538 lines
14 KiB
C
538 lines
14 KiB
C
/* IBM RS/6000 host-dependent code for GDB, the GNU debugger.
|
||
Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/user.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
#include <fcntl.h>
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <sys/reg.h>
|
||
|
||
#include <a.out.h>
|
||
#include <sys/file.h>
|
||
#include <sys/stat.h>
|
||
#include <sys/core.h>
|
||
#include <sys/ldr.h>
|
||
#include <sys/utsname.h>
|
||
|
||
extern int errno;
|
||
extern int attach_flag;
|
||
|
||
/* Conversion from gdb-to-system special purpose register numbers.. */
|
||
|
||
static int special_regs[] = {
|
||
IAR, /* PC_REGNUM */
|
||
MSR, /* PS_REGNUM */
|
||
CR, /* CR_REGNUM */
|
||
LR, /* LR_REGNUM */
|
||
CTR, /* CTR_REGNUM */
|
||
XER, /* XER_REGNUM */
|
||
MQ /* MQ_REGNUM */
|
||
};
|
||
|
||
|
||
/* Nonzero if we just simulated a single step break. */
|
||
extern int one_stepped;
|
||
|
||
extern char register_valid[];
|
||
extern struct obstack frame_cache_obstack;
|
||
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
int ii;
|
||
extern char registers[];
|
||
|
||
if (regno < 0) { /* for all registers */
|
||
|
||
/* read 32 general purpose registers. */
|
||
|
||
for (ii=0; ii < 32; ++ii)
|
||
*(int*)®isters[REGISTER_BYTE (ii)] =
|
||
ptrace (PT_READ_GPR, inferior_pid, ii, 0, 0);
|
||
|
||
/* read general purpose floating point registers. */
|
||
|
||
for (ii=0; ii < 32; ++ii)
|
||
ptrace (PT_READ_FPR, inferior_pid,
|
||
(int*)®isters [REGISTER_BYTE (FP0_REGNUM+ii)], FPR0+ii, 0);
|
||
|
||
/* read special registers. */
|
||
for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii)
|
||
*(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)] =
|
||
ptrace (PT_READ_GPR, inferior_pid, special_regs[ii], 0, 0);
|
||
|
||
registers_fetched ();
|
||
return;
|
||
}
|
||
|
||
/* else an individual register is addressed. */
|
||
|
||
else if (regno < FP0_REGNUM) { /* a GPR */
|
||
*(int*)®isters[REGISTER_BYTE (regno)] =
|
||
ptrace (PT_READ_GPR, inferior_pid, regno, 0, 0);
|
||
}
|
||
else if (regno <= FPLAST_REGNUM) { /* a FPR */
|
||
ptrace (PT_READ_FPR, inferior_pid,
|
||
(int*)®isters [REGISTER_BYTE (regno)], (regno-FP0_REGNUM+FPR0), 0);
|
||
}
|
||
else if (regno <= LAST_SP_REGNUM) { /* a special register */
|
||
*(int*)®isters[REGISTER_BYTE (regno)] =
|
||
ptrace (PT_READ_GPR, inferior_pid,
|
||
special_regs[regno-FIRST_SP_REGNUM], 0, 0);
|
||
}
|
||
else
|
||
fprintf (stderr, "gdb error: register no %d not implemented.\n", regno);
|
||
|
||
register_valid [regno] = 1;
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
extern char registers[];
|
||
|
||
errno = 0;
|
||
|
||
if (regno == -1) { /* for all registers.. */
|
||
int ii;
|
||
|
||
/* execute one dummy instruction (which is a breakpoint) in inferior
|
||
process. So give kernel a chance to do internal house keeping.
|
||
Otherwise the following ptrace(2) calls will mess up user stack
|
||
since kernel will get confused about the bottom of the stack (%sp) */
|
||
|
||
exec_one_dummy_insn ();
|
||
|
||
/* write general purpose registers first! */
|
||
for ( ii=GPR0; ii<=GPR31; ++ii) {
|
||
ptrace (PT_WRITE_GPR, inferior_pid, ii,
|
||
*(int*)®isters[REGISTER_BYTE (ii)], 0);
|
||
if ( errno ) {
|
||
perror ("ptrace write_gpr"); errno = 0;
|
||
}
|
||
}
|
||
|
||
/* write floating point registers now. */
|
||
for ( ii=0; ii < 32; ++ii) {
|
||
ptrace (PT_WRITE_FPR, inferior_pid,
|
||
(int*)®isters[REGISTER_BYTE (FP0_REGNUM+ii)], FPR0+ii, 0);
|
||
if ( errno ) {
|
||
perror ("ptrace write_fpr"); errno = 0;
|
||
}
|
||
}
|
||
|
||
/* write special registers. */
|
||
for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) {
|
||
ptrace (PT_WRITE_GPR, inferior_pid, special_regs[ii],
|
||
*(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)], 0);
|
||
if ( errno ) {
|
||
perror ("ptrace write_gpr"); errno = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* else, a specific register number is given... */
|
||
|
||
else if (regno < FP0_REGNUM) { /* a GPR */
|
||
|
||
ptrace (PT_WRITE_GPR, inferior_pid, regno,
|
||
*(int*)®isters[REGISTER_BYTE (regno)], 0);
|
||
}
|
||
|
||
else if (regno <= FPLAST_REGNUM) { /* a FPR */
|
||
ptrace (PT_WRITE_FPR, inferior_pid,
|
||
(int*)®isters[REGISTER_BYTE (regno)], regno-FP0_REGNUM+FPR0, 0);
|
||
}
|
||
|
||
else if (regno <= LAST_SP_REGNUM) { /* a special register */
|
||
|
||
ptrace (PT_WRITE_GPR, inferior_pid, special_regs [regno-FIRST_SP_REGNUM],
|
||
*(int*)®isters[REGISTER_BYTE (regno)], 0);
|
||
}
|
||
|
||
else
|
||
fprintf (stderr, "Gdb error: register no %d not implemented.\n", regno);
|
||
|
||
if ( errno ) {
|
||
perror ("ptrace write"); errno = 0;
|
||
}
|
||
}
|
||
|
||
void
|
||
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
||
char *core_reg_sect;
|
||
unsigned core_reg_size;
|
||
int which;
|
||
unsigned int reg_addr; /* Unused in this version */
|
||
{
|
||
/* fetch GPRs and special registers from the first register section
|
||
in core bfd. */
|
||
if (which == 0) {
|
||
|
||
/* copy GPRs first. */
|
||
bcopy (core_reg_sect, registers, 32 * 4);
|
||
|
||
/* gdb's internal register template and bfd's register section layout
|
||
should share a common include file. FIXMEmgo */
|
||
/* then comes special registes. They are supposed to be in the same
|
||
order in gdb template and bfd `.reg' section. */
|
||
core_reg_sect += (32 * 4);
|
||
bcopy (core_reg_sect, ®isters [REGISTER_BYTE (FIRST_SP_REGNUM)],
|
||
(LAST_SP_REGNUM - FIRST_SP_REGNUM + 1) * 4);
|
||
}
|
||
|
||
/* fetch floating point registers from register section 2 in core bfd. */
|
||
else if (which == 2)
|
||
bcopy (core_reg_sect, ®isters [REGISTER_BYTE (FP0_REGNUM)], 32 * 8);
|
||
|
||
else
|
||
fprintf (stderr, "Gdb error: unknown parameter to fetch_core_registers().\n");
|
||
}
|
||
|
||
|
||
frameless_function_invocation (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct aix_framedata fdata;
|
||
|
||
func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
|
||
if (!func_start)
|
||
return 0;
|
||
|
||
function_frame_info (func_start, &fdata);
|
||
return fdata.frameless;
|
||
}
|
||
|
||
|
||
/* If saved registers of frame FI are not known yet, read and cache them.
|
||
&FDATAP contains aix_framedata; TDATAP can be NULL,
|
||
in which case the framedata are read.
|
||
*/
|
||
|
||
static void
|
||
frame_get_cache_fsr (fi, fdatap)
|
||
struct frame_info *fi;
|
||
struct aix_framedata *fdatap;
|
||
{
|
||
int ii;
|
||
CORE_ADDR frame_addr;
|
||
struct aix_framedata work_fdata;
|
||
if (fi->cache_fsr)
|
||
return;
|
||
|
||
if (fdatap = NULL) {
|
||
fdatap = &work_fdata;
|
||
function_frame_info (get_pc_function_start (fi->pc), fdatap);
|
||
}
|
||
|
||
fi->cache_fsr = (struct frame_saved_regs *)
|
||
obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
|
||
bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
|
||
|
||
if (fi->prev && fi->prev->frame)
|
||
frame_addr = fi->prev->frame;
|
||
else
|
||
frame_addr = read_memory_integer (fi->frame, 4);
|
||
|
||
/* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved right underneath caller
|
||
stack pointer, starting from fp31 first. */
|
||
|
||
if (fdatap->saved_fpr >= 0) {
|
||
for (ii=31; ii >= fdatap->saved_fpr; --ii)
|
||
fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
|
||
frame_addr -= (32 - fdatap->saved_fpr) * 8;
|
||
}
|
||
|
||
/* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
|
||
starting from r31 first. */
|
||
|
||
if (fdatap->saved_gpr >= 0)
|
||
for (ii=31; ii >= fdatap->saved_gpr; --ii)
|
||
fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
|
||
}
|
||
|
||
/* Return the address of a frame. This is the inital %sp value when the frame
|
||
was first allocated. For functions calling alloca(), it might be saved in
|
||
an alloca register. */
|
||
|
||
CORE_ADDR
|
||
frame_initial_stack_address (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
CORE_ADDR tmpaddr;
|
||
struct aix_framedata fdata;
|
||
struct frame_info *callee_fi;
|
||
|
||
/* if the initial stack pointer (frame address) of this frame is known,
|
||
just return it. */
|
||
|
||
if (fi->initial_sp)
|
||
return fi->initial_sp;
|
||
|
||
/* find out if this function is using an alloca register.. */
|
||
|
||
function_frame_info (get_pc_function_start (fi->pc), &fdata);
|
||
|
||
/* if saved registers of this frame are not known yet, read and cache them. */
|
||
|
||
if (!fi->cache_fsr)
|
||
frame_get_cache_fsr (fi, &fdata);
|
||
|
||
/* If no alloca register used, then fi->frame is the value of the %sp for
|
||
this frame, and it is good enough. */
|
||
|
||
if (fdata.alloca_reg < 0) {
|
||
fi->initial_sp = fi->frame;
|
||
return fi->initial_sp;
|
||
}
|
||
|
||
/* This function has an alloca register. If this is the top-most frame
|
||
(with the lowest address), the value in alloca register is good. */
|
||
|
||
if (!fi->next)
|
||
return fi->initial_sp = read_register (fdata.alloca_reg);
|
||
|
||
/* Otherwise, this is a caller frame. Callee has usually already saved
|
||
registers, but there are exceptions (such as when the callee
|
||
has no parameters). Find the address in which caller's alloca
|
||
register is saved. */
|
||
|
||
for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
|
||
|
||
if (!callee_fi->cache_fsr)
|
||
frame_get_cache_fsr (fi, NULL);
|
||
|
||
/* this is the address in which alloca register is saved. */
|
||
|
||
tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
|
||
if (tmpaddr) {
|
||
fi->initial_sp = read_memory_integer (tmpaddr, 4);
|
||
return fi->initial_sp;
|
||
}
|
||
|
||
/* Go look into deeper levels of the frame chain to see if any one of
|
||
the callees has saved alloca register. */
|
||
}
|
||
|
||
/* If alloca register was not saved, by the callee (or any of its callees)
|
||
then the value in the register is still good. */
|
||
|
||
return fi->initial_sp = read_register (fdata.alloca_reg);
|
||
}
|
||
|
||
|
||
|
||
/* aixcoff_relocate_symtab - hook for symbol table relocation.
|
||
also reads shared libraries.. */
|
||
|
||
aixcoff_relocate_symtab (pid)
|
||
unsigned int pid;
|
||
{
|
||
#define MAX_LOAD_SEGS 64 /* maximum number of load segments */
|
||
|
||
struct ld_info *ldi;
|
||
int temp;
|
||
|
||
ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
|
||
|
||
/* According to my humble theory, aixcoff has some timing problems and
|
||
when the user stack grows, kernel doesn't update stack info in time
|
||
and ptrace calls step on user stack. That is why we sleep here a little,
|
||
and give kernel to update its internals. */
|
||
|
||
usleep (36000);
|
||
|
||
errno = 0;
|
||
ptrace(PT_LDINFO, pid, ldi, MAX_LOAD_SEGS * sizeof(*ldi), ldi);
|
||
if (errno) {
|
||
perror_with_name ("ptrace ldinfo");
|
||
return 0;
|
||
}
|
||
|
||
vmap_ldinfo(ldi);
|
||
|
||
do {
|
||
add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
|
||
} while (ldi->ldinfo_next
|
||
&& (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
|
||
|
||
#if 0
|
||
/* Now that we've jumbled things around, re-sort them. */
|
||
sort_minimal_symbols ();
|
||
#endif
|
||
|
||
/* relocate the exec and core sections as well. */
|
||
vmap_exec ();
|
||
}
|
||
|
||
|
||
/* Keep an array of load segment information and their TOC table addresses.
|
||
This info will be useful when calling a shared library function by hand. */
|
||
|
||
typedef struct {
|
||
unsigned long textorg, dataorg, toc_offset;
|
||
} LoadInfo;
|
||
|
||
#define LOADINFOLEN 10
|
||
|
||
static LoadInfo *loadInfo = NULL;
|
||
static int loadInfoLen = 0;
|
||
static int loadInfoTocIndex = 0;
|
||
int aix_loadInfoTextIndex = 0;
|
||
|
||
|
||
xcoff_init_loadinfo ()
|
||
{
|
||
loadInfoTocIndex = 0;
|
||
aix_loadInfoTextIndex = 0;
|
||
|
||
if (loadInfoLen == 0) {
|
||
loadInfo = (void*) xmalloc (sizeof (LoadInfo) * LOADINFOLEN);
|
||
loadInfoLen = LOADINFOLEN;
|
||
}
|
||
}
|
||
|
||
|
||
free_loadinfo ()
|
||
{
|
||
if (loadInfo)
|
||
free (loadInfo);
|
||
loadInfo = NULL;
|
||
loadInfoLen = 0;
|
||
loadInfoTocIndex = 0;
|
||
aix_loadInfoTextIndex = 0;
|
||
}
|
||
|
||
|
||
xcoff_add_toc_to_loadinfo (unsigned long tocaddr)
|
||
{
|
||
while (loadInfoTocIndex >= loadInfoLen) {
|
||
loadInfoLen += LOADINFOLEN;
|
||
loadInfo = (void*) xrealloc (loadInfo, sizeof(LoadInfo) * loadInfoLen);
|
||
}
|
||
loadInfo [loadInfoTocIndex++].toc_offset = tocaddr;
|
||
}
|
||
|
||
|
||
add_text_to_loadinfo (unsigned long textaddr, unsigned long dataaddr)
|
||
{
|
||
while (aix_loadInfoTextIndex >= loadInfoLen) {
|
||
loadInfoLen += LOADINFOLEN;
|
||
loadInfo = (void*) xrealloc (loadInfo, sizeof(LoadInfo) * loadInfoLen);
|
||
}
|
||
loadInfo [aix_loadInfoTextIndex].textorg = textaddr;
|
||
loadInfo [aix_loadInfoTextIndex].dataorg = dataaddr;
|
||
++aix_loadInfoTextIndex;
|
||
}
|
||
|
||
|
||
unsigned long
|
||
find_toc_address (unsigned long pc)
|
||
{
|
||
int ii, toc_entry, tocbase = 0;
|
||
|
||
for (ii=0; ii < aix_loadInfoTextIndex; ++ii)
|
||
if (pc > loadInfo [ii].textorg && loadInfo [ii].textorg > tocbase) {
|
||
toc_entry = ii;
|
||
tocbase = loadInfo [ii].textorg;
|
||
}
|
||
|
||
return loadInfo [toc_entry].dataorg + loadInfo [toc_entry].toc_offset;
|
||
}
|
||
|
||
|
||
/* execute one dummy breakpoint instruction. This way we give kernel
|
||
a chance to do some housekeeping and update inferior's internal data,
|
||
including u_area. */
|
||
|
||
exec_one_dummy_insn ()
|
||
{
|
||
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
|
||
|
||
unsigned long shadow;
|
||
unsigned int status, pid;
|
||
|
||
/* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that
|
||
this address will never be executed again by the real code. */
|
||
|
||
target_insert_breakpoint (DUMMY_INSN_ADDR, &shadow);
|
||
|
||
errno = 0;
|
||
ptrace (PT_CONTINUE, inferior_pid, DUMMY_INSN_ADDR, 0, 0);
|
||
if (errno)
|
||
perror ("pt_continue");
|
||
|
||
do {
|
||
pid = wait (&status);
|
||
} while (pid != inferior_pid);
|
||
|
||
target_remove_breakpoint (DUMMY_INSN_ADDR, &shadow);
|
||
}
|
||
|
||
|
||
#if 0
|
||
|
||
*** not needed anymore ***
|
||
|
||
/* Return the number of initial trap signals we need to ignore once the inferior
|
||
process starts running. This will be `2' for aix-3.1, `3' for aix-3.2 */
|
||
|
||
int
|
||
aix_starting_inferior_traps ()
|
||
{
|
||
struct utsname unamebuf;
|
||
|
||
if (uname (&unamebuf) == -1)
|
||
fatal ("uname(3) failed.");
|
||
|
||
/* Assume the future versions will behave like 3.2 and return '3' for
|
||
anything other than 3.1x. The extra trap in 3.2 is the "trap after the
|
||
program is loaded" signal. */
|
||
|
||
if (unamebuf.version[0] == '3' && unamebuf.release[0] == '1')
|
||
return 2;
|
||
else
|
||
return 3;
|
||
}
|
||
#endif
|