binutils-gdb/gdb/gdbserver/linux-arm-low.c

923 lines
24 KiB
C

/* GNU/Linux/ARM specific low level interface, for the remote server for GDB.
Copyright (C) 1995-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "server.h"
#include "linux-low.h"
/* Don't include elf.h if linux/elf.h got included by gdb_proc_service.h.
On Bionic elf.h and linux/elf.h have conflicting definitions. */
#ifndef ELFMAG0
#include <elf.h>
#endif
#include <sys/ptrace.h>
#include <signal.h>
/* Defined in auto-generated files. */
void init_registers_arm (void);
extern const struct target_desc *tdesc_arm;
void init_registers_arm_with_iwmmxt (void);
extern const struct target_desc *tdesc_arm_with_iwmmxt;
void init_registers_arm_with_vfpv2 (void);
extern const struct target_desc *tdesc_arm_with_vfpv2;
void init_registers_arm_with_vfpv3 (void);
extern const struct target_desc *tdesc_arm_with_vfpv3;
void init_registers_arm_with_neon (void);
extern const struct target_desc *tdesc_arm_with_neon;
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 22
#endif
#ifndef PTRACE_GETWMMXREGS
# define PTRACE_GETWMMXREGS 18
# define PTRACE_SETWMMXREGS 19
#endif
#ifndef PTRACE_GETVFPREGS
# define PTRACE_GETVFPREGS 27
# define PTRACE_SETVFPREGS 28
#endif
#ifndef PTRACE_GETHBPREGS
#define PTRACE_GETHBPREGS 29
#define PTRACE_SETHBPREGS 30
#endif
/* Information describing the hardware breakpoint capabilities. */
static struct
{
unsigned char arch;
unsigned char max_wp_length;
unsigned char wp_count;
unsigned char bp_count;
} arm_linux_hwbp_cap;
/* Enum describing the different types of ARM hardware break-/watch-points. */
typedef enum
{
arm_hwbp_break = 0,
arm_hwbp_load = 1,
arm_hwbp_store = 2,
arm_hwbp_access = 3
} arm_hwbp_type;
/* Type describing an ARM Hardware Breakpoint Control register value. */
typedef unsigned int arm_hwbp_control_t;
/* Structure used to keep track of hardware break-/watch-points. */
struct arm_linux_hw_breakpoint
{
/* Address to break on, or being watched. */
unsigned int address;
/* Control register for break-/watch- point. */
arm_hwbp_control_t control;
};
/* Since we cannot dynamically allocate subfields of arch_process_info,
assume a maximum number of supported break-/watchpoints. */
#define MAX_BPTS 32
#define MAX_WPTS 32
/* Per-process arch-specific data we want to keep. */
struct arch_process_info
{
/* Hardware breakpoints for this process. */
struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
/* Hardware watchpoints for this process. */
struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
};
/* Per-thread arch-specific data we want to keep. */
struct arch_lwp_info
{
/* Non-zero if our copy differs from what's recorded in the thread. */
char bpts_changed[MAX_BPTS];
char wpts_changed[MAX_WPTS];
/* Cached stopped data address. */
CORE_ADDR stopped_data_address;
};
static unsigned long arm_hwcap;
/* These are in <asm/elf.h> in current kernels. */
#define HWCAP_VFP 64
#define HWCAP_IWMMXT 512
#define HWCAP_NEON 4096
#define HWCAP_VFPv3 8192
#define HWCAP_VFPv3D16 16384
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
#define arm_num_regs 26
static int arm_regmap[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
64
};
static int
arm_cannot_store_register (int regno)
{
return (regno >= arm_num_regs);
}
static int
arm_cannot_fetch_register (int regno)
{
return (regno >= arm_num_regs);
}
static void
arm_fill_gregset (struct regcache *regcache, void *buf)
{
int i;
for (i = 0; i < arm_num_regs; i++)
if (arm_regmap[i] != -1)
collect_register (regcache, i, ((char *) buf) + arm_regmap[i]);
}
static void
arm_store_gregset (struct regcache *regcache, const void *buf)
{
int i;
char zerobuf[8];
memset (zerobuf, 0, 8);
for (i = 0; i < arm_num_regs; i++)
if (arm_regmap[i] != -1)
supply_register (regcache, i, ((char *) buf) + arm_regmap[i]);
else
supply_register (regcache, i, zerobuf);
}
static void
arm_fill_wmmxregset (struct regcache *regcache, void *buf)
{
int i;
if (!(arm_hwcap & HWCAP_IWMMXT))
return;
for (i = 0; i < 16; i++)
collect_register (regcache, arm_num_regs + i, (char *) buf + i * 8);
/* We only have access to wcssf, wcasf, and wcgr0-wcgr3. */
for (i = 0; i < 6; i++)
collect_register (regcache, arm_num_regs + i + 16,
(char *) buf + 16 * 8 + i * 4);
}
static void
arm_store_wmmxregset (struct regcache *regcache, const void *buf)
{
int i;
if (!(arm_hwcap & HWCAP_IWMMXT))
return;
for (i = 0; i < 16; i++)
supply_register (regcache, arm_num_regs + i, (char *) buf + i * 8);
/* We only have access to wcssf, wcasf, and wcgr0-wcgr3. */
for (i = 0; i < 6; i++)
supply_register (regcache, arm_num_regs + i + 16,
(char *) buf + 16 * 8 + i * 4);
}
static void
arm_fill_vfpregset (struct regcache *regcache, void *buf)
{
int i, num, base;
if (!(arm_hwcap & HWCAP_VFP))
return;
if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
num = 32;
else
num = 16;
base = find_regno (regcache->tdesc, "d0");
for (i = 0; i < num; i++)
collect_register (regcache, base + i, (char *) buf + i * 8);
collect_register_by_name (regcache, "fpscr", (char *) buf + 32 * 8);
}
static void
arm_store_vfpregset (struct regcache *regcache, const void *buf)
{
int i, num, base;
if (!(arm_hwcap & HWCAP_VFP))
return;
if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
num = 32;
else
num = 16;
base = find_regno (regcache->tdesc, "d0");
for (i = 0; i < num; i++)
supply_register (regcache, base + i, (char *) buf + i * 8);
supply_register_by_name (regcache, "fpscr", (char *) buf + 32 * 8);
}
extern int debug_threads;
static CORE_ADDR
arm_get_pc (struct regcache *regcache)
{
unsigned long pc;
collect_register_by_name (regcache, "pc", &pc);
if (debug_threads)
debug_printf ("stop pc is %08lx\n", pc);
return pc;
}
static void
arm_set_pc (struct regcache *regcache, CORE_ADDR pc)
{
unsigned long newpc = pc;
supply_register_by_name (regcache, "pc", &newpc);
}
/* Correct in either endianness. */
static const unsigned long arm_breakpoint = 0xef9f0001;
#define arm_breakpoint_len 4
static const unsigned short thumb_breakpoint = 0xde01;
static const unsigned short thumb2_breakpoint[] = { 0xf7f0, 0xa000 };
/* For new EABI binaries. We recognize it regardless of which ABI
is used for gdbserver, so single threaded debugging should work
OK, but for multi-threaded debugging we only insert the current
ABI's breakpoint instruction. For now at least. */
static const unsigned long arm_eabi_breakpoint = 0xe7f001f0;
static int
arm_breakpoint_at (CORE_ADDR where)
{
struct regcache *regcache = get_thread_regcache (current_inferior, 1);
unsigned long cpsr;
collect_register_by_name (regcache, "cpsr", &cpsr);
if (cpsr & 0x20)
{
/* Thumb mode. */
unsigned short insn;
(*the_target->read_memory) (where, (unsigned char *) &insn, 2);
if (insn == thumb_breakpoint)
return 1;
if (insn == thumb2_breakpoint[0])
{
(*the_target->read_memory) (where + 2, (unsigned char *) &insn, 2);
if (insn == thumb2_breakpoint[1])
return 1;
}
}
else
{
/* ARM mode. */
unsigned long insn;
(*the_target->read_memory) (where, (unsigned char *) &insn, 4);
if (insn == arm_breakpoint)
return 1;
if (insn == arm_eabi_breakpoint)
return 1;
}
return 0;
}
/* We only place breakpoints in empty marker functions, and thread locking
is outside of the function. So rather than importing software single-step,
we can just run until exit. */
static CORE_ADDR
arm_reinsert_addr (void)
{
struct regcache *regcache = get_thread_regcache (current_inferior, 1);
unsigned long pc;
collect_register_by_name (regcache, "lr", &pc);
return pc;
}
/* Fetch the thread-local storage pointer for libthread_db. */
ps_err_e
ps_get_thread_area (const struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
return PS_ERR;
/* IDX is the bias from the thread pointer to the beginning of the
thread descriptor. It has to be subtracted due to implementation
quirks in libthread_db. */
*base = (void *) ((char *)*base - idx);
return PS_OK;
}
/* Query Hardware Breakpoint information for the target we are attached to
(using PID as ptrace argument) and set up arm_linux_hwbp_cap. */
static void
arm_linux_init_hwbp_cap (int pid)
{
unsigned int val;
if (ptrace (PTRACE_GETHBPREGS, pid, 0, &val) < 0)
return;
arm_linux_hwbp_cap.arch = (unsigned char)((val >> 24) & 0xff);
if (arm_linux_hwbp_cap.arch == 0)
return;
arm_linux_hwbp_cap.max_wp_length = (unsigned char)((val >> 16) & 0xff);
arm_linux_hwbp_cap.wp_count = (unsigned char)((val >> 8) & 0xff);
arm_linux_hwbp_cap.bp_count = (unsigned char)(val & 0xff);
if (arm_linux_hwbp_cap.wp_count > MAX_WPTS)
internal_error (__FILE__, __LINE__, "Unsupported number of watchpoints");
if (arm_linux_hwbp_cap.bp_count > MAX_BPTS)
internal_error (__FILE__, __LINE__, "Unsupported number of breakpoints");
}
/* How many hardware breakpoints are available? */
static int
arm_linux_get_hw_breakpoint_count (void)
{
return arm_linux_hwbp_cap.bp_count;
}
/* How many hardware watchpoints are available? */
static int
arm_linux_get_hw_watchpoint_count (void)
{
return arm_linux_hwbp_cap.wp_count;
}
/* Maximum length of area watched by hardware watchpoint. */
static int
arm_linux_get_hw_watchpoint_max_length (void)
{
return arm_linux_hwbp_cap.max_wp_length;
}
/* Initialize an ARM hardware break-/watch-point control register value.
BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
type of break-/watch-point; ENABLE indicates whether the point is enabled.
*/
static arm_hwbp_control_t
arm_hwbp_control_initialize (unsigned byte_address_select,
arm_hwbp_type hwbp_type,
int enable)
{
gdb_assert ((byte_address_select & ~0xffU) == 0);
gdb_assert (hwbp_type != arm_hwbp_break
|| ((byte_address_select & 0xfU) != 0));
return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
}
/* Does the breakpoint control value CONTROL have the enable bit set? */
static int
arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
{
return control & 0x1;
}
/* Is the breakpoint control value CONTROL initialized? */
static int
arm_hwbp_control_is_initialized (arm_hwbp_control_t control)
{
return control != 0;
}
/* Change a breakpoint control word so that it is in the disabled state. */
static arm_hwbp_control_t
arm_hwbp_control_disable (arm_hwbp_control_t control)
{
return control & ~0x1;
}
/* Are two break-/watch-points equal? */
static int
arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
const struct arm_linux_hw_breakpoint *p2)
{
return p1->address == p2->address && p1->control == p2->control;
}
/* Initialize the hardware breakpoint structure P for a breakpoint or
watchpoint at ADDR to LEN. The type of watchpoint is given in TYPE.
Returns -1 if TYPE is unsupported, or -2 if the particular combination
of ADDR and LEN cannot be implemented. Otherwise, returns 0 if TYPE
represents a breakpoint and 1 if type represents a watchpoint. */
static int
arm_linux_hw_point_initialize (char type, CORE_ADDR addr, int len,
struct arm_linux_hw_breakpoint *p)
{
arm_hwbp_type hwbp_type;
unsigned mask;
/* Breakpoint/watchpoint types (GDB terminology):
0 = memory breakpoint for instructions
(not supported; done via memory write instead)
1 = hardware breakpoint for instructions (supported)
2 = write watchpoint (supported)
3 = read watchpoint (supported)
4 = access watchpoint (supported). */
switch (type)
{
case '1':
hwbp_type = arm_hwbp_break;
break;
case '2':
hwbp_type = arm_hwbp_store;
break;
case '3':
hwbp_type = arm_hwbp_load;
break;
case '4':
hwbp_type = arm_hwbp_access;
break;
default:
/* Unsupported. */
return -1;
}
if (hwbp_type == arm_hwbp_break)
{
/* For breakpoints, the length field encodes the mode. */
switch (len)
{
case 2: /* 16-bit Thumb mode breakpoint */
case 3: /* 32-bit Thumb mode breakpoint */
mask = 0x3;
addr &= ~1;
break;
case 4: /* 32-bit ARM mode breakpoint */
mask = 0xf;
addr &= ~3;
break;
default:
/* Unsupported. */
return -2;
}
}
else
{
CORE_ADDR max_wp_length = arm_linux_get_hw_watchpoint_max_length ();
CORE_ADDR aligned_addr;
/* Can not set watchpoints for zero or negative lengths. */
if (len <= 0)
return -2;
/* The current ptrace interface can only handle watchpoints that are a
power of 2. */
if ((len & (len - 1)) != 0)
return -2;
/* Test that the range [ADDR, ADDR + LEN) fits into the largest address
range covered by a watchpoint. */
aligned_addr = addr & ~(max_wp_length - 1);
if (aligned_addr + max_wp_length < addr + len)
return -2;
mask = (1 << len) - 1;
}
p->address = (unsigned int) addr;
p->control = arm_hwbp_control_initialize (mask, hwbp_type, 1);
return hwbp_type != arm_hwbp_break;
}
/* Callback to mark a watch-/breakpoint to be updated in all threads of
the current process. */
struct update_registers_data
{
int watch;
int i;
};
static int
update_registers_callback (struct inferior_list_entry *entry, void *arg)
{
struct thread_info *thread = (struct thread_info *) entry;
struct lwp_info *lwp = get_thread_lwp (thread);
struct update_registers_data *data = (struct update_registers_data *) arg;
/* Only update the threads of the current process. */
if (pid_of (thread) == pid_of (current_inferior))
{
/* The actual update is done later just before resuming the lwp,
we just mark that the registers need updating. */
if (data->watch)
lwp->arch_private->wpts_changed[data->i] = 1;
else
lwp->arch_private->bpts_changed[data->i] = 1;
/* If the lwp isn't stopped, force it to momentarily pause, so
we can update its breakpoint registers. */
if (!lwp->stopped)
linux_stop_lwp (lwp);
}
return 0;
}
/* Insert hardware break-/watchpoint. */
static int
arm_insert_point (char type, CORE_ADDR addr, int len)
{
struct process_info *proc = current_process ();
struct arm_linux_hw_breakpoint p, *pts;
int watch, i, count;
watch = arm_linux_hw_point_initialize (type, addr, len, &p);
if (watch < 0)
{
/* Unsupported. */
return watch == -1 ? 1 : -1;
}
if (watch)
{
count = arm_linux_get_hw_watchpoint_count ();
pts = proc->private->arch_private->wpts;
}
else
{
count = arm_linux_get_hw_breakpoint_count ();
pts = proc->private->arch_private->bpts;
}
for (i = 0; i < count; i++)
if (!arm_hwbp_control_is_enabled (pts[i].control))
{
struct update_registers_data data = { watch, i };
pts[i] = p;
find_inferior (&all_threads, update_registers_callback, &data);
return 0;
}
/* We're out of watchpoints. */
return -1;
}
/* Remove hardware break-/watchpoint. */
static int
arm_remove_point (char type, CORE_ADDR addr, int len)
{
struct process_info *proc = current_process ();
struct arm_linux_hw_breakpoint p, *pts;
int watch, i, count;
watch = arm_linux_hw_point_initialize (type, addr, len, &p);
if (watch < 0)
{
/* Unsupported. */
return -1;
}
if (watch)
{
count = arm_linux_get_hw_watchpoint_count ();
pts = proc->private->arch_private->wpts;
}
else
{
count = arm_linux_get_hw_breakpoint_count ();
pts = proc->private->arch_private->bpts;
}
for (i = 0; i < count; i++)
if (arm_linux_hw_breakpoint_equal (&p, pts + i))
{
struct update_registers_data data = { watch, i };
pts[i].control = arm_hwbp_control_disable (pts[i].control);
find_inferior (&all_threads, update_registers_callback, &data);
return 0;
}
/* No watchpoint matched. */
return -1;
}
/* Return whether current thread is stopped due to a watchpoint. */
static int
arm_stopped_by_watchpoint (void)
{
struct lwp_info *lwp = get_thread_lwp (current_inferior);
siginfo_t siginfo;
/* We must be able to set hardware watchpoints. */
if (arm_linux_get_hw_watchpoint_count () == 0)
return 0;
/* Retrieve siginfo. */
errno = 0;
ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior), 0, &siginfo);
if (errno != 0)
return 0;
/* This must be a hardware breakpoint. */
if (siginfo.si_signo != SIGTRAP
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
return 0;
/* If we are in a positive slot then we're looking at a breakpoint and not
a watchpoint. */
if (siginfo.si_errno >= 0)
return 0;
/* Cache stopped data address for use by arm_stopped_data_address. */
lwp->arch_private->stopped_data_address
= (CORE_ADDR) (uintptr_t) siginfo.si_addr;
return 1;
}
/* Return data address that triggered watchpoint. Called only if
arm_stopped_by_watchpoint returned true. */
static CORE_ADDR
arm_stopped_data_address (void)
{
struct lwp_info *lwp = get_thread_lwp (current_inferior);
return lwp->arch_private->stopped_data_address;
}
/* Called when a new process is created. */
static struct arch_process_info *
arm_new_process (void)
{
struct arch_process_info *info = xcalloc (1, sizeof (*info));
return info;
}
/* Called when a new thread is detected. */
static struct arch_lwp_info *
arm_new_thread (void)
{
struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
int i;
for (i = 0; i < MAX_BPTS; i++)
info->bpts_changed[i] = 1;
for (i = 0; i < MAX_WPTS; i++)
info->wpts_changed[i] = 1;
return info;
}
/* Called when resuming a thread.
If the debug regs have changed, update the thread's copies. */
static void
arm_prepare_to_resume (struct lwp_info *lwp)
{
struct thread_info *thread = get_lwp_thread (lwp);
int pid = lwpid_of (thread);
struct process_info *proc = find_process_pid (pid_of (thread));
struct arch_process_info *proc_info = proc->private->arch_private;
struct arch_lwp_info *lwp_info = lwp->arch_private;
int i;
for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
if (lwp_info->bpts_changed[i])
{
errno = 0;
if (arm_hwbp_control_is_enabled (proc_info->bpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) ((i << 1) + 1),
&proc_info->bpts[i].address) < 0)
perror_with_name ("Unexpected error setting breakpoint address");
if (arm_hwbp_control_is_initialized (proc_info->bpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) ((i << 1) + 2),
&proc_info->bpts[i].control) < 0)
perror_with_name ("Unexpected error setting breakpoint");
lwp_info->bpts_changed[i] = 0;
}
for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
if (lwp_info->wpts_changed[i])
{
errno = 0;
if (arm_hwbp_control_is_enabled (proc_info->wpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) -((i << 1) + 1),
&proc_info->wpts[i].address) < 0)
perror_with_name ("Unexpected error setting watchpoint address");
if (arm_hwbp_control_is_initialized (proc_info->wpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) -((i << 1) + 2),
&proc_info->wpts[i].control) < 0)
perror_with_name ("Unexpected error setting watchpoint");
lwp_info->wpts_changed[i] = 0;
}
}
static int
arm_get_hwcap (unsigned long *valp)
{
unsigned char *data = alloca (8);
int offset = 0;
while ((*the_target->read_auxv) (offset, data, 8) == 8)
{
unsigned int *data_p = (unsigned int *)data;
if (data_p[0] == AT_HWCAP)
{
*valp = data_p[1];
return 1;
}
offset += 8;
}
*valp = 0;
return 0;
}
static const struct target_desc *
arm_read_description (void)
{
int pid = lwpid_of (current_inferior);
/* Query hardware watchpoint/breakpoint capabilities. */
arm_linux_init_hwbp_cap (pid);
arm_hwcap = 0;
if (arm_get_hwcap (&arm_hwcap) == 0)
return tdesc_arm;
if (arm_hwcap & HWCAP_IWMMXT)
return tdesc_arm_with_iwmmxt;
if (arm_hwcap & HWCAP_VFP)
{
const struct target_desc *result;
char *buf;
/* NEON implies either no VFP, or VFPv3-D32. We only support
it with VFP. */
if (arm_hwcap & HWCAP_NEON)
result = tdesc_arm_with_neon;
else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
result = tdesc_arm_with_vfpv3;
else
result = tdesc_arm_with_vfpv2;
/* Now make sure that the kernel supports reading these
registers. Support was added in 2.6.30. */
errno = 0;
buf = xmalloc (32 * 8 + 4);
if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
&& errno == EIO)
{
arm_hwcap = 0;
result = tdesc_arm;
}
free (buf);
return result;
}
/* The default configuration uses legacy FPA registers, probably
simulated. */
return tdesc_arm;
}
static void
arm_arch_setup (void)
{
current_process ()->tdesc = arm_read_description ();
}
static struct regset_info arm_regsets[] = {
{ PTRACE_GETREGS, PTRACE_SETREGS, 0, 18 * 4,
GENERAL_REGS,
arm_fill_gregset, arm_store_gregset },
{ PTRACE_GETWMMXREGS, PTRACE_SETWMMXREGS, 0, 16 * 8 + 6 * 4,
EXTENDED_REGS,
arm_fill_wmmxregset, arm_store_wmmxregset },
{ PTRACE_GETVFPREGS, PTRACE_SETVFPREGS, 0, 32 * 8 + 4,
EXTENDED_REGS,
arm_fill_vfpregset, arm_store_vfpregset },
{ 0, 0, 0, -1, -1, NULL, NULL }
};
static struct regsets_info arm_regsets_info =
{
arm_regsets, /* regsets */
0, /* num_regsets */
NULL, /* disabled_regsets */
};
static struct usrregs_info arm_usrregs_info =
{
arm_num_regs,
arm_regmap,
};
static struct regs_info regs_info =
{
NULL, /* regset_bitmap */
&arm_usrregs_info,
&arm_regsets_info
};
static const struct regs_info *
arm_regs_info (void)
{
return &regs_info;
}
struct linux_target_ops the_low_target = {
arm_arch_setup,
arm_regs_info,
arm_cannot_fetch_register,
arm_cannot_store_register,
NULL, /* fetch_register */
arm_get_pc,
arm_set_pc,
/* Define an ARM-mode breakpoint; we only set breakpoints in the C
library, which is most likely to be ARM. If the kernel supports
clone events, we will never insert a breakpoint, so even a Thumb
C library will work; so will mixing EABI/non-EABI gdbserver and
application. */
#ifndef __ARM_EABI__
(const unsigned char *) &arm_breakpoint,
#else
(const unsigned char *) &arm_eabi_breakpoint,
#endif
arm_breakpoint_len,
arm_reinsert_addr,
0,
arm_breakpoint_at,
arm_insert_point,
arm_remove_point,
arm_stopped_by_watchpoint,
arm_stopped_data_address,
NULL, /* collect_ptrace_register */
NULL, /* supply_ptrace_register */
NULL, /* siginfo_fixup */
arm_new_process,
arm_new_thread,
arm_prepare_to_resume,
};
void
initialize_low_arch (void)
{
/* Initialize the Linux target descriptions. */
init_registers_arm ();
init_registers_arm_with_iwmmxt ();
init_registers_arm_with_vfpv2 ();
init_registers_arm_with_vfpv3 ();
init_registers_arm_with_neon ();
initialize_regsets_info (&arm_regsets_info);
}