binutils-gdb/bfd/coff-mips.c
1999-05-03 07:29:11 +00:00

2727 lines
84 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* BFD back-end for MIPS Extended-Coff files.
Copyright 1990, 91, 92, 93, 94, 95, 96, 97, 1998
Free Software Foundation, Inc.
Original version by Per Bothner.
Full support added by Ian Lance Taylor, ian@cygnus.com.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "coff/internal.h"
#include "coff/sym.h"
#include "coff/symconst.h"
#include "coff/ecoff.h"
#include "coff/mips.h"
#include "libcoff.h"
#include "libecoff.h"
/* Prototypes for static functions. */
static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
struct internal_reloc *));
static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
const struct internal_reloc *,
PTR));
static void mips_adjust_reloc_in PARAMS ((bfd *,
const struct internal_reloc *,
arelent *));
static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
struct internal_reloc *));
static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
arelent *reloc,
asymbol *symbol,
PTR data,
asection *section,
bfd *output_bfd,
char **error));
static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
struct internal_reloc *reflo,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
size_t adjust,
bfd_vma relocation,
boolean pcrel));
static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
bfd *, asection *,
bfd_byte *, PTR));
static boolean mips_read_relocs PARAMS ((bfd *, asection *));
static boolean mips_relax_section PARAMS ((bfd *, asection *,
struct bfd_link_info *,
boolean *));
static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
asection *,
struct ecoff_link_hash_entry *,
bfd_byte *, bfd_vma));
static reloc_howto_type *mips_bfd_reloc_type_lookup
PARAMS ((bfd *, bfd_reloc_code_real_type));
/* ECOFF has COFF sections, but the debugging information is stored in
a completely different format. ECOFF targets use some of the
swapping routines from coffswap.h, and some of the generic COFF
routines in coffgen.c, but, unlike the real COFF targets, do not
use coffcode.h itself.
Get the generic COFF swapping routines, except for the reloc,
symbol, and lineno ones. Give them ECOFF names. */
#define MIPSECOFF
#define NO_COFF_RELOCS
#define NO_COFF_SYMBOLS
#define NO_COFF_LINENOS
#define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
#define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
#define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
#define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
#define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
#define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
#include "coffswap.h"
/* Get the ECOFF swapping routines. */
#define ECOFF_32
#include "ecoffswap.h"
/* How to process the various relocs types. */
static reloc_howto_type mips_howto_table[] =
{
/* Reloc type 0 is ignored. The reloc reading code ensures that
this is a reference to the .abs section, which will cause
bfd_perform_relocation to do nothing. */
HOWTO (MIPS_R_IGNORE, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
0, /* special_function */
"IGNORE", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* A 16 bit reference to a symbol, normally from a data section. */
HOWTO (MIPS_R_REFHALF, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
mips_generic_reloc, /* special_function */
"REFHALF", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* A 32 bit reference to a symbol, normally from a data section. */
HOWTO (MIPS_R_REFWORD, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
mips_generic_reloc, /* special_function */
"REFWORD", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* A 26 bit absolute jump address. */
HOWTO (MIPS_R_JMPADDR, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
/* This needs complex overflow
detection, because the upper four
bits must match the PC. */
mips_generic_reloc, /* special_function */
"JMPADDR", /* name */
true, /* partial_inplace */
0x3ffffff, /* src_mask */
0x3ffffff, /* dst_mask */
false), /* pcrel_offset */
/* The high 16 bits of a symbol value. Handled by the function
mips_refhi_reloc. */
HOWTO (MIPS_R_REFHI, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
mips_refhi_reloc, /* special_function */
"REFHI", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* The low 16 bits of a symbol value. */
HOWTO (MIPS_R_REFLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
mips_reflo_reloc, /* special_function */
"REFLO", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* A reference to an offset from the gp register. Handled by the
function mips_gprel_reloc. */
HOWTO (MIPS_R_GPREL, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
mips_gprel_reloc, /* special_function */
"GPREL", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* A reference to a literal using an offset from the gp register.
Handled by the function mips_gprel_reloc. */
HOWTO (MIPS_R_LITERAL, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
mips_gprel_reloc, /* special_function */
"LITERAL", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
{ 8 },
{ 9 },
{ 10 },
{ 11 },
/* This reloc is a Cygnus extension used when generating position
independent code for embedded systems. It represents a 16 bit PC
relative reloc rightshifted twice as used in the MIPS branch
instructions. */
HOWTO (MIPS_R_PCREL16, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
mips_generic_reloc, /* special_function */
"PCREL16", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
true), /* pcrel_offset */
/* This reloc is a Cygnus extension used when generating position
independent code for embedded systems. It represents the high 16
bits of a PC relative reloc. The next reloc must be
MIPS_R_RELLO, and the addend is formed from the addends of the
two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
final value is actually PC relative to the location of the
MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
HOWTO (MIPS_R_RELHI, /* type */
16, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
mips_relhi_reloc, /* special_function */
"RELHI", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
true), /* pcrel_offset */
/* This reloc is a Cygnus extension used when generating position
independent code for embedded systems. It represents the low 16
bits of a PC relative reloc. */
HOWTO (MIPS_R_RELLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
mips_rello_reloc, /* special_function */
"RELLO", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
true), /* pcrel_offset */
{ 15 },
{ 16 },
{ 17 },
{ 18 },
{ 19 },
{ 20 },
{ 21 },
/* This reloc is a Cygnus extension used when generating position
independent code for embedded systems. It represents an entry in
a switch table, which is the difference between two symbols in
the .text section. The symndx is actually the offset from the
reloc address to the subtrahend. See include/coff/mips.h for
more details. */
HOWTO (MIPS_R_SWITCH, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
mips_switch_reloc, /* special_function */
"SWITCH", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
true) /* pcrel_offset */
};
#define MIPS_HOWTO_COUNT \
(sizeof mips_howto_table / sizeof mips_howto_table[0])
/* When the linker is doing relaxing, it may change a external PCREL16
reloc. This typically represents an instruction like
bal foo
We change it to
.set noreorder
bal $L1
lui $at,%hi(foo - $L1)
$L1:
addiu $at,%lo(foo - $L1)
addu $at,$at,$31
jalr $at
PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
instruction by. */
#define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
/* See whether the magic number matches. */
static boolean
mips_ecoff_bad_format_hook (abfd, filehdr)
bfd *abfd;
PTR filehdr;
{
struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
switch (internal_f->f_magic)
{
case MIPS_MAGIC_1:
/* I don't know what endianness this implies. */
return true;
case MIPS_MAGIC_BIG:
case MIPS_MAGIC_BIG2:
case MIPS_MAGIC_BIG3:
return bfd_big_endian (abfd);
case MIPS_MAGIC_LITTLE:
case MIPS_MAGIC_LITTLE2:
case MIPS_MAGIC_LITTLE3:
return bfd_little_endian (abfd);
default:
return false;
}
}
/* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
external form. They use a bit which indicates whether the symbol
is external. */
/* Swap a reloc in. */
static void
mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
bfd *abfd;
PTR ext_ptr;
struct internal_reloc *intern;
{
const RELOC *ext = (RELOC *) ext_ptr;
intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr);
if (bfd_header_big_endian (abfd))
{
intern->r_symndx = (((int) ext->r_bits[0]
<< RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
| ((int) ext->r_bits[1]
<< RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
| ((int) ext->r_bits[2]
<< RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
>> RELOC_BITS3_TYPE_SH_BIG);
intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
}
else
{
intern->r_symndx = (((int) ext->r_bits[0]
<< RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
| ((int) ext->r_bits[1]
<< RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
| ((int) ext->r_bits[2]
<< RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
>> RELOC_BITS3_TYPE_SH_LITTLE)
| ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
<< RELOC_BITS3_TYPEHI_SH_LITTLE));
intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
}
/* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
MIPS_R_RELLO reloc, r_symndx is actually the offset from the
reloc address to the base of the difference (see
include/coff/mips.h for more details). We copy symndx into the
r_offset field so as not to confuse ecoff_slurp_reloc_table in
ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
addend. */
if (intern->r_type == MIPS_R_SWITCH
|| (! intern->r_extern
&& (intern->r_type == MIPS_R_RELLO
|| intern->r_type == MIPS_R_RELHI)))
{
BFD_ASSERT (! intern->r_extern);
intern->r_offset = intern->r_symndx;
if (intern->r_offset & 0x800000)
intern->r_offset -= 0x1000000;
intern->r_symndx = RELOC_SECTION_TEXT;
}
}
/* Swap a reloc out. */
static void
mips_ecoff_swap_reloc_out (abfd, intern, dst)
bfd *abfd;
const struct internal_reloc *intern;
PTR dst;
{
RELOC *ext = (RELOC *) dst;
long r_symndx;
BFD_ASSERT (intern->r_extern
|| (intern->r_symndx >= 0 && intern->r_symndx <= 12));
/* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
MIPS_R_RELHI reloc, we actually want to write the contents of
r_offset out as the symbol index. This undoes the change made by
mips_ecoff_swap_reloc_in. */
if (intern->r_type != MIPS_R_SWITCH
&& (intern->r_extern
|| (intern->r_type != MIPS_R_RELHI
&& intern->r_type != MIPS_R_RELLO)))
r_symndx = intern->r_symndx;
else
{
BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
r_symndx = intern->r_offset & 0xffffff;
}
bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
if (bfd_header_big_endian (abfd))
{
ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
& RELOC_BITS3_TYPE_BIG)
| (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
}
else
{
ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
& RELOC_BITS3_TYPE_LITTLE)
| ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
& RELOC_BITS3_TYPEHI_LITTLE))
| (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
}
}
/* Finish canonicalizing a reloc. Part of this is generic to all
ECOFF targets, and that part is in ecoff.c. The rest is done in
this backend routine. It must fill in the howto field. */
static void
mips_adjust_reloc_in (abfd, intern, rptr)
bfd *abfd;
const struct internal_reloc *intern;
arelent *rptr;
{
if (intern->r_type > MIPS_R_SWITCH)
abort ();
if (! intern->r_extern
&& (intern->r_type == MIPS_R_GPREL
|| intern->r_type == MIPS_R_LITERAL))
rptr->addend += ecoff_data (abfd)->gp;
/* If the type is MIPS_R_IGNORE, make sure this is a reference to
the absolute section so that the reloc is ignored. */
if (intern->r_type == MIPS_R_IGNORE)
rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
/* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
hold the value which was originally in the symndx field of the
internal MIPS ECOFF reloc. This value was copied into
intern->r_offset by mips_swap_reloc_in, and here we copy it into
the addend field. */
if (intern->r_type == MIPS_R_SWITCH
|| (! intern->r_extern
&& (intern->r_type == MIPS_R_RELHI
|| intern->r_type == MIPS_R_RELLO)))
rptr->addend = intern->r_offset;
rptr->howto = &mips_howto_table[intern->r_type];
}
/* Make any adjustments needed to a reloc before writing it out. None
are needed for MIPS. */
static void
mips_adjust_reloc_out (abfd, rel, intern)
bfd *abfd;
const arelent *rel;
struct internal_reloc *intern;
{
/* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
MIPS_R_RELLO reloc, we must copy rel->addend into
intern->r_offset. This will then be written out as the symbol
index by mips_ecoff_swap_reloc_out. This operation parallels the
action of mips_adjust_reloc_in. */
if (intern->r_type == MIPS_R_SWITCH
|| (! intern->r_extern
&& (intern->r_type == MIPS_R_RELHI
|| intern->r_type == MIPS_R_RELLO)))
intern->r_offset = rel->addend;
}
/* ECOFF relocs are either against external symbols, or against
sections. If we are producing relocateable output, and the reloc
is against an external symbol, and nothing has given us any
additional addend, the resulting reloc will also be against the
same symbol. In such a case, we don't want to change anything
about the way the reloc is handled, since it will all be done at
final link time. Rather than put special case code into
bfd_perform_relocation, all the reloc types use this howto
function. It just short circuits the reloc if producing
relocateable output against an external symbol. */
static bfd_reloc_status_type
mips_generic_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& reloc_entry->addend == 0)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
return bfd_reloc_continue;
}
/* Do a REFHI relocation. This has to be done in combination with a
REFLO reloc, because there is a carry from the REFLO to the REFHI.
Here we just save the information we need; we do the actual
relocation when we see the REFLO. MIPS ECOFF requires that the
REFLO immediately follow the REFHI. As a GNU extension, we permit
an arbitrary number of HI relocs to be associated with a single LO
reloc. This extension permits gcc to output the HI and LO relocs
itself. */
struct mips_hi
{
struct mips_hi *next;
bfd_byte *addr;
bfd_vma addend;
};
/* FIXME: This should not be a static variable. */
static struct mips_hi *mips_refhi_list;
static bfd_reloc_status_type
mips_refhi_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
bfd_reloc_status_type ret;
bfd_vma relocation;
struct mips_hi *n;
/* If we're relocating, and this an external symbol, we don't want
to change anything. */
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& reloc_entry->addend == 0)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
ret = bfd_reloc_ok;
if (bfd_is_und_section (symbol->section)
&& output_bfd == (bfd *) NULL)
ret = bfd_reloc_undefined;
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
relocation += symbol->section->output_section->vma;
relocation += symbol->section->output_offset;
relocation += reloc_entry->addend;
if (reloc_entry->address > input_section->_cooked_size)
return bfd_reloc_outofrange;
/* Save the information, and let REFLO do the actual relocation. */
n = (struct mips_hi *) bfd_malloc (sizeof *n);
if (n == NULL)
return bfd_reloc_outofrange;
n->addr = (bfd_byte *) data + reloc_entry->address;
n->addend = relocation;
n->next = mips_refhi_list;
mips_refhi_list = n;
if (output_bfd != (bfd *) NULL)
reloc_entry->address += input_section->output_offset;
return ret;
}
/* Do a REFLO relocation. This is a straightforward 16 bit inplace
relocation; this function exists in order to do the REFHI
relocation described above. */
static bfd_reloc_status_type
mips_reflo_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
if (mips_refhi_list != NULL)
{
struct mips_hi *l;
l = mips_refhi_list;
while (l != NULL)
{
unsigned long insn;
unsigned long val;
unsigned long vallo;
struct mips_hi *next;
/* Do the REFHI relocation. Note that we actually don't
need to know anything about the REFLO itself, except
where to find the low 16 bits of the addend needed by the
REFHI. */
insn = bfd_get_32 (abfd, l->addr);
vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
& 0xffff);
val = ((insn & 0xffff) << 16) + vallo;
val += l->addend;
/* The low order 16 bits are always treated as a signed
value. Therefore, a negative value in the low order bits
requires an adjustment in the high order bits. We need
to make this adjustment in two ways: once for the bits we
took from the data, and once for the bits we are putting
back in to the data. */
if ((vallo & 0x8000) != 0)
val -= 0x10000;
if ((val & 0x8000) != 0)
val += 0x10000;
insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
bfd_put_32 (abfd, insn, l->addr);
next = l->next;
free (l);
l = next;
}
mips_refhi_list = NULL;
}
/* Now do the REFLO reloc in the usual way. */
return mips_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
}
/* Do a GPREL relocation. This is a 16 bit value which must become
the offset from the gp register. */
static bfd_reloc_status_type
mips_gprel_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
boolean relocateable;
bfd_vma gp;
bfd_vma relocation;
unsigned long val;
unsigned long insn;
/* If we're relocating, and this is an external symbol with no
addend, we don't want to change anything. We will only have an
addend if this is a newly created reloc, not read from an ECOFF
file. */
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& reloc_entry->addend == 0)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
if (output_bfd != (bfd *) NULL)
relocateable = true;
else
{
relocateable = false;
output_bfd = symbol->section->output_section->owner;
}
if (bfd_is_und_section (symbol->section)
&& relocateable == false)
return bfd_reloc_undefined;
/* We have to figure out the gp value, so that we can adjust the
symbol value correctly. We look up the symbol _gp in the output
BFD. If we can't find it, we're stuck. We cache it in the ECOFF
target data. We don't need to adjust the symbol value for an
external symbol if we are producing relocateable output. */
gp = _bfd_get_gp_value (output_bfd);
if (gp == 0
&& (relocateable == false
|| (symbol->flags & BSF_SECTION_SYM) != 0))
{
if (relocateable != false)
{
/* Make up a value. */
gp = symbol->section->output_section->vma + 0x4000;
_bfd_set_gp_value (output_bfd, gp);
}
else
{
unsigned int count;
asymbol **sym;
unsigned int i;
count = bfd_get_symcount (output_bfd);
sym = bfd_get_outsymbols (output_bfd);
if (sym == (asymbol **) NULL)
i = count;
else
{
for (i = 0; i < count; i++, sym++)
{
register CONST char *name;
name = bfd_asymbol_name (*sym);
if (*name == '_' && strcmp (name, "_gp") == 0)
{
gp = bfd_asymbol_value (*sym);
_bfd_set_gp_value (output_bfd, gp);
break;
}
}
}
if (i >= count)
{
/* Only get the error once. */
gp = 4;
_bfd_set_gp_value (output_bfd, gp);
*error_message =
(char *) _("GP relative relocation when _gp not defined");
return bfd_reloc_dangerous;
}
}
}
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
relocation += symbol->section->output_section->vma;
relocation += symbol->section->output_offset;
if (reloc_entry->address > input_section->_cooked_size)
return bfd_reloc_outofrange;
insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
/* Set val to the offset into the section or symbol. */
val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
if (val & 0x8000)
val -= 0x10000;
/* Adjust val for the final section location and GP value. If we
are producing relocateable output, we don't want to do this for
an external symbol. */
if (relocateable == false
|| (symbol->flags & BSF_SECTION_SYM) != 0)
val += relocation - gp;
insn = (insn &~ 0xffff) | (val & 0xffff);
bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
if (relocateable != false)
reloc_entry->address += input_section->output_offset;
/* Make sure it fit in 16 bits. */
if (val >= 0x8000 && val < 0xffff8000)
return bfd_reloc_overflow;
return bfd_reloc_ok;
}
/* Do a RELHI relocation. We do this in conjunction with a RELLO
reloc, just as REFHI and REFLO are done together. RELHI and RELLO
are Cygnus extensions used when generating position independent
code for embedded systems. */
/* FIXME: This should not be a static variable. */
static struct mips_hi *mips_relhi_list;
static bfd_reloc_status_type
mips_relhi_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
bfd_reloc_status_type ret;
bfd_vma relocation;
struct mips_hi *n;
/* If this is a reloc against a section symbol, then it is correct
in the object file. The only time we want to change this case is
when we are relaxing, and that is handled entirely by
mips_relocate_section and never calls this function. */
if ((symbol->flags & BSF_SECTION_SYM) != 0)
{
if (output_bfd != (bfd *) NULL)
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* This is an external symbol. If we're relocating, we don't want
to change anything. */
if (output_bfd != (bfd *) NULL)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
ret = bfd_reloc_ok;
if (bfd_is_und_section (symbol->section)
&& output_bfd == (bfd *) NULL)
ret = bfd_reloc_undefined;
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
relocation += symbol->section->output_section->vma;
relocation += symbol->section->output_offset;
relocation += reloc_entry->addend;
if (reloc_entry->address > input_section->_cooked_size)
return bfd_reloc_outofrange;
/* Save the information, and let RELLO do the actual relocation. */
n = (struct mips_hi *) bfd_malloc (sizeof *n);
if (n == NULL)
return bfd_reloc_outofrange;
n->addr = (bfd_byte *) data + reloc_entry->address;
n->addend = relocation;
n->next = mips_relhi_list;
mips_relhi_list = n;
if (output_bfd != (bfd *) NULL)
reloc_entry->address += input_section->output_offset;
return ret;
}
/* Do a RELLO relocation. This is a straightforward 16 bit PC
relative relocation; this function exists in order to do the RELHI
relocation described above. */
static bfd_reloc_status_type
mips_rello_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
if (mips_relhi_list != NULL)
{
struct mips_hi *l;
l = mips_relhi_list;
while (l != NULL)
{
unsigned long insn;
unsigned long val;
unsigned long vallo;
struct mips_hi *next;
/* Do the RELHI relocation. Note that we actually don't
need to know anything about the RELLO itself, except
where to find the low 16 bits of the addend needed by the
RELHI. */
insn = bfd_get_32 (abfd, l->addr);
vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
& 0xffff);
val = ((insn & 0xffff) << 16) + vallo;
val += l->addend;
/* If the symbol is defined, make val PC relative. If the
symbol is not defined we don't want to do this, because
we don't want the value in the object file to incorporate
the address of the reloc. */
if (! bfd_is_und_section (bfd_get_section (symbol))
&& ! bfd_is_com_section (bfd_get_section (symbol)))
val -= (input_section->output_section->vma
+ input_section->output_offset
+ reloc_entry->address);
/* The low order 16 bits are always treated as a signed
value. Therefore, a negative value in the low order bits
requires an adjustment in the high order bits. We need
to make this adjustment in two ways: once for the bits we
took from the data, and once for the bits we are putting
back in to the data. */
if ((vallo & 0x8000) != 0)
val -= 0x10000;
if ((val & 0x8000) != 0)
val += 0x10000;
insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
bfd_put_32 (abfd, insn, l->addr);
next = l->next;
free (l);
l = next;
}
mips_relhi_list = NULL;
}
/* If this is a reloc against a section symbol, then it is correct
in the object file. The only time we want to change this case is
when we are relaxing, and that is handled entirely by
mips_relocate_section and never calls this function. */
if ((symbol->flags & BSF_SECTION_SYM) != 0)
{
if (output_bfd != (bfd *) NULL)
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* bfd_perform_relocation does not handle pcrel_offset relocations
correctly when generating a relocateable file, so handle them
directly here. */
if (output_bfd != (bfd *) NULL)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* Now do the RELLO reloc in the usual way. */
return mips_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
}
/* This is the special function for the MIPS_R_SWITCH reloc. This
special reloc is normally correct in the object file, and only
requires special handling when relaxing. We don't want
bfd_perform_relocation to tamper with it at all. */
/*ARGSUSED*/
static bfd_reloc_status_type
mips_switch_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
return bfd_reloc_ok;
}
/* Get the howto structure for a generic reloc type. */
static reloc_howto_type *
mips_bfd_reloc_type_lookup (abfd, code)
bfd *abfd;
bfd_reloc_code_real_type code;
{
int mips_type;
switch (code)
{
case BFD_RELOC_16:
mips_type = MIPS_R_REFHALF;
break;
case BFD_RELOC_32:
case BFD_RELOC_CTOR:
mips_type = MIPS_R_REFWORD;
break;
case BFD_RELOC_MIPS_JMP:
mips_type = MIPS_R_JMPADDR;
break;
case BFD_RELOC_HI16_S:
mips_type = MIPS_R_REFHI;
break;
case BFD_RELOC_LO16:
mips_type = MIPS_R_REFLO;
break;
case BFD_RELOC_MIPS_GPREL:
mips_type = MIPS_R_GPREL;
break;
case BFD_RELOC_MIPS_LITERAL:
mips_type = MIPS_R_LITERAL;
break;
case BFD_RELOC_16_PCREL_S2:
mips_type = MIPS_R_PCREL16;
break;
case BFD_RELOC_PCREL_HI16_S:
mips_type = MIPS_R_RELHI;
break;
case BFD_RELOC_PCREL_LO16:
mips_type = MIPS_R_RELLO;
break;
case BFD_RELOC_GPREL32:
mips_type = MIPS_R_SWITCH;
break;
default:
return (reloc_howto_type *) NULL;
}
return &mips_howto_table[mips_type];
}
/* A helper routine for mips_relocate_section which handles the REFHI
and RELHI relocations. The REFHI relocation must be followed by a
REFLO relocation (and RELHI by a RELLO), and the addend used is
formed from the addends of both instructions. */
static void
mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
relocation, pcrel)
struct internal_reloc *refhi;
struct internal_reloc *reflo;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
size_t adjust;
bfd_vma relocation;
boolean pcrel;
{
unsigned long insn;
unsigned long val;
unsigned long vallo;
if (refhi == NULL)
return;
insn = bfd_get_32 (input_bfd,
contents + adjust + refhi->r_vaddr - input_section->vma);
if (reflo == NULL)
vallo = 0;
else
vallo = (bfd_get_32 (input_bfd,
contents + adjust + reflo->r_vaddr - input_section->vma)
& 0xffff);
val = ((insn & 0xffff) << 16) + vallo;
val += relocation;
/* The low order 16 bits are always treated as a signed value.
Therefore, a negative value in the low order bits requires an
adjustment in the high order bits. We need to make this
adjustment in two ways: once for the bits we took from the data,
and once for the bits we are putting back in to the data. */
if ((vallo & 0x8000) != 0)
val -= 0x10000;
if (pcrel)
val -= (input_section->output_section->vma
+ input_section->output_offset
+ (reflo->r_vaddr - input_section->vma + adjust));
if ((val & 0x8000) != 0)
val += 0x10000;
insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
bfd_put_32 (input_bfd, (bfd_vma) insn,
contents + adjust + refhi->r_vaddr - input_section->vma);
}
/* Relocate a section while linking a MIPS ECOFF file. */
static boolean
mips_relocate_section (output_bfd, info, input_bfd, input_section,
contents, external_relocs)
bfd *output_bfd;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
PTR external_relocs;
{
asection **symndx_to_section;
struct ecoff_link_hash_entry **sym_hashes;
bfd_vma gp;
boolean gp_undefined;
size_t adjust;
long *offsets;
struct external_reloc *ext_rel;
struct external_reloc *ext_rel_end;
unsigned int i;
boolean got_lo;
struct internal_reloc lo_int_rel;
BFD_ASSERT (input_bfd->xvec->byteorder
== output_bfd->xvec->byteorder);
/* We keep a table mapping the symndx found in an internal reloc to
the appropriate section. This is faster than looking up the
section by name each time. */
symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
if (symndx_to_section == (asection **) NULL)
{
symndx_to_section = ((asection **)
bfd_alloc (input_bfd,
(NUM_RELOC_SECTIONS
* sizeof (asection *))));
if (!symndx_to_section)
return false;
symndx_to_section[RELOC_SECTION_NONE] = NULL;
symndx_to_section[RELOC_SECTION_TEXT] =
bfd_get_section_by_name (input_bfd, ".text");
symndx_to_section[RELOC_SECTION_RDATA] =
bfd_get_section_by_name (input_bfd, ".rdata");
symndx_to_section[RELOC_SECTION_DATA] =
bfd_get_section_by_name (input_bfd, ".data");
symndx_to_section[RELOC_SECTION_SDATA] =
bfd_get_section_by_name (input_bfd, ".sdata");
symndx_to_section[RELOC_SECTION_SBSS] =
bfd_get_section_by_name (input_bfd, ".sbss");
symndx_to_section[RELOC_SECTION_BSS] =
bfd_get_section_by_name (input_bfd, ".bss");
symndx_to_section[RELOC_SECTION_INIT] =
bfd_get_section_by_name (input_bfd, ".init");
symndx_to_section[RELOC_SECTION_LIT8] =
bfd_get_section_by_name (input_bfd, ".lit8");
symndx_to_section[RELOC_SECTION_LIT4] =
bfd_get_section_by_name (input_bfd, ".lit4");
symndx_to_section[RELOC_SECTION_XDATA] = NULL;
symndx_to_section[RELOC_SECTION_PDATA] = NULL;
symndx_to_section[RELOC_SECTION_FINI] =
bfd_get_section_by_name (input_bfd, ".fini");
symndx_to_section[RELOC_SECTION_LITA] = NULL;
symndx_to_section[RELOC_SECTION_ABS] = NULL;
ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
}
sym_hashes = ecoff_data (input_bfd)->sym_hashes;
gp = _bfd_get_gp_value (output_bfd);
if (gp == 0)
gp_undefined = true;
else
gp_undefined = false;
got_lo = false;
adjust = 0;
if (ecoff_section_data (input_bfd, input_section) == NULL)
offsets = NULL;
else
offsets = ecoff_section_data (input_bfd, input_section)->offsets;
ext_rel = (struct external_reloc *) external_relocs;
ext_rel_end = ext_rel + input_section->reloc_count;
for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
{
struct internal_reloc int_rel;
boolean use_lo = false;
bfd_vma addend;
reloc_howto_type *howto;
struct ecoff_link_hash_entry *h = NULL;
asection *s = NULL;
bfd_vma relocation;
bfd_reloc_status_type r;
if (! got_lo)
mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
else
{
int_rel = lo_int_rel;
got_lo = false;
}
BFD_ASSERT (int_rel.r_type
< sizeof mips_howto_table / sizeof mips_howto_table[0]);
/* The REFHI and RELHI relocs requires special handling. they
must be followed by a REFLO or RELLO reloc, respectively, and
the addend is formed from both relocs. */
if (int_rel.r_type == MIPS_R_REFHI
|| int_rel.r_type == MIPS_R_RELHI)
{
struct external_reloc *lo_ext_rel;
/* As a GNU extension, permit an arbitrary number of REFHI
or RELHI relocs before the REFLO or RELLO reloc. This
permits gcc to emit the HI and LO relocs itself. */
for (lo_ext_rel = ext_rel + 1;
lo_ext_rel < ext_rel_end;
lo_ext_rel++)
{
mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel,
&lo_int_rel);
if (lo_int_rel.r_type != int_rel.r_type)
break;
}
if (lo_ext_rel < ext_rel_end
&& (lo_int_rel.r_type
== (int_rel.r_type == MIPS_R_REFHI
? MIPS_R_REFLO
: MIPS_R_RELLO))
&& int_rel.r_extern == lo_int_rel.r_extern
&& int_rel.r_symndx == lo_int_rel.r_symndx)
{
use_lo = true;
if (lo_ext_rel == ext_rel + 1)
got_lo = true;
}
}
howto = &mips_howto_table[int_rel.r_type];
/* The SWITCH reloc must be handled specially. This reloc is
marks the location of a difference between two portions of an
object file. The symbol index does not reference a symbol,
but is actually the offset from the reloc to the subtrahend
of the difference. This reloc is correct in the object file,
and needs no further adjustment, unless we are relaxing. If
we are relaxing, we may have to add in an offset. Since no
symbols are involved in this reloc, we handle it completely
here. */
if (int_rel.r_type == MIPS_R_SWITCH)
{
if (offsets != NULL
&& offsets[i] != 0)
{
r = _bfd_relocate_contents (howto, input_bfd,
(bfd_vma) offsets[i],
(contents
+ adjust
+ int_rel.r_vaddr
- input_section->vma));
BFD_ASSERT (r == bfd_reloc_ok);
}
continue;
}
if (int_rel.r_extern)
{
h = sym_hashes[int_rel.r_symndx];
/* If h is NULL, that means that there is a reloc against an
external symbol which we thought was just a debugging
symbol. This should not happen. */
if (h == (struct ecoff_link_hash_entry *) NULL)
abort ();
}
else
{
if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
s = NULL;
else
s = symndx_to_section[int_rel.r_symndx];
if (s == (asection *) NULL)
abort ();
}
/* The GPREL reloc uses an addend: the difference in the GP
values. */
if (int_rel.r_type != MIPS_R_GPREL
&& int_rel.r_type != MIPS_R_LITERAL)
addend = 0;
else
{
if (gp_undefined)
{
if (! ((*info->callbacks->reloc_dangerous)
(info, _("GP relative relocation when GP not defined"),
input_bfd, input_section,
int_rel.r_vaddr - input_section->vma)))
return false;
/* Only give the error once per link. */
gp = 4;
_bfd_set_gp_value (output_bfd, gp);
gp_undefined = false;
}
if (! int_rel.r_extern)
{
/* This is a relocation against a section. The current
addend in the instruction is the difference between
INPUT_SECTION->vma and the GP value of INPUT_BFD. We
must change this to be the difference between the
final definition (which will end up in RELOCATION)
and the GP value of OUTPUT_BFD (which is in GP). */
addend = ecoff_data (input_bfd)->gp - gp;
}
else if (! info->relocateable
|| h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
/* This is a relocation against a defined symbol. The
current addend in the instruction is simply the
desired offset into the symbol (normally zero). We
are going to change this into a relocation against a
defined symbol, so we want the instruction to hold
the difference between the final definition of the
symbol (which will end up in RELOCATION) and the GP
value of OUTPUT_BFD (which is in GP). */
addend = - gp;
}
else
{
/* This is a relocation against an undefined or common
symbol. The current addend in the instruction is
simply the desired offset into the symbol (normally
zero). We are generating relocateable output, and we
aren't going to define this symbol, so we just leave
the instruction alone. */
addend = 0;
}
}
/* If we are relaxing, mips_relax_section may have set
offsets[i] to some value. A value of 1 means we must expand
a PC relative branch into a multi-instruction of sequence,
and any other value is an addend. */
if (offsets != NULL
&& offsets[i] != 0)
{
BFD_ASSERT (! info->relocateable);
BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
|| int_rel.r_type == MIPS_R_RELHI
|| int_rel.r_type == MIPS_R_RELLO);
if (offsets[i] != 1)
addend += offsets[i];
else
{
bfd_byte *here;
BFD_ASSERT (int_rel.r_extern
&& int_rel.r_type == MIPS_R_PCREL16);
/* Move the rest of the instructions up. */
here = (contents
+ adjust
+ int_rel.r_vaddr
- input_section->vma);
memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
(size_t) (input_section->_raw_size
- (int_rel.r_vaddr - input_section->vma)));
/* Generate the new instructions. */
if (! mips_relax_pcrel16 (info, input_bfd, input_section,
h, here,
(input_section->output_section->vma
+ input_section->output_offset
+ (int_rel.r_vaddr
- input_section->vma)
+ adjust)))
return false;
/* We must adjust everything else up a notch. */
adjust += PCREL16_EXPANSION_ADJUSTMENT;
/* mips_relax_pcrel16 handles all the details of this
relocation. */
continue;
}
}
/* If we are relaxing, and this is a reloc against the .text
segment, we may need to adjust it if some branches have been
expanded. The reloc types which are likely to occur in the
.text section are handled efficiently by mips_relax_section,
and thus do not need to be handled here. */
if (ecoff_data (input_bfd)->debug_info.adjust != NULL
&& ! int_rel.r_extern
&& int_rel.r_symndx == RELOC_SECTION_TEXT
&& (strcmp (bfd_get_section_name (input_bfd, input_section),
".text") != 0
|| (int_rel.r_type != MIPS_R_PCREL16
&& int_rel.r_type != MIPS_R_SWITCH
&& int_rel.r_type != MIPS_R_RELHI
&& int_rel.r_type != MIPS_R_RELLO)))
{
bfd_vma adr;
struct ecoff_value_adjust *a;
/* We need to get the addend so that we know whether we need
to adjust the address. */
BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
adr = bfd_get_32 (input_bfd,
(contents
+ adjust
+ int_rel.r_vaddr
- input_section->vma));
for (a = ecoff_data (input_bfd)->debug_info.adjust;
a != (struct ecoff_value_adjust *) NULL;
a = a->next)
{
if (adr >= a->start && adr < a->end)
addend += a->adjust;
}
}
if (info->relocateable)
{
/* We are generating relocateable output, and must convert
the existing reloc. */
if (int_rel.r_extern)
{
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& ! bfd_is_abs_section (h->root.u.def.section))
{
const char *name;
/* This symbol is defined in the output. Convert
the reloc from being against the symbol to being
against the section. */
/* Clear the r_extern bit. */
int_rel.r_extern = 0;
/* Compute a new r_symndx value. */
s = h->root.u.def.section;
name = bfd_get_section_name (output_bfd,
s->output_section);
int_rel.r_symndx = -1;
switch (name[1])
{
case 'b':
if (strcmp (name, ".bss") == 0)
int_rel.r_symndx = RELOC_SECTION_BSS;
break;
case 'd':
if (strcmp (name, ".data") == 0)
int_rel.r_symndx = RELOC_SECTION_DATA;
break;
case 'f':
if (strcmp (name, ".fini") == 0)
int_rel.r_symndx = RELOC_SECTION_FINI;
break;
case 'i':
if (strcmp (name, ".init") == 0)
int_rel.r_symndx = RELOC_SECTION_INIT;
break;
case 'l':
if (strcmp (name, ".lit8") == 0)
int_rel.r_symndx = RELOC_SECTION_LIT8;
else if (strcmp (name, ".lit4") == 0)
int_rel.r_symndx = RELOC_SECTION_LIT4;
break;
case 'r':
if (strcmp (name, ".rdata") == 0)
int_rel.r_symndx = RELOC_SECTION_RDATA;
break;
case 's':
if (strcmp (name, ".sdata") == 0)
int_rel.r_symndx = RELOC_SECTION_SDATA;
else if (strcmp (name, ".sbss") == 0)
int_rel.r_symndx = RELOC_SECTION_SBSS;
break;
case 't':
if (strcmp (name, ".text") == 0)
int_rel.r_symndx = RELOC_SECTION_TEXT;
break;
}
if (int_rel.r_symndx == -1)
abort ();
/* Add the section VMA and the symbol value. */
relocation = (h->root.u.def.value
+ s->output_section->vma
+ s->output_offset);
/* For a PC relative relocation, the object file
currently holds just the addend. We must adjust
by the address to get the right value. */
if (howto->pc_relative)
{
relocation -= int_rel.r_vaddr - input_section->vma;
/* If we are converting a RELHI or RELLO reloc
from being against an external symbol to
being against a section, we must put a
special value into the r_offset field. This
value is the old addend. The r_offset for
both the RELHI and RELLO relocs are the same,
and we set both when we see RELHI. */
if (int_rel.r_type == MIPS_R_RELHI)
{
long addhi, addlo;
addhi = bfd_get_32 (input_bfd,
(contents
+ adjust
+ int_rel.r_vaddr
- input_section->vma));
addhi &= 0xffff;
if (addhi & 0x8000)
addhi -= 0x10000;
addhi <<= 16;
if (! use_lo)
addlo = 0;
else
{
addlo = bfd_get_32 (input_bfd,
(contents
+ adjust
+ lo_int_rel.r_vaddr
- input_section->vma));
addlo &= 0xffff;
if (addlo & 0x8000)
addlo -= 0x10000;
lo_int_rel.r_offset = addhi + addlo;
}
int_rel.r_offset = addhi + addlo;
}
}
h = NULL;
}
else
{
/* Change the symndx value to the right one for the
output BFD. */
int_rel.r_symndx = h->indx;
if (int_rel.r_symndx == -1)
{
/* This symbol is not being written out. */
if (! ((*info->callbacks->unattached_reloc)
(info, h->root.root.string, input_bfd,
input_section,
int_rel.r_vaddr - input_section->vma)))
return false;
int_rel.r_symndx = 0;
}
relocation = 0;
}
}
else
{
/* This is a relocation against a section. Adjust the
value by the amount the section moved. */
relocation = (s->output_section->vma
+ s->output_offset
- s->vma);
}
relocation += addend;
addend = 0;
/* Adjust a PC relative relocation by removing the reference
to the original address in the section and including the
reference to the new address. However, external RELHI
and RELLO relocs are PC relative, but don't include any
reference to the address. The addend is merely an
addend. */
if (howto->pc_relative
&& (! int_rel.r_extern
|| (int_rel.r_type != MIPS_R_RELHI
&& int_rel.r_type != MIPS_R_RELLO)))
relocation -= (input_section->output_section->vma
+ input_section->output_offset
- input_section->vma);
/* Adjust the contents. */
if (relocation == 0)
r = bfd_reloc_ok;
else
{
if (int_rel.r_type != MIPS_R_REFHI
&& int_rel.r_type != MIPS_R_RELHI)
r = _bfd_relocate_contents (howto, input_bfd, relocation,
(contents
+ adjust
+ int_rel.r_vaddr
- input_section->vma));
else
{
mips_relocate_hi (&int_rel,
use_lo ? &lo_int_rel : NULL,
input_bfd, input_section, contents,
adjust, relocation,
int_rel.r_type == MIPS_R_RELHI);
r = bfd_reloc_ok;
}
}
/* Adjust the reloc address. */
int_rel.r_vaddr += (input_section->output_section->vma
+ input_section->output_offset
- input_section->vma);
/* Save the changed reloc information. */
mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
}
else
{
/* We are producing a final executable. */
if (int_rel.r_extern)
{
/* This is a reloc against a symbol. */
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
asection *hsec;
hsec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ hsec->output_section->vma
+ hsec->output_offset);
}
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section,
int_rel.r_vaddr - input_section->vma)))
return false;
relocation = 0;
}
}
else
{
/* This is a reloc against a section. */
relocation = (s->output_section->vma
+ s->output_offset
- s->vma);
/* A PC relative reloc is already correct in the object
file. Make it look like a pcrel_offset relocation by
adding in the start address. */
if (howto->pc_relative)
{
if (int_rel.r_type != MIPS_R_RELHI || ! use_lo)
relocation += int_rel.r_vaddr + adjust;
else
relocation += lo_int_rel.r_vaddr + adjust;
}
}
if (int_rel.r_type != MIPS_R_REFHI
&& int_rel.r_type != MIPS_R_RELHI)
r = _bfd_final_link_relocate (howto,
input_bfd,
input_section,
contents,
(int_rel.r_vaddr
- input_section->vma
+ adjust),
relocation,
addend);
else
{
mips_relocate_hi (&int_rel,
use_lo ? &lo_int_rel : NULL,
input_bfd, input_section, contents, adjust,
relocation,
int_rel.r_type == MIPS_R_RELHI);
r = bfd_reloc_ok;
}
}
/* MIPS_R_JMPADDR requires peculiar overflow detection. The
instruction provides a 28 bit address (the two lower bits are
implicit zeroes) which is combined with the upper four bits
of the instruction address. */
if (r == bfd_reloc_ok
&& int_rel.r_type == MIPS_R_JMPADDR
&& (((relocation
+ addend
+ (int_rel.r_extern ? 0 : s->vma))
& 0xf0000000)
!= ((input_section->output_section->vma
+ input_section->output_offset
+ (int_rel.r_vaddr - input_section->vma)
+ adjust)
& 0xf0000000)))
r = bfd_reloc_overflow;
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (int_rel.r_extern)
name = h->root.root.string;
else
name = bfd_section_name (input_bfd, s);
if (! ((*info->callbacks->reloc_overflow)
(info, name, howto->name, (bfd_vma) 0,
input_bfd, input_section,
int_rel.r_vaddr - input_section->vma)))
return false;
}
break;
}
}
}
return true;
}
/* Read in the relocs for a section. */
static boolean
mips_read_relocs (abfd, sec)
bfd *abfd;
asection *sec;
{
struct ecoff_section_tdata *section_tdata;
section_tdata = ecoff_section_data (abfd, sec);
if (section_tdata == (struct ecoff_section_tdata *) NULL)
{
sec->used_by_bfd =
(PTR) bfd_alloc (abfd, sizeof (struct ecoff_section_tdata));
if (sec->used_by_bfd == NULL)
return false;
section_tdata = ecoff_section_data (abfd, sec);
section_tdata->external_relocs = NULL;
section_tdata->contents = NULL;
section_tdata->offsets = NULL;
}
if (section_tdata->external_relocs == NULL)
{
bfd_size_type external_relocs_size;
external_relocs_size = (ecoff_backend (abfd)->external_reloc_size
* sec->reloc_count);
section_tdata->external_relocs =
(PTR) bfd_alloc (abfd, external_relocs_size);
if (section_tdata->external_relocs == NULL && external_relocs_size != 0)
return false;
if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
|| (bfd_read (section_tdata->external_relocs, 1,
external_relocs_size, abfd)
!= external_relocs_size))
return false;
}
return true;
}
/* Relax a section when linking a MIPS ECOFF file. This is used for
embedded PIC code, which always uses PC relative branches which
only have an 18 bit range on MIPS. If a branch is not in range, we
generate a long instruction sequence to compensate. Each time we
find a branch to expand, we have to check all the others again to
make sure they are still in range. This is slow, but it only has
to be done when -relax is passed to the linker.
This routine figures out which branches need to expand; the actual
expansion is done in mips_relocate_section when the section
contents are relocated. The information is stored in the offsets
field of the ecoff_section_tdata structure. An offset of 1 means
that the branch must be expanded into a multi-instruction PC
relative branch (such an offset will only occur for a PC relative
branch to an external symbol). Any other offset must be a multiple
of four, and is the amount to change the branch by (such an offset
will only occur for a PC relative branch within the same section).
We do not modify the section relocs or contents themselves so that
if memory usage becomes an issue we can discard them and read them
again. The only information we must save in memory between this
routine and the mips_relocate_section routine is the table of
offsets. */
static boolean
mips_relax_section (abfd, sec, info, again)
bfd *abfd;
asection *sec;
struct bfd_link_info *info;
boolean *again;
{
struct ecoff_section_tdata *section_tdata;
bfd_byte *contents = NULL;
long *offsets;
struct external_reloc *ext_rel;
struct external_reloc *ext_rel_end;
unsigned int i;
/* Assume we are not going to need another pass. */
*again = false;
/* If we are not generating an ECOFF file, this is much too
confusing to deal with. */
if (info->hash->creator->flavour != bfd_get_flavour (abfd))
return true;
/* If there are no relocs, there is nothing to do. */
if (sec->reloc_count == 0)
return true;
/* We are only interested in PC relative relocs, and why would there
ever be one from anything but the .text section? */
if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
return true;
/* Read in the relocs, if we haven't already got them. */
section_tdata = ecoff_section_data (abfd, sec);
if (section_tdata == (struct ecoff_section_tdata *) NULL
|| section_tdata->external_relocs == NULL)
{
if (! mips_read_relocs (abfd, sec))
goto error_return;
section_tdata = ecoff_section_data (abfd, sec);
}
if (sec->_cooked_size == 0)
{
/* We must initialize _cooked_size only the first time we are
called. */
sec->_cooked_size = sec->_raw_size;
}
contents = section_tdata->contents;
offsets = section_tdata->offsets;
/* Look for any external PC relative relocs. Internal PC relative
relocs are already correct in the object file, so they certainly
can not overflow. */
ext_rel = (struct external_reloc *) section_tdata->external_relocs;
ext_rel_end = ext_rel + sec->reloc_count;
for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
{
struct internal_reloc int_rel;
struct ecoff_link_hash_entry *h;
asection *hsec;
bfd_signed_vma relocation;
struct external_reloc *adj_ext_rel;
unsigned int adj_i;
unsigned long ext_count;
struct ecoff_link_hash_entry **adj_h_ptr;
struct ecoff_link_hash_entry **adj_h_ptr_end;
struct ecoff_value_adjust *adjust;
/* If we have already expanded this reloc, we certainly don't
need to do it again. */
if (offsets != (long *) NULL && offsets[i] == 1)
continue;
/* Quickly check that this reloc is external PCREL16. */
if (bfd_header_big_endian (abfd))
{
if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
|| (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
>> RELOC_BITS3_TYPE_SH_BIG)
!= MIPS_R_PCREL16))
continue;
}
else
{
if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
|| (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
>> RELOC_BITS3_TYPE_SH_LITTLE)
!= MIPS_R_PCREL16))
continue;
}
mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
if (h == (struct ecoff_link_hash_entry *) NULL)
abort ();
if (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
{
/* Just ignore undefined symbols. These will presumably
generate an error later in the link. */
continue;
}
/* Get the value of the symbol. */
hsec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ hsec->output_section->vma
+ hsec->output_offset);
/* Subtract out the current address. */
relocation -= (sec->output_section->vma
+ sec->output_offset
+ (int_rel.r_vaddr - sec->vma));
/* The addend is stored in the object file. In the normal case
of ``bal symbol'', the addend will be -4. It will only be
different in the case of ``bal symbol+constant''. To avoid
always reading in the section contents, we don't check the
addend in the object file (we could easily check the contents
if we happen to have already read them in, but I fear that
this could be confusing). This means we will screw up if
there is a branch to a symbol that is in range, but added to
a constant which puts it out of range; in such a case the
link will fail with a reloc overflow error. Since the
compiler will never generate such code, it should be easy
enough to work around it by changing the assembly code in the
source file. */
relocation -= 4;
/* Now RELOCATION is the number we want to put in the object
file. See whether it fits. */
if (relocation >= -0x20000 && relocation < 0x20000)
continue;
/* Now that we know this reloc needs work, which will rarely
happen, go ahead and grab the section contents. */
if (contents == (bfd_byte *) NULL)
{
if (info->keep_memory)
contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
else
contents = (bfd_byte *) bfd_malloc ((size_t) sec->_raw_size);
if (contents == (bfd_byte *) NULL)
goto error_return;
if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
(file_ptr) 0, sec->_raw_size))
goto error_return;
if (info->keep_memory)
section_tdata->contents = contents;
}
/* We only support changing the bal instruction. It would be
possible to handle other PC relative branches, but some of
them (the conditional branches) would require a different
length instruction sequence which would complicate both this
routine and mips_relax_pcrel16. It could be written if
somebody felt it were important. Ignoring this reloc will
presumably cause a reloc overflow error later on. */
if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
!= 0x0411ffff) /* bgezal $0,. == bal . */
continue;
/* Bother. We need to expand this reloc, and we will need to
make another relaxation pass since this change may put other
relocs out of range. We need to examine the local branches
and we need to allocate memory to hold the offsets we must
add to them. We also need to adjust the values of all
symbols in the object file following this location. */
sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
*again = true;
if (offsets == (long *) NULL)
{
size_t size;
size = sec->reloc_count * sizeof (long);
offsets = (long *) bfd_alloc (abfd, size);
if (offsets == (long *) NULL)
goto error_return;
memset (offsets, 0, size);
section_tdata->offsets = offsets;
}
offsets[i] = 1;
/* Now look for all PC relative references that cross this reloc
and adjust their offsets. */
adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
{
struct internal_reloc adj_int_rel;
bfd_vma start, stop;
int change;
mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
if (adj_int_rel.r_type == MIPS_R_PCREL16)
{
unsigned long insn;
/* We only care about local references. External ones
will be relocated correctly anyhow. */
if (adj_int_rel.r_extern)
continue;
/* We are only interested in a PC relative reloc within
this section. FIXME: Cross section PC relative
relocs may not be handled correctly; does anybody
care? */
if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
continue;
start = adj_int_rel.r_vaddr;
insn = bfd_get_32 (abfd,
contents + adj_int_rel.r_vaddr - sec->vma);
stop = (insn & 0xffff) << 2;
if ((stop & 0x20000) != 0)
stop -= 0x40000;
stop += adj_int_rel.r_vaddr + 4;
}
else if (adj_int_rel.r_type == MIPS_R_RELHI)
{
struct internal_reloc rello;
long addhi, addlo;
/* The next reloc must be MIPS_R_RELLO, and we handle
them together. */
BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
addhi = bfd_get_32 (abfd,
contents + adj_int_rel.r_vaddr - sec->vma);
addhi &= 0xffff;
if (addhi & 0x8000)
addhi -= 0x10000;
addhi <<= 16;
addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
addlo &= 0xffff;
if (addlo & 0x8000)
addlo -= 0x10000;
if (adj_int_rel.r_extern)
{
/* The value we want here is
sym - RELLOaddr + addend
which we can express as
sym - (RELLOaddr - addend)
Therefore if we are expanding the area between
RELLOaddr and RELLOaddr - addend we must adjust
the addend. This is admittedly ambiguous, since
we might mean (sym + addend) - RELLOaddr, but in
practice we don't, and there is no way to handle
that case correctly since at this point we have
no idea whether any reloc is being expanded
between sym and sym + addend. */
start = rello.r_vaddr - (addhi + addlo);
stop = rello.r_vaddr;
}
else
{
/* An internal RELHI/RELLO pair represents the
difference between two addresses, $LC0 - foo.
The symndx value is actually the difference
between the reloc address and $LC0. This lets us
compute $LC0, and, by considering the addend,
foo. If the reloc we are expanding falls between
those two relocs, we must adjust the addend. At
this point, the symndx value is actually in the
r_offset field, where it was put by
mips_ecoff_swap_reloc_in. */
start = rello.r_vaddr - adj_int_rel.r_offset;
stop = start + addhi + addlo;
}
}
else if (adj_int_rel.r_type == MIPS_R_SWITCH)
{
/* A MIPS_R_SWITCH reloc represents a word of the form
.word $L3-$LS12
The value in the object file is correct, assuming the
original value of $L3. The symndx value is actually
the difference between the reloc address and $LS12.
This lets us compute the original value of $LS12 as
vaddr - symndx
and the original value of $L3 as
vaddr - symndx + addend
where addend is the value from the object file. At
this point, the symndx value is actually found in the
r_offset field, since it was moved by
mips_ecoff_swap_reloc_in. */
start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
stop = start + bfd_get_32 (abfd,
(contents
+ adj_int_rel.r_vaddr
- sec->vma));
}
else
continue;
/* If the range expressed by this reloc, which is the
distance between START and STOP crosses the reloc we are
expanding, we must adjust the offset. The sign of the
adjustment depends upon the direction in which the range
crosses the reloc being expanded. */
if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
change = PCREL16_EXPANSION_ADJUSTMENT;
else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
change = - PCREL16_EXPANSION_ADJUSTMENT;
else
change = 0;
offsets[adj_i] += change;
if (adj_int_rel.r_type == MIPS_R_RELHI)
{
adj_ext_rel++;
adj_i++;
offsets[adj_i] += change;
}
}
/* Find all symbols in this section defined by this object file
and adjust their values. Note that we decide whether to
adjust the value based on the value stored in the ECOFF EXTR
structure, because the value stored in the hash table may
have been changed by an earlier expanded reloc and thus may
no longer correctly indicate whether the symbol is before or
after the expanded reloc. */
ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
adj_h_ptr = ecoff_data (abfd)->sym_hashes;
adj_h_ptr_end = adj_h_ptr + ext_count;
for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
{
struct ecoff_link_hash_entry *adj_h;
adj_h = *adj_h_ptr;
if (adj_h != (struct ecoff_link_hash_entry *) NULL
&& (adj_h->root.type == bfd_link_hash_defined
|| adj_h->root.type == bfd_link_hash_defweak)
&& adj_h->root.u.def.section == sec
&& adj_h->esym.asym.value > int_rel.r_vaddr)
adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
}
/* Add an entry to the symbol value adjust list. This is used
by bfd_ecoff_debug_accumulate to adjust the values of
internal symbols and FDR's. */
adjust = ((struct ecoff_value_adjust *)
bfd_alloc (abfd, sizeof (struct ecoff_value_adjust)));
if (adjust == (struct ecoff_value_adjust *) NULL)
goto error_return;
adjust->start = int_rel.r_vaddr;
adjust->end = sec->vma + sec->_raw_size;
adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
adjust->next = ecoff_data (abfd)->debug_info.adjust;
ecoff_data (abfd)->debug_info.adjust = adjust;
}
if (contents != (bfd_byte *) NULL && ! info->keep_memory)
free (contents);
return true;
error_return:
if (contents != (bfd_byte *) NULL && ! info->keep_memory)
free (contents);
return false;
}
/* This routine is called from mips_relocate_section when a PC
relative reloc must be expanded into the five instruction sequence.
It handles all the details of the expansion, including resolving
the reloc. */
static boolean
mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
struct ecoff_link_hash_entry *h;
bfd_byte *location;
bfd_vma address;
{
bfd_vma relocation;
/* 0x0411ffff is bgezal $0,. == bal . */
BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
/* We need to compute the distance between the symbol and the
current address plus eight. */
relocation = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
relocation -= address + 8;
/* If the lower half is negative, increment the upper 16 half. */
if ((relocation & 0x8000) != 0)
relocation += 0x10000;
bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */
bfd_put_32 (input_bfd,
0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
location + 4);
bfd_put_32 (input_bfd,
0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
location + 8);
bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */
bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */
return true;
}
/* Given a .sdata section and a .rel.sdata in-memory section, store
relocation information into the .rel.sdata section which can be
used at runtime to relocate the section. This is called by the
linker when the --embedded-relocs switch is used. This is called
after the add_symbols entry point has been called for all the
objects, and before the final_link entry point is called. This
function presumes that the object was compiled using
-membedded-pic. */
boolean
bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
bfd *abfd;
struct bfd_link_info *info;
asection *datasec;
asection *relsec;
char **errmsg;
{
struct ecoff_link_hash_entry **sym_hashes;
struct ecoff_section_tdata *section_tdata;
struct external_reloc *ext_rel;
struct external_reloc *ext_rel_end;
bfd_byte *p;
BFD_ASSERT (! info->relocateable);
*errmsg = NULL;
if (datasec->reloc_count == 0)
return true;
sym_hashes = ecoff_data (abfd)->sym_hashes;
if (! mips_read_relocs (abfd, datasec))
return false;
relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4);
if (relsec->contents == NULL)
return false;
p = relsec->contents;
section_tdata = ecoff_section_data (abfd, datasec);
ext_rel = (struct external_reloc *) section_tdata->external_relocs;
ext_rel_end = ext_rel + datasec->reloc_count;
for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
{
struct internal_reloc int_rel;
boolean text_relative;
mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
/* We are going to write a four byte word into the runtime reloc
section. The word will be the address in the data section
which must be relocated. This must be on a word boundary,
which means the lower two bits must be zero. We use the
least significant bit to indicate how the value in the data
section must be relocated. A 0 means that the value is
relative to the text section, while a 1 indicates that the
value is relative to the data section. Given that we are
assuming the code was compiled using -membedded-pic, there
should not be any other possibilities. */
/* We can only relocate REFWORD relocs at run time. */
if (int_rel.r_type != MIPS_R_REFWORD)
{
*errmsg = _("unsupported reloc type");
bfd_set_error (bfd_error_bad_value);
return false;
}
if (int_rel.r_extern)
{
struct ecoff_link_hash_entry *h;
h = sym_hashes[int_rel.r_symndx];
/* If h is NULL, that means that there is a reloc against an
external symbol which we thought was just a debugging
symbol. This should not happen. */
if (h == (struct ecoff_link_hash_entry *) NULL)
abort ();
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& (h->root.u.def.section->flags & SEC_CODE) != 0)
text_relative = true;
else
text_relative = false;
}
else
{
switch (int_rel.r_symndx)
{
case RELOC_SECTION_TEXT:
text_relative = true;
break;
case RELOC_SECTION_SDATA:
case RELOC_SECTION_SBSS:
case RELOC_SECTION_LIT8:
text_relative = false;
break;
default:
/* No other sections should appear in -membedded-pic
code. */
*errmsg = _("reloc against unsupported section");
bfd_set_error (bfd_error_bad_value);
return false;
}
}
if ((int_rel.r_offset & 3) != 0)
{
*errmsg = _("reloc not properly aligned");
bfd_set_error (bfd_error_bad_value);
return false;
}
bfd_put_32 (abfd,
(int_rel.r_vaddr - datasec->vma + datasec->output_offset
+ (text_relative ? 0 : 1)),
p);
}
return true;
}
/* This is the ECOFF backend structure. The backend field of the
target vector points to this. */
static const struct ecoff_backend_data mips_ecoff_backend_data =
{
/* COFF backend structure. */
{
(void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
(void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
(void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
(unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
(unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
(unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
(unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
mips_ecoff_swap_scnhdr_out,
FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true, false, 4,
mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
mips_ecoff_swap_scnhdr_in, NULL,
mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
_bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
_bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
},
/* Supported architecture. */
bfd_arch_mips,
/* Initial portion of armap string. */
"__________",
/* The page boundary used to align sections in a demand-paged
executable file. E.g., 0x1000. */
0x1000,
/* True if the .rdata section is part of the text segment, as on the
Alpha. False if .rdata is part of the data segment, as on the
MIPS. */
false,
/* Bitsize of constructor entries. */
32,
/* Reloc to use for constructor entries. */
&mips_howto_table[MIPS_R_REFWORD],
{
/* Symbol table magic number. */
magicSym,
/* Alignment of debugging information. E.g., 4. */
4,
/* Sizes of external symbolic information. */
sizeof (struct hdr_ext),
sizeof (struct dnr_ext),
sizeof (struct pdr_ext),
sizeof (struct sym_ext),
sizeof (struct opt_ext),
sizeof (struct fdr_ext),
sizeof (struct rfd_ext),
sizeof (struct ext_ext),
/* Functions to swap in external symbolic data. */
ecoff_swap_hdr_in,
ecoff_swap_dnr_in,
ecoff_swap_pdr_in,
ecoff_swap_sym_in,
ecoff_swap_opt_in,
ecoff_swap_fdr_in,
ecoff_swap_rfd_in,
ecoff_swap_ext_in,
_bfd_ecoff_swap_tir_in,
_bfd_ecoff_swap_rndx_in,
/* Functions to swap out external symbolic data. */
ecoff_swap_hdr_out,
ecoff_swap_dnr_out,
ecoff_swap_pdr_out,
ecoff_swap_sym_out,
ecoff_swap_opt_out,
ecoff_swap_fdr_out,
ecoff_swap_rfd_out,
ecoff_swap_ext_out,
_bfd_ecoff_swap_tir_out,
_bfd_ecoff_swap_rndx_out,
/* Function to read in symbolic data. */
_bfd_ecoff_slurp_symbolic_info
},
/* External reloc size. */
RELSZ,
/* Reloc swapping functions. */
mips_ecoff_swap_reloc_in,
mips_ecoff_swap_reloc_out,
/* Backend reloc tweaking. */
mips_adjust_reloc_in,
mips_adjust_reloc_out,
/* Relocate section contents while linking. */
mips_relocate_section,
/* Do final adjustments to filehdr and aouthdr. */
NULL,
/* Read an element from an archive at a given file position. */
_bfd_get_elt_at_filepos
};
/* Looking up a reloc type is MIPS specific. */
#define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
/* Getting relocated section contents is generic. */
#define _bfd_ecoff_bfd_get_relocated_section_contents \
bfd_generic_get_relocated_section_contents
/* Handling file windows is generic. */
#define _bfd_ecoff_get_section_contents_in_window \
_bfd_generic_get_section_contents_in_window
/* Relaxing sections is MIPS specific. */
#define _bfd_ecoff_bfd_relax_section mips_relax_section
/* GC of sections is not done. */
#define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
const bfd_target ecoff_little_vec =
{
"ecoff-littlemips", /* name */
bfd_target_ecoff_flavour,
BFD_ENDIAN_LITTLE, /* data byte order is little */
BFD_ENDIAN_LITTLE, /* header byte order is little */
(HAS_RELOC | EXEC_P | /* object flags */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
0, /* leading underscore */
' ', /* ar_pad_char */
15, /* ar_max_namelen */
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
{_bfd_dummy_target, coff_object_p, /* bfd_check_format */
_bfd_ecoff_archive_p, _bfd_dummy_target},
{bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
_bfd_generic_mkarchive, bfd_false},
{bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
_bfd_write_archive_contents, bfd_false},
BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
BFD_JUMP_TABLE_COPY (_bfd_ecoff),
BFD_JUMP_TABLE_CORE (_bfd_nocore),
BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
BFD_JUMP_TABLE_LINK (_bfd_ecoff),
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
(PTR) &mips_ecoff_backend_data
};
const bfd_target ecoff_big_vec =
{
"ecoff-bigmips", /* name */
bfd_target_ecoff_flavour,
BFD_ENDIAN_BIG, /* data byte order is big */
BFD_ENDIAN_BIG, /* header byte order is big */
(HAS_RELOC | EXEC_P | /* object flags */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
0, /* leading underscore */
' ', /* ar_pad_char */
15, /* ar_max_namelen */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16,
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16,
{_bfd_dummy_target, coff_object_p, /* bfd_check_format */
_bfd_ecoff_archive_p, _bfd_dummy_target},
{bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
_bfd_generic_mkarchive, bfd_false},
{bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
_bfd_write_archive_contents, bfd_false},
BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
BFD_JUMP_TABLE_COPY (_bfd_ecoff),
BFD_JUMP_TABLE_CORE (_bfd_nocore),
BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
BFD_JUMP_TABLE_LINK (_bfd_ecoff),
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
(PTR) &mips_ecoff_backend_data
};
const bfd_target ecoff_biglittle_vec =
{
"ecoff-biglittlemips", /* name */
bfd_target_ecoff_flavour,
BFD_ENDIAN_LITTLE, /* data byte order is little */
BFD_ENDIAN_BIG, /* header byte order is big */
(HAS_RELOC | EXEC_P | /* object flags */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
0, /* leading underscore */
' ', /* ar_pad_char */
15, /* ar_max_namelen */
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
{_bfd_dummy_target, coff_object_p, /* bfd_check_format */
_bfd_ecoff_archive_p, _bfd_dummy_target},
{bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
_bfd_generic_mkarchive, bfd_false},
{bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
_bfd_write_archive_contents, bfd_false},
BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
BFD_JUMP_TABLE_COPY (_bfd_ecoff),
BFD_JUMP_TABLE_CORE (_bfd_nocore),
BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
BFD_JUMP_TABLE_LINK (_bfd_ecoff),
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
(PTR) &mips_ecoff_backend_data
};