Pedro Alves b7a084bebe Revert old nexti prologue check and eliminate in_prologue
The in_prologue check in the nexti code is obsolete; this commit
removes that, and then removes the in_prologue function as nothing
else uses it.

Looking at the code in GDB that makes use in_prologue, all we find is
this one caller:

      if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
	  || ((ecs->event_thread->control.step_range_end == 1)
	      && in_prologue (gdbarch, ecs->event_thread->prev_pc,
			      ecs->stop_func_start)))
	{
	  /* I presume that step_over_calls is only 0 when we're
	     supposed to be stepping at the assembly language level
	     ("stepi").  Just stop.  */
	  /* Also, maybe we just did a "nexti" inside a prolog, so we
	     thought it was a subroutine call but it was not.  Stop as
	     well.  FENN */
	  /* And this works the same backward as frontward.  MVS */
	  end_stepping_range (ecs);
	  return;
	}

This was added by:

 commit 100a02e1deec2f037a15cdf232f026dc79763bf8
 ...
     From Fernando Nasser:
     * infrun.c (handle_inferior_event): Handle "nexti" inside function
     prologues.

The mailing list thread is here:

  https://sourceware.org/ml/gdb-patches/2001-01/msg00047.html

Not much discussion there, and no test, but looking at the code around
what was patched in that revision, we see that the checks that detect
whether the program has just stepped into a subroutine didn't rely on
the unwinders at all back then.

From 'git show 100a02e1:gdb/infrun.c':

    if (stop_pc == ecs->stop_func_start         /* Quick test */
        || (in_prologue (stop_pc, ecs->stop_func_start) &&
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
            !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
        || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
        || ecs->stop_func_name == 0)
      {
        /* It's a subroutine call.  */

        if ((step_over_calls == STEP_OVER_NONE)
            || ((step_range_end == 1)
                && in_prologue (prev_pc, ecs->stop_func_start)))
          {
            /* I presume that step_over_calls is only 0 when we're
               supposed to be stepping at the assembly language level
               ("stepi").  Just stop.  */
            /* Also, maybe we just did a "nexti" inside a prolog,
               so we thought it was a subroutine call but it was not.
               Stop as well.  FENN */
            stop_step = 1;
            print_stop_reason (END_STEPPING_RANGE, 0);
            stop_stepping (ecs);
            return;
          }

Stripping the IN_SOLIB_RETURN_TRAMPOLINE checks for simplicity, we had:

    if (stop_pc == ecs->stop_func_start         /* Quick test */
        || in_prologue (stop_pc, ecs->stop_func_start)
        || ecs->stop_func_name == 0)
      {
        /* It's a subroutine call.  */

That is, detecting a subroutine call was based on prologue detection
back then.  So the in_prologue check in the current tree only made
sense back then as it was undoing a bad decision the in_prologue check
that used to exist above did.

Today, the check for a subroutine call relies on frame ids instead,
which are stable throughout the function.  So we can just remove the
in_prologue check for nexti, and the whole in_prologue function along
with it.

Tested on x86_64 Fedora 20, and also by nexti-ing manually a prologue.

gdb/
2014-11-07  Pedro Alves  <palves@redhat.com>

	* infrun.c (process_event_stop_test) <subroutine check>: Don't
	check if we did a "nexti" inside a prologue.
	* symtab.c (in_prologue): Delete function.
	* symtab.h (in_prologue): Delete declaration.
2014-11-07 13:53:01 +00:00
2014-11-07 21:24:49 +10:30
2014-10-29 11:31:36 -07:00
2010-09-27 21:01:18 +00:00
2014-08-28 11:59:09 +01:00
2010-01-09 21:11:44 +00:00
2014-02-06 11:01:57 +01:00
2010-01-09 21:11:44 +00:00
2010-01-09 21:11:44 +00:00
1999-05-03 07:29:11 +00:00

		   README for GNU development tools

This directory contains various GNU compilers, assemblers, linkers, 
debuggers, etc., plus their support routines, definitions, and documentation.

If you are receiving this as part of a GDB release, see the file gdb/README.
If with a binutils release, see binutils/README;  if with a libg++ release,
see libg++/README, etc.  That'll give you info about this
package -- supported targets, how to use it, how to report bugs, etc.

It is now possible to automatically configure and build a variety of
tools with one command.  To build all of the tools contained herein,
run the ``configure'' script here, e.g.:

	./configure 
	make

To install them (by default in /usr/local/bin, /usr/local/lib, etc),
then do:
	make install

(If the configure script can't determine your type of computer, give it
the name as an argument, for instance ``./configure sun4''.  You can
use the script ``config.sub'' to test whether a name is recognized; if
it is, config.sub translates it to a triplet specifying CPU, vendor,
and OS.)

If you have more than one compiler on your system, it is often best to
explicitly set CC in the environment before running configure, and to
also set CC when running make.  For example (assuming sh/bash/ksh):

	CC=gcc ./configure
	make

A similar example using csh:

	setenv CC gcc
	./configure
	make

Much of the code and documentation enclosed is copyright by
the Free Software Foundation, Inc.  See the file COPYING or
COPYING.LIB in the various directories, for a description of the
GNU General Public License terms under which you can copy the files.

REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info
on where and how to report problems.
Description
Binutils with MCST patches
Readme 404 MiB
Languages
C 52.1%
Makefile 22.5%
Assembly 12.2%
C++ 6.2%
Roff 1.1%
Other 5.3%