state->Now) ;
}
}
static void EnvokeList(ARMul_State *state, unsigned long from, unsigned long to)
/* envokes all the entries in a range */
{struct EventNode *anevent ;
for (; from <= to ; from++) {
anevent = *(state->EventPtr + from) ;
while (anevent) {
(anevent->func)(state) ;
state->EventSet-- ;
anevent = anevent->next ;
}
*(state->EventPtr + from) = NULL ;
}
}
/***************************************************************************\
* This routine is returns the number of clock ticks since the last reset. *
\***************************************************************************/
unsigned long ARMul_Time(ARMul_State *state)
{return(state->NumScycles + state->NumNcycles +
state->NumIcycles + state->NumCcycles + state->NumFcycles) ;
}