b10a8ae01c
2007-09-17 H.J. Lu <hongjiu.lu@intel.com> PR binutils/3281 PR binutils/5037 * elf-bfd.h (elf_obj_tdata): Remove relro. * elf.c (get_program_header_size): Check info->relro instead of elf_tdata (abfd)->relro. (_bfd_elf_map_sections_to_segments): Likewise. (assign_file_positions_for_load_sections): Don't set PT_GNU_RELRO segment alignment here. (assign_file_positions_for_non_load_sections): Properly set up PT_GNU_RELRO segment for copying executable/shared library. (rewrite_elf_program_header): Remove PT_GNU_RELRO segment. (copy_elf_program_header): Set p_size and p_size_valid fields for PT_GNU_RELRO segment. include/elf/ 2007-09-17 H.J. Lu <hongjiu.lu@intel.com> PR binutils/3281 PR binutils/5037 * internal.h (elf_segment_map): Add p_size and p_size_valid. (ELF_IS_SECTION_IN_SEGMENT): Allow SHF_TLS sections in PT_GNU_RELRO segments. ld/ 2007-09-17 H.J. Lu <hongjiu.lu@intel.com> PR binutils/3281 PR binutils/5037 * ldexp.h (ldexp_control): Add relro, relro_start_stat and relro_end_stat. * ldexp.c (fold_binary): Set expld.dataseg.relro to exp_dataseg_relro_start or exp_dataseg_relro_end when seeing DATA_SEGMENT_ALIGN or DATA_SEGMENT_RELRO_END, respectively. * ldlang.c (lang_size_sections_1): Properly set expld.dataseg.relro_start_stat and expld.dataseg.relro_end_stat. (find_relro_section_callback): New function. (lang_find_relro_sections_1): Likewise. (lang_find_relro_sections): Likewise. (lang_process): Call lang_find_relro_sections for non-relocatable link. ld/testsuite/ 2007-09-17 H.J. Lu <hongjiu.lu@intel.com> PR binutils/3281 PR binutils/5037 * ld-elf/binutils.exp: Update "-z relro" tests to use relro1.s. Add "-z relro" tests with relro2.s. Add "-z relro" tests with TLS for objcopy. * ld-elf/relro1.s: New file. * ld-elf/relro2.s: Likewise.
306 lines
12 KiB
C
306 lines
12 KiB
C
/* ELF support for BFD.
|
|
Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 2000, 2001, 2002,
|
|
2003, 2006, 2007 Free Software Foundation, Inc.
|
|
|
|
Written by Fred Fish @ Cygnus Support, from information published
|
|
in "UNIX System V Release 4, Programmers Guide: ANSI C and
|
|
Programming Support Tools".
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
|
|
/* This file is part of ELF support for BFD, and contains the portions
|
|
that describe how ELF is represented internally in the BFD library.
|
|
I.E. it describes the in-memory representation of ELF. It requires
|
|
the elf-common.h file which contains the portions that are common to
|
|
both the internal and external representations. */
|
|
|
|
|
|
/* NOTE that these structures are not kept in the same order as they appear
|
|
in the object file. In some cases they've been reordered for more optimal
|
|
packing under various circumstances. */
|
|
|
|
#ifndef _ELF_INTERNAL_H
|
|
#define _ELF_INTERNAL_H
|
|
|
|
/* ELF Header */
|
|
|
|
#define EI_NIDENT 16 /* Size of e_ident[] */
|
|
|
|
typedef struct elf_internal_ehdr {
|
|
unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */
|
|
bfd_vma e_entry; /* Entry point virtual address */
|
|
bfd_size_type e_phoff; /* Program header table file offset */
|
|
bfd_size_type e_shoff; /* Section header table file offset */
|
|
unsigned long e_version; /* Identifies object file version */
|
|
unsigned long e_flags; /* Processor-specific flags */
|
|
unsigned short e_type; /* Identifies object file type */
|
|
unsigned short e_machine; /* Specifies required architecture */
|
|
unsigned int e_ehsize; /* ELF header size in bytes */
|
|
unsigned int e_phentsize; /* Program header table entry size */
|
|
unsigned int e_phnum; /* Program header table entry count */
|
|
unsigned int e_shentsize; /* Section header table entry size */
|
|
unsigned int e_shnum; /* Section header table entry count */
|
|
unsigned int e_shstrndx; /* Section header string table index */
|
|
} Elf_Internal_Ehdr;
|
|
|
|
/* Program header */
|
|
|
|
struct elf_internal_phdr {
|
|
unsigned long p_type; /* Identifies program segment type */
|
|
unsigned long p_flags; /* Segment flags */
|
|
bfd_vma p_offset; /* Segment file offset */
|
|
bfd_vma p_vaddr; /* Segment virtual address */
|
|
bfd_vma p_paddr; /* Segment physical address */
|
|
bfd_vma p_filesz; /* Segment size in file */
|
|
bfd_vma p_memsz; /* Segment size in memory */
|
|
bfd_vma p_align; /* Segment alignment, file & memory */
|
|
};
|
|
|
|
typedef struct elf_internal_phdr Elf_Internal_Phdr;
|
|
|
|
/* Section header */
|
|
|
|
typedef struct elf_internal_shdr {
|
|
unsigned int sh_name; /* Section name, index in string tbl */
|
|
unsigned int sh_type; /* Type of section */
|
|
bfd_vma sh_flags; /* Miscellaneous section attributes */
|
|
bfd_vma sh_addr; /* Section virtual addr at execution */
|
|
bfd_size_type sh_size; /* Size of section in bytes */
|
|
bfd_size_type sh_entsize; /* Entry size if section holds table */
|
|
unsigned long sh_link; /* Index of another section */
|
|
unsigned long sh_info; /* Additional section information */
|
|
file_ptr sh_offset; /* Section file offset */
|
|
unsigned int sh_addralign; /* Section alignment */
|
|
|
|
/* The internal rep also has some cached info associated with it. */
|
|
asection * bfd_section; /* Associated BFD section. */
|
|
unsigned char *contents; /* Section contents. */
|
|
} Elf_Internal_Shdr;
|
|
|
|
/* Symbol table entry */
|
|
|
|
struct elf_internal_sym {
|
|
bfd_vma st_value; /* Value of the symbol */
|
|
bfd_vma st_size; /* Associated symbol size */
|
|
unsigned long st_name; /* Symbol name, index in string tbl */
|
|
unsigned char st_info; /* Type and binding attributes */
|
|
unsigned char st_other; /* Visibilty, and target specific */
|
|
unsigned int st_shndx; /* Associated section index */
|
|
};
|
|
|
|
typedef struct elf_internal_sym Elf_Internal_Sym;
|
|
|
|
/* Note segments */
|
|
|
|
typedef struct elf_internal_note {
|
|
unsigned long namesz; /* Size of entry's owner string */
|
|
unsigned long descsz; /* Size of the note descriptor */
|
|
unsigned long type; /* Interpretation of the descriptor */
|
|
char * namedata; /* Start of the name+desc data */
|
|
char * descdata; /* Start of the desc data */
|
|
bfd_vma descpos; /* File offset of the descdata */
|
|
} Elf_Internal_Note;
|
|
|
|
/* Relocation Entries */
|
|
|
|
typedef struct elf_internal_rela {
|
|
bfd_vma r_offset; /* Location at which to apply the action */
|
|
bfd_vma r_info; /* Index and Type of relocation */
|
|
bfd_vma r_addend; /* Constant addend used to compute value */
|
|
} Elf_Internal_Rela;
|
|
|
|
/* dynamic section structure */
|
|
|
|
typedef struct elf_internal_dyn {
|
|
/* This needs to support 64-bit values in elf64. */
|
|
bfd_vma d_tag; /* entry tag value */
|
|
union {
|
|
/* This needs to support 64-bit values in elf64. */
|
|
bfd_vma d_val;
|
|
bfd_vma d_ptr;
|
|
} d_un;
|
|
} Elf_Internal_Dyn;
|
|
|
|
/* This structure appears in a SHT_GNU_verdef section. */
|
|
|
|
typedef struct elf_internal_verdef {
|
|
unsigned short vd_version; /* Version number of structure. */
|
|
unsigned short vd_flags; /* Flags (VER_FLG_*). */
|
|
unsigned short vd_ndx; /* Version index. */
|
|
unsigned short vd_cnt; /* Number of verdaux entries. */
|
|
unsigned long vd_hash; /* Hash of name. */
|
|
unsigned long vd_aux; /* Offset to verdaux entries. */
|
|
unsigned long vd_next; /* Offset to next verdef. */
|
|
|
|
/* These fields are set up when BFD reads in the structure. FIXME:
|
|
It would be cleaner to store these in a different structure. */
|
|
bfd *vd_bfd; /* BFD. */
|
|
const char *vd_nodename; /* Version name. */
|
|
struct elf_internal_verdef *vd_nextdef; /* vd_next as pointer. */
|
|
struct elf_internal_verdaux *vd_auxptr; /* vd_aux as pointer. */
|
|
unsigned int vd_exp_refno; /* Used by the linker. */
|
|
} Elf_Internal_Verdef;
|
|
|
|
/* This structure appears in a SHT_GNU_verdef section. */
|
|
|
|
typedef struct elf_internal_verdaux {
|
|
unsigned long vda_name; /* String table offset of name. */
|
|
unsigned long vda_next; /* Offset to next verdaux. */
|
|
|
|
/* These fields are set up when BFD reads in the structure. FIXME:
|
|
It would be cleaner to store these in a different structure. */
|
|
const char *vda_nodename; /* vda_name as pointer. */
|
|
struct elf_internal_verdaux *vda_nextptr; /* vda_next as pointer. */
|
|
} Elf_Internal_Verdaux;
|
|
|
|
/* This structure appears in a SHT_GNU_verneed section. */
|
|
|
|
typedef struct elf_internal_verneed {
|
|
unsigned short vn_version; /* Version number of structure. */
|
|
unsigned short vn_cnt; /* Number of vernaux entries. */
|
|
unsigned long vn_file; /* String table offset of library name. */
|
|
unsigned long vn_aux; /* Offset to vernaux entries. */
|
|
unsigned long vn_next; /* Offset to next verneed. */
|
|
|
|
/* These fields are set up when BFD reads in the structure. FIXME:
|
|
It would be cleaner to store these in a different structure. */
|
|
bfd *vn_bfd; /* BFD. */
|
|
const char *vn_filename; /* vn_file as pointer. */
|
|
struct elf_internal_vernaux *vn_auxptr; /* vn_aux as pointer. */
|
|
struct elf_internal_verneed *vn_nextref; /* vn_nextref as pointer. */
|
|
} Elf_Internal_Verneed;
|
|
|
|
/* This structure appears in a SHT_GNU_verneed section. */
|
|
|
|
typedef struct elf_internal_vernaux {
|
|
unsigned long vna_hash; /* Hash of dependency name. */
|
|
unsigned short vna_flags; /* Flags (VER_FLG_*). */
|
|
unsigned short vna_other; /* Unused. */
|
|
unsigned long vna_name; /* String table offset to version name. */
|
|
unsigned long vna_next; /* Offset to next vernaux. */
|
|
|
|
/* These fields are set up when BFD reads in the structure. FIXME:
|
|
It would be cleaner to store these in a different structure. */
|
|
const char *vna_nodename; /* vna_name as pointer. */
|
|
struct elf_internal_vernaux *vna_nextptr; /* vna_next as pointer. */
|
|
} Elf_Internal_Vernaux;
|
|
|
|
/* This structure appears in a SHT_GNU_versym section. This is not a
|
|
standard ELF structure; ELF just uses Elf32_Half. */
|
|
|
|
typedef struct elf_internal_versym {
|
|
unsigned short vs_vers;
|
|
} Elf_Internal_Versym;
|
|
|
|
/* Structure for syminfo section. */
|
|
typedef struct
|
|
{
|
|
unsigned short int si_boundto;
|
|
unsigned short int si_flags;
|
|
} Elf_Internal_Syminfo;
|
|
|
|
/* This structure appears on the stack and in NT_AUXV core file notes. */
|
|
typedef struct
|
|
{
|
|
bfd_vma a_type;
|
|
bfd_vma a_val;
|
|
} Elf_Internal_Auxv;
|
|
|
|
|
|
/* This structure is used to describe how sections should be assigned
|
|
to program segments. */
|
|
|
|
struct elf_segment_map
|
|
{
|
|
/* Next program segment. */
|
|
struct elf_segment_map *next;
|
|
/* Program segment type. */
|
|
unsigned long p_type;
|
|
/* Program segment flags. */
|
|
unsigned long p_flags;
|
|
/* Program segment physical address. */
|
|
bfd_vma p_paddr;
|
|
/* Program segment virtual address offset from section vma. */
|
|
bfd_vma p_vaddr_offset;
|
|
/* Program segment alignment. */
|
|
bfd_vma p_align;
|
|
/* Segment size in file and memory */
|
|
bfd_vma p_size;
|
|
/* Whether the p_flags field is valid; if not, the flags are based
|
|
on the section flags. */
|
|
unsigned int p_flags_valid : 1;
|
|
/* Whether the p_paddr field is valid; if not, the physical address
|
|
is based on the section lma values. */
|
|
unsigned int p_paddr_valid : 1;
|
|
/* Whether the p_align field is valid; if not, PT_LOAD segment
|
|
alignment is based on the default maximum page size. */
|
|
unsigned int p_align_valid : 1;
|
|
/* Whether the p_size field is valid; if not, the size are based
|
|
on the section sizes. */
|
|
unsigned int p_size_valid : 1;
|
|
/* Whether this segment includes the file header. */
|
|
unsigned int includes_filehdr : 1;
|
|
/* Whether this segment includes the program headers. */
|
|
unsigned int includes_phdrs : 1;
|
|
/* Number of sections (may be 0). */
|
|
unsigned int count;
|
|
/* Sections. Actual number of elements is in count field. */
|
|
asection *sections[1];
|
|
};
|
|
|
|
/* .tbss is special. It doesn't contribute memory space to normal
|
|
segments and it doesn't take file space in normal segments. */
|
|
#define ELF_SECTION_SIZE(sec_hdr, segment) \
|
|
(((sec_hdr->sh_flags & SHF_TLS) == 0 \
|
|
|| sec_hdr->sh_type != SHT_NOBITS \
|
|
|| segment->p_type == PT_TLS) ? sec_hdr->sh_size : 0)
|
|
|
|
/* Decide if the given sec_hdr is in the given segment. PT_TLS segment
|
|
contains only SHF_TLS sections. Only PT_LOAD, PT_GNU_RELRO and
|
|
and PT_TLS segments can contain SHF_TLS sections. */
|
|
#define ELF_IS_SECTION_IN_SEGMENT(sec_hdr, segment) \
|
|
(((((sec_hdr->sh_flags & SHF_TLS) != 0) \
|
|
&& (segment->p_type == PT_TLS \
|
|
|| segment->p_type == PT_GNU_RELRO \
|
|
|| segment->p_type == PT_LOAD)) \
|
|
|| ((sec_hdr->sh_flags & SHF_TLS) == 0 \
|
|
&& segment->p_type != PT_TLS)) \
|
|
/* Any section besides one of type SHT_NOBITS must have a file \
|
|
offset within the segment. */ \
|
|
&& (sec_hdr->sh_type == SHT_NOBITS \
|
|
|| ((bfd_vma) sec_hdr->sh_offset >= segment->p_offset \
|
|
&& (sec_hdr->sh_offset + ELF_SECTION_SIZE(sec_hdr, segment) \
|
|
<= segment->p_offset + segment->p_filesz))) \
|
|
/* SHF_ALLOC sections must have VMAs within the segment. */ \
|
|
&& ((sec_hdr->sh_flags & SHF_ALLOC) == 0 \
|
|
|| (sec_hdr->sh_addr >= segment->p_vaddr \
|
|
&& (sec_hdr->sh_addr + ELF_SECTION_SIZE(sec_hdr, segment) \
|
|
<= segment->p_vaddr + segment->p_memsz))))
|
|
|
|
/* Decide if the given sec_hdr is in the given segment in file. */
|
|
#define ELF_IS_SECTION_IN_SEGMENT_FILE(sec_hdr, segment) \
|
|
(sec_hdr->sh_size > 0 \
|
|
&& ELF_IS_SECTION_IN_SEGMENT (sec_hdr, segment))
|
|
|
|
/* Decide if the given sec_hdr is in the given segment in memory. */
|
|
#define ELF_IS_SECTION_IN_SEGMENT_MEMORY(sec_hdr, segment) \
|
|
(ELF_SECTION_SIZE(sec_hdr, segment) > 0 \
|
|
&& ELF_IS_SECTION_IN_SEGMENT (sec_hdr, segment))
|
|
|
|
#endif /* _ELF_INTERNAL_H */
|