binutils-gdb/gdb/spu-multiarch.c
Joel Brobecker 4c38e0a4fc Update copyright year in most headers.
Automatic update by copyright.sh.
2010-01-01 07:32:07 +00:00

396 lines
12 KiB
C

/* Cell SPU GNU/Linux multi-architecture debugging support.
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "arch-utils.h"
#include "observer.h"
#include "inferior.h"
#include "regcache.h"
#include "symfile.h"
#include "objfiles.h"
#include "solib.h"
#include "solist.h"
#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"
#include "spu-tdep.h"
/* This module's target vector. */
static struct target_ops spu_ops;
/* Number of SPE objects loaded into the current inferior. */
static int spu_nr_solib;
/* Stand-alone SPE executable? */
#define spu_standalone_p() \
(symfile_objfile && symfile_objfile->obfd \
&& bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
/* PPU side system calls. */
#define INSTR_SC 0x44000002
#define NR_spu_run 0x0116
/* If the PPU thread is currently stopped on a spu_run system call,
return to FD and ADDR the file handle and NPC parameter address
used with the system call. Return non-zero if successful. */
static int
parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
struct gdbarch_tdep *tdep;
struct regcache *regcache;
char buf[4];
CORE_ADDR pc;
ULONGEST regval;
/* If we're not on PPU, there's nothing to detect. */
if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_powerpc)
return 0;
/* Get PPU-side registers. */
regcache = get_thread_arch_regcache (ptid, target_gdbarch);
tdep = gdbarch_tdep (target_gdbarch);
/* Fetch instruction preceding current NIP. */
if (target_read_memory (regcache_read_pc (regcache) - 4, buf, 4) != 0)
return 0;
/* It should be a "sc" instruction. */
if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
return 0;
/* System call number should be NR_spu_run. */
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
if (regval != NR_spu_run)
return 0;
/* Register 3 contains fd, register 4 the NPC param pointer. */
regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
*fd = (int) regval;
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
*addr = (CORE_ADDR) regval;
return 1;
}
/* Find gdbarch for SPU context SPUFS_FD. */
static struct gdbarch *
spu_gdbarch (int spufs_fd)
{
struct gdbarch_info info;
gdbarch_info_init (&info);
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
info.byte_order = BFD_ENDIAN_BIG;
info.osabi = GDB_OSABI_LINUX;
info.tdep_info = (void *) &spufs_fd;
return gdbarch_find_by_info (info);
}
/* Override the to_thread_architecture routine. */
static struct gdbarch *
spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
{
int spufs_fd;
CORE_ADDR spufs_addr;
if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
return spu_gdbarch (spufs_fd);
return target_gdbarch;
}
/* Override the to_region_ok_for_hw_watchpoint routine. */
static int
spu_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
struct target_ops *ops_beneath = find_target_beneath (&spu_ops);
while (ops_beneath && !ops_beneath->to_region_ok_for_hw_watchpoint)
ops_beneath = find_target_beneath (ops_beneath);
/* We cannot watch SPU local store. */
if (SPUADDR_SPU (addr) != -1)
return 0;
if (ops_beneath)
return ops_beneath->to_region_ok_for_hw_watchpoint (addr, len);
return 0;
}
/* Override the to_fetch_registers routine. */
static void
spu_fetch_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct target_ops *ops_beneath = find_target_beneath (ops);
int spufs_fd;
CORE_ADDR spufs_addr;
/* This version applies only if we're currently in spu_run. */
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
{
while (ops_beneath && !ops_beneath->to_fetch_registers)
ops_beneath = find_target_beneath (ops_beneath);
gdb_assert (ops_beneath);
ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
return;
}
/* We must be stopped on a spu_run system call. */
if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
return;
/* The ID register holds the spufs file handle. */
if (regno == -1 || regno == SPU_ID_REGNUM)
{
char buf[4];
store_unsigned_integer (buf, 4, byte_order, spufs_fd);
regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
}
/* The NPC register is found in PPC memory at SPUFS_ADDR. */
if (regno == -1 || regno == SPU_PC_REGNUM)
{
char buf[4];
if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
buf, spufs_addr, sizeof buf) == sizeof buf)
regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
}
/* The GPRs are found in the "regs" spufs file. */
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
{
char buf[16 * SPU_NUM_GPRS], annex[32];
int i;
xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
buf, 0, sizeof buf) == sizeof buf)
for (i = 0; i < SPU_NUM_GPRS; i++)
regcache_raw_supply (regcache, i, buf + i*16);
}
}
/* Override the to_store_registers routine. */
static void
spu_store_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct target_ops *ops_beneath = find_target_beneath (ops);
int spufs_fd;
CORE_ADDR spufs_addr;
/* This version applies only if we're currently in spu_run. */
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
{
while (ops_beneath && !ops_beneath->to_fetch_registers)
ops_beneath = find_target_beneath (ops_beneath);
gdb_assert (ops_beneath);
ops_beneath->to_store_registers (ops_beneath, regcache, regno);
return;
}
/* We must be stopped on a spu_run system call. */
if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
return;
/* The NPC register is found in PPC memory at SPUFS_ADDR. */
if (regno == -1 || regno == SPU_PC_REGNUM)
{
char buf[4];
regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
buf, spufs_addr, sizeof buf);
}
/* The GPRs are found in the "regs" spufs file. */
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
{
char buf[16 * SPU_NUM_GPRS], annex[32];
int i;
for (i = 0; i < SPU_NUM_GPRS; i++)
regcache_raw_collect (regcache, i, buf + i*16);
xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
buf, 0, sizeof buf);
}
}
/* Override the to_xfer_partial routine. */
static LONGEST
spu_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
struct target_ops *ops_beneath = find_target_beneath (ops);
while (ops_beneath && !ops_beneath->to_xfer_partial)
ops_beneath = find_target_beneath (ops_beneath);
gdb_assert (ops_beneath);
/* Use the "mem" spufs file to access SPU local store. */
if (object == TARGET_OBJECT_MEMORY)
{
int fd = SPUADDR_SPU (offset);
CORE_ADDR addr = SPUADDR_ADDR (offset);
char mem_annex[32];
if (fd >= 0 && addr < SPU_LS_SIZE)
{
xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
mem_annex, readbuf, writebuf,
addr, len);
}
}
return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
readbuf, writebuf, offset, len);
}
/* Override the to_search_memory routine. */
static int
spu_search_memory (struct target_ops* ops,
CORE_ADDR start_addr, ULONGEST search_space_len,
const gdb_byte *pattern, ULONGEST pattern_len,
CORE_ADDR *found_addrp)
{
struct target_ops *ops_beneath = find_target_beneath (ops);
while (ops_beneath && !ops_beneath->to_search_memory)
ops_beneath = find_target_beneath (ops_beneath);
/* For SPU local store, always fall back to the simple method. Likewise
if we do not have any target-specific special implementation. */
if (!ops_beneath || SPUADDR_SPU (start_addr) >= 0)
return simple_search_memory (ops,
start_addr, search_space_len,
pattern, pattern_len, found_addrp);
return ops_beneath->to_search_memory (ops_beneath,
start_addr, search_space_len,
pattern, pattern_len, found_addrp);
}
/* Push and pop the SPU multi-architecture support target. */
static void
spu_multiarch_activate (void)
{
/* If GDB was configured without SPU architecture support,
we cannot install SPU multi-architecture support either. */
if (spu_gdbarch (-1) == NULL)
return;
push_target (&spu_ops);
/* Make sure the thread architecture is re-evaluated. */
registers_changed ();
}
static void
spu_multiarch_deactivate (void)
{
unpush_target (&spu_ops);
/* Make sure the thread architecture is re-evaluated. */
registers_changed ();
}
static void
spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
{
if (spu_standalone_p ())
spu_multiarch_activate ();
}
static void
spu_multiarch_solib_loaded (struct so_list *so)
{
if (!spu_standalone_p ())
if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
if (spu_nr_solib++ == 0)
spu_multiarch_activate ();
}
static void
spu_multiarch_solib_unloaded (struct so_list *so)
{
if (!spu_standalone_p ())
if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
if (--spu_nr_solib == 0)
spu_multiarch_deactivate ();
}
static void
spu_mourn_inferior (struct target_ops *ops)
{
struct target_ops *ops_beneath = find_target_beneath (ops);
while (ops_beneath && !ops_beneath->to_mourn_inferior)
ops_beneath = find_target_beneath (ops_beneath);
gdb_assert (ops_beneath);
ops_beneath->to_mourn_inferior (ops_beneath);
spu_multiarch_deactivate ();
}
/* Initialize the SPU multi-architecture support target. */
static void
init_spu_ops (void)
{
spu_ops.to_shortname = "spu";
spu_ops.to_longname = "SPU multi-architecture support.";
spu_ops.to_doc = "SPU multi-architecture support.";
spu_ops.to_mourn_inferior = spu_mourn_inferior;
spu_ops.to_fetch_registers = spu_fetch_registers;
spu_ops.to_store_registers = spu_store_registers;
spu_ops.to_xfer_partial = spu_xfer_partial;
spu_ops.to_search_memory = spu_search_memory;
spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
spu_ops.to_thread_architecture = spu_thread_architecture;
spu_ops.to_stratum = arch_stratum;
spu_ops.to_magic = OPS_MAGIC;
}
void
_initialize_spu_multiarch (void)
{
/* Install ourselves on the target stack. */
init_spu_ops ();
add_target (&spu_ops);
/* Install observers to watch for SPU objects. */
observer_attach_inferior_created (spu_multiarch_inferior_created);
observer_attach_solib_loaded (spu_multiarch_solib_loaded);
observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
}