binutils-gdb/sim/common/sim-alu.h

1048 lines
26 KiB
C

/* This file is part of the program psim.
Copyright (C) 1994-1996, Andrew Cagney <cagney@highland.com.au>
Copyright (C) 1997, Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _SIM_ALU_H_
#define _SIM_ALU_H_
#include "symcat.h"
/* INTEGER ALU MODULE:
This module provides an implementation of 2's complement arithmetic
including the recording of carry and overflow status bits.
EXAMPLE:
Code using this module includes it into sim-main.h and then, as a
convention, defines macro's ALU*_END that records the result of any
aritmetic performed. Ex:
#include "sim-alu.h"
#define ALU32_END(RES) \
(RES) = ALU32_OVERFLOW_RESULT; \
carry = ALU32_HAD_CARRY_BORROW; \
overflow = ALU32_HAD_OVERFLOW
The macro's are then used vis:
{
ALU32_BEGIN (GPR[i]);
ALU32_ADDC (GPR[j]);
ALU32_END (GPR[k]);
}
NOTES:
Macros exist for efficiently computing 8, 16, 32 and 64 bit
arithmetic - ALU8_*, ALU16_*, .... In addition, according to
TARGET_WORD_BITSIZE a set of short-hand macros are defined - ALU_*
Initialization:
ALU*_BEGIN(ACC): Declare initialize the ALU accumulator with ACC.
Results:
The calculation of the final result may be computed a number
of different ways. Three different overflow macro's are
defined, the most efficient one to use depends on which other
outputs from the alu are being used.
ALU*_RESULT: Generic ALU result output.
ALU*_HAD_OVERFLOW: Returns a nonzero value if signed overflow
occured.
ALU*_OVERFLOW_RESULT: If the macro ALU*_HAD_OVERFLOW is being
used this is the most efficient result available. Ex:
#define ALU16_END(RES) \
if (ALU16_HAD_OVERFLOW) \
sim_engine_halt (...); \
(RES) = ALU16_OVERFLOW_RESULT
ALU*_HAD_CARRY_BORROW: Returns a nonzero value if unsigned
overflow or underflow (also refered to as carry and borrow)
occured.
ALU*_CARRY_BORROW_RESULT: If the macro ALU*_HAD_CARRY_BORROW is being
used this is the most efficient result available. Ex:
#define ALU64_END(RES) \
State.carry = ALU64_HAD_CARRY_BORROW; \
(RES) = ALU64_CARRY_BORROW_RESULT
Addition:
ALU*_ADD(VAL): Add VAL to the ALU accumulator. Record any
overflow as well as the final result.
ALU*_ADDC(VAL): Add VAL to the ALU accumulator. Record any
carry-out or overflow as well as the final result.
ALU*_ADDC_C(VAL,CI): Add VAL and CI (carry-in). Record any
carry-out or overflow as well as the final result.
Subtraction:
ALU*_SUB(VAL): Subtract VAL from the ALU accumulator. Record
any underflow as well as the final result.
ALU*_SUBC(VAL): Subtract VAL from the ALU accumulator using
negated addition. Record any underflow or carry-out as well
as the final result.
ALU*_SUBB(VAL): Subtract VAL from the ALU accumulator using
direct subtraction (ACC+~VAL+1). Record any underflow or
borrow-out as well as the final result.
ALU*_SUBC_X(VAL,CI): Subtract VAL and CI (carry-in) from the
ALU accumulator using extended negated addition (ACC+~VAL+CI).
Record any underflow or carry-out as well as the final result.
ALU*_SUBB_B(VAL,BI): Subtract VAL and BI (borrow-in) from the
ALU accumulator using direct subtraction. Record any
underflow or borrow-out as well as the final result.
*/
/* Twos complement aritmetic - addition/subtraction - carry/borrow
(or you thought you knew the answer to 0-0)
Notation and Properties:
Xn denotes the value X stored in N bits.
MSBn (X): The most significant (sign) bit of X treated as an N bit
value.
SEXTn (X): The infinite sign extension of X treated as an N bit
value.
MAXn, MINn: The upper and lower bound of a signed, two's
complement N bit value.
UMAXn: The upper bound of an unsigned N bit value (the lower
bound is always zero).
Un: UMAXn + 1. Unsigned arrithmetic is computed `modulo (Un)'.
X[p]: Is bit P of X. X[0] denotes the least signifant bit.
~X[p]: Is the inversion of bit X[p]. Also equal to 1-X[p],
(1+X[p])mod(2).
Addition - Overflow - Introduction:
Overflow/Overflow indicates an error in computation of signed
arrithmetic. i.e. given X,Y in [MINn..MAXn]; overflow
indicates that the result X+Y > MAXn or X+Y < MIN_INTx.
Hardware traditionally implements overflow by computing the XOR of
carry-in/carry-out of the most significant bit of the ALU. Here
other methods need to be found.
Addition - Overflow - method 1:
Overflow occures when the sign (most significant bit) of the two N
bit operands is identical but different to the sign of the result:
Rn = (Xn + Yn)
V = MSBn (~(Xn ^ Yn) & (Rn ^ Xn))
Addition - Overflow - method 2:
The two N bit operands are sign extended to M>N bits and then
added. Overflow occures when SIGN_BIT<n> and SIGN_BIT<m> do not
match.
Rm = (SEXTn (Xn) + SEXTn (Yn))
V = MSBn ((Rm >> (M - N)) ^ Rm)
Addition - Overflow - method 3:
The two N bit operands are sign extended to M>N bits and then
added. Overflow occures when the result is outside of the sign
extended range [MINn .. MAXn].
Addition - Overflow - method 4:
Given the Result and Carry-out bits, the oVerflow from the addition
of X, Y and carry-In can be computed using the equation:
Rn = (Xn + Yn)
V = (MSBn ((Xn ^ Yn) ^ Rn)) ^ C)
As shown in the table below:
I X Y R C | V | X^Y ^R ^C
---------------+---+-------------
0 0 0 0 0 | 0 | 0 0 0
0 0 1 1 0 | 0 | 1 0 0
0 1 0 1 0 | 0 | 1 0 0
0 1 1 0 1 | 1 | 0 0 1
1 0 0 1 0 | 1 | 0 1 1
1 0 1 0 1 | 0 | 1 1 0
1 1 0 0 1 | 0 | 1 1 0
1 1 1 1 1 | 0 | 0 1 0
Addition - Carry - Introduction:
Carry (poorly named) indicates that an overflow occured for
unsigned N bit addition. i.e. given X, Y in [0..UMAXn] then
carry indicates X+Y > UMAXn or X+Y >= Un.
The following table lists the output for all given inputs into a
full-adder.
I X Y R | C
------------+---
0 0 0 0 | 0
0 0 1 1 | 0
0 1 0 1 | 0
0 1 1 0 | 1
1 0 0 1 | 0
1 0 1 0 | 1
1 1 0 0 | 1
1 1 1 1 | 1
(carry-In, X, Y, Result, Carry-out):
Addition - Carry - method 1:
Looking at the terms X, Y and R we want an equation for C.
XY\R 0 1
+-------
00 | 0 0
01 | 1 0
11 | 1 1
10 | 1 0
This giving us the sum-of-prod equation:
MSBn ((Xn & Yn) | (Xn & ~Rn) | (Yn & ~Rn))
Verifying:
I X Y R | C | X&Y X&~R Y&~R
------------+---+---------------
0 0 0 0 | 0 | 0 0 0
0 0 1 1 | 0 | 0 0 0
0 1 0 1 | 0 | 0 0 0
0 1 1 0 | 1 | 1 1 1
1 0 0 1 | 0 | 0 0 0
1 0 1 0 | 1 | 0 0 1
1 1 0 0 | 1 | 0 1 0
1 1 1 1 | 1 | 1 0 0
Addition - Carry - method 2:
Given two signed N bit numbers, a carry can be detected by treating
the numbers as N bit unsigned and adding them using M>N unsigned
arrithmetic. Carry is indicated by bit (1 << N) being set (result
>= 2**N).
Addition - Carry - method 3:
Given the oVerflow bit. The carry can be computed from:
(~R&V) | (R&V)
Addition - Carry - method 4:
Given two signed numbers. Treating them as unsigned we have:
0 <= X < Un, 0 <= Y < Un
==> X + Y < 2 Un
Consider Y when carry occures:
X + Y >= Un, Y < Un
==> (Un - X) <= Y < Un # re-arange
==> Un <= X + Y < Un + X < 2 Un # add Xn
==> 0 <= (X + Y) mod Un < X mod Un
or when carry as occured:
(X + Y) mod Un < X mod Un
Consider Y when carry does not occure:
X + Y < Un
have X < Un, Y >= 0
==> X <= X + Y < Un
==> X mod Un <= (X + Y) mod Un
or when carry has not occured:
! ( (X + Y) mod Un < X mod Un)
hence we get carry by computing in N bit unsigned arrithmetic.
carry <- (Xn + Yn) < Xn
Subtraction - Introduction
There are two different ways of computing the signed two's
complement difference of two numbers. The first is based on
negative addition, the second on direct subtraction.
Subtraction - Carry - Introduction - Negated Addition
The equation X - Y can be computed using:
X + (-Y)
==> X + ~Y + 1 # -Y = ~Y + 1
In addition to the result, the equation produces Carry-out. For
succeeding extended prrcision calculations, the more general
equation can be used:
C[p]:R[p] = X[p] + ~Y[p] + C[p-1]
where C[0]:R[0] = X[0] + ~Y[0] + 1
Subtraction - Borrow - Introduction - Direct Subtraction
The alternative to negative addition is direct subtraction where
`X-Y is computed directly. In addition to the result of the
calculation, a Borrow bit is produced. In general terms:
B[p]:R[p] = X[p] - Y[p] - B[p-1]
where B[0]:R[0] = X[0] - Y[0]
The Borrow bit is the complement of the Carry bit produced by
Negated Addition above. A dodgy proof follows:
Case 0:
C[0]:R[0] = X[0] + ~Y[0] + 1
==> C[0]:R[0] = X[0] + 1 - Y[0] + 1 # ~Y[0] = (1 - Y[0])?
==> C[0]:R[0] = 2 + X[0] - Y[0]
==> C[0]:R[0] = 2 + B[0]:R[0]
==> C[0]:R[0] = (1 + B[0]):R[0]
==> C[0] = ~B[0] # (1 + B[0]) mod 2 = ~B[0]?
Case P:
C[p]:R[p] = X[p] + ~Y[p] + C[p-1]
==> C[p]:R[p] = X[p] + 1 - Y[0] + 1 - B[p-1]
==> C[p]:R[p] = 2 + X[p] - Y[0] - B[p-1]
==> C[p]:R[p] = 2 + B[p]:R[p]
==> C[p]:R[p] = (1 + B[p]):R[p]
==> C[p] = ~B[p]
The table below lists all possible inputs/outputs for a
full-subtractor:
X Y I | R B
0 0 0 | 0 0
0 0 1 | 1 1
0 1 0 | 1 1
0 1 1 | 0 1
1 0 0 | 1 0
1 0 1 | 0 0
1 1 0 | 0 0
1 1 1 | 1 1
Subtraction - Method 1
Treating Xn and Yn as unsigned values then a borrow (unsigned
underflow) occures when:
B = Xn < Yn
==> C = Xn >= Yn
*/
/* 8 bit target expressions:
Since the host's natural bitsize > 8 bits, carry method 2 and
overflow method 2 are used. */
#define ALU8_BEGIN(VAL) \
unsigned alu8_cr = (unsigned8) (VAL); \
signed alu8_vr = (signed8) (alu8_cr)
#define ALU8_SET(VAL) \
alu8_cr = (unsigned8) (VAL); \
alu8_vr = (signed8) (alu8_cr)
#define ALU8_SET_CARRY_BORROW(CARRY) \
do { \
if (CARRY) \
alu8_cr |= ((signed)-1) << 8; \
else \
alu8_cr &= 0xff; \
} while (0)
#define ALU8_HAD_CARRY_BORROW (alu8_cr & LSBIT32(8))
#define ALU8_HAD_OVERFLOW (((alu8_vr >> 8) ^ alu8_vr) & LSBIT32 (8-1))
#define ALU8_RESULT ((unsigned8) alu8_cr)
#define ALU8_CARRY_BORROW_RESULT ((unsigned8) alu8_cr)
#define ALU8_OVERFLOW_RESULT ((unsigned8) alu8_vr)
/* #define ALU8_END ????? - target dependant */
/* 16 bit target expressions:
Since the host's natural bitsize > 16 bits, carry method 2 and
overflow method 2 are used. */
#define ALU16_BEGIN(VAL) \
signed alu16_cr = (unsigned16) (VAL); \
unsigned alu16_vr = (signed16) (alu16_cr)
#define ALU16_SET(VAL) \
alu16_cr = (unsigned16) (VAL); \
alu16_vr = (signed16) (alu16_cr)
#define ALU16_SET_CARRY_BORROW(CARRY) \
do { \
if (CARRY) \
alu16_cr |= ((signed)-1) << 16; \
else \
alu16_cr &= 0xffff; \
} while (0)
#define ALU16_HAD_CARRY_BORROW (alu16_cr & LSBIT32(16))
#define ALU16_HAD_OVERFLOW (((alu16_vr >> 16) ^ alu16_vr) & LSBIT32 (16-1))
#define ALU16_RESULT ((unsigned16) alu16_cr)
#define ALU16_CARRY_BORROW_RESULT ((unsigned16) alu16_cr)
#define ALU16_OVERFLOW_RESULT ((unsigned16) alu16_vr)
/* #define ALU16_END ????? - target dependant */
/* 32 bit target expressions:
Since most hosts do not support 64 (> 32) bit arrithmetic, carry
method 4 and overflow method 4 are used. */
#define ALU32_BEGIN(VAL) \
unsigned32 alu32_r = (VAL); \
int alu32_c = 0; \
int alu32_v = 0
#define ALU32_SET(VAL) \
alu32_r = (VAL); \
alu32_c = 0; \
alu32_v = 0
#define ALU32_SET_CARRY_BORROW(CARRY) alu32_c = (CARRY)
#define ALU32_HAD_CARRY_BORROW (alu32_c)
#define ALU32_HAD_OVERFLOW (alu32_v)
#define ALU32_RESULT (alu32_r)
#define ALU32_CARRY_BORROW_RESULT (alu32_r)
#define ALU32_OVERFLOW_RESULT (alu32_r)
/* 64 bit target expressions:
Even though the host typically doesn't support native 64 bit
arrithmetic, it is still used. */
#define ALU64_BEGIN(VAL) \
unsigned64 alu64_r = (VAL); \
int alu64_c = 0; \
int alu64_v = 0
#define ALU64_SET(VAL) \
alu64_r = (VAL); \
alu64_c = 0; \
alu64_v = 0
#define ALU64_SET_CARRY_BORROW(CARRY) alu64_c = (CARRY)
#define ALU64_HAD_CARRY_BORROW (alu64_c)
#define ALU64_HAD_OVERFLOW (alu64_v)
#define ALU64_RESULT (alu64_r)
#define ALU64_CARRY_BORROW_RESULT (alu64_r)
#define ALU64_OVERFLOW_RESULT (alu64_r)
/* Generic versions of above macros */
#define ALU_BEGIN XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_BEGIN)
#define ALU_SET XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SET)
#define ALU_SET_CARRY XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SET_CARRY)
#define ALU_HAD_OVERFLOW XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_HAD_OVERFLOW)
#define ALU_HAD_CARRY XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_HAD_CARRY)
#define ALU_RESULT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_RESULT)
#define ALU_OVERFLOW_RESULT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_OVERFLOW_RESULT)
#define ALU_CARRY_RESULT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_CARRY_RESULT)
/* Basic operation - add (overflowing) */
#define ALU8_ADD(VAL) \
do { \
unsigned8 alu8add_val = (VAL); \
ALU8_ADDC (alu8add_val); \
} while (0)
#define ALU16_ADD(VAL) \
do { \
unsigned16 alu16add_val = (VAL); \
ALU16_ADDC (alu8add_val); \
} while (0)
#define ALU32_ADD(VAL) \
do { \
unsigned32 alu32add_val = (VAL); \
ALU32_ADDC (alu32add_val); \
} while (0)
#define ALU64_ADD(VAL) \
do { \
unsigned64 alu64add_val = (unsigned64) (VAL); \
ALU64_ADDC (alu64add_val); \
} while (0)
#define ALU_ADD XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_ADD)
/* Basic operation - add carrying (and overflowing) */
#define ALU8_ADDC(VAL) \
do { \
unsigned8 alu8addc_val = (VAL); \
alu8_cr += (unsigned8)(alu8addc_val); \
alu8_vr += (signed8)(alu8addc_val); \
} while (0)
#define ALU16_ADDC(VAL) \
do { \
unsigned16 alu16addc_val = (VAL); \
alu16_cr += (unsigned16)(alu16addc_val); \
alu16_vr += (signed16)(alu16addc_val); \
} while (0)
#define ALU32_ADDC(VAL) \
do { \
unsigned32 alu32addc_val = (VAL); \
unsigned32 alu32addc_sign = alu32addc_val ^ alu32_r; \
alu32_r += (alu32addc_val); \
alu32_c = (alu32_r < alu32addc_val); \
alu32_v = ((alu32addc_sign ^ - (unsigned32)alu32_c) ^ alu32_r) >> 31; \
} while (0)
#define ALU64_ADDC(VAL) \
do { \
unsigned64 alu64addc_val = (unsigned64) (VAL); \
unsigned64 alu64addc_sign = alu64addc_val ^ alu64_r; \
alu64_r += (alu64addc_val); \
alu64_c = (alu64_r < alu64addc_val); \
alu64_v = ((alu64addc_sign ^ - (unsigned64)alu64_c) ^ alu64_r) >> 63; \
} while (0)
#define ALU_ADDC XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_ADDC)
/* Compound operation - add carrying (and overflowing) with carry-in */
#define ALU8_ADDC_C(VAL,C) \
do { \
unsigned8 alu8addcc_val = (VAL); \
unsigned8 alu8addcc_c = (C); \
alu8_cr += (unsigned)(unsigned8)alu8addcc_val + alu8addcc_c; \
alu8_vr += (signed)(signed8)(alu8addcc_val) + alu8addcc_c; \
} while (0)
#define ALU16_ADDC_C(VAL,C) \
do { \
unsigned16 alu16addcc_val = (VAL); \
unsigned16 alu16addcc_c = (C); \
alu16_cr += (unsigned)(unsigned16)alu16addcc_val + alu16addcc_c; \
alu16_vr += (signed)(signed16)(alu16addcc_val) + alu16addcc_c; \
} while (0)
#define ALU32_ADDC_C(VAL,C) \
do { \
unsigned32 alu32addcc_val = (VAL); \
unsigned32 alu32addcc_c = (C); \
unsigned32 alu32addcc_sign = (alu32addcc_val ^ alu32_r); \
alu32_r += (alu32addcc_val + alu32addcc_c); \
alu32_c = ((alu32_r < alu32addcc_val) \
|| (alu32addcc_c && alu32_r == alu32addcc_val)); \
alu32_v = ((alu32addcc_sign ^ - (unsigned32)alu32_c) ^ alu32_r) >> 31;\
} while (0)
#define ALU64_ADDC_C(VAL,C) \
do { \
unsigned64 alu64addcc_val = (VAL); \
unsigned64 alu64addcc_c = (C); \
unsigned64 alu64addcc_sign = (alu64addcc_val ^ alu64_r); \
alu64_r += (alu64addcc_val + alu64addcc_c); \
alu64_c = ((alu64_r < alu64addcc_val) \
|| (alu64addcc_c && alu64_r == alu64addcc_val)); \
alu64_v = ((alu64addcc_sign ^ - (unsigned64)alu64_c) ^ alu64_r) >> 63;\
} while (0)
#define ALU_ADDC_C XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_ADDC_C)
/* Basic operation - subtract (overflowing) */
#define ALU8_SUB(VAL) \
do { \
unsigned8 alu8sub_val = (VAL); \
ALU8_ADDC_C (~alu8sub_val, 1); \
} while (0)
#define ALU16_SUB(VAL) \
do { \
unsigned16 alu16sub_val = (VAL); \
ALU16_ADDC_C (~alu16sub_val, 1); \
} while (0)
#define ALU32_SUB(VAL) \
do { \
unsigned32 alu32sub_val = (VAL); \
ALU32_ADDC_C (~alu32sub_val, 1); \
} while (0)
#define ALU64_SUB(VAL) \
do { \
unsigned64 alu64sub_val = (VAL); \
ALU64_ADDC_C (~alu64sub_val, 1); \
} while (0)
#define ALU_SUB XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUB)
/* Basic operation - subtract carrying (and overflowing) */
#define ALU8_SUBC(VAL) \
do { \
unsigned8 alu8subc_val = (VAL); \
ALU8_ADDC_C (~alu8subc_val, 1); \
} while (0)
#define ALU16_SUBC(VAL) \
do { \
unsigned16 alu16subc_val = (VAL); \
ALU16_ADDC_C (~alu16subc_val, 1); \
} while (0)
#define ALU32_SUBC(VAL) \
do { \
unsigned32 alu32subc_val = (VAL); \
ALU32_ADDC_C (~alu32subc_val, 1); \
} while (0)
#define ALU64_SUBC(VAL) \
do { \
unsigned64 alu64subc_val = (VAL); \
ALU64_ADDC_C (~alu64subc_val, 1); \
} while (0)
#define ALU_SUBC XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBC)
/* Compound operation - subtract carrying (and overflowing), extended */
#define ALU8_SUBC_X(VAL,C) \
do { \
unsigned8 alu8subcx_val = (VAL); \
unsigned8 alu8subcx_c = (C); \
ALU8_ADDC_C (~alu8subcx_val, alu8subcx_c); \
} while (0)
#define ALU16_SUBC_X(VAL,C) \
do { \
unsigned16 alu16subcx_val = (VAL); \
unsigned16 alu16subcx_c = (C); \
ALU16_ADDC_C (~alu16subcx_val, alu16subcx_c); \
} while (0)
#define ALU32_SUBC_X(VAL,C) \
do { \
unsigned32 alu32subcx_val = (VAL); \
unsigned32 alu32subcx_c = (C); \
ALU32_ADDC_C (~alu32subcx_val, alu32subcx_c); \
} while (0)
#define ALU64_SUBC_X(VAL,C) \
do { \
unsigned64 alu64subcx_val = (VAL); \
unsigned64 alu64subcx_c = (C); \
ALU64_ADDC_C (~alu64subcx_val, alu64subcx_c); \
} while (0)
#define ALU_SUBC_X XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBC_X)
/* Basic operation - subtract borrowing (and overflowing) */
#define ALU8_SUBB(VAL) \
do { \
unsigned8 alu8subb_val = (VAL); \
alu8_cr -= (unsigned)(unsigned8)alu8subb_val; \
alu8_vr -= (signed)(signed8)alu8subb_val; \
} while (0)
#define ALU16_SUBB(VAL) \
do { \
unsigned16 alu16subb_val = (VAL); \
alu16_cr -= (unsigned)(unsigned16)alu16subb_val; \
alu16_vr -= (signed)(signed16)alu16subb_val; \
} while (0)
#define ALU32_SUBB(VAL) \
do { \
unsigned32 alu32subb_val = (VAL); \
unsigned32 alu32subb_sign = alu32subb_val ^ alu32_r; \
alu32_c = (alu32_r < alu32subb_val); \
alu32_r -= (alu32subb_val); \
alu32_v = ((alu32subb_sign ^ - (unsigned32)alu32_c) ^ alu32_r) >> 31; \
} while (0)
#define ALU64_SUBB(VAL) \
do { \
unsigned64 alu64subb_val = (VAL); \
unsigned64 alu64subb_sign = alu64subb_val ^ alu64_r; \
alu64_c = (alu64_r < alu64subb_val); \
alu64_r -= (alu64subb_val); \
alu64_v = ((alu64subb_sign ^ - (unsigned64)alu64_c) ^ alu64_r) >> 31; \
} while (0)
#define ALU_SUBB XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBB)
/* Compound operation - subtract borrowing (and overflowing) with borrow-in */
#define ALU8_SUBB_B(VAL,B) \
do { \
unsigned8 alu8subbb_val = (VAL); \
unsigned8 alu8subbb_b = (B); \
alu8_cr -= (unsigned)(unsigned8)alu8subbb_val; \
alu8_cr -= (unsigned)(unsigned8)alu8subbb_b; \
alu8_vr -= (signed)(signed8)alu8subbb_val + alu8subbb_b; \
} while (0)
#define ALU16_SUBB_B(VAL,B) \
do { \
unsigned16 alu16subbb_val = (VAL); \
unsigned16 alu16subbb_b = (B); \
alu16_cr -= (unsigned)(unsigned16)alu16subbb_val; \
alu16_cr -= (unsigned)(unsigned16)alu16subbb_b; \
alu16_vr -= (signed)(signed16)alu16subbb_val + alu16subbb_b; \
} while (0)
#define ALU32_SUBB_B(VAL,B) \
do { \
unsigned32 alu32subbb_val = (VAL); \
unsigned32 alu32subbb_b = (B); \
ALU32_ADDC_C (~alu32subbb_val, !alu32subbb_b); \
alu32_c = !alu32_c; \
} while (0)
#define ALU64_SUBB_B(VAL,B) \
do { \
unsigned64 alu64subbb_val = (VAL); \
unsigned64 alu64subbb_b = (B); \
ALU64_ADDC_C (~alu64subbb_val, !alu64subbb_b); \
alu64_c = !alu64_c; \
} while (0)
#define ALU_SUBB_B XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBB_B)
/* Basic operation - negate (overflowing) */
#define ALU8_NEG() \
do { \
signed alu8neg_val = (ALU8_RESULT); \
ALU8_SET (1); \
ALU8_ADDC (~alu8neg_val); \
} while (0)
#define ALU16_NEG() \
do { \
signed alu16neg_val = (ALU16_RESULT); \
ALU16_SET (1); \
ALU16_ADDC (~alu16neg_val); \
} while (0)
#define ALU32_NEG() \
do { \
unsigned32 alu32neg_val = (ALU32_RESULT); \
ALU32_SET (1); \
ALU32_ADDC (~alu32neg_val); \
} while(0)
#define ALU64_NEG() \
do { \
unsigned64 alu64neg_val = (ALU64_RESULT); \
ALU64_SET (1); \
ALU64_ADDC (~alu64neg_val); \
} while (0)
#define ALU_NEG XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NEG)
/* Basic operation - negate carrying (and overflowing) */
#define ALU8_NEGC() \
do { \
signed alu8negc_val = (ALU8_RESULT); \
ALU8_SET (1); \
ALU8_ADDC (~alu8negc_val); \
} while (0)
#define ALU16_NEGC() \
do { \
signed alu16negc_val = (ALU16_RESULT); \
ALU16_SET (1); \
ALU16_ADDC (~alu16negc_val); \
} while (0)
#define ALU32_NEGC() \
do { \
unsigned32 alu32negc_val = (ALU32_RESULT); \
ALU32_SET (1); \
ALU32_ADDC (~alu32negc_val); \
} while(0)
#define ALU64_NEGC() \
do { \
unsigned64 alu64negc_val = (ALU64_RESULT); \
ALU64_SET (1); \
ALU64_ADDC (~alu64negc_val); \
} while (0)
#define ALU_NEGC XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NEGC)
/* Basic operation - negate borrowing (and overflowing) */
#define ALU8_NEGB() \
do { \
signed alu8negb_val = (ALU8_RESULT); \
ALU8_SET (0); \
ALU8_SUBB (alu8negb_val); \
} while (0)
#define ALU16_NEGB() \
do { \
signed alu16negb_val = (ALU16_RESULT); \
ALU16_SET (0); \
ALU16_SUBB (alu16negb_val); \
} while (0)
#define ALU32_NEGB() \
do { \
unsigned32 alu32negb_val = (ALU32_RESULT); \
ALU32_SET (0); \
ALU32_SUBB (alu32negb_val); \
} while(0)
#define ALU64_NEGB() \
do { \
unsigned64 alu64negb_val = (ALU64_RESULT); \
ALU64_SET (0); \
ALU64_SUBB (alu64negb_val); \
} while (0)
#define ALU_NEGB XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NEGB)
/* Other */
#define ALU8_OR(VAL) \
do { \
error("ALU16_OR"); \
} while (0)
#define ALU16_OR(VAL) \
do { \
error("ALU16_OR"); \
} while (0)
#define ALU32_OR(VAL) \
do { \
alu32_r |= (VAL); \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_OR(VAL) \
do { \
alu64_r |= (VAL); \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_OR(VAL) XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_OR)(VAL)
#define ALU16_XOR(VAL) \
do { \
error("ALU16_XOR"); \
} while (0)
#define ALU32_XOR(VAL) \
do { \
alu32_r ^= (VAL); \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_XOR(VAL) \
do { \
alu64_r ^= (VAL); \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_XOR(VAL) XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_XOR)(VAL)
#define ALU16_AND(VAL) \
do { \
error("ALU_AND16"); \
} while (0)
#define ALU32_AND(VAL) \
do { \
alu32_r &= (VAL); \
alu32_r = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_AND(VAL) \
do { \
alu64_r &= (VAL); \
alu64_r = 0; \
alu64_v = 0; \
} while (0)
#define ALU_AND(VAL) XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_AND)(VAL)
#define ALU16_NOT(VAL) \
do { \
error("ALU_NOT16"); \
} while (0)
#define ALU32_NOT \
do { \
alu32_r = ~alu32_r; \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_NOT \
do { \
alu64_r = ~alu64_r; \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_NOT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NOT)
#endif