c765fdb902
defs.h includes utils.h, and utils.h includes exceptions.h. All GDB .c files include defs.h as their first line, so no file other than utils.h needs to include exceptions.h. This commit removes all such inclusions. gdb/ChangeLog: * ada-lang.c: Do not include exceptions.h. * ada-valprint.c: Likewise. * amd64-tdep.c: Likewise. * auto-load.c: Likewise. * block.c: Likewise. * break-catch-throw.c: Likewise. * breakpoint.c: Likewise. * btrace.c: Likewise. * c-lang.c: Likewise. * cli/cli-cmds.c: Likewise. * cli/cli-interp.c: Likewise. * cli/cli-script.c: Likewise. * completer.c: Likewise. * corefile.c: Likewise. * corelow.c: Likewise. * cp-abi.c: Likewise. * cp-support.c: Likewise. * cp-valprint.c: Likewise. * darwin-nat.c: Likewise. * dwarf2-frame-tailcall.c: Likewise. * dwarf2-frame.c: Likewise. * dwarf2loc.c: Likewise. * dwarf2read.c: Likewise. * eval.c: Likewise. * event-loop.c: Likewise. * event-top.c: Likewise. * f-valprint.c: Likewise. * frame-unwind.c: Likewise. * frame.c: Likewise. * gdbtypes.c: Likewise. * gnu-v2-abi.c: Likewise. * gnu-v3-abi.c: Likewise. * guile/scm-auto-load.c: Likewise. * guile/scm-breakpoint.c: Likewise. * guile/scm-cmd.c: Likewise. * guile/scm-frame.c: Likewise. * guile/scm-lazy-string.c: Likewise. * guile/scm-param.c: Likewise. * guile/scm-symbol.c: Likewise. * guile/scm-type.c: Likewise. * hppa-hpux-tdep.c: Likewise. * i386-tdep.c: Likewise. * inf-loop.c: Likewise. * infcall.c: Likewise. * infcmd.c: Likewise. * infrun.c: Likewise. * interps.c: Likewise. * interps.h: Likewise. * jit.c: Likewise. * linespec.c: Likewise. * linux-nat.c: Likewise. * linux-thread-db.c: Likewise. * m32r-rom.c: Likewise. * main.c: Likewise. * memory-map.c: Likewise. * mi/mi-cmd-break.c: Likewise. * mi/mi-cmd-stack.c: Likewise. * mi/mi-interp.c: Likewise. * mi/mi-main.c: Likewise. * monitor.c: Likewise. * nto-procfs.c: Likewise. * objc-lang.c: Likewise. * p-valprint.c: Likewise. * parse.c: Likewise. * ppc-linux-tdep.c: Likewise. * printcmd.c: Likewise. * probe.c: Likewise. * python/py-auto-load.c: Likewise. * python/py-breakpoint.c: Likewise. * python/py-cmd.c: Likewise. * python/py-finishbreakpoint.c: Likewise. * python/py-frame.c: Likewise. * python/py-framefilter.c: Likewise. * python/py-function.c: Likewise. * python/py-gdb-readline.c: Likewise. * python/py-inferior.c: Likewise. * python/py-infthread.c: Likewise. * python/py-lazy-string.c: Likewise. * python/py-linetable.c: Likewise. * python/py-param.c: Likewise. * python/py-prettyprint.c: Likewise. * python/py-symbol.c: Likewise. * python/py-type.c: Likewise. * python/py-value.c: Likewise. * python/python-internal.h: Likewise. * python/python.c: Likewise. * record-btrace.c: Likewise. * record-full.c: Likewise. * regcache.c: Likewise. * remote-fileio.c: Likewise. * remote-mips.c: Likewise. * remote.c: Likewise. * rs6000-aix-tdep.c: Likewise. * rs6000-nat.c: Likewise. * skip.c: Likewise. * solib-darwin.c: Likewise. * solib-dsbt.c: Likewise. * solib-frv.c: Likewise. * solib-ia64-hpux.c: Likewise. * solib-spu.c: Likewise. * solib-svr4.c: Likewise. * solib.c: Likewise. * spu-tdep.c: Likewise. * stack.c: Likewise. * stap-probe.c: Likewise. * symfile-mem.c: Likewise. * symmisc.c: Likewise. * target.c: Likewise. * thread.c: Likewise. * top.c: Likewise. * tracepoint.c: Likewise. * tui/tui-interp.c: Likewise. * typeprint.c: Likewise. * utils.c: Likewise. * valarith.c: Likewise. * valops.c: Likewise. * valprint.c: Likewise. * value.c: Likewise. * varobj.c: Likewise. * windows-nat.c: Likewise. * xml-support.c: Likewise.
520 lines
15 KiB
C
520 lines
15 KiB
C
/* Support for printing Fortran values for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1993-2014 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "valprint.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "command.h"
|
||
#include "block.h"
|
||
#include "dictionary.h"
|
||
|
||
extern void _initialize_f_valprint (void);
|
||
static void info_common_command (char *, int);
|
||
static void f77_create_arrayprint_offset_tbl (struct type *,
|
||
struct ui_file *);
|
||
static void f77_get_dynamic_length_of_aggregate (struct type *);
|
||
|
||
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
|
||
|
||
/* Array which holds offsets to be applied to get a row's elements
|
||
for a given array. Array also holds the size of each subarray. */
|
||
|
||
/* The following macro gives us the size of the nth dimension, Where
|
||
n is 1 based. */
|
||
|
||
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
|
||
|
||
/* The following gives us the offset for row n where n is 1-based. */
|
||
|
||
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
|
||
|
||
int
|
||
f77_get_lowerbound (struct type *type)
|
||
{
|
||
if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
|
||
error (_("Lower bound may not be '*' in F77"));
|
||
|
||
return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
|
||
}
|
||
|
||
int
|
||
f77_get_upperbound (struct type *type)
|
||
{
|
||
if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
|
||
{
|
||
/* We have an assumed size array on our hands. Assume that
|
||
upper_bound == lower_bound so that we show at least 1 element.
|
||
If the user wants to see more elements, let him manually ask for 'em
|
||
and we'll subscript the array and show him. */
|
||
|
||
return f77_get_lowerbound (type);
|
||
}
|
||
|
||
return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
|
||
}
|
||
|
||
/* Obtain F77 adjustable array dimensions. */
|
||
|
||
static void
|
||
f77_get_dynamic_length_of_aggregate (struct type *type)
|
||
{
|
||
int upper_bound = -1;
|
||
int lower_bound = 1;
|
||
|
||
/* Recursively go all the way down into a possibly multi-dimensional
|
||
F77 array and get the bounds. For simple arrays, this is pretty
|
||
easy but when the bounds are dynamic, we must be very careful
|
||
to add up all the lengths correctly. Not doing this right
|
||
will lead to horrendous-looking arrays in parameter lists.
|
||
|
||
This function also works for strings which behave very
|
||
similarly to arrays. */
|
||
|
||
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
|
||
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
|
||
|
||
/* Recursion ends here, start setting up lengths. */
|
||
lower_bound = f77_get_lowerbound (type);
|
||
upper_bound = f77_get_upperbound (type);
|
||
|
||
/* Patch in a valid length value. */
|
||
|
||
TYPE_LENGTH (type) =
|
||
(upper_bound - lower_bound + 1)
|
||
* TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
|
||
}
|
||
|
||
/* Function that sets up the array offset,size table for the array
|
||
type "type". */
|
||
|
||
static void
|
||
f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
|
||
{
|
||
struct type *tmp_type;
|
||
int eltlen;
|
||
int ndimen = 1;
|
||
int upper, lower;
|
||
|
||
tmp_type = type;
|
||
|
||
while (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
|
||
{
|
||
upper = f77_get_upperbound (tmp_type);
|
||
lower = f77_get_lowerbound (tmp_type);
|
||
|
||
F77_DIM_SIZE (ndimen) = upper - lower + 1;
|
||
|
||
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
||
ndimen++;
|
||
}
|
||
|
||
/* Now we multiply eltlen by all the offsets, so that later we
|
||
can print out array elements correctly. Up till now we
|
||
know an offset to apply to get the item but we also
|
||
have to know how much to add to get to the next item. */
|
||
|
||
ndimen--;
|
||
eltlen = TYPE_LENGTH (tmp_type);
|
||
F77_DIM_OFFSET (ndimen) = eltlen;
|
||
while (--ndimen > 0)
|
||
{
|
||
eltlen *= F77_DIM_SIZE (ndimen + 1);
|
||
F77_DIM_OFFSET (ndimen) = eltlen;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Actual function which prints out F77 arrays, Valaddr == address in
|
||
the superior. Address == the address in the inferior. */
|
||
|
||
static void
|
||
f77_print_array_1 (int nss, int ndimensions, struct type *type,
|
||
const gdb_byte *valaddr,
|
||
int embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream, int recurse,
|
||
const struct value *val,
|
||
const struct value_print_options *options,
|
||
int *elts)
|
||
{
|
||
int i;
|
||
|
||
if (nss != ndimensions)
|
||
{
|
||
for (i = 0;
|
||
(i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
|
||
i++)
|
||
{
|
||
fprintf_filtered (stream, "( ");
|
||
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
|
||
valaddr,
|
||
embedded_offset + i * F77_DIM_OFFSET (nss),
|
||
address,
|
||
stream, recurse, val, options, elts);
|
||
fprintf_filtered (stream, ") ");
|
||
}
|
||
if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
|
||
i++, (*elts)++)
|
||
{
|
||
val_print (TYPE_TARGET_TYPE (type),
|
||
valaddr,
|
||
embedded_offset + i * F77_DIM_OFFSET (ndimensions),
|
||
address, stream, recurse,
|
||
val, options, current_language);
|
||
|
||
if (i != (F77_DIM_SIZE (nss) - 1))
|
||
fprintf_filtered (stream, ", ");
|
||
|
||
if ((*elts == options->print_max - 1)
|
||
&& (i != (F77_DIM_SIZE (nss) - 1)))
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function gets called to print an F77 array, we set up some
|
||
stuff and then immediately call f77_print_array_1(). */
|
||
|
||
static void
|
||
f77_print_array (struct type *type, const gdb_byte *valaddr,
|
||
int embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value *val,
|
||
const struct value_print_options *options)
|
||
{
|
||
int ndimensions;
|
||
int elts = 0;
|
||
|
||
ndimensions = calc_f77_array_dims (type);
|
||
|
||
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
|
||
error (_("\
|
||
Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
|
||
ndimensions, MAX_FORTRAN_DIMS);
|
||
|
||
/* Since F77 arrays are stored column-major, we set up an
|
||
offset table to get at the various row's elements. The
|
||
offset table contains entries for both offset and subarray size. */
|
||
|
||
f77_create_arrayprint_offset_tbl (type, stream);
|
||
|
||
f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
|
||
address, stream, recurse, val, options, &elts);
|
||
}
|
||
|
||
|
||
/* Decorations for Fortran. */
|
||
|
||
static const struct generic_val_print_decorations f_decorations =
|
||
{
|
||
"(",
|
||
",",
|
||
")",
|
||
".TRUE.",
|
||
".FALSE.",
|
||
"VOID",
|
||
};
|
||
|
||
/* See val_print for a description of the various parameters of this
|
||
function; they are identical. */
|
||
|
||
void
|
||
f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream, int recurse,
|
||
const struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
unsigned int i = 0; /* Number of characters printed. */
|
||
struct type *elttype;
|
||
CORE_ADDR addr;
|
||
int index;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRING:
|
||
f77_get_dynamic_length_of_aggregate (type);
|
||
LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
|
||
valaddr + embedded_offset,
|
||
TYPE_LENGTH (type), NULL, 0, options);
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
|
||
{
|
||
fprintf_filtered (stream, "(");
|
||
f77_print_array (type, valaddr, embedded_offset,
|
||
address, stream, recurse, original_value, options);
|
||
fprintf_filtered (stream, ")");
|
||
}
|
||
else
|
||
{
|
||
struct type *ch_type = TYPE_TARGET_TYPE (type);
|
||
|
||
f77_get_dynamic_length_of_aggregate (type);
|
||
LA_PRINT_STRING (stream, ch_type,
|
||
valaddr + embedded_offset,
|
||
TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
|
||
NULL, 0, options);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
if (options->format && options->format != 's')
|
||
{
|
||
val_print_scalar_formatted (type, valaddr, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
int want_space = 0;
|
||
|
||
addr = unpack_pointer (type, valaddr + embedded_offset);
|
||
elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
||
{
|
||
/* Try to print what function it points to. */
|
||
print_function_pointer_address (options, gdbarch, addr, stream);
|
||
return;
|
||
}
|
||
|
||
if (options->symbol_print)
|
||
want_space = print_address_demangle (options, gdbarch, addr,
|
||
stream, demangle);
|
||
else if (options->addressprint && options->format != 's')
|
||
{
|
||
fputs_filtered (paddress (gdbarch, addr), stream);
|
||
want_space = 1;
|
||
}
|
||
|
||
/* For a pointer to char or unsigned char, also print the string
|
||
pointed to, unless pointer is null. */
|
||
if (TYPE_LENGTH (elttype) == 1
|
||
&& TYPE_CODE (elttype) == TYPE_CODE_INT
|
||
&& (options->format == 0 || options->format == 's')
|
||
&& addr != 0)
|
||
{
|
||
if (want_space)
|
||
fputs_filtered (" ", stream);
|
||
i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
|
||
stream, options);
|
||
}
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_INT:
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
val_print_scalar_formatted (type, valaddr, embedded_offset,
|
||
original_value, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
val_print_type_code_int (type, valaddr + embedded_offset, stream);
|
||
/* C and C++ has no single byte int type, char is used instead.
|
||
Since we don't know whether the value is really intended to
|
||
be used as an integer or a character, print the character
|
||
equivalent as well. */
|
||
if (TYPE_LENGTH (type) == 1)
|
||
{
|
||
LONGEST c;
|
||
|
||
fputs_filtered (" ", stream);
|
||
c = unpack_long (type, valaddr + embedded_offset);
|
||
LA_PRINT_CHAR ((unsigned char) c, type, stream);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
/* Starting from the Fortran 90 standard, Fortran supports derived
|
||
types. */
|
||
fprintf_filtered (stream, "( ");
|
||
for (index = 0; index < TYPE_NFIELDS (type); index++)
|
||
{
|
||
int offset = TYPE_FIELD_BITPOS (type, index) / 8;
|
||
|
||
val_print (TYPE_FIELD_TYPE (type, index), valaddr,
|
||
embedded_offset + offset,
|
||
address, stream, recurse + 1,
|
||
original_value, options, current_language);
|
||
if (index != TYPE_NFIELDS (type) - 1)
|
||
fputs_filtered (", ", stream);
|
||
}
|
||
fprintf_filtered (stream, " )");
|
||
break;
|
||
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_VOID:
|
||
case TYPE_CODE_ERROR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_UNDEF:
|
||
case TYPE_CODE_COMPLEX:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_CHAR:
|
||
default:
|
||
generic_val_print (type, valaddr, embedded_offset, address,
|
||
stream, recurse, original_value, options,
|
||
&f_decorations);
|
||
break;
|
||
}
|
||
gdb_flush (stream);
|
||
}
|
||
|
||
static void
|
||
info_common_command_for_block (const struct block *block, const char *comname,
|
||
int *any_printed)
|
||
{
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
const char *name;
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
|
||
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
||
if (SYMBOL_DOMAIN (sym) == COMMON_BLOCK_DOMAIN)
|
||
{
|
||
const struct common_block *common = SYMBOL_VALUE_COMMON_BLOCK (sym);
|
||
size_t index;
|
||
|
||
gdb_assert (SYMBOL_CLASS (sym) == LOC_COMMON_BLOCK);
|
||
|
||
if (comname && (!SYMBOL_LINKAGE_NAME (sym)
|
||
|| strcmp (comname, SYMBOL_LINKAGE_NAME (sym)) != 0))
|
||
continue;
|
||
|
||
if (*any_printed)
|
||
putchar_filtered ('\n');
|
||
else
|
||
*any_printed = 1;
|
||
if (SYMBOL_PRINT_NAME (sym))
|
||
printf_filtered (_("Contents of F77 COMMON block '%s':\n"),
|
||
SYMBOL_PRINT_NAME (sym));
|
||
else
|
||
printf_filtered (_("Contents of blank COMMON block:\n"));
|
||
|
||
for (index = 0; index < common->n_entries; index++)
|
||
{
|
||
struct value *val = NULL;
|
||
volatile struct gdb_exception except;
|
||
|
||
printf_filtered ("%s = ",
|
||
SYMBOL_PRINT_NAME (common->contents[index]));
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
val = value_of_variable (common->contents[index], block);
|
||
value_print (val, gdb_stdout, &opts);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
printf_filtered ("<error reading variable: %s>", except.message);
|
||
putchar_filtered ('\n');
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function is used to print out the values in a given COMMON
|
||
block. It will always use the most local common block of the
|
||
given name. */
|
||
|
||
static void
|
||
info_common_command (char *comname, int from_tty)
|
||
{
|
||
struct frame_info *fi;
|
||
const struct block *block;
|
||
int values_printed = 0;
|
||
|
||
/* We have been told to display the contents of F77 COMMON
|
||
block supposedly visible in this function. Let us
|
||
first make sure that it is visible and if so, let
|
||
us display its contents. */
|
||
|
||
fi = get_selected_frame (_("No frame selected"));
|
||
|
||
/* The following is generally ripped off from stack.c's routine
|
||
print_frame_info(). */
|
||
|
||
block = get_frame_block (fi, 0);
|
||
if (block == NULL)
|
||
{
|
||
printf_filtered (_("No symbol table info available.\n"));
|
||
return;
|
||
}
|
||
|
||
while (block)
|
||
{
|
||
info_common_command_for_block (block, comname, &values_printed);
|
||
/* After handling the function's top-level block, stop. Don't
|
||
continue to its superblock, the block of per-file symbols. */
|
||
if (BLOCK_FUNCTION (block))
|
||
break;
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
}
|
||
|
||
if (!values_printed)
|
||
{
|
||
if (comname)
|
||
printf_filtered (_("No common block '%s'.\n"), comname);
|
||
else
|
||
printf_filtered (_("No common blocks.\n"));
|
||
}
|
||
}
|
||
|
||
void
|
||
_initialize_f_valprint (void)
|
||
{
|
||
add_info ("common", info_common_command,
|
||
_("Print out the values contained in a Fortran COMMON block."));
|
||
if (xdb_commands)
|
||
add_com ("lc", class_info, info_common_command,
|
||
_("Print out the values contained in a Fortran COMMON block."));
|
||
}
|