binutils-gdb/sim/erc32/func.c
Joel Brobecker b811d2c292 Update copyright year range in all GDB files.
gdb/ChangeLog:

        Update copyright year range in all GDB files.
2020-01-01 10:20:53 +04:00

1135 lines
28 KiB
C

/* This file is part of SIS (SPARC instruction simulator)
Copyright (C) 1995-2020 Free Software Foundation, Inc.
Contributed by Jiri Gaisler, European Space Agency
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "sis.h"
#include <dis-asm.h>
#include "sim-config.h"
#include <inttypes.h>
#define VAL(x) strtoul(x,(char **)NULL,0)
struct disassemble_info dinfo;
struct pstate sregs;
extern struct estate ebase;
int ctrl_c = 0;
int sis_verbose = 0;
char *sis_version = "2.7.5";
int nfp = 0;
int ift = 0;
int wrp = 0;
int rom8 = 0;
int uben = 0;
int termsave;
int sparclite = 0; /* emulating SPARClite instructions? */
int sparclite_board = 0; /* emulating SPARClite board RAM? */
char uart_dev1[128] = "";
char uart_dev2[128] = "";
extern int ext_irl;
uint32 last_load_addr = 0;
#ifdef ERRINJ
uint32 errcnt = 0;
uint32 errper = 0;
uint32 errtt = 0;
uint32 errftt = 0;
uint32 errmec = 0;
#endif
/* Forward declarations */
static int batch (struct pstate *sregs, char *fname);
static void set_rega (struct pstate *sregs, char *reg, uint32 rval);
static void disp_reg (struct pstate *sregs, char *reg);
static uint32 limcalc (float32 freq);
static void int_handler (int32 sig);
static void init_event (void);
static int disp_fpu (struct pstate *sregs);
static void disp_regs (struct pstate *sregs, int cwp);
static void disp_ctrl (struct pstate *sregs);
static void disp_mem (uint32 addr, uint32 len);
static int
batch(sregs, fname)
struct pstate *sregs;
char *fname;
{
FILE *fp;
char *lbuf = NULL;
size_t len = 0;
size_t slen;
if ((fp = fopen(fname, "r")) == NULL) {
fprintf(stderr, "couldn't open batch file %s\n", fname);
return 0;
}
while (getline(&lbuf, &len, fp) > -1) {
slen = strlen(lbuf);
if (slen && (lbuf[slen - 1] == '\n')) {
lbuf[slen - 1] = 0;
printf("sis> %s\n", lbuf);
exec_cmd(sregs, lbuf);
}
}
free(lbuf);
fclose(fp);
return 1;
}
void
set_regi(sregs, reg, rval)
struct pstate *sregs;
int32 reg;
uint32 rval;
{
uint32 cwp;
cwp = ((sregs->psr & 0x7) << 4);
if ((reg > 0) && (reg < 8)) {
sregs->g[reg] = rval;
} else if ((reg >= 8) && (reg < 32)) {
sregs->r[(cwp + reg) & 0x7f] = rval;
} else if ((reg >= 32) && (reg < 64)) {
sregs->fsi[reg - 32] = rval;
} else {
switch (reg) {
case 64:
sregs->y = rval;
break;
case 65:
sregs->psr = rval;
break;
case 66:
sregs->wim = rval;
break;
case 67:
sregs->tbr = rval;
break;
case 68:
sregs->pc = rval;
break;
case 69:
sregs->npc = rval;
break;
case 70:
sregs->fsr = rval;
set_fsr(rval);
break;
default:break;
}
}
}
void
get_regi(struct pstate * sregs, int32 reg, char *buf)
{
uint32 cwp;
uint32 rval = 0;
cwp = ((sregs->psr & 0x7) << 4);
if ((reg >= 0) && (reg < 8)) {
rval = sregs->g[reg];
} else if ((reg >= 8) && (reg < 32)) {
rval = sregs->r[(cwp + reg) & 0x7f];
} else if ((reg >= 32) && (reg < 64)) {
rval = sregs->fsi[reg - 32];
} else {
switch (reg) {
case 64:
rval = sregs->y;
break;
case 65:
rval = sregs->psr;
break;
case 66:
rval = sregs->wim;
break;
case 67:
rval = sregs->tbr;
break;
case 68:
rval = sregs->pc;
break;
case 69:
rval = sregs->npc;
break;
case 70:
rval = sregs->fsr;
break;
default:break;
}
}
buf[0] = (rval >> 24) & 0x0ff;
buf[1] = (rval >> 16) & 0x0ff;
buf[2] = (rval >> 8) & 0x0ff;
buf[3] = rval & 0x0ff;
}
static void
set_rega(sregs, reg, rval)
struct pstate *sregs;
char *reg;
uint32 rval;
{
uint32 cwp;
int32 err = 0;
cwp = ((sregs->psr & 0x7) << 4);
if (strcmp(reg, "psr") == 0)
sregs->psr = (rval = (rval & 0x00f03fff));
else if (strcmp(reg, "tbr") == 0)
sregs->tbr = (rval = (rval & 0xfffffff0));
else if (strcmp(reg, "wim") == 0)
sregs->wim = (rval = (rval & 0x0ff));
else if (strcmp(reg, "y") == 0)
sregs->y = rval;
else if (strcmp(reg, "pc") == 0)
sregs->pc = rval;
else if (strcmp(reg, "npc") == 0)
sregs->npc = rval;
else if (strcmp(reg, "fsr") == 0) {
sregs->fsr = rval;
set_fsr(rval);
} else if (strcmp(reg, "g0") == 0)
err = 2;
else if (strcmp(reg, "g1") == 0)
sregs->g[1] = rval;
else if (strcmp(reg, "g2") == 0)
sregs->g[2] = rval;
else if (strcmp(reg, "g3") == 0)
sregs->g[3] = rval;
else if (strcmp(reg, "g4") == 0)
sregs->g[4] = rval;
else if (strcmp(reg, "g5") == 0)
sregs->g[5] = rval;
else if (strcmp(reg, "g6") == 0)
sregs->g[6] = rval;
else if (strcmp(reg, "g7") == 0)
sregs->g[7] = rval;
else if (strcmp(reg, "o0") == 0)
sregs->r[(cwp + 8) & 0x7f] = rval;
else if (strcmp(reg, "o1") == 0)
sregs->r[(cwp + 9) & 0x7f] = rval;
else if (strcmp(reg, "o2") == 0)
sregs->r[(cwp + 10) & 0x7f] = rval;
else if (strcmp(reg, "o3") == 0)
sregs->r[(cwp + 11) & 0x7f] = rval;
else if (strcmp(reg, "o4") == 0)
sregs->r[(cwp + 12) & 0x7f] = rval;
else if (strcmp(reg, "o5") == 0)
sregs->r[(cwp + 13) & 0x7f] = rval;
else if (strcmp(reg, "o6") == 0)
sregs->r[(cwp + 14) & 0x7f] = rval;
else if (strcmp(reg, "o7") == 0)
sregs->r[(cwp + 15) & 0x7f] = rval;
else if (strcmp(reg, "l0") == 0)
sregs->r[(cwp + 16) & 0x7f] = rval;
else if (strcmp(reg, "l1") == 0)
sregs->r[(cwp + 17) & 0x7f] = rval;
else if (strcmp(reg, "l2") == 0)
sregs->r[(cwp + 18) & 0x7f] = rval;
else if (strcmp(reg, "l3") == 0)
sregs->r[(cwp + 19) & 0x7f] = rval;
else if (strcmp(reg, "l4") == 0)
sregs->r[(cwp + 20) & 0x7f] = rval;
else if (strcmp(reg, "l5") == 0)
sregs->r[(cwp + 21) & 0x7f] = rval;
else if (strcmp(reg, "l6") == 0)
sregs->r[(cwp + 22) & 0x7f] = rval;
else if (strcmp(reg, "l7") == 0)
sregs->r[(cwp + 23) & 0x7f] = rval;
else if (strcmp(reg, "i0") == 0)
sregs->r[(cwp + 24) & 0x7f] = rval;
else if (strcmp(reg, "i1") == 0)
sregs->r[(cwp + 25) & 0x7f] = rval;
else if (strcmp(reg, "i2") == 0)
sregs->r[(cwp + 26) & 0x7f] = rval;
else if (strcmp(reg, "i3") == 0)
sregs->r[(cwp + 27) & 0x7f] = rval;
else if (strcmp(reg, "i4") == 0)
sregs->r[(cwp + 28) & 0x7f] = rval;
else if (strcmp(reg, "i5") == 0)
sregs->r[(cwp + 29) & 0x7f] = rval;
else if (strcmp(reg, "i6") == 0)
sregs->r[(cwp + 30) & 0x7f] = rval;
else if (strcmp(reg, "i7") == 0)
sregs->r[(cwp + 31) & 0x7f] = rval;
else
err = 1;
switch (err) {
case 0:
printf("%s = %d (0x%08x)\n", reg, rval, rval);
break;
case 1:
printf("no such regiser: %s\n", reg);
break;
case 2:
printf("cannot set g0\n");
break;
default:
break;
}
}
static void
disp_reg(sregs, reg)
struct pstate *sregs;
char *reg;
{
if (strncmp(reg, "w",1) == 0)
disp_regs(sregs, VAL(&reg[1]));
}
#ifdef ERRINJ
void
errinj()
{
int err;
switch (err = (random() % 12)) {
case 0: errtt = 0x61; break;
case 1: errtt = 0x62; break;
case 2: errtt = 0x63; break;
case 3: errtt = 0x64; break;
case 4: errtt = 0x65; break;
case 5:
case 6:
case 7: errftt = err;
break;
case 8: errmec = 1; break;
case 9: errmec = 2; break;
case 10: errmec = 5; break;
case 11: errmec = 6; break;
}
errcnt++;
if (errper) event(errinj, 0, (random()%errper));
}
void
errinjstart()
{
if (errper) event(errinj, 0, (random()%errper));
}
#endif
static uint32
limcalc (freq)
float32 freq;
{
uint32 unit, lim;
double flim;
char *cmd1, *cmd2;
unit = 1;
lim = -1;
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
lim = VAL(cmd1);
if ((cmd2 = strtok(NULL, " \t\n\r")) != NULL) {
if (strcmp(cmd2,"us")==0) unit = 1;
if (strcmp(cmd2,"ms")==0) unit = 1000;
if (strcmp(cmd2,"s")==0) unit = 1000000;
}
flim = (double) lim * (double) unit * (double) freq +
(double) ebase.simtime;
if ((flim > ebase.simtime) && (flim < 4294967296.0)) {
lim = (uint32) flim;
} else {
printf("error in expression\n");
lim = -1;
}
}
return lim;
}
int
exec_cmd(struct pstate *sregs, const char *cmd)
{
char *cmd1, *cmd2;
int32 stat;
uint32 len, i, clen, j;
static uint32 daddr = 0;
char *cmdsave, *cmdsave2 = NULL;
stat = OK;
cmdsave = strdup(cmd);
cmdsave2 = strdup (cmd);
if ((cmd1 = strtok (cmdsave2, " \t")) != NULL) {
clen = strlen(cmd1);
if (strncmp(cmd1, "bp", clen) == 0) {
for (i = 0; i < sregs->bptnum; i++) {
printf(" %d : 0x%08x\n", i + 1, sregs->bpts[i]);
}
} else if (strncmp(cmd1, "+bp", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
sregs->bpts[sregs->bptnum] = VAL(cmd1) & ~0x3;
printf("added breakpoint %d at 0x%08x\n",
sregs->bptnum + 1, sregs->bpts[sregs->bptnum]);
sregs->bptnum += 1;
}
} else if (strncmp(cmd1, "-bp", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
i = VAL(cmd1) - 1;
if ((i >= 0) && (i < sregs->bptnum)) {
printf("deleted breakpoint %d at 0x%08x\n", i + 1,
sregs->bpts[i]);
for (; i < sregs->bptnum - 1; i++) {
sregs->bpts[i] = sregs->bpts[i + 1];
}
sregs->bptnum -= 1;
}
}
} else if (strncmp(cmd1, "batch", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) == NULL) {
printf("no file specified\n");
} else {
batch(sregs, cmd1);
}
} else if (strncmp(cmd1, "cont", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) == NULL) {
stat = run_sim(sregs, UINT64_MAX, 0);
} else {
stat = run_sim(sregs, VAL(cmd1), 0);
}
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "debug", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
sis_verbose = VAL(cmd1);
}
printf("Debug level = %d\n",sis_verbose);
} else if (strncmp(cmd1, "dis", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
daddr = VAL(cmd1);
}
if ((cmd2 = strtok(NULL, " \t\n\r")) != NULL) {
len = VAL(cmd2);
} else
len = 16;
printf("\n");
dis_mem(daddr, len, &dinfo);
printf("\n");
daddr += len * 4;
} else if (strncmp(cmd1, "echo", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
printf("%s\n", (&cmdsave[clen+1]));
}
#ifdef ERRINJ
} else if (strncmp(cmd1, "error", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
errper = VAL(cmd1);
if (errper) {
event(errinj, 0, (len = (random()%errper)));
printf("Error injection started with period %d\n",len);
}
} else printf("Injected errors: %d\n",errcnt);
#endif
} else if (strncmp(cmd1, "float", clen) == 0) {
stat = disp_fpu(sregs);
} else if (strncmp(cmd1, "go", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) == NULL) {
len = last_load_addr;
} else {
len = VAL(cmd1);
}
sregs->pc = len & ~3;
sregs->npc = sregs->pc + 4;
if ((sregs->pc != 0) && (ebase.simtime == 0))
boot_init();
printf("resuming at 0x%08x\n",sregs->pc);
if ((cmd2 = strtok(NULL, " \t\n\r")) != NULL) {
stat = run_sim(sregs, VAL(cmd2), 0);
} else {
stat = run_sim(sregs, UINT64_MAX, 0);
}
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "help", clen) == 0) {
gen_help();
} else if (strncmp(cmd1, "history", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
sregs->histlen = VAL(cmd1);
if (sregs->histbuf != NULL)
free(sregs->histbuf);
sregs->histbuf = (struct histype *) calloc(sregs->histlen, sizeof(struct histype));
printf("trace history length = %d\n\r", sregs->histlen);
sregs->histind = 0;
} else {
j = sregs->histind;
for (i = 0; i < sregs->histlen; i++) {
if (j >= sregs->histlen)
j = 0;
printf(" %8d ", sregs->histbuf[j].time);
dis_mem(sregs->histbuf[j].addr, 1, &dinfo);
j++;
}
}
} else if (strncmp(cmd1, "load", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
last_load_addr = bfd_load(cmd1);
while ((cmd1 = strtok(NULL, " \t\n\r")) != NULL)
last_load_addr = bfd_load(cmd1);
} else {
printf("load: no file specified\n");
}
} else if (strncmp(cmd1, "mem", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL)
daddr = VAL(cmd1);
if ((cmd2 = strtok(NULL, " \t\n\r")) != NULL)
len = VAL(cmd2);
else
len = 64;
disp_mem(daddr, len);
daddr += len;
} else if (strncmp(cmd1, "perf", clen) == 0) {
cmd1 = strtok(NULL, " \t\n\r");
if ((cmd1 != NULL) &&
(strncmp(cmd1, "reset", strlen(cmd1)) == 0)) {
reset_stat(sregs);
} else
show_stat(sregs);
} else if (strncmp(cmd1, "quit", clen) == 0) {
exit(0);
} else if (strncmp(cmd1, "reg", clen) == 0) {
cmd1 = strtok(NULL, " \t\n\r");
cmd2 = strtok(NULL, " \t\n\r");
if (cmd2 != NULL)
set_rega(sregs, cmd1, VAL(cmd2));
else if (cmd1 != NULL)
disp_reg(sregs, cmd1);
else {
disp_regs(sregs,sregs->psr);
disp_ctrl(sregs);
}
} else if (strncmp(cmd1, "reset", clen) == 0) {
ebase.simtime = 0;
reset_all();
reset_stat(sregs);
} else if (strncmp(cmd1, "run", clen) == 0) {
ebase.simtime = 0;
reset_all();
reset_stat(sregs);
if ((cmd1 = strtok(NULL, " \t\n\r")) == NULL) {
stat = run_sim(sregs, UINT64_MAX, 0);
} else {
stat = run_sim(sregs, VAL(cmd1), 0);
}
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "shell", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) != NULL) {
if (system(&cmdsave[clen])) {
/* Silence unused return value warning. */
}
}
} else if (strncmp(cmd1, "step", clen) == 0) {
stat = run_sim(sregs, 1, 1);
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "tcont", clen) == 0) {
sregs->tlimit = limcalc(sregs->freq);
stat = run_sim(sregs, UINT64_MAX, 0);
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "tgo", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) == NULL) {
len = last_load_addr;
} else {
len = VAL(cmd1);
sregs->tlimit = limcalc(sregs->freq);
}
sregs->pc = len & ~3;
sregs->npc = sregs->pc + 4;
printf("resuming at 0x%08x\n",sregs->pc);
stat = run_sim(sregs, UINT64_MAX, 0);
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "tlimit", clen) == 0) {
sregs->tlimit = limcalc(sregs->freq);
if (sregs->tlimit != (uint32) -1)
printf("simulation limit = %u (%.3f ms)\n",(uint32) sregs->tlimit,
sregs->tlimit / sregs->freq / 1000);
} else if (strncmp(cmd1, "tra", clen) == 0) {
if ((cmd1 = strtok(NULL, " \t\n\r")) == NULL) {
stat = run_sim(sregs, UINT64_MAX, 1);
} else {
stat = run_sim(sregs, VAL(cmd1), 1);
}
printf("\n");
daddr = sregs->pc;
sim_halt();
} else if (strncmp(cmd1, "trun", clen) == 0) {
ebase.simtime = 0;
reset_all();
reset_stat(sregs);
sregs->tlimit = limcalc(sregs->freq);
stat = run_sim(sregs, UINT64_MAX, 0);
daddr = sregs->pc;
sim_halt();
} else
printf("syntax error\n");
}
if (cmdsave2 != NULL)
free(cmdsave2);
if (cmdsave != NULL)
free(cmdsave);
return stat;
}
void
reset_stat(sregs)
struct pstate *sregs;
{
sregs->tottime = 0.0;
sregs->pwdtime = 0;
sregs->ninst = 0;
sregs->fholdt = 0;
sregs->holdt = 0;
sregs->icntt = 0;
sregs->finst = 0;
sregs->nstore = 0;
sregs->nload = 0;
sregs->nbranch = 0;
sregs->simstart = ebase.simtime;
}
void
show_stat(sregs)
struct pstate *sregs;
{
uint32 iinst;
uint32 stime;
if (sregs->tottime == 0.0)
sregs->tottime += 1E-6;
stime = ebase.simtime - sregs->simstart; /* Total simulated time */
#ifdef STAT
iinst = sregs->ninst - sregs->finst - sregs->nload - sregs->nstore -
sregs->nbranch;
#endif
printf("\n Cycles : %9" PRIu64 "\n\r", ebase.simtime - sregs->simstart);
printf(" Instructions : %9" PRIu64 "\n", sregs->ninst);
#ifdef STAT
printf(" integer : %9.2f %%\n", 100.0 * (float) iinst / (float) sregs->ninst);
printf(" load : %9.2f %%\n",
100.0 * (float) sregs->nload / (float) sregs->ninst);
printf(" store : %9.2f %%\n",
100.0 * (float) sregs->nstore / (float) sregs->ninst);
printf(" branch : %9.2f %%\n",
100.0 * (float) sregs->nbranch / (float) sregs->ninst);
printf(" float : %9.2f %%\n",
100.0 * (float) sregs->finst / (float) sregs->ninst);
printf(" Integer CPI : %9.2f\n",
((float) (stime - sregs->pwdtime - sregs->fholdt - sregs->finst))
/
(float) (sregs->ninst - sregs->finst));
printf(" Float CPI : %9.2f\n",
((float) sregs->fholdt / (float) sregs->finst) + 1.0);
#endif
printf(" Overall CPI : %9.2f\n",
(float) (stime - sregs->pwdtime) / (float) sregs->ninst);
printf("\n ERC32 performance (%4.1f MHz): %5.2f MOPS (%5.2f MIPS, %5.2f MFLOPS)\n",
sregs->freq, sregs->freq * (float) sregs->ninst / (float) (stime - sregs->pwdtime),
sregs->freq * (float) (sregs->ninst - sregs->finst) /
(float) (stime - sregs->pwdtime),
sregs->freq * (float) sregs->finst / (float) (stime - sregs->pwdtime));
printf(" Simulated ERC32 time : %.2f s\n",
(float) (ebase.simtime - sregs->simstart) / 1000000.0 / sregs->freq);
printf(" Processor utilisation : %.2f %%\n",
100.0 * (1.0 - ((float) sregs->pwdtime / (float) stime)));
printf(" Real-time performance : %.2f %%\n",
100.0 / (sregs->tottime / ((double) (stime) / (sregs->freq * 1.0E6))));
printf(" Simulator performance : %.2f MIPS\n",
(double)(sregs->ninst) / sregs->tottime / 1E6);
printf(" Used time (sys + user) : %.2f s\n\n", sregs->tottime);
}
void
init_bpt(sregs)
struct pstate *sregs;
{
sregs->bptnum = 0;
sregs->histlen = 0;
sregs->histind = 0;
sregs->histbuf = NULL;
sregs->tlimit = -1;
}
static void
int_handler(sig)
int32 sig;
{
if (sig != 2)
printf("\n\n Signal handler error (%d)\n\n", sig);
ctrl_c = 1;
}
void
init_signals()
{
typedef void (*PFI) ();
static PFI int_tab[2];
int_tab[0] = signal(SIGTERM, int_handler);
int_tab[1] = signal(SIGINT, int_handler);
}
extern struct disassemble_info dinfo;
struct estate ebase;
struct evcell evbuf[EVENT_MAX];
struct irqcell irqarr[16];
static int
disp_fpu(sregs)
struct pstate *sregs;
{
int i;
float t;
printf("\n fsr: %08X\n\n", sregs->fsr);
#ifdef HOST_LITTLE_ENDIAN
for (i = 0; i < 32; i++)
sregs->fdp[i ^ 1] = sregs->fs[i];
#endif
for (i = 0; i < 32; i++) {
t = sregs->fs[i];
printf(" f%02d %08x %14e ", i, sregs->fsi[i], sregs->fs[i]);
if (!(i & 1))
printf("%14e\n", sregs->fd[i >> 1]);
else
printf("\n");
}
printf("\n");
return OK;
}
static void
disp_regs(sregs,cwp)
struct pstate *sregs;
int cwp;
{
int i;
cwp = ((cwp & 0x7) << 4);
printf("\n\t INS LOCALS OUTS GLOBALS\n");
for (i = 0; i < 8; i++) {
printf(" %d: %08X %08X %08X %08X\n", i,
sregs->r[(cwp + i + 24) & 0x7f],
sregs->r[(cwp + i + 16) & 0x7f], sregs->r[(cwp + i + 8) & 0x7f],
sregs->g[i]);
}
}
static void print_insn_sparc_sis(uint32 addr, struct disassemble_info *info)
{
unsigned char i[4];
sis_memory_read(addr, i, 4);
dinfo.buffer_vma = addr;
dinfo.buffer_length = 4;
dinfo.buffer = i;
print_insn_sparc(addr, info);
}
static void
disp_ctrl(sregs)
struct pstate *sregs;
{
uint32 i;
printf("\n psr: %08X wim: %08X tbr: %08X y: %08X\n",
sregs->psr, sregs->wim, sregs->tbr, sregs->y);
sis_memory_read (sregs->pc, (char *) &i, 4);
printf ("\n pc: %08X = %08X ", sregs->pc, i);
print_insn_sparc_sis(sregs->pc, &dinfo);
sis_memory_read (sregs->npc, (char *) &i, 4);
printf ("\n npc: %08X = %08X ", sregs->npc, i);
print_insn_sparc_sis(sregs->npc, &dinfo);
if (sregs->err_mode)
printf("\n IU in error mode");
printf("\n\n");
}
static void
disp_mem(addr, len)
uint32 addr;
uint32 len;
{
uint32 i;
union {
unsigned char u8[4];
uint32 u32;
} data;
uint32 mem[4], j;
char *p;
for (i = addr & ~3; i < ((addr + len) & ~3); i += 16) {
printf("\n %8X ", i);
for (j = 0; j < 4; j++) {
sis_memory_read ((i + (j * 4)), data.u8, 4);
printf ("%08x ", data.u32);
mem[j] = data.u32;
}
printf(" ");
p = (char *) mem;
for (j = 0; j < 16; j++) {
if (isprint (p[j ^ EBT]))
putchar (p[j ^ EBT]);
else
putchar('.');
}
}
printf("\n\n");
}
void
dis_mem(addr, len, info)
uint32 addr;
uint32 len;
struct disassemble_info *info;
{
uint32 i;
union {
unsigned char u8[4];
uint32 u32;
} data;
for (i = addr & -3; i < ((addr & -3) + (len << 2)); i += 4) {
sis_memory_read (i, data.u8, 4);
printf (" %08x %08x ", i, data.u32);
print_insn_sparc_sis(i, info);
if (i >= 0xfffffffc) break;
printf("\n");
}
}
/* Add event to event queue */
void
event(cfunc, arg, delta)
void (*cfunc) ();
int32 arg;
uint64 delta;
{
struct evcell *ev1, *evins;
if (ebase.freeq == NULL) {
printf("Error, too many events in event queue\n");
return;
}
ev1 = &ebase.eq;
delta += ebase.simtime;
while ((ev1->nxt != NULL) && (ev1->nxt->time <= delta)) {
ev1 = ev1->nxt;
}
if (ev1->nxt == NULL) {
ev1->nxt = ebase.freeq;
ebase.freeq = ebase.freeq->nxt;
ev1->nxt->nxt = NULL;
} else {
evins = ebase.freeq;
ebase.freeq = ebase.freeq->nxt;
evins->nxt = ev1->nxt;
ev1->nxt = evins;
}
ev1->nxt->time = delta;
ev1->nxt->cfunc = cfunc;
ev1->nxt->arg = arg;
}
#if 0 /* apparently not used */
void
stop_event()
{
}
#endif
void
init_event()
{
int32 i;
ebase.eq.nxt = NULL;
ebase.freeq = evbuf;
for (i = 0; i < EVENT_MAX; i++) {
evbuf[i].nxt = &evbuf[i + 1];
}
evbuf[EVENT_MAX - 1].nxt = NULL;
}
void
set_int(level, callback, arg)
int32 level;
void (*callback) ();
int32 arg;
{
irqarr[level & 0x0f].callback = callback;
irqarr[level & 0x0f].arg = arg;
}
/* Advance simulator time */
void
advance_time(sregs)
struct pstate *sregs;
{
struct evcell *evrem;
void (*cfunc) ();
uint32 arg;
uint64 endtime;
#ifdef STAT
sregs->fholdt += sregs->fhold;
sregs->holdt += sregs->hold;
sregs->icntt += sregs->icnt;
#endif
endtime = ebase.simtime + sregs->icnt + sregs->hold + sregs->fhold;
while ((ebase.eq.nxt->time <= (endtime)) && (ebase.eq.nxt != NULL)) {
ebase.simtime = ebase.eq.nxt->time;
cfunc = ebase.eq.nxt->cfunc;
arg = ebase.eq.nxt->arg;
evrem = ebase.eq.nxt;
ebase.eq.nxt = ebase.eq.nxt->nxt;
evrem->nxt = ebase.freeq;
ebase.freeq = evrem;
cfunc(arg);
}
ebase.simtime = endtime;
}
uint32
now()
{
return ebase.simtime;
}
/* Advance time until an external interrupt is seen */
int
wait_for_irq()
{
struct evcell *evrem;
void (*cfunc) ();
int32 arg;
uint64 endtime;
if (ebase.eq.nxt == NULL)
printf("Warning: event queue empty - power-down mode not entered\n");
endtime = ebase.simtime;
while (!ext_irl && (ebase.eq.nxt != NULL)) {
ebase.simtime = ebase.eq.nxt->time;
cfunc = ebase.eq.nxt->cfunc;
arg = ebase.eq.nxt->arg;
evrem = ebase.eq.nxt;
ebase.eq.nxt = ebase.eq.nxt->nxt;
evrem->nxt = ebase.freeq;
ebase.freeq = evrem;
cfunc(arg);
if (ctrl_c) {
printf("\bwarning: power-down mode interrupted\n");
break;
}
}
sregs.pwdtime += ebase.simtime - endtime;
return ebase.simtime - endtime;
}
int
check_bpt(sregs)
struct pstate *sregs;
{
int32 i;
if ((sregs->bphit) || (sregs->annul))
return 0;
for (i = 0; i < (int32) sregs->bptnum; i++) {
if (sregs->pc == sregs->bpts[i])
return BPT_HIT;
}
return 0;
}
void
reset_all()
{
init_event(); /* Clear event queue */
init_regs(&sregs);
reset();
#ifdef ERRINJ
errinjstart();
#endif
}
void
sys_reset()
{
reset_all();
sregs.trap = 256; /* Force fake reset trap */
}
void
sys_halt()
{
sregs.trap = 257; /* Force fake halt trap */
}
#include "ansidecl.h"
#include <stdarg.h>
#include "libiberty.h"
#include "bfd.h"
#define min(A, B) (((A) < (B)) ? (A) : (B))
#define LOAD_ADDRESS 0
int
bfd_load (const char *fname)
{
asection *section;
bfd *pbfd;
const bfd_arch_info_type *arch;
int i;
pbfd = bfd_openr(fname, 0);
if (pbfd == NULL) {
printf("open of %s failed\n", fname);
return -1;
}
if (!bfd_check_format(pbfd, bfd_object)) {
printf("file %s doesn't seem to be an object file\n", fname);
return -1;
}
arch = bfd_get_arch_info (pbfd);
if (sis_verbose)
printf("loading %s:", fname);
for (section = pbfd->sections; section; section = section->next) {
if (bfd_section_flags (section) & SEC_ALLOC) {
bfd_vma section_address;
unsigned long section_size;
const char *section_name;
section_name = bfd_section_name (section);
section_address = bfd_section_vma (section);
/*
* Adjust sections from a.out files, since they don't carry their
* addresses with.
*/
if (bfd_get_flavour(pbfd) == bfd_target_aout_flavour) {
if (strcmp (section_name, ".text") == 0)
section_address = bfd_get_start_address (pbfd);
else if (strcmp (section_name, ".data") == 0) {
/* Read the first 8 bytes of the data section.
There should be the string 'DaTa' followed by
a word containing the actual section address. */
struct data_marker
{
char signature[4]; /* 'DaTa' */
unsigned char sdata[4]; /* &sdata */
} marker;
bfd_get_section_contents (pbfd, section, &marker, 0,
sizeof (marker));
if (strncmp (marker.signature, "DaTa", 4) == 0)
{
section_address = bfd_getb32 (marker.sdata);
}
}
}
section_size = bfd_section_size (section);
if (sis_verbose)
printf("\nsection %s at 0x%08lx (0x%lx bytes)",
section_name, section_address, section_size);
/* Text, data or lit */
if (bfd_section_flags (section) & SEC_LOAD) {
file_ptr fptr;
fptr = 0;
while (section_size > 0) {
char buffer[1024];
int count;
count = min(section_size, 1024);
bfd_get_section_contents(pbfd, section, buffer, fptr, count);
for (i = 0; i < count; i++)
sis_memory_write ((section_address + i) ^ EBT, &buffer[i], 1);
section_address += count;
fptr += count;
section_size -= count;
}
} else /* BSS */
if (sis_verbose)
printf("(not loaded)");
}
}
if (sis_verbose)
printf("\n");
return bfd_get_start_address (pbfd);
}
double get_time (void)
{
double usec;
struct timeval tm;
gettimeofday (&tm, NULL);
usec = ((double) tm.tv_sec) * 1E6 + ((double) tm.tv_usec);
return usec / 1E6;
}