binutils-gdb/sim/mn10300/interp.c

599 lines
11 KiB
C

#include <signal.h>
#include "sysdep.h"
#include "bfd.h"
#include "mn10300_sim.h"
#ifndef INLINE
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
#endif
host_callback *mn10300_callback;
int mn10300_debug;
static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int));
static long hash PARAMS ((long));
static void init_system PARAMS ((void));
#define MAX_HASH 63
struct hash_entry
{
struct hash_entry *next;
long opcode;
long mask;
struct simops *ops;
};
struct hash_entry hash_table[MAX_HASH+1];
/* This probably doesn't do a very good job at bucket filling, but
it's simple... */
static INLINE long
hash(insn)
long insn;
{
/* These are one byte insns. */
if ((insn & 0xffffff00) == 0)
{
if ((insn & 0xf0) == 0x00
|| (insn & 0xf0) == 0x40)
return (insn & 0xf3) & 0x3f;
if ((insn & 0xf0) == 0x10
|| (insn & 0xf0) == 0x30
|| (insn & 0xf0) == 0x50)
return (insn & 0xfc) & 0x3f;
if ((insn & 0xf0) == 0x60
|| (insn & 0xf0) == 0x70
|| (insn & 0xf0) == 0x80
|| (insn & 0xf0) == 0x90
|| (insn & 0xf0) == 0xa0
|| (insn & 0xf0) == 0xb0
|| (insn & 0xf0) == 0xe0)
return (insn & 0xf0) & 0x3f;
return (insn & 0xff) & 0x3f;
}
/* These are two byte insns */
if ((insn & 0xffff0000) == 0)
{
if ((insn & 0xf000) == 0x2000
|| (insn & 0xf000) == 0x5000)
return ((insn & 0xfc00) >> 8) & 0x3f;
if ((insn & 0xf000) == 0x4000)
return ((insn & 0xf300) >> 8) & 0x3f;
if ((insn & 0xf000) == 0x8000
|| (insn & 0xf000) == 0x9000
|| (insn & 0xf000) == 0xa000
|| (insn & 0xf000) == 0xb000)
return ((insn & 0xf000) >> 8) & 0x3f;
return ((insn & 0xff00) >> 8) & 0x3f;
}
/* These are three byte insns. */
if ((insn & 0xff000000) == 0)
{
if ((insn & 0xf00000) == 0x000000)
return ((insn & 0xf30000) >> 16) & 0x3f;
if ((insn & 0xf00000) == 0x200000
|| (insn & 0xf00000) == 0x300000)
return ((insn & 0xfc0000) >> 16) & 0x3f;
return ((insn & 0xff0000) >> 16) & 0x3f;
}
/* These are four byte or larger insns. */
return ((insn & 0xff000000) >> 24) & 0x3f;
}
static struct hash_entry *
lookup_hash (ins, length)
uint32 ins;
int length;
{
struct hash_entry *h;
h = &hash_table[hash(ins)];
while ((ins & h->mask) != h->opcode
|| (length != h->ops->length))
{
if (h->next == NULL)
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR looking up hash for 0x%x, PC=0x%x\n", ins, PC);
exit(1);
}
h = h->next;
}
return (h);
}
/* FIXME These would more efficient to use than load_mem/store_mem,
but need to be changed to use the memory map. */
uint8
get_byte (x)
uint8 *x;
{
return *x;
}
uint16
get_half (x)
uint8 *x;
{
uint8 *a = x;
return (a[1] << 8) + (a[0]);
}
uint32
get_word (x)
uint8 *x;
{
uint8 *a = x;
return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
}
void
put_byte (addr, data)
uint8 *addr;
uint8 data;
{
uint8 *a = addr;
a[0] = data;
}
void
put_half (addr, data)
uint8 *addr;
uint16 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
}
void
put_word (addr, data)
uint8 *addr;
uint32 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
a[2] = (data >> 16) & 0xff;
a[3] = (data >> 24) & 0xff;
}
uint32
load_mem_big (addr, len)
SIM_ADDR addr;
int len;
{
uint8 *p = addr + State.mem;
switch (len)
{
case 1:
return p[0];
case 2:
return p[0] << 8 | p[1];
case 3:
return p[0] << 16 | p[1] << 8 | p[2];
case 4:
return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3];
default:
abort ();
}
}
uint32
load_mem (addr, len)
SIM_ADDR addr;
int len;
{
uint8 *p = addr + State.mem;
switch (len)
{
case 1:
return p[0];
case 2:
return p[1] << 8 | p[0];
case 3:
return p[2] << 16 | p[1] << 8 | p[0];
case 4:
return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0];
default:
abort ();
}
}
void
store_mem (addr, len, data)
SIM_ADDR addr;
int len;
uint32 data;
{
uint8 *p = addr + State.mem;
switch (len)
{
case 1:
p[0] = data;
return;
case 2:
p[0] = data;
p[1] = data >> 8;
return;
case 4:
p[0] = data;
p[1] = data >> 8;
p[2] = data >> 16;
p[3] = data >> 24;
return;
default:
abort ();
}
}
void
sim_size (power)
int power;
{
if (State.mem)
free (State.mem);
State.mem = (uint8 *) calloc (1, 1 << power);
if (!State.mem)
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n");
exit (1);
}
}
static void
init_system ()
{
if (!State.mem)
sim_size(18);
}
int
sim_write (addr, buffer, size)
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
init_system ();
for (i = 0; i < size; i++)
store_mem (addr + i, 1, buffer[i]);
return size;
}
void
sim_open (args)
char *args;
{
struct simops *s;
struct hash_entry *h;
if (args != NULL)
{
#ifdef DEBUG
if (strcmp (args, "-t") == 0)
mn10300_debug = DEBUG;
else
#endif
(*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",args);
}
/* put all the opcodes in the hash table */
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode)];
/* go to the last entry in the chain */
while (h->next)
h = h->next;
if (h->ops)
{
h->next = calloc(1,sizeof(struct hash_entry));
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
}
}
void
sim_close (quitting)
int quitting;
{
/* nothing to do */
}
void
sim_set_profile (n)
int n;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n);
}
void
sim_set_profile_size (n)
int n;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n);
}
void
sim_resume (step, siggnal)
int step, siggnal;
{
uint32 inst;
reg_t oldpc;
struct hash_entry *h;
if (step)
State.exception = SIGTRAP;
else
State.exception = 0;
do
{
unsigned long insn, extension;
/* Fetch the current instruction. */
inst = load_mem_big (PC, 1);
oldpc = PC;
/* These are one byte insns. */
if ((inst & 0xf3) == 0x00
|| (inst & 0xf0) == 0x10
|| (inst & 0xfc) == 0x3c
|| (inst & 0xf3) == 0x41
|| (inst & 0xf3) == 0x40
|| (inst & 0xfc) == 0x50
|| (inst & 0xfc) == 0x54
|| (inst & 0xf0) == 0x60
|| (inst & 0xf0) == 0x70
|| ((inst & 0xf0) == 0x80
&& (inst & 0x0c) >> 2 != (inst & 0x03))
|| ((inst & 0xf0) == 0x90
&& (inst & 0x0c) >> 2 != (inst & 0x03))
|| ((inst & 0xf0) == 0xa0
&& (inst & 0x0c) >> 2 != (inst & 0x03))
|| ((inst & 0xf0) == 0xb0
&& (inst & 0x0c) >> 2 != (inst & 0x03))
|| (inst & 0xff) == 0xcb
|| (inst & 0xfc) == 0xd0
|| (inst & 0xfc) == 0xd4
|| (inst & 0xfc) == 0xd8
|| (inst & 0xf0) == 0xe0)
{
insn = inst;
h = lookup_hash (insn, 1);
extension = 0;
(h->ops->func)(insn, extension);
PC += 1;
}
/* These are two byte insns. */
else if ((inst & 0xf0) == 0x80
|| (inst & 0xf0) == 0x90
|| (inst & 0xf0) == 0xa0
|| (inst & 0xf0) == 0xb0
|| (inst & 0xfc) == 0x20
|| (inst & 0xfc) == 0x28
|| (inst & 0xf3) == 0x43
|| (inst & 0xf3) == 0x42
|| (inst & 0xfc) == 0x58
|| (inst & 0xfc) == 0x5c
|| ((inst & 0xf0) == 0xc0
&& (inst & 0xff) != 0xcb
&& (inst & 0xff) != 0xcc
&& (inst & 0xff) != 0xcd)
|| (inst & 0xff) == 0xf0
|| (inst & 0xff) == 0xf1
|| (inst & 0xff) == 0xf2
|| (inst & 0xff) == 0xf3
|| (inst & 0xff) == 0xf4
|| (inst & 0xff) == 0xf5
|| (inst & 0xff) == 0xf6)
{
insn = load_mem_big (PC, 2);
h = lookup_hash (insn, 2);
extension = 0;
(h->ops->func)(insn, extension);
PC += 2;
}
/* These are three byte insns. */
else if ((inst & 0xff) == 0xf8
|| (inst & 0xff) == 0xcc
|| (inst & 0xff) == 0xf9
|| (inst & 0xf3) == 0x01
|| (inst & 0xf3) == 0x02
|| (inst & 0xf3) == 0x03
|| (inst & 0xfc) == 0x24
|| (inst & 0xfc) == 0x2c
|| (inst & 0xfc) == 0x30
|| (inst & 0xfc) == 0x34
|| (inst & 0xfc) == 0x38
|| (inst & 0xff) == 0xde
|| (inst & 0xff) == 0xdf
|| (inst & 0xff) == 0xcc)
{
insn = load_mem_big (PC, 3);
h = lookup_hash (insn, 3);
extension = 0;
(h->ops->func)(insn, extension);
PC += 3;
}
/* These are four byte insns. */
else if ((inst & 0xff) == 0xfa
|| (inst & 0xff) == 0xfb)
{
insn = load_mem_big (PC, 4);
h = lookup_hash (insn, 4);
extension = 0;
(h->ops->func)();
PC += 4;
}
/* These are five byte insns. */
else if ((inst & 0xff) == 0xcd
|| (inst & 0xff) == 0xdc)
{
insn = load_mem_big (PC, 4);
h = lookup_hash (insn, 5);
extension = load_mem_big (PC + 4, 1);
(h->ops->func)(insn, extension);
PC += 5;
}
/* These are six byte insns. */
else if ((inst & 0xff) == 0xfd
|| (inst & 0xff) == 0xfc)
{
insn = load_mem_big (PC, 4);
h = lookup_hash (insn, 6);
extension = load_mem_big (PC + 4, 2);
(h->ops->func)(insn, extension);
PC += 6;
}
/* Else its a seven byte insns (in theory). */
else
{
insn = load_mem_big (PC, 4);
h = lookup_hash (insn, 7);
extension = load_mem_big (PC + 4, 3);
(h->ops->func)(insn, extension);
PC += 7;
}
}
while (!State.exception);
}
int
sim_trace ()
{
#ifdef DEBUG
mn10300_debug = DEBUG;
#endif
sim_resume (0, 0);
return 1;
}
void
sim_info (verbose)
int verbose;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n");
}
void
sim_create_inferior (start_address, argv, env)
SIM_ADDR start_address;
char **argv;
char **env;
{
PC = start_address;
}
void
sim_kill ()
{
/* nothing to do */
}
void
sim_set_callbacks (p)
host_callback *p;
{
mn10300_callback = p;
}
/* All the code for exiting, signals, etc needs to be revamped.
This is enough to get c-torture limping though. */
void
sim_stop_reason (reason, sigrc)
enum sim_stop *reason;
int *sigrc;
{
*reason = sim_stopped;
if (State.exception == SIGQUIT)
*sigrc = 0;
else
*sigrc = State.exception;
}
void
sim_fetch_register (rn, memory)
int rn;
unsigned char *memory;
{
put_word (memory, State.regs[rn]);
}
void
sim_store_register (rn, memory)
int rn;
unsigned char *memory;
{
State.regs[rn] = get_word (memory);
}
int
sim_read (addr, buffer, size)
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
for (i = 0; i < size; i++)
buffer[i] = load_mem (addr + i, 1);
return size;
}
void
sim_do_command (cmd)
char *cmd;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd);
}
int
sim_load (prog, from_tty)
char *prog;
int from_tty;
{
/* Return nonzero so GDB will handle it. */
return 1;
}