binutils-gdb/bfd/verilog.c

374 lines
11 KiB
C

/* BFD back-end for verilog hex memory dump files.
Copyright (C) 2009-2015 Free Software Foundation, Inc.
Written by Anthony Green <green@moxielogic.com>
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/* SUBSECTION
Verilog hex memory file handling
DESCRIPTION
Verilog hex memory files cannot hold anything but addresses
and data, so that's all that we implement.
The syntax of the text file is described in the IEEE standard
for Verilog. Briefly, the file contains two types of tokens:
data and optional addresses. The tokens are separated by
whitespace and comments. Comments may be single line or
multiline, using syntax similar to C++. Addresses are
specified by a leading "at" character (@) and are always
hexadecimal strings. Data and addresses may contain
underscore (_) characters.
If no address is specified, the data is assumed to start at
address 0. Similarly, if data exists before the first
specified address, then that data is assumed to start at
address 0.
EXAMPLE
@1000
01 ae 3f 45 12
DESCRIPTION
@1000 specifies the starting address for the memory data.
The following characters describe the 5 bytes at 0x1000. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "libiberty.h"
#include "safe-ctype.h"
/* Macros for converting between hex and binary. */
static const char digs[] = "0123456789ABCDEF";
#define NIBBLE(x) hex_value(x)
#define HEX(buffer) ((NIBBLE ((buffer)[0])<<4) + NIBBLE ((buffer)[1]))
#define TOHEX(d, x) \
d[1] = digs[(x) & 0xf]; \
d[0] = digs[((x) >> 4) & 0xf];
/* When writing a verilog memory dump file, we write them in the order
in which they appear in memory. This structure is used to hold them
in memory. */
struct verilog_data_list_struct
{
struct verilog_data_list_struct *next;
bfd_byte * data;
bfd_vma where;
bfd_size_type size;
};
typedef struct verilog_data_list_struct verilog_data_list_type;
/* The verilog tdata information. */
typedef struct verilog_data_struct
{
verilog_data_list_type *head;
verilog_data_list_type *tail;
}
tdata_type;
static bfd_boolean
verilog_set_arch_mach (bfd *abfd, enum bfd_architecture arch, unsigned long mach)
{
if (arch != bfd_arch_unknown)
return bfd_default_set_arch_mach (abfd, arch, mach);
abfd->arch_info = & bfd_default_arch_struct;
return TRUE;
}
/* We have to save up all the outpu for a splurge before output. */
static bfd_boolean
verilog_set_section_contents (bfd *abfd,
sec_ptr section,
const void * location,
file_ptr offset,
bfd_size_type bytes_to_do)
{
tdata_type *tdata = abfd->tdata.verilog_data;
verilog_data_list_type *entry;
entry = (verilog_data_list_type *) bfd_alloc (abfd, sizeof (* entry));
if (entry == NULL)
return FALSE;
if (bytes_to_do
&& (section->flags & SEC_ALLOC)
&& (section->flags & SEC_LOAD))
{
bfd_byte *data;
data = (bfd_byte *) bfd_alloc (abfd, bytes_to_do);
if (data == NULL)
return FALSE;
memcpy ((void *) data, location, (size_t) bytes_to_do);
entry->data = data;
entry->where = section->lma + offset;
entry->size = bytes_to_do;
/* Sort the records by address. Optimize for the common case of
adding a record to the end of the list. */
if (tdata->tail != NULL
&& entry->where >= tdata->tail->where)
{
tdata->tail->next = entry;
entry->next = NULL;
tdata->tail = entry;
}
else
{
verilog_data_list_type **look;
for (look = &tdata->head;
*look != NULL && (*look)->where < entry->where;
look = &(*look)->next)
;
entry->next = *look;
*look = entry;
if (entry->next == NULL)
tdata->tail = entry;
}
}
return TRUE;
}
static bfd_boolean
verilog_write_address (bfd *abfd, bfd_vma address)
{
char buffer[12];
char *dst = buffer;
bfd_size_type wrlen;
/* Write the address. */
*dst++ = '@';
TOHEX (dst, (address >> 24));
dst += 2;
TOHEX (dst, (address >> 16));
dst += 2;
TOHEX (dst, (address >> 8));
dst += 2;
TOHEX (dst, (address));
dst += 2;
*dst++ = '\r';
*dst++ = '\n';
wrlen = dst - buffer;
return bfd_bwrite ((void *) buffer, wrlen, abfd) == wrlen;
}
/* Write a record of type, of the supplied number of bytes. The
supplied bytes and length don't have a checksum. That's worked out
here. */
static bfd_boolean
verilog_write_record (bfd *abfd,
const bfd_byte *data,
const bfd_byte *end)
{
char buffer[50];
const bfd_byte *src = data;
char *dst = buffer;
bfd_size_type wrlen;
/* Write the data. */
for (src = data; src < end; src++)
{
TOHEX (dst, *src);
dst += 2;
*dst++ = ' ';
}
*dst++ = '\r';
*dst++ = '\n';
wrlen = dst - buffer;
return bfd_bwrite ((void *) buffer, wrlen, abfd) == wrlen;
}
static bfd_boolean
verilog_write_section (bfd *abfd,
tdata_type *tdata ATTRIBUTE_UNUSED,
verilog_data_list_type *list)
{
unsigned int octets_written = 0;
bfd_byte *location = list->data;
verilog_write_address (abfd, list->where);
while (octets_written < list->size)
{
unsigned int octets_this_chunk = list->size - octets_written;
if (octets_this_chunk > 16)
octets_this_chunk = 16;
if (! verilog_write_record (abfd,
location,
location + octets_this_chunk))
return FALSE;
octets_written += octets_this_chunk;
location += octets_this_chunk;
}
return TRUE;
}
static bfd_boolean
verilog_write_object_contents (bfd *abfd)
{
tdata_type *tdata = abfd->tdata.verilog_data;
verilog_data_list_type *list;
/* Now wander though all the sections provided and output them. */
list = tdata->head;
while (list != (verilog_data_list_type *) NULL)
{
if (! verilog_write_section (abfd, tdata, list))
return FALSE;
list = list->next;
}
return TRUE;
}
/* Initialize by filling in the hex conversion array. */
static void
verilog_init (void)
{
static bfd_boolean inited = FALSE;
if (! inited)
{
inited = TRUE;
hex_init ();
}
}
/* Set up the verilog tdata information. */
static bfd_boolean
verilog_mkobject (bfd *abfd)
{
tdata_type *tdata;
verilog_init ();
tdata = (tdata_type *) bfd_alloc (abfd, sizeof (tdata_type));
if (tdata == NULL)
return FALSE;
abfd->tdata.verilog_data = tdata;
tdata->head = NULL;
tdata->tail = NULL;
return TRUE;
}
#define verilog_close_and_cleanup _bfd_generic_close_and_cleanup
#define verilog_bfd_free_cached_info _bfd_generic_bfd_free_cached_info
#define verilog_new_section_hook _bfd_generic_new_section_hook
#define verilog_bfd_is_target_special_symbol ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
#define verilog_bfd_is_local_label_name bfd_generic_is_local_label_name
#define verilog_get_lineno _bfd_nosymbols_get_lineno
#define verilog_find_nearest_line _bfd_nosymbols_find_nearest_line
#define verilog_find_inliner_info _bfd_nosymbols_find_inliner_info
#define verilog_make_empty_symbol _bfd_generic_make_empty_symbol
#define verilog_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
#define verilog_read_minisymbols _bfd_generic_read_minisymbols
#define verilog_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
#define verilog_get_section_contents_in_window _bfd_generic_get_section_contents_in_window
#define verilog_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents
#define verilog_bfd_relax_section bfd_generic_relax_section
#define verilog_bfd_gc_sections bfd_generic_gc_sections
#define verilog_bfd_merge_sections bfd_generic_merge_sections
#define verilog_bfd_is_group_section bfd_generic_is_group_section
#define verilog_bfd_discard_group bfd_generic_discard_group
#define verilog_section_already_linked _bfd_generic_section_already_linked
#define verilog_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
#define verilog_bfd_link_add_symbols _bfd_generic_link_add_symbols
#define verilog_bfd_link_just_syms _bfd_generic_link_just_syms
#define verilog_bfd_final_link _bfd_generic_final_link
#define verilog_bfd_link_split_section _bfd_generic_link_split_section
const bfd_target verilog_vec =
{
"verilog", /* Name. */
bfd_target_verilog_flavour,
BFD_ENDIAN_UNKNOWN, /* Target byte order. */
BFD_ENDIAN_UNKNOWN, /* Target headers byte order. */
(HAS_RELOC | EXEC_P | /* Object flags. */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
(SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
| SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */
0, /* Leading underscore. */
' ', /* AR_pad_char. */
16, /* AR_max_namelen. */
0, /* match priority. */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Hdrs. */
{
_bfd_dummy_target,
_bfd_dummy_target,
_bfd_dummy_target,
_bfd_dummy_target,
},
{
bfd_false,
verilog_mkobject,
bfd_false,
bfd_false,
},
{ /* bfd_write_contents. */
bfd_false,
verilog_write_object_contents,
bfd_false,
bfd_false,
},
BFD_JUMP_TABLE_GENERIC (_bfd_generic),
BFD_JUMP_TABLE_COPY (_bfd_generic),
BFD_JUMP_TABLE_CORE (_bfd_nocore),
BFD_JUMP_TABLE_ARCHIVE (_bfd_noarchive),
BFD_JUMP_TABLE_SYMBOLS (_bfd_nosymbols),
BFD_JUMP_TABLE_RELOCS (_bfd_norelocs),
BFD_JUMP_TABLE_WRITE (verilog),
BFD_JUMP_TABLE_LINK (_bfd_nolink),
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
NULL,
NULL
};