659 lines
17 KiB
C
659 lines
17 KiB
C
/* Low level Unix child interface to ptrace, for GDB when running under Unix.
|
||
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
|
||
1999, 2000, 2001
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdb_string.h"
|
||
#include "regcache.h"
|
||
|
||
#include "gdb_wait.h"
|
||
|
||
#include "command.h"
|
||
|
||
#ifdef USG
|
||
#include <sys/types.h>
|
||
#endif
|
||
|
||
#include <sys/param.h>
|
||
#include "gdb_dirent.h"
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
|
||
#ifdef HAVE_PTRACE_H
|
||
#include <ptrace.h>
|
||
#else
|
||
#ifdef HAVE_SYS_PTRACE_H
|
||
#include <sys/ptrace.h>
|
||
#endif
|
||
#endif
|
||
|
||
#if !defined (PT_READ_I)
|
||
#define PT_READ_I 1 /* Read word from text space */
|
||
#endif
|
||
#if !defined (PT_READ_D)
|
||
#define PT_READ_D 2 /* Read word from data space */
|
||
#endif
|
||
#if !defined (PT_READ_U)
|
||
#define PT_READ_U 3 /* Read word from kernel user struct */
|
||
#endif
|
||
#if !defined (PT_WRITE_I)
|
||
#define PT_WRITE_I 4 /* Write word to text space */
|
||
#endif
|
||
#if !defined (PT_WRITE_D)
|
||
#define PT_WRITE_D 5 /* Write word to data space */
|
||
#endif
|
||
#if !defined (PT_WRITE_U)
|
||
#define PT_WRITE_U 6 /* Write word to kernel user struct */
|
||
#endif
|
||
#if !defined (PT_CONTINUE)
|
||
#define PT_CONTINUE 7 /* Continue after signal */
|
||
#endif
|
||
#if !defined (PT_STEP)
|
||
#define PT_STEP 9 /* Set flag for single stepping */
|
||
#endif
|
||
#if !defined (PT_KILL)
|
||
#define PT_KILL 8 /* Send child a SIGKILL signal */
|
||
#endif
|
||
|
||
#ifndef PT_ATTACH
|
||
#define PT_ATTACH PTRACE_ATTACH
|
||
#endif
|
||
#ifndef PT_DETACH
|
||
#define PT_DETACH PTRACE_DETACH
|
||
#endif
|
||
|
||
#include "gdbcore.h"
|
||
#ifndef NO_SYS_FILE
|
||
#include <sys/file.h>
|
||
#endif
|
||
#if 0
|
||
/* Don't think this is used anymore. On the sequent (not sure whether it's
|
||
dynix or ptx or both), it is included unconditionally by sys/user.h and
|
||
not protected against multiple inclusion. */
|
||
#include "gdb_stat.h"
|
||
#endif
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
#include <sys/user.h> /* Probably need to poke the user structure */
|
||
#if defined (KERNEL_U_ADDR_BSD)
|
||
#include <a.out.h> /* For struct nlist */
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
#endif /* !FETCH_INFERIOR_REGISTERS */
|
||
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
static void udot_info (char *, int);
|
||
#endif
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
static void fetch_register (int);
|
||
static void store_register (int);
|
||
#endif
|
||
|
||
/*
|
||
* Some systems (Linux) may have threads implemented as pseudo-processes,
|
||
* in which case we may be tracing more than one process at a time.
|
||
* In that case, inferior_pid will contain the main process ID and the
|
||
* individual thread (process) id mashed together. These macros are
|
||
* used to separate them out. The definitions may be overridden in tm.h
|
||
*
|
||
* NOTE: default definitions here are for systems with no threads.
|
||
* Useful definitions MUST be provided in tm.h
|
||
*/
|
||
|
||
#if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
|
||
#define PIDGET(PID) PID
|
||
#define TIDGET(PID) 0
|
||
#endif
|
||
|
||
void _initialize_kernel_u_addr (void);
|
||
void _initialize_infptrace (void);
|
||
|
||
|
||
/* This function simply calls ptrace with the given arguments.
|
||
It exists so that all calls to ptrace are isolated in this
|
||
machine-dependent file. */
|
||
int
|
||
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
|
||
{
|
||
int pt_status = 0;
|
||
|
||
#if 0
|
||
int saved_errno;
|
||
|
||
printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
|
||
request, pid, addr, data);
|
||
#endif
|
||
#if defined(PT_SETTRC)
|
||
/* If the parent can be told to attach to us, try to do it. */
|
||
if (request == PT_SETTRC)
|
||
{
|
||
errno = 0;
|
||
#if !defined (FIVE_ARG_PTRACE)
|
||
pt_status = ptrace (PT_SETTRC, pid, addr, data);
|
||
#else
|
||
/* Deal with HPUX 8.0 braindamage. We never use the
|
||
calls which require the fifth argument. */
|
||
pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
|
||
#endif
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
#if 0
|
||
printf (" = %d\n", pt_status);
|
||
#endif
|
||
if (pt_status < 0)
|
||
return pt_status;
|
||
else
|
||
return parent_attach_all (pid, addr, data);
|
||
}
|
||
#endif
|
||
|
||
#if defined(PT_CONTIN1)
|
||
/* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
|
||
signals. If it's available, use it. */
|
||
if (request == PT_CONTINUE)
|
||
request = PT_CONTIN1;
|
||
#endif
|
||
|
||
#if defined(PT_SINGLE1)
|
||
/* On HPUX, PT_SINGLE1 is a form of step that preserves pending
|
||
signals. If it's available, use it. */
|
||
if (request == PT_STEP)
|
||
request = PT_SINGLE1;
|
||
#endif
|
||
|
||
#if 0
|
||
saved_errno = errno;
|
||
errno = 0;
|
||
#endif
|
||
#if !defined (FIVE_ARG_PTRACE)
|
||
pt_status = ptrace (request, pid, addr, data);
|
||
#else
|
||
/* Deal with HPUX 8.0 braindamage. We never use the
|
||
calls which require the fifth argument. */
|
||
pt_status = ptrace (request, pid, addr, data, 0);
|
||
#endif
|
||
|
||
#if 0
|
||
if (errno)
|
||
printf (" [errno = %d]", errno);
|
||
|
||
errno = saved_errno;
|
||
printf (" = 0x%x\n", pt_status);
|
||
#endif
|
||
return pt_status;
|
||
}
|
||
|
||
|
||
#if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
|
||
/* For the rest of the file, use an extra level of indirection */
|
||
/* This lets us breakpoint usefully on call_ptrace. */
|
||
#define ptrace call_ptrace
|
||
#endif
|
||
|
||
/* Wait for a process to finish, possibly running a target-specific
|
||
hook before returning. */
|
||
|
||
int
|
||
ptrace_wait (int pid, int *status)
|
||
{
|
||
int wstate;
|
||
|
||
wstate = wait (status);
|
||
target_post_wait (wstate, *status);
|
||
return wstate;
|
||
}
|
||
|
||
void
|
||
kill_inferior (void)
|
||
{
|
||
int status;
|
||
|
||
if (inferior_pid == 0)
|
||
return;
|
||
|
||
/* This once used to call "kill" to kill the inferior just in case
|
||
the inferior was still running. As others have noted in the past
|
||
(kingdon) there shouldn't be any way to get here if the inferior
|
||
is still running -- else there's a major problem elsewere in gdb
|
||
and it needs to be fixed.
|
||
|
||
The kill call causes problems under hpux10, so it's been removed;
|
||
if this causes problems we'll deal with them as they arise. */
|
||
ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
ptrace_wait (0, &status);
|
||
target_mourn_inferior ();
|
||
}
|
||
|
||
#ifndef CHILD_RESUME
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
child_resume (int pid, int step, enum target_signal signal)
|
||
{
|
||
errno = 0;
|
||
|
||
if (pid == -1)
|
||
/* Resume all threads. */
|
||
/* I think this only gets used in the non-threaded case, where "resume
|
||
all threads" and "resume inferior_pid" are the same. */
|
||
pid = inferior_pid;
|
||
|
||
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
||
it was. (If GDB wanted it to start some other way, we have already
|
||
written a new PC value to the child.)
|
||
|
||
If this system does not support PT_STEP, a higher level function will
|
||
have called single_step() to transmute the step request into a
|
||
continue request (by setting breakpoints on all possible successor
|
||
instructions), so we don't have to worry about that here. */
|
||
|
||
if (step)
|
||
{
|
||
if (SOFTWARE_SINGLE_STEP_P ())
|
||
internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
|
||
else
|
||
ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
|
||
target_signal_to_host (signal));
|
||
}
|
||
else
|
||
ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
|
||
target_signal_to_host (signal));
|
||
|
||
if (errno)
|
||
{
|
||
perror_with_name ("ptrace");
|
||
}
|
||
}
|
||
#endif /* CHILD_RESUME */
|
||
|
||
|
||
#ifdef ATTACH_DETACH
|
||
/* Start debugging the process whose number is PID. */
|
||
int
|
||
attach (int pid)
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
/* Stop debugging the process whose number is PID
|
||
and continue it with signal number SIGNAL.
|
||
SIGNAL = 0 means just continue it. */
|
||
|
||
void
|
||
detach (int signal)
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 0;
|
||
}
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
/* Default the type of the ptrace transfer to int. */
|
||
#ifndef PTRACE_XFER_TYPE
|
||
#define PTRACE_XFER_TYPE int
|
||
#endif
|
||
|
||
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
|
||
to get the offset in the core file of the register values. */
|
||
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
|
||
/* Get kernel_u_addr using BSD-style nlist(). */
|
||
CORE_ADDR kernel_u_addr;
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
|
||
void
|
||
_initialize_kernel_u_addr (void)
|
||
{
|
||
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
|
||
struct nlist names[2];
|
||
|
||
names[0].n_un.n_name = "_u";
|
||
names[1].n_un.n_name = NULL;
|
||
if (nlist ("/vmunix", names) == 0)
|
||
kernel_u_addr = names[0].n_value;
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"Unable to get kernel u area address.");
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
}
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
|
||
#if !defined (offsetof)
|
||
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
||
#endif
|
||
|
||
/* U_REGS_OFFSET is the offset of the registers within the u area. */
|
||
#if !defined (U_REGS_OFFSET)
|
||
#define U_REGS_OFFSET \
|
||
ptrace (PT_READ_U, inferior_pid, \
|
||
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
|
||
- KERNEL_U_ADDR
|
||
#endif
|
||
|
||
/* Registers we shouldn't try to fetch. */
|
||
#if !defined (CANNOT_FETCH_REGISTER)
|
||
#define CANNOT_FETCH_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Fetch one register. */
|
||
|
||
static void
|
||
fetch_register (int regno)
|
||
{
|
||
/* This isn't really an address. But ptrace thinks of it as one. */
|
||
CORE_ADDR regaddr;
|
||
char mess[128]; /* For messages */
|
||
register int i;
|
||
unsigned int offset; /* Offset of registers within the u area. */
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
int tid;
|
||
|
||
if (CANNOT_FETCH_REGISTER (regno))
|
||
{
|
||
memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
|
||
supply_register (regno, buf);
|
||
return;
|
||
}
|
||
|
||
/* Overload thread id onto process id */
|
||
if ((tid = TIDGET (inferior_pid)) == 0)
|
||
tid = inferior_pid; /* no thread id, just use process id */
|
||
|
||
offset = U_REGS_OFFSET;
|
||
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
*(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
|
||
(PTRACE_ARG3_TYPE) regaddr, 0);
|
||
regaddr += sizeof (PTRACE_XFER_TYPE);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (mess, "reading register %s (#%d)",
|
||
REGISTER_NAME (regno), regno);
|
||
perror_with_name (mess);
|
||
}
|
||
}
|
||
supply_register (regno, buf);
|
||
}
|
||
|
||
|
||
/* Fetch register values from the inferior.
|
||
If REGNO is negative, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
if (regno >= 0)
|
||
{
|
||
fetch_register (regno);
|
||
}
|
||
else
|
||
{
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
fetch_register (regno);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Registers we shouldn't try to store. */
|
||
#if !defined (CANNOT_STORE_REGISTER)
|
||
#define CANNOT_STORE_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Store one register. */
|
||
|
||
static void
|
||
store_register (int regno)
|
||
{
|
||
/* This isn't really an address. But ptrace thinks of it as one. */
|
||
CORE_ADDR regaddr;
|
||
char mess[128]; /* For messages */
|
||
register int i;
|
||
unsigned int offset; /* Offset of registers within the u area. */
|
||
int tid;
|
||
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* Overload thread id onto process id */
|
||
if ((tid = TIDGET (inferior_pid)) == 0)
|
||
tid = inferior_pid; /* no thread id, just use process id */
|
||
|
||
offset = U_REGS_OFFSET;
|
||
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
|
||
*(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
|
||
regaddr += sizeof (PTRACE_XFER_TYPE);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (mess, "writing register %s (#%d)",
|
||
REGISTER_NAME (regno), regno);
|
||
perror_with_name (mess);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is negative, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
if (regno >= 0)
|
||
{
|
||
store_register (regno);
|
||
}
|
||
else
|
||
{
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
store_register (regno);
|
||
}
|
||
}
|
||
}
|
||
#endif /* !defined (FETCH_INFERIOR_REGISTERS). */
|
||
|
||
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero. TARGET is ignored.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. */
|
||
|
||
int
|
||
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
||
struct mem_attrib *attrib ATTRIBUTE_UNUSED,
|
||
struct target_ops *target)
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
||
/ sizeof (PTRACE_XFER_TYPE);
|
||
/* Allocate buffer of that many longwords. */
|
||
register PTRACE_XFER_TYPE *buffer
|
||
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_pid),
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (PT_READ_I, PIDGET (inferior_pid),
|
||
((PTRACE_ARG3_TYPE)
|
||
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
myaddr,
|
||
len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, PIDGET (inferior_pid),
|
||
(PTRACE_ARG3_TYPE) addr, buffer[i]);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WRITE_I, PIDGET (inferior_pid),
|
||
(PTRACE_ARG3_TYPE) addr, buffer[i]);
|
||
}
|
||
if (errno)
|
||
return 0;
|
||
}
|
||
#ifdef CLEAR_INSN_CACHE
|
||
CLEAR_INSN_CACHE ();
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_pid),
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr,
|
||
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
len);
|
||
}
|
||
return len;
|
||
}
|
||
|
||
|
||
static void
|
||
udot_info (char *dummy1, int dummy2)
|
||
{
|
||
#if defined (KERNEL_U_SIZE)
|
||
int udot_off; /* Offset into user struct */
|
||
int udot_val; /* Value from user struct at udot_off */
|
||
char mess[128]; /* For messages */
|
||
#endif
|
||
|
||
if (!target_has_execution)
|
||
{
|
||
error ("The program is not being run.");
|
||
}
|
||
|
||
#if !defined (KERNEL_U_SIZE)
|
||
|
||
/* Adding support for this command is easy. Typically you just add a
|
||
routine, called "kernel_u_size" that returns the size of the user
|
||
struct, to the appropriate *-nat.c file and then add to the native
|
||
config file "#define KERNEL_U_SIZE kernel_u_size()" */
|
||
error ("Don't know how large ``struct user'' is in this version of gdb.");
|
||
|
||
#else
|
||
|
||
for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
|
||
{
|
||
if ((udot_off % 24) == 0)
|
||
{
|
||
if (udot_off > 0)
|
||
{
|
||
printf_filtered ("\n");
|
||
}
|
||
printf_filtered ("%04x:", udot_off);
|
||
}
|
||
udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
|
||
perror_with_name (mess);
|
||
}
|
||
/* Avoid using nonportable (?) "*" in print specs */
|
||
printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
|
||
}
|
||
printf_filtered ("\n");
|
||
|
||
#endif
|
||
}
|
||
#endif /* !defined (CHILD_XFER_MEMORY). */
|
||
|
||
|
||
void
|
||
_initialize_infptrace (void)
|
||
{
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
add_info ("udot", udot_info,
|
||
"Print contents of kernel ``struct user'' for current child.");
|
||
#endif
|
||
}
|