ad3b8c4a1a
* blockframe.c (find_pc_sect_partial_function): Add braces to avoid possible nested-if confusion. * breakpoint.c (breakpoint_here_p): Ditto. (breakpoint_inserted_here_p): Ditto. (breakpoint_thread_match): Ditto. * gnu-regex.c: Define _REGEX_RE_COMP only if it isn't already defined. * gnu-regex.h: Define _REGEX_RE_COMP to pick up old compatability prototypes. * symtab.h: Add prototype for _initialize_source. * value.h: Add prototype for _initialize_value. * defs.h: Include sys/types.h or stddef.h to get size_t. (make_cleanup): Add make_cleanup_func typedef and switch to using a prototype for this function. (mfree): Add prototypes for mmalloc, mrealloc, mfree if we aren't using mmalloc. * ax-gdb.c breakpoint.c coffread.c corelow.c dbxread.c dwarf2read.c dwarfread.c elfread.c eval.c exec.c gdbtk-cmds.c gdbtk.c infcmd.c infrun.c mipsread.c nlmread.c os9kread.c parse.c printcmd.c symfile.c symmisc.c symtab.c thread.c top.c tracepoint.c typeprint.c valops.c: Cast parameters passed to make_cleanup to use the new make_cleanup_func typedef. More warning cleanups. There are still a bunch of places where the first argument to make_cleanup is not cast to (make_cleanup_func); these are either due to the function fitting the make_cleanup_func specification already (e.g. free()) or they are in files that weren't compiled when I did my make on a Linux native system. Bwahahaha. You can see them like this: grep make_cleanup\ * | grep -v make_cleanup_func I'll surely go back and clean up the remaining suspicious calls in GDB one of these days. :-)
1225 lines
35 KiB
C
1225 lines
35 KiB
C
/* Get info from stack frames;
|
||
convert between frames, blocks, functions and pc values.
|
||
Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h" /* for read_register */
|
||
#include "target.h" /* for target_has_stack */
|
||
#include "inferior.h" /* for read_pc */
|
||
#include "annotate.h"
|
||
|
||
/* Is ADDR inside the startup file? Note that if your machine
|
||
has a way to detect the bottom of the stack, there is no need
|
||
to call this function from FRAME_CHAIN_VALID; the reason for
|
||
doing so is that some machines have no way of detecting bottom
|
||
of stack.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_entry_file (addr)
|
||
CORE_ADDR addr;
|
||
{
|
||
if (addr == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
|
||
/* Do not stop backtracing if the pc is in the call dummy
|
||
at the entry point. */
|
||
/* FIXME: Won't always work with zeros for the last two arguments */
|
||
if (PC_IN_CALL_DUMMY (addr, 0, 0))
|
||
return 0;
|
||
#endif
|
||
return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
|
||
addr < symfile_objfile -> ei.entry_file_highpc);
|
||
}
|
||
|
||
/* Test a specified PC value to see if it is in the range of addresses
|
||
that correspond to the main() function. See comments above for why
|
||
we might want to do this.
|
||
|
||
Typically called from FRAME_CHAIN_VALID.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_main_func (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
if (pc == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
|
||
/* If the addr range is not set up at symbol reading time, set it up now.
|
||
This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
|
||
it is unable to set it up and symbol reading time. */
|
||
|
||
if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
|
||
symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
|
||
{
|
||
struct symbol *mainsym;
|
||
|
||
mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
|
||
if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK)
|
||
{
|
||
symfile_objfile->ei.main_func_lowpc =
|
||
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
|
||
symfile_objfile->ei.main_func_highpc =
|
||
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
|
||
}
|
||
}
|
||
return (symfile_objfile -> ei.main_func_lowpc <= pc &&
|
||
symfile_objfile -> ei.main_func_highpc > pc);
|
||
}
|
||
|
||
/* Test a specified PC value to see if it is in the range of addresses
|
||
that correspond to the process entry point function. See comments
|
||
in objfiles.h for why we might want to do this.
|
||
|
||
Typically called from FRAME_CHAIN_VALID.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_entry_func (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
if (pc == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
|
||
/* Do not stop backtracing if the pc is in the call dummy
|
||
at the entry point. */
|
||
/* FIXME: Won't always work with zeros for the last two arguments */
|
||
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
||
return 0;
|
||
#endif
|
||
return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
|
||
symfile_objfile -> ei.entry_func_highpc > pc);
|
||
}
|
||
|
||
/* Info about the innermost stack frame (contents of FP register) */
|
||
|
||
static struct frame_info *current_frame;
|
||
|
||
/* Cache for frame addresses already read by gdb. Valid only while
|
||
inferior is stopped. Control variables for the frame cache should
|
||
be local to this module. */
|
||
|
||
struct obstack frame_cache_obstack;
|
||
|
||
/* Return the innermost (currently executing) stack frame. */
|
||
|
||
struct frame_info *
|
||
get_current_frame ()
|
||
{
|
||
if (current_frame == NULL)
|
||
{
|
||
if (target_has_stack)
|
||
current_frame = create_new_frame (read_fp (), read_pc ());
|
||
else
|
||
error ("No stack.");
|
||
}
|
||
return current_frame;
|
||
}
|
||
|
||
void
|
||
set_current_frame (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
current_frame = frame;
|
||
}
|
||
|
||
/* Create an arbitrary (i.e. address specified by user) or innermost frame.
|
||
Always returns a non-NULL value. */
|
||
|
||
struct frame_info *
|
||
create_new_frame (addr, pc)
|
||
CORE_ADDR addr;
|
||
CORE_ADDR pc;
|
||
{
|
||
struct frame_info *fi;
|
||
char *name;
|
||
|
||
fi = (struct frame_info *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_info));
|
||
|
||
/* Arbitrary frame */
|
||
fi->next = NULL;
|
||
fi->prev = NULL;
|
||
fi->frame = addr;
|
||
fi->pc = pc;
|
||
find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
|
||
fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
|
||
|
||
#ifdef INIT_EXTRA_FRAME_INFO
|
||
INIT_EXTRA_FRAME_INFO (0, fi);
|
||
#endif
|
||
|
||
return fi;
|
||
}
|
||
|
||
/* Return the frame that called FI.
|
||
If FI is the original frame (it has no caller), return 0. */
|
||
|
||
struct frame_info *
|
||
get_prev_frame (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
return get_prev_frame_info (frame);
|
||
}
|
||
|
||
/* Return the frame that FRAME calls (NULL if FRAME is the innermost
|
||
frame). */
|
||
|
||
struct frame_info *
|
||
get_next_frame (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
return frame->next;
|
||
}
|
||
|
||
/* Flush the entire frame cache. */
|
||
|
||
void
|
||
flush_cached_frames ()
|
||
{
|
||
/* Since we can't really be sure what the first object allocated was */
|
||
obstack_free (&frame_cache_obstack, 0);
|
||
obstack_init (&frame_cache_obstack);
|
||
|
||
current_frame = NULL; /* Invalidate cache */
|
||
select_frame (NULL, -1);
|
||
annotate_frames_invalid ();
|
||
}
|
||
|
||
/* Flush the frame cache, and start a new one if necessary. */
|
||
|
||
void
|
||
reinit_frame_cache ()
|
||
{
|
||
flush_cached_frames ();
|
||
|
||
/* FIXME: The inferior_pid test is wrong if there is a corefile. */
|
||
if (inferior_pid != 0)
|
||
{
|
||
select_frame (get_current_frame (), 0);
|
||
}
|
||
}
|
||
|
||
/* If a machine allows frameless functions, it should define a macro
|
||
FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
|
||
frame_info for the frame, and FRAMELESS should be set to nonzero
|
||
if it represents a frameless function invocation. */
|
||
|
||
/* Return nonzero if the function for this frame lacks a prologue. Many
|
||
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
|
||
function. */
|
||
|
||
int
|
||
frameless_look_for_prologue (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
CORE_ADDR func_start, after_prologue;
|
||
func_start = get_pc_function_start (frame->pc);
|
||
if (func_start)
|
||
{
|
||
func_start += FUNCTION_START_OFFSET;
|
||
after_prologue = func_start;
|
||
#ifdef SKIP_PROLOGUE_FRAMELESS_P
|
||
/* This is faster, since only care whether there *is* a prologue,
|
||
not how long it is. */
|
||
SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
|
||
#else
|
||
SKIP_PROLOGUE (after_prologue);
|
||
#endif
|
||
return after_prologue == func_start;
|
||
}
|
||
else if (frame->pc == 0)
|
||
/* A frame with a zero PC is usually created by dereferencing a NULL
|
||
function pointer, normally causing an immediate core dump of the
|
||
inferior. Mark function as frameless, as the inferior has no chance
|
||
of setting up a stack frame. */
|
||
return 1;
|
||
else
|
||
/* If we can't find the start of the function, we don't really
|
||
know whether the function is frameless, but we should be able
|
||
to get a reasonable (i.e. best we can do under the
|
||
circumstances) backtrace by saying that it isn't. */
|
||
return 0;
|
||
}
|
||
|
||
/* Default a few macros that people seldom redefine. */
|
||
|
||
#if !defined (INIT_FRAME_PC)
|
||
#define INIT_FRAME_PC(fromleaf, prev) \
|
||
prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
|
||
prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
|
||
#endif
|
||
|
||
#ifndef FRAME_CHAIN_COMBINE
|
||
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
||
#endif
|
||
|
||
/* Return a structure containing various interesting information
|
||
about the frame that called NEXT_FRAME. Returns NULL
|
||
if there is no such frame. */
|
||
|
||
struct frame_info *
|
||
get_prev_frame_info (next_frame)
|
||
struct frame_info *next_frame;
|
||
{
|
||
CORE_ADDR address = 0;
|
||
struct frame_info *prev;
|
||
int fromleaf = 0;
|
||
char *name;
|
||
|
||
/* If the requested entry is in the cache, return it.
|
||
Otherwise, figure out what the address should be for the entry
|
||
we're about to add to the cache. */
|
||
|
||
if (!next_frame)
|
||
{
|
||
#if 0
|
||
/* This screws value_of_variable, which just wants a nice clean
|
||
NULL return from block_innermost_frame if there are no frames.
|
||
I don't think I've ever seen this message happen otherwise.
|
||
And returning NULL here is a perfectly legitimate thing to do. */
|
||
if (!current_frame)
|
||
{
|
||
error ("You haven't set up a process's stack to examine.");
|
||
}
|
||
#endif
|
||
|
||
return current_frame;
|
||
}
|
||
|
||
/* If we have the prev one, return it */
|
||
if (next_frame->prev)
|
||
return next_frame->prev;
|
||
|
||
/* On some machines it is possible to call a function without
|
||
setting up a stack frame for it. On these machines, we
|
||
define this macro to take two args; a frameinfo pointer
|
||
identifying a frame and a variable to set or clear if it is
|
||
or isn't leafless. */
|
||
#ifdef FRAMELESS_FUNCTION_INVOCATION
|
||
/* Still don't want to worry about this except on the innermost
|
||
frame. This macro will set FROMLEAF if NEXT_FRAME is a
|
||
frameless function invocation. */
|
||
if (!(next_frame->next))
|
||
{
|
||
FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
|
||
if (fromleaf)
|
||
address = FRAME_FP (next_frame);
|
||
}
|
||
#endif
|
||
|
||
if (!fromleaf)
|
||
{
|
||
/* Two macros defined in tm.h specify the machine-dependent
|
||
actions to be performed here.
|
||
First, get the frame's chain-pointer.
|
||
If that is zero, the frame is the outermost frame or a leaf
|
||
called by the outermost frame. This means that if start
|
||
calls main without a frame, we'll return 0 (which is fine
|
||
anyway).
|
||
|
||
Nope; there's a problem. This also returns when the current
|
||
routine is a leaf of main. This is unacceptable. We move
|
||
this to after the ffi test; I'd rather have backtraces from
|
||
start go curfluy than have an abort called from main not show
|
||
main. */
|
||
address = FRAME_CHAIN (next_frame);
|
||
if (!FRAME_CHAIN_VALID (address, next_frame))
|
||
return 0;
|
||
address = FRAME_CHAIN_COMBINE (address, next_frame);
|
||
}
|
||
if (address == 0)
|
||
return 0;
|
||
|
||
prev = (struct frame_info *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_info));
|
||
|
||
if (next_frame)
|
||
next_frame->prev = prev;
|
||
prev->next = next_frame;
|
||
prev->prev = (struct frame_info *) 0;
|
||
prev->frame = address;
|
||
prev->signal_handler_caller = 0;
|
||
|
||
/* This change should not be needed, FIXME! We should
|
||
determine whether any targets *need* INIT_FRAME_PC to happen
|
||
after INIT_EXTRA_FRAME_INFO and come up with a simple way to
|
||
express what goes on here.
|
||
|
||
INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
|
||
(where the PC is already set up) and here (where it isn't).
|
||
INIT_FRAME_PC is only called from here, always after
|
||
INIT_EXTRA_FRAME_INFO.
|
||
|
||
The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
|
||
value (which hasn't been set yet). Some other machines appear to
|
||
require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
|
||
|
||
We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
|
||
an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
|
||
|
||
Assuming that some machines need INIT_FRAME_PC after
|
||
INIT_EXTRA_FRAME_INFO, one possible scheme:
|
||
|
||
SETUP_INNERMOST_FRAME()
|
||
Default version is just create_new_frame (read_fp ()),
|
||
read_pc ()). Machines with extra frame info would do that (or the
|
||
local equivalent) and then set the extra fields.
|
||
SETUP_ARBITRARY_FRAME(argc, argv)
|
||
Only change here is that create_new_frame would no longer init extra
|
||
frame info; SETUP_ARBITRARY_FRAME would have to do that.
|
||
INIT_PREV_FRAME(fromleaf, prev)
|
||
Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
|
||
also return a flag saying whether to keep the new frame, or
|
||
whether to discard it, because on some machines (e.g. mips) it
|
||
is really awkward to have FRAME_CHAIN_VALID called *before*
|
||
INIT_EXTRA_FRAME_INFO (there is no good way to get information
|
||
deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
|
||
std_frame_pc(fromleaf, prev)
|
||
This is the default setting for INIT_PREV_FRAME. It just does what
|
||
the default INIT_FRAME_PC does. Some machines will call it from
|
||
INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
|
||
Some machines won't use it.
|
||
kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
|
||
|
||
#ifdef INIT_FRAME_PC_FIRST
|
||
INIT_FRAME_PC_FIRST (fromleaf, prev);
|
||
#endif
|
||
|
||
#ifdef INIT_EXTRA_FRAME_INFO
|
||
INIT_EXTRA_FRAME_INFO(fromleaf, prev);
|
||
#endif
|
||
|
||
/* This entry is in the frame queue now, which is good since
|
||
FRAME_SAVED_PC may use that queue to figure out its value
|
||
(see tm-sparc.h). We want the pc saved in the inferior frame. */
|
||
INIT_FRAME_PC(fromleaf, prev);
|
||
|
||
/* If ->frame and ->pc are unchanged, we are in the process of getting
|
||
ourselves into an infinite backtrace. Some architectures check this
|
||
in FRAME_CHAIN or thereabouts, but it seems like there is no reason
|
||
this can't be an architecture-independent check. */
|
||
if (next_frame != NULL)
|
||
{
|
||
if (prev->frame == next_frame->frame
|
||
&& prev->pc == next_frame->pc)
|
||
{
|
||
next_frame->prev = NULL;
|
||
obstack_free (&frame_cache_obstack, prev);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
find_pc_partial_function (prev->pc, &name,
|
||
(CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
|
||
if (IN_SIGTRAMP (prev->pc, name))
|
||
prev->signal_handler_caller = 1;
|
||
|
||
return prev;
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_frame_pc (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
return frame->pc;
|
||
}
|
||
|
||
#if defined (FRAME_FIND_SAVED_REGS)
|
||
/* Find the addresses in which registers are saved in FRAME. */
|
||
|
||
void
|
||
get_frame_saved_regs (frame, saved_regs_addr)
|
||
struct frame_info *frame;
|
||
struct frame_saved_regs *saved_regs_addr;
|
||
{
|
||
FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
|
||
}
|
||
#endif
|
||
|
||
/* Return the innermost lexical block in execution
|
||
in a specified stack frame. The frame address is assumed valid. */
|
||
|
||
struct block *
|
||
get_frame_block (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
CORE_ADDR pc;
|
||
|
||
pc = frame->pc;
|
||
if (frame->next != 0 && frame->next->signal_handler_caller == 0)
|
||
/* We are not in the innermost frame and we were not interrupted
|
||
by a signal. We need to subtract one to get the correct block,
|
||
in case the call instruction was the last instruction of the block.
|
||
If there are any machines on which the saved pc does not point to
|
||
after the call insn, we probably want to make frame->pc point after
|
||
the call insn anyway. */
|
||
--pc;
|
||
return block_for_pc (pc);
|
||
}
|
||
|
||
struct block *
|
||
get_current_block ()
|
||
{
|
||
return block_for_pc (read_pc ());
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_pc_function_start (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
register struct block *bl;
|
||
register struct symbol *symbol;
|
||
register struct minimal_symbol *msymbol;
|
||
CORE_ADDR fstart;
|
||
|
||
if ((bl = block_for_pc (pc)) != NULL &&
|
||
(symbol = block_function (bl)) != NULL)
|
||
{
|
||
bl = SYMBOL_BLOCK_VALUE (symbol);
|
||
fstart = BLOCK_START (bl);
|
||
}
|
||
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
|
||
{
|
||
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
}
|
||
else
|
||
{
|
||
fstart = 0;
|
||
}
|
||
return (fstart);
|
||
}
|
||
|
||
/* Return the symbol for the function executing in frame FRAME. */
|
||
|
||
struct symbol *
|
||
get_frame_function (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
register struct block *bl = get_frame_block (frame);
|
||
if (bl == 0)
|
||
return 0;
|
||
return block_function (bl);
|
||
}
|
||
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical block
|
||
containing the specified pc value and section, or 0 if there is none.
|
||
PINDEX is a pointer to the index value of the block. If PINDEX
|
||
is NULL, we don't pass this information back to the caller. */
|
||
|
||
struct blockvector *
|
||
blockvector_for_pc_sect (pc, section, pindex, symtab)
|
||
register CORE_ADDR pc;
|
||
struct sec *section;
|
||
int *pindex;
|
||
struct symtab *symtab;
|
||
|
||
{
|
||
register struct block *b;
|
||
register int bot, top, half;
|
||
struct blockvector *bl;
|
||
|
||
if (symtab == 0) /* if no symtab specified by caller */
|
||
{
|
||
/* First search all symtabs for one whose file contains our pc */
|
||
if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
|
||
return 0;
|
||
}
|
||
|
||
bl = BLOCKVECTOR (symtab);
|
||
b = BLOCKVECTOR_BLOCK (bl, 0);
|
||
|
||
/* Then search that symtab for the smallest block that wins. */
|
||
/* Use binary search to find the last block that starts before PC. */
|
||
|
||
bot = 0;
|
||
top = BLOCKVECTOR_NBLOCKS (bl);
|
||
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
||
if (BLOCK_START (b) <= pc)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
/* Now search backward for a block that ends after PC. */
|
||
|
||
while (bot >= 0)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bl, bot);
|
||
if (BLOCK_END (b) > pc)
|
||
{
|
||
if (pindex)
|
||
*pindex = bot;
|
||
return bl;
|
||
}
|
||
bot--;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical block
|
||
containing the specified pc value, or 0 if there is none.
|
||
Backward compatibility, no section. */
|
||
|
||
struct blockvector *
|
||
blockvector_for_pc (pc, pindex)
|
||
register CORE_ADDR pc;
|
||
int *pindex;
|
||
{
|
||
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
||
pindex, NULL);
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value
|
||
in the specified section, or 0 if there is none. */
|
||
|
||
struct block *
|
||
block_for_pc_sect (pc, section)
|
||
register CORE_ADDR pc;
|
||
struct sec *section;
|
||
{
|
||
register struct blockvector *bl;
|
||
int index;
|
||
|
||
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
|
||
if (bl)
|
||
return BLOCKVECTOR_BLOCK (bl, index);
|
||
return 0;
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value,
|
||
or 0 if there is none. Backward compatibility, no section. */
|
||
|
||
struct block *
|
||
block_for_pc (pc)
|
||
register CORE_ADDR pc;
|
||
{
|
||
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
/* Return the function containing pc value PC in section SECTION.
|
||
Returns 0 if function is not known. */
|
||
|
||
struct symbol *
|
||
find_pc_sect_function (pc, section)
|
||
CORE_ADDR pc;
|
||
struct sec *section;
|
||
{
|
||
register struct block *b = block_for_pc_sect (pc, section);
|
||
if (b == 0)
|
||
return 0;
|
||
return block_function (b);
|
||
}
|
||
|
||
/* Return the function containing pc value PC.
|
||
Returns 0 if function is not known. Backward compatibility, no section */
|
||
|
||
struct symbol *
|
||
find_pc_function (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
/* These variables are used to cache the most recent result
|
||
* of find_pc_partial_function. */
|
||
|
||
static CORE_ADDR cache_pc_function_low = 0;
|
||
static CORE_ADDR cache_pc_function_high = 0;
|
||
static char *cache_pc_function_name = 0;
|
||
static struct sec *cache_pc_function_section = NULL;
|
||
|
||
/* Clear cache, e.g. when symbol table is discarded. */
|
||
|
||
void
|
||
clear_pc_function_cache()
|
||
{
|
||
cache_pc_function_low = 0;
|
||
cache_pc_function_high = 0;
|
||
cache_pc_function_name = (char *)0;
|
||
cache_pc_function_section = NULL;
|
||
}
|
||
|
||
/* Finds the "function" (text symbol) that is smaller than PC but
|
||
greatest of all of the potential text symbols in SECTION. Sets
|
||
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
||
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
||
function (exclusive), but passing ENDADDR as non-null means that
|
||
the function might cause symbols to be read. This function either
|
||
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
||
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
||
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
||
returns 0. */
|
||
|
||
int
|
||
find_pc_sect_partial_function (pc, section, name, address, endaddr)
|
||
CORE_ADDR pc;
|
||
asection *section;
|
||
char **name;
|
||
CORE_ADDR *address;
|
||
CORE_ADDR *endaddr;
|
||
{
|
||
struct partial_symtab *pst;
|
||
struct symbol *f;
|
||
struct minimal_symbol *msymbol;
|
||
struct partial_symbol *psb;
|
||
struct obj_section *osect;
|
||
int i;
|
||
CORE_ADDR mapped_pc;
|
||
|
||
mapped_pc = overlay_mapped_address (pc, section);
|
||
|
||
if (mapped_pc >= cache_pc_function_low &&
|
||
mapped_pc < cache_pc_function_high &&
|
||
section == cache_pc_function_section)
|
||
goto return_cached_value;
|
||
|
||
/* If sigtramp is in the u area, it counts as a function (especially
|
||
important for step_1). */
|
||
#if defined SIGTRAMP_START
|
||
if (IN_SIGTRAMP (mapped_pc, (char *)NULL))
|
||
{
|
||
cache_pc_function_low = SIGTRAMP_START (mapped_pc);
|
||
cache_pc_function_high = SIGTRAMP_END (mapped_pc);
|
||
cache_pc_function_name = "<sigtramp>";
|
||
cache_pc_function_section = section;
|
||
goto return_cached_value;
|
||
}
|
||
#endif
|
||
|
||
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
||
pst = find_pc_sect_psymtab (mapped_pc, section);
|
||
if (pst)
|
||
{
|
||
/* Need to read the symbols to get a good value for the end address. */
|
||
if (endaddr != NULL && !pst->readin)
|
||
{
|
||
/* Need to get the terminal in case symbol-reading produces
|
||
output. */
|
||
target_terminal_ours_for_output ();
|
||
PSYMTAB_TO_SYMTAB (pst);
|
||
}
|
||
|
||
if (pst->readin)
|
||
{
|
||
/* Checking whether the msymbol has a larger value is for the
|
||
"pathological" case mentioned in print_frame_info. */
|
||
f = find_pc_sect_function (mapped_pc, section);
|
||
if (f != NULL
|
||
&& (msymbol == NULL
|
||
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_name = SYMBOL_NAME (f);
|
||
cache_pc_function_section = section;
|
||
goto return_cached_value;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Now that static symbols go in the minimal symbol table, perhaps
|
||
we could just ignore the partial symbols. But at least for now
|
||
we use the partial or minimal symbol, whichever is larger. */
|
||
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
||
|
||
if (psb
|
||
&& (msymbol == NULL ||
|
||
(SYMBOL_VALUE_ADDRESS (psb)
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
/* This case isn't being cached currently. */
|
||
if (address)
|
||
*address = SYMBOL_VALUE_ADDRESS (psb);
|
||
if (name)
|
||
*name = SYMBOL_NAME (psb);
|
||
/* endaddr non-NULL can't happen here. */
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Not in the normal symbol tables, see if the pc is in a known section.
|
||
If it's not, then give up. This ensures that anything beyond the end
|
||
of the text seg doesn't appear to be part of the last function in the
|
||
text segment. */
|
||
|
||
osect = find_pc_sect_section (mapped_pc, section);
|
||
|
||
if (!osect)
|
||
msymbol = NULL;
|
||
|
||
/* Must be in the minimal symbol table. */
|
||
if (msymbol == NULL)
|
||
{
|
||
/* No available symbol. */
|
||
if (name != NULL)
|
||
*name = 0;
|
||
if (address != NULL)
|
||
*address = 0;
|
||
if (endaddr != NULL)
|
||
*endaddr = 0;
|
||
return 0;
|
||
}
|
||
|
||
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
cache_pc_function_name = SYMBOL_NAME (msymbol);
|
||
cache_pc_function_section = section;
|
||
|
||
/* Use the lesser of the next minimal symbol in the same section, or
|
||
the end of the section, as the end of the function. */
|
||
|
||
/* Step over other symbols at this same address, and symbols in
|
||
other sections, to find the next symbol in this section with
|
||
a different address. */
|
||
|
||
for (i=1; SYMBOL_NAME (msymbol+i) != NULL; i++)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (msymbol+i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
||
&& SYMBOL_BFD_SECTION (msymbol+i) == SYMBOL_BFD_SECTION (msymbol))
|
||
break;
|
||
}
|
||
|
||
if (SYMBOL_NAME (msymbol + i) != NULL
|
||
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
||
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
||
else
|
||
/* We got the start address from the last msymbol in the objfile.
|
||
So the end address is the end of the section. */
|
||
cache_pc_function_high = osect->endaddr;
|
||
|
||
return_cached_value:
|
||
|
||
if (address)
|
||
{
|
||
if (pc_in_unmapped_range (pc, section))
|
||
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
||
else
|
||
*address = cache_pc_function_low;
|
||
}
|
||
|
||
if (name)
|
||
*name = cache_pc_function_name;
|
||
|
||
if (endaddr)
|
||
{
|
||
if (pc_in_unmapped_range (pc, section))
|
||
{
|
||
/* Because the high address is actually beyond the end of
|
||
the function (and therefore possibly beyond the end of
|
||
the overlay), we must actually convert (high - 1)
|
||
and then add one to that. */
|
||
|
||
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
||
section);
|
||
}
|
||
else
|
||
*endaddr = cache_pc_function_high;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Backward compatibility, no section argument */
|
||
|
||
int
|
||
find_pc_partial_function (pc, name, address, endaddr)
|
||
CORE_ADDR pc;
|
||
char **name;
|
||
CORE_ADDR *address;
|
||
CORE_ADDR *endaddr;
|
||
{
|
||
asection *section;
|
||
|
||
section = find_pc_overlay (pc);
|
||
return find_pc_sect_partial_function (pc, section, name, address, endaddr);
|
||
}
|
||
|
||
/* Return the innermost stack frame executing inside of BLOCK,
|
||
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
||
|
||
struct frame_info *
|
||
block_innermost_frame (block)
|
||
struct block *block;
|
||
{
|
||
struct frame_info *frame;
|
||
register CORE_ADDR start;
|
||
register CORE_ADDR end;
|
||
|
||
if (block == NULL)
|
||
return NULL;
|
||
|
||
start = BLOCK_START (block);
|
||
end = BLOCK_END (block);
|
||
|
||
frame = NULL;
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == NULL)
|
||
return NULL;
|
||
if (frame->pc >= start && frame->pc < end)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
||
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
||
|
||
struct frame_info *
|
||
find_frame_addr_in_frame_chain (frame_addr)
|
||
CORE_ADDR frame_addr;
|
||
{
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (frame_addr == (CORE_ADDR)0)
|
||
return NULL;
|
||
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == NULL)
|
||
return NULL;
|
||
if (FRAME_FP (frame) == frame_addr)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
#ifdef SIGCONTEXT_PC_OFFSET
|
||
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
|
||
|
||
CORE_ADDR
|
||
sigtramp_saved_pc (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
CORE_ADDR sigcontext_addr;
|
||
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
||
int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
||
int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
|
||
|
||
/* Get sigcontext address, it is the third parameter on the stack. */
|
||
if (frame->next)
|
||
sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
|
||
+ FRAME_ARGS_SKIP
|
||
+ sigcontext_offs,
|
||
ptrbytes);
|
||
else
|
||
sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
|
||
+ sigcontext_offs,
|
||
ptrbytes);
|
||
|
||
/* Don't cause a memory_error when accessing sigcontext in case the stack
|
||
layout has changed or the stack is corrupt. */
|
||
target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
|
||
return extract_unsigned_integer (buf, ptrbytes);
|
||
}
|
||
#endif /* SIGCONTEXT_PC_OFFSET */
|
||
|
||
#ifdef USE_GENERIC_DUMMY_FRAMES
|
||
|
||
/*
|
||
* GENERIC DUMMY FRAMES
|
||
*
|
||
* The following code serves to maintain the dummy stack frames for
|
||
* inferior function calls (ie. when gdb calls into the inferior via
|
||
* call_function_by_hand). This code saves the machine state before
|
||
* the call in host memory, so we must maintain an independant stack
|
||
* and keep it consistant etc. I am attempting to make this code
|
||
* generic enough to be used by many targets.
|
||
*
|
||
* The cheapest and most generic way to do CALL_DUMMY on a new target
|
||
* is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to zero,
|
||
* and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember to define
|
||
* PUSH_RETURN_ADDRESS, because no call instruction will be being
|
||
* executed by the target.
|
||
*/
|
||
|
||
static struct dummy_frame *dummy_frame_stack = NULL;
|
||
|
||
/* Function: find_dummy_frame(pc, fp, sp)
|
||
Search the stack of dummy frames for one matching the given PC, FP and SP.
|
||
This is the work-horse for pc_in_call_dummy and read_register_dummy */
|
||
|
||
char *
|
||
generic_find_dummy_frame (pc, fp)
|
||
CORE_ADDR pc;
|
||
CORE_ADDR fp;
|
||
{
|
||
struct dummy_frame * dummyframe;
|
||
|
||
if (pc != entry_point_address ())
|
||
return 0;
|
||
|
||
for (dummyframe = dummy_frame_stack; dummyframe != NULL;
|
||
dummyframe = dummyframe->next)
|
||
if (fp == dummyframe->fp || fp == dummyframe->sp)
|
||
/* The frame in question lies between the saved fp and sp, inclusive */
|
||
return dummyframe->regs;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: pc_in_call_dummy (pc, fp)
|
||
Return true if this is a dummy frame created by gdb for an inferior call */
|
||
|
||
int
|
||
generic_pc_in_call_dummy (pc, fp)
|
||
CORE_ADDR pc;
|
||
CORE_ADDR fp;
|
||
{
|
||
/* if find_dummy_frame succeeds, then PC is in a call dummy */
|
||
return (generic_find_dummy_frame (pc, fp) != 0);
|
||
}
|
||
|
||
/* Function: read_register_dummy
|
||
Find a saved register from before GDB calls a function in the inferior */
|
||
|
||
CORE_ADDR
|
||
generic_read_register_dummy (pc, fp, regno)
|
||
CORE_ADDR pc;
|
||
CORE_ADDR fp;
|
||
int regno;
|
||
{
|
||
char *dummy_regs = generic_find_dummy_frame (pc, fp);
|
||
|
||
if (dummy_regs)
|
||
return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
|
||
REGISTER_RAW_SIZE(regno));
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Save all the registers on the dummy frame stack. Most ports save the
|
||
registers on the target stack. This results in lots of unnecessary memory
|
||
references, which are slow when debugging via a serial line. Instead, we
|
||
save all the registers internally, and never write them to the stack. The
|
||
registers get restored when the called function returns to the entry point,
|
||
where a breakpoint is laying in wait. */
|
||
|
||
void
|
||
generic_push_dummy_frame ()
|
||
{
|
||
struct dummy_frame *dummy_frame;
|
||
CORE_ADDR fp = (get_current_frame ())->frame;
|
||
|
||
/* check to see if there are stale dummy frames,
|
||
perhaps left over from when a longjump took us out of a
|
||
function that was called by the debugger */
|
||
|
||
dummy_frame = dummy_frame_stack;
|
||
while (dummy_frame)
|
||
if (dummy_frame->fp INNER_THAN fp) /* stale -- destroy! */
|
||
{
|
||
dummy_frame_stack = dummy_frame->next;
|
||
free (dummy_frame);
|
||
dummy_frame = dummy_frame_stack;
|
||
}
|
||
else
|
||
dummy_frame = dummy_frame->next;
|
||
|
||
dummy_frame = xmalloc (sizeof (struct dummy_frame));
|
||
dummy_frame->pc = read_register (PC_REGNUM);
|
||
dummy_frame->sp = read_register (SP_REGNUM);
|
||
dummy_frame->fp = fp;
|
||
read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
|
||
dummy_frame->next = dummy_frame_stack;
|
||
dummy_frame_stack = dummy_frame;
|
||
}
|
||
|
||
/* Function: pop_frame
|
||
Restore the machine state from either the saved dummy stack or a
|
||
real stack frame. */
|
||
|
||
void
|
||
generic_pop_current_frame (pop)
|
||
void (*pop) PARAMS ((struct frame_info *frame));
|
||
{
|
||
struct frame_info *frame = get_current_frame ();
|
||
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
||
generic_pop_dummy_frame ();
|
||
else
|
||
pop (frame);
|
||
}
|
||
|
||
/* Function: pop_dummy_frame
|
||
Restore the machine state from a saved dummy stack frame. */
|
||
|
||
void
|
||
generic_pop_dummy_frame ()
|
||
{
|
||
struct dummy_frame *dummy_frame = dummy_frame_stack;
|
||
|
||
/* FIXME: what if the first frame isn't the right one, eg..
|
||
because one call-by-hand function has done a longjmp into another one? */
|
||
|
||
if (!dummy_frame)
|
||
error ("Can't pop dummy frame!");
|
||
dummy_frame_stack = dummy_frame->next;
|
||
write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
|
||
flush_cached_frames ();
|
||
free (dummy_frame);
|
||
}
|
||
|
||
/* Function: frame_chain_valid
|
||
Returns true for a user frame or a call_function_by_hand dummy frame,
|
||
and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
|
||
|
||
int
|
||
generic_frame_chain_valid (fp, fi)
|
||
CORE_ADDR fp;
|
||
struct frame_info *fi;
|
||
{
|
||
if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp))
|
||
return 1; /* don't prune CALL_DUMMY frames */
|
||
else /* fall back to default algorithm (see frame.h) */
|
||
return (fp != 0
|
||
&& (fi->frame INNER_THAN fp || fi->frame == fp)
|
||
&& !inside_entry_file (FRAME_SAVED_PC(fi)));
|
||
}
|
||
|
||
/* Function: get_saved_register
|
||
Find register number REGNUM relative to FRAME and put its (raw,
|
||
target format) contents in *RAW_BUFFER.
|
||
|
||
Set *OPTIMIZED if the variable was optimized out (and thus can't be
|
||
fetched). Note that this is never set to anything other than zero
|
||
in this implementation.
|
||
|
||
Set *LVAL to lval_memory, lval_register, or not_lval, depending on
|
||
whether the value was fetched from memory, from a register, or in a
|
||
strange and non-modifiable way (e.g. a frame pointer which was
|
||
calculated rather than fetched). We will use not_lval for values
|
||
fetched from generic dummy frames.
|
||
|
||
Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
|
||
offset into the registers array. If the value is stored in a dummy
|
||
frame, set *ADDRP to zero.
|
||
|
||
To use this implementation, define a function called
|
||
"get_saved_register" in your target code, which simply passes all
|
||
of its arguments to this function.
|
||
|
||
The argument RAW_BUFFER must point to aligned memory. */
|
||
|
||
void
|
||
generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||
char *raw_buffer;
|
||
int *optimized;
|
||
CORE_ADDR *addrp;
|
||
struct frame_info *frame;
|
||
int regnum;
|
||
enum lval_type *lval;
|
||
{
|
||
struct frame_saved_regs fsr;
|
||
|
||
if (!target_has_registers)
|
||
error ("No registers.");
|
||
|
||
/* Normal systems don't optimize out things with register numbers. */
|
||
if (optimized != NULL)
|
||
*optimized = 0;
|
||
|
||
if (addrp) /* default assumption: not found in memory */
|
||
*addrp = 0;
|
||
|
||
/* Note: since the current frame's registers could only have been
|
||
saved by frames INTERIOR TO the current frame, we skip examining
|
||
the current frame itself: otherwise, we would be getting the
|
||
previous frame's registers which were saved by the current frame. */
|
||
|
||
while (frame && ((frame = frame->next) != NULL))
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
{
|
||
if (lval) /* found it in a CALL_DUMMY frame */
|
||
*lval = not_lval;
|
||
if (raw_buffer)
|
||
memcpy (raw_buffer,
|
||
generic_find_dummy_frame (frame->pc, frame->frame) +
|
||
REGISTER_BYTE (regnum),
|
||
REGISTER_RAW_SIZE (regnum));
|
||
return;
|
||
}
|
||
|
||
FRAME_FIND_SAVED_REGS(frame, fsr);
|
||
if (fsr.regs[regnum] != 0)
|
||
{
|
||
if (lval) /* found it saved on the stack */
|
||
*lval = lval_memory;
|
||
if (regnum == SP_REGNUM)
|
||
{
|
||
if (raw_buffer) /* SP register treated specially */
|
||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
||
fsr.regs[regnum]);
|
||
}
|
||
else
|
||
{
|
||
if (addrp) /* any other register */
|
||
*addrp = fsr.regs[regnum];
|
||
if (raw_buffer)
|
||
read_memory (fsr.regs[regnum], raw_buffer,
|
||
REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* If we get thru the loop to this point, it means the register was
|
||
not saved in any frame. Return the actual live-register value. */
|
||
|
||
if (lval) /* found it in a live register */
|
||
*lval = lval_register;
|
||
if (addrp)
|
||
*addrp = REGISTER_BYTE (regnum);
|
||
if (raw_buffer)
|
||
read_register_gen (regnum, raw_buffer);
|
||
}
|
||
#endif /* USE_GENERIC_DUMMY_FRAMES */
|
||
|
||
void
|
||
_initialize_blockframe ()
|
||
{
|
||
obstack_init (&frame_cache_obstack);
|
||
}
|