1397 lines
35 KiB
C
1397 lines
35 KiB
C
/* Target-dependent code for Mitsubishi D30V, for GDB.
|
|
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
/* Contributed by Martin Hunt, hunt@cygnus.com */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
|
|
void d30v_frame_find_saved_regs PARAMS ((struct frame_info *fi,
|
|
struct frame_saved_regs *fsr));
|
|
void d30v_frame_find_saved_regs_offsets PARAMS ((struct frame_info *fi,
|
|
struct frame_saved_regs *fsr));
|
|
static void d30v_pop_dummy_frame PARAMS ((struct frame_info *fi));
|
|
static void d30v_print_flags PARAMS ((void));
|
|
static void print_flags_command PARAMS ((char *, int));
|
|
|
|
/* the following defines assume:
|
|
fp is r61, lr is r62, sp is r63, and ?? is r22
|
|
if that changes, they will need to be updated */
|
|
|
|
#define OP_MASK_ALL_BUT_RA 0x0ffc0fff /* throw away Ra, keep the rest */
|
|
|
|
#define OP_STW_SPM 0x054c0fc0 /* stw Ra, @(sp-) */
|
|
#define OP_STW_SP_R0 0x05400fc0 /* stw Ra, @(sp,r0) */
|
|
#define OP_STW_SP_IMM0 0x05480fc0 /* st Ra, @(sp, 0x0) */
|
|
#define OP_STW_R22P_R0 0x05440580 /* stw Ra, @(r22+,r0) */
|
|
|
|
#define OP_ST2W_SPM 0x056c0fc0 /* st2w Ra, @(sp-) */
|
|
#define OP_ST2W_SP_R0 0x05600fc0 /* st2w Ra, @(sp, r0) */
|
|
#define OP_ST2W_SP_IMM0 0x05680fc0 /* st2w Ra, @(sp, 0x0) */
|
|
#define OP_ST2W_R22P_R0 0x05640580 /* st2w Ra, @(r22+, r0) */
|
|
|
|
#define OP_MASK_OPCODE 0x0ffc0000 /* just the opcode, ign operands */
|
|
#define OP_NOP 0x00f00000 /* nop */
|
|
|
|
#define OP_MASK_ALL_BUT_IMM 0x0fffffc0 /* throw away imm, keep the rest */
|
|
#define OP_SUB_SP_IMM 0x082bffc0 /* sub sp,sp,imm */
|
|
#define OP_ADD_SP_IMM 0x080bffc0 /* add sp,sp,imm */
|
|
#define OP_ADD_R22_SP_IMM 0x08096fc0 /* add r22,sp,imm */
|
|
#define OP_STW_FP_SP_IMM 0x054bdfc0 /* stw fp,@(sp,imm) */
|
|
#define OP_OR_SP_R0_IMM 0x03abf000 /* or sp,r0,imm */
|
|
|
|
/* no mask */
|
|
#define OP_OR_FP_R0_SP 0x03a3d03f /* or fp,r0,sp */
|
|
#define OP_OR_FP_SP_R0 0x03a3dfc0 /* or fp,sp,r0 */
|
|
#define OP_OR_FP_IMM0_SP 0x03abd03f /* or fp,0x0,sp */
|
|
#define OP_STW_FP_R22P_R0 0x0547d580 /* stw fp,@(r22+,r0) */
|
|
#define OP_STW_LR_R22P_R0 0x0547e580 /* stw lr,@(r22+,r0) */
|
|
|
|
#define OP_MASK_OP_AND_RB 0x0ff80fc0 /* keep op and rb,throw away rest */
|
|
#define OP_STW_SP_IMM 0x05480fc0 /* stw Ra,@(sp,imm) */
|
|
#define OP_ST2W_SP_IMM 0x05680fc0 /* st2w Ra,@(sp,imm) */
|
|
#define OP_STW_FP_IMM 0x05480f40 /* stw Ra,@(fp,imm) */
|
|
#define OP_STW_FP_R0 0x05400f40 /* stw Ra,@(fp,r0) */
|
|
|
|
#define OP_MASK_FM_BIT 0x80000000
|
|
#define OP_MASK_CC_BITS 0x70000000
|
|
#define OP_MASK_SUB_INST 0x0fffffff
|
|
|
|
#define EXTRACT_RA(op) (((op) >> 12) & 0x3f)
|
|
#define EXTRACT_RB(op) (((op) >> 6) & 0x3f)
|
|
#define EXTRACT_RC(op) (((op) & 0x3f)
|
|
#define EXTRACT_UIMM6(op) ((op) & 0x3f)
|
|
#define EXTRACT_IMM6(op) ((((int)EXTRACT_UIMM6(op)) << 26) >> 26)
|
|
#define EXTRACT_IMM26(op) ((((op)&0x0ff00000) >> 2) | ((op)&0x0003ffff))
|
|
#define EXTRACT_IMM32(opl, opr) ((EXTRACT_UIMM6(opl) << 26)|EXTRACT_IMM26(opr))
|
|
|
|
|
|
int
|
|
d30v_frame_chain_valid (chain, fi)
|
|
CORE_ADDR chain;
|
|
struct frame_info *fi; /* not used here */
|
|
{
|
|
#if 0
|
|
return ((chain) != 0 && (fi) != 0 && (fi)->return_pc != 0);
|
|
#else
|
|
return ((chain) != 0 && (fi) != 0 && (fi)->frame <= chain);
|
|
#endif
|
|
}
|
|
|
|
/* Discard from the stack the innermost frame, restoring all saved
|
|
registers. */
|
|
|
|
void
|
|
d30v_pop_frame ()
|
|
{
|
|
struct frame_info *frame = get_current_frame ();
|
|
CORE_ADDR fp;
|
|
int regnum;
|
|
struct frame_saved_regs fsr;
|
|
char raw_buffer[8];
|
|
|
|
fp = FRAME_FP (frame);
|
|
if (frame->dummy)
|
|
{
|
|
d30v_pop_dummy_frame(frame);
|
|
return;
|
|
}
|
|
|
|
/* fill out fsr with the address of where each */
|
|
/* register was stored in the frame */
|
|
get_frame_saved_regs (frame, &fsr);
|
|
|
|
/* now update the current registers with the old values */
|
|
for (regnum = A0_REGNUM; regnum < A0_REGNUM+2 ; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
read_memory (fsr.regs[regnum], raw_buffer, 8);
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
|
|
}
|
|
}
|
|
for (regnum = 0; regnum < SP_REGNUM; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 4));
|
|
}
|
|
}
|
|
if (fsr.regs[PSW_REGNUM])
|
|
{
|
|
write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 4));
|
|
}
|
|
|
|
write_register (PC_REGNUM, read_register(LR_REGNUM));
|
|
write_register (SP_REGNUM, fp + frame->size);
|
|
target_store_registers (-1);
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
static int
|
|
check_prologue (op)
|
|
unsigned long op;
|
|
{
|
|
/* add sp,sp,imm -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
|
|
return 1;
|
|
|
|
/* add r22,sp,imm -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
|
|
return 1;
|
|
|
|
/* or fp,r0,sp -- observed */
|
|
if (op == OP_OR_FP_R0_SP)
|
|
return 1;
|
|
|
|
/* nop */
|
|
if ((op & OP_MASK_OPCODE) == OP_NOP)
|
|
return 1;
|
|
|
|
/* stw Ra,@(sp,r0) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_R0)
|
|
return 1;
|
|
|
|
/* stw Ra,@(sp,0x0) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_IMM0)
|
|
return 1;
|
|
|
|
/* st2w Ra,@(sp,r0) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_R0)
|
|
return 1;
|
|
|
|
/* st2w Ra,@(sp,0x0) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_IMM0)
|
|
return 1;
|
|
|
|
/* stw fp, @(r22+,r0) -- observed */
|
|
if (op == OP_STW_FP_R22P_R0)
|
|
return 1;
|
|
|
|
/* stw r62, @(r22+,r0) -- observed */
|
|
if (op == OP_STW_LR_R22P_R0)
|
|
return 1;
|
|
|
|
/* stw Ra, @(fp,r0) -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_FP_R0)
|
|
return 1; /* first arg */
|
|
|
|
/* stw Ra, @(fp,imm) -- observed */
|
|
if ((op & OP_MASK_OP_AND_RB) == OP_STW_FP_IMM)
|
|
return 1; /* second and subsequent args */
|
|
|
|
/* stw fp,@(sp,imm) -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_STW_FP_SP_IMM)
|
|
return 1;
|
|
|
|
/* st2w Ra,@(r22+,r0) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_R22P_R0)
|
|
return 1;
|
|
|
|
/* stw Ra, @(sp-) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SPM)
|
|
return 1;
|
|
|
|
/* st2w Ra, @(sp-) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SPM)
|
|
return 1;
|
|
|
|
/* sub.? sp,sp,imm */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_SUB_SP_IMM)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
CORE_ADDR
|
|
d30v_skip_prologue (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
unsigned long op[2];
|
|
unsigned long opl, opr; /* left / right sub operations */
|
|
unsigned long fm0, fm1; /* left / right mode bits */
|
|
unsigned long cc0, cc1;
|
|
unsigned long op1, op2;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct symtab_and_line sal;
|
|
|
|
/* If we have line debugging information, then the end of the */
|
|
/* prologue should the first assembly instruction of the first source line */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
if ( sal.end && sal.end < func_end)
|
|
return sal.end;
|
|
}
|
|
|
|
if (target_read_memory (pc, (char *)&op[0], 8))
|
|
return pc; /* Can't access it -- assume no prologue. */
|
|
|
|
while (1)
|
|
{
|
|
opl = (unsigned long)read_memory_integer (pc, 4);
|
|
opr = (unsigned long)read_memory_integer (pc+4, 4);
|
|
|
|
fm0 = (opl & OP_MASK_FM_BIT);
|
|
fm1 = (opr & OP_MASK_FM_BIT);
|
|
|
|
cc0 = (opl & OP_MASK_CC_BITS);
|
|
cc1 = (opr & OP_MASK_CC_BITS);
|
|
|
|
opl = (opl & OP_MASK_SUB_INST);
|
|
opr = (opr & OP_MASK_SUB_INST);
|
|
|
|
if (fm0 && fm1)
|
|
{
|
|
/* long instruction (opl contains the opcode) */
|
|
if (((opl & OP_MASK_ALL_BUT_IMM) != OP_ADD_SP_IMM) && /* add sp,sp,imm */
|
|
((opl & OP_MASK_ALL_BUT_IMM) != OP_ADD_R22_SP_IMM) && /* add r22,sp,imm */
|
|
((opl & OP_MASK_OP_AND_RB) != OP_STW_SP_IMM) && /* stw Ra, @(sp,imm) */
|
|
((opl & OP_MASK_OP_AND_RB) != OP_ST2W_SP_IMM)) /* st2w Ra, @(sp,imm) */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if (fm0 && !fm1)
|
|
{
|
|
op1 = opr;
|
|
op2 = opl;
|
|
}
|
|
else
|
|
{
|
|
op1 = opl;
|
|
op2 = opr;
|
|
}
|
|
if (check_prologue(op1))
|
|
{
|
|
if (!check_prologue(op2))
|
|
{
|
|
/* if the previous opcode was really part of the prologue */
|
|
/* and not just a NOP, then we want to break after both instructions */
|
|
if ((op1 & OP_MASK_OPCODE) != OP_NOP)
|
|
pc += 8;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
pc += 8;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
static int end_of_stack;
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
*/
|
|
|
|
CORE_ADDR
|
|
d30v_frame_chain (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
struct frame_saved_regs fsr;
|
|
|
|
d30v_frame_find_saved_regs (frame, &fsr);
|
|
|
|
if (end_of_stack)
|
|
return (CORE_ADDR)0;
|
|
|
|
if (frame->return_pc == IMEM_START)
|
|
return (CORE_ADDR)0;
|
|
|
|
if (!fsr.regs[FP_REGNUM])
|
|
{
|
|
if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
|
|
return (CORE_ADDR)0;
|
|
|
|
return fsr.regs[SP_REGNUM];
|
|
}
|
|
|
|
if (!read_memory_unsigned_integer(fsr.regs[FP_REGNUM],4))
|
|
return (CORE_ADDR)0;
|
|
|
|
return read_memory_unsigned_integer(fsr.regs[FP_REGNUM],4);
|
|
}
|
|
|
|
static int next_addr, uses_frame;
|
|
static int frame_size;
|
|
|
|
static int
|
|
prologue_find_regs (op, fsr, addr)
|
|
unsigned long op;
|
|
struct frame_saved_regs *fsr;
|
|
CORE_ADDR addr;
|
|
{
|
|
int n;
|
|
int offset;
|
|
|
|
/* add sp,sp,imm -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
|
|
{
|
|
offset = EXTRACT_IMM6(op);
|
|
/*next_addr += offset;*/
|
|
frame_size += -offset;
|
|
return 1;
|
|
}
|
|
|
|
/* add r22,sp,imm -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
|
|
{
|
|
offset = EXTRACT_IMM6(op);
|
|
next_addr = (offset - frame_size);
|
|
return 1;
|
|
}
|
|
|
|
/* stw Ra, @(fp, offset) -- observed */
|
|
if ((op & OP_MASK_OP_AND_RB) == OP_STW_FP_IMM)
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
offset = EXTRACT_IMM6(op);
|
|
fsr->regs[n] = (offset - frame_size);
|
|
return 1;
|
|
}
|
|
|
|
/* stw Ra, @(fp, r0) -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_FP_R0)
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = (- frame_size);
|
|
return 1;
|
|
}
|
|
|
|
/* or fp,0,sp -- observed */
|
|
if ((op == OP_OR_FP_R0_SP) ||
|
|
(op == OP_OR_FP_SP_R0) ||
|
|
(op == OP_OR_FP_IMM0_SP))
|
|
{
|
|
uses_frame = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* nop */
|
|
if ((op & OP_MASK_OPCODE) == OP_NOP)
|
|
return 1;
|
|
|
|
/* stw Ra,@(r22+,r0) -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_R22P_R0)
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = next_addr;
|
|
next_addr += 4;
|
|
return 1;
|
|
}
|
|
#if 0 /* subsumed in pattern above */
|
|
/* stw fp,@(r22+,r0) -- observed */
|
|
if (op == OP_STW_FP_R22P_R0)
|
|
{
|
|
fsr->regs[FP_REGNUM] = next_addr; /* XXX */
|
|
next_addr += 4;
|
|
return 1;
|
|
}
|
|
|
|
/* stw r62,@(r22+,r0) -- observed */
|
|
if (op == OP_STW_LR_R22P_R0)
|
|
{
|
|
fsr->regs[LR_REGNUM] = next_addr;
|
|
next_addr += 4;
|
|
return 1;
|
|
}
|
|
#endif
|
|
/* st2w Ra,@(r22+,r0) -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_R22P_R0)
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = next_addr;
|
|
fsr->regs[n+1] = next_addr + 4;
|
|
next_addr += 8;
|
|
return 1;
|
|
}
|
|
|
|
/* stw rn, @(sp-) */
|
|
if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SPM)
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = next_addr;
|
|
next_addr -= 4;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w Ra, @(sp-) */
|
|
else if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SPM)
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = next_addr;
|
|
fsr->regs[n+1] = next_addr+4;
|
|
next_addr -= 8;
|
|
return 1;
|
|
}
|
|
|
|
/* sub sp,sp,imm */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_SUB_SP_IMM)
|
|
{
|
|
offset = EXTRACT_IMM6(op);
|
|
frame_size += -offset;
|
|
return 1;
|
|
}
|
|
|
|
/* st rn, @(sp,0) -- observed */
|
|
if (((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_R0) ||
|
|
((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_IMM0))
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = (- frame_size);
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @(sp,0) */
|
|
if (((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_R0) ||
|
|
((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_IMM0))
|
|
{
|
|
n = EXTRACT_RA(op);
|
|
fsr->regs[n] = (- frame_size);
|
|
fsr->regs[n+1] = (- frame_size) + 4;
|
|
return 1;
|
|
}
|
|
|
|
/* stw fp,@(sp,imm) -- observed */
|
|
if ((op & OP_MASK_ALL_BUT_IMM) == OP_STW_FP_SP_IMM)
|
|
{
|
|
offset = EXTRACT_IMM6(op);
|
|
fsr->regs[FP_REGNUM] = (offset - frame_size);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs, the
|
|
addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special: the address we
|
|
return for it IS the sp for the next frame. */
|
|
void
|
|
d30v_frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
CORE_ADDR fp, pc;
|
|
unsigned long opl, opr;
|
|
unsigned long op1, op2;
|
|
unsigned long fm0, fm1;
|
|
int i;
|
|
|
|
fp = fi->frame;
|
|
memset (fsr, 0, sizeof (*fsr));
|
|
next_addr = 0;
|
|
frame_size = 0;
|
|
end_of_stack = 0;
|
|
|
|
uses_frame = 0;
|
|
|
|
d30v_frame_find_saved_regs_offsets (fi, fsr);
|
|
|
|
fi->size = frame_size;
|
|
|
|
if (!fp)
|
|
fp = read_register(SP_REGNUM);
|
|
|
|
for (i=0; i<NUM_REGS-1; i++)
|
|
if (fsr->regs[i])
|
|
{
|
|
fsr->regs[i] = fsr->regs[i] + fp + frame_size;
|
|
}
|
|
|
|
if (fsr->regs[LR_REGNUM])
|
|
fi->return_pc = read_memory_unsigned_integer(fsr->regs[LR_REGNUM],4);
|
|
else
|
|
fi->return_pc = read_register(LR_REGNUM);
|
|
|
|
/* the SP is not normally (ever?) saved, but check anyway */
|
|
if (!fsr->regs[SP_REGNUM])
|
|
{
|
|
/* if the FP was saved, that means the current FP is valid, */
|
|
/* otherwise, it isn't being used, so we use the SP instead */
|
|
if (uses_frame)
|
|
fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
|
|
else
|
|
{
|
|
fsr->regs[SP_REGNUM] = fp + fi->size;
|
|
fi->frameless = 1;
|
|
fsr->regs[FP_REGNUM] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
d30v_frame_find_saved_regs_offsets (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
CORE_ADDR fp, pc;
|
|
unsigned long opl, opr;
|
|
unsigned long op1, op2;
|
|
unsigned long fm0, fm1;
|
|
int i;
|
|
|
|
fp = fi->frame;
|
|
memset (fsr, 0, sizeof (*fsr));
|
|
next_addr = 0;
|
|
frame_size = 0;
|
|
end_of_stack = 0;
|
|
|
|
pc = get_pc_function_start (fi->pc);
|
|
|
|
uses_frame = 0;
|
|
while (pc < fi->pc)
|
|
{
|
|
opl = (unsigned long)read_memory_integer (pc, 4);
|
|
opr = (unsigned long)read_memory_integer (pc+4, 4);
|
|
|
|
fm0 = (opl & OP_MASK_FM_BIT);
|
|
fm1 = (opr & OP_MASK_FM_BIT);
|
|
|
|
opl = (opl & OP_MASK_SUB_INST);
|
|
opr = (opr & OP_MASK_SUB_INST);
|
|
|
|
if (fm0 && fm1)
|
|
{
|
|
/* long instruction */
|
|
if ((opl & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
|
|
{
|
|
/* add sp,sp,n */
|
|
long offset = EXTRACT_IMM32(opl, opr);
|
|
frame_size += -offset;
|
|
}
|
|
else if ((opl & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
|
|
{
|
|
/* add r22,sp,offset */
|
|
long offset = EXTRACT_IMM32(opl,opr);
|
|
next_addr = (offset - frame_size);
|
|
}
|
|
else if ((opl & OP_MASK_OP_AND_RB) == OP_STW_SP_IMM)
|
|
{
|
|
/* st Ra, @(sp,imm) */
|
|
long offset = EXTRACT_IMM32(opl, opr);
|
|
short n = EXTRACT_RA(opl);
|
|
fsr->regs[n] = (offset - frame_size);
|
|
}
|
|
else if ((opl & OP_MASK_OP_AND_RB) == OP_ST2W_SP_IMM)
|
|
{
|
|
/* st2w Ra, @(sp,offset) */
|
|
long offset = EXTRACT_IMM32(opl, opr);
|
|
short n = EXTRACT_RA(opl);
|
|
fsr->regs[n] = (offset - frame_size);
|
|
fsr->regs[n+1] = (offset - frame_size) + 4;
|
|
}
|
|
else if ((opl & OP_MASK_ALL_BUT_IMM) == OP_OR_SP_R0_IMM)
|
|
{
|
|
end_of_stack = 1;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if (fm0 && !fm1)
|
|
{
|
|
op2 = opl;
|
|
op1 = opr;
|
|
}
|
|
else
|
|
{
|
|
op1 = opl;
|
|
op2 = opr;
|
|
}
|
|
if (!prologue_find_regs(op1,fsr,pc) || !prologue_find_regs(op2,fsr,pc))
|
|
break;
|
|
}
|
|
pc += 8;
|
|
}
|
|
|
|
#if 0
|
|
fi->size = frame_size;
|
|
|
|
if (!fp)
|
|
fp = read_register(SP_REGNUM);
|
|
|
|
for (i=0; i<NUM_REGS-1; i++)
|
|
if (fsr->regs[i])
|
|
{
|
|
fsr->regs[i] = fsr->regs[i] + fp + frame_size;
|
|
}
|
|
|
|
if (fsr->regs[LR_REGNUM])
|
|
fi->return_pc = read_memory_unsigned_integer(fsr->regs[LR_REGNUM],4);
|
|
else
|
|
fi->return_pc = read_register(LR_REGNUM);
|
|
|
|
/* the SP is not normally (ever?) saved, but check anyway */
|
|
if (!fsr->regs[SP_REGNUM])
|
|
{
|
|
/* if the FP was saved, that means the current FP is valid, */
|
|
/* otherwise, it isn't being used, so we use the SP instead */
|
|
if (uses_frame)
|
|
fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
|
|
else
|
|
{
|
|
fsr->regs[SP_REGNUM] = fp + fi->size;
|
|
fi->frameless = 1;
|
|
fsr->regs[FP_REGNUM] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
d30v_init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
struct frame_saved_regs dummy;
|
|
|
|
if (fi->next && (fi->pc == 0))
|
|
fi->pc = fi->next->return_pc;
|
|
|
|
d30v_frame_find_saved_regs_offsets (fi, &dummy);
|
|
|
|
if (uses_frame == 0)
|
|
fi->frameless = 1;
|
|
else
|
|
fi->frameless = 0;
|
|
|
|
if ((fi->next == 0) && (uses_frame == 0))
|
|
/* innermost frame and it's "frameless",
|
|
so the fi->frame field is wrong, fix it! */
|
|
fi->frame = read_sp ();
|
|
|
|
if (dummy.regs[LR_REGNUM])
|
|
{
|
|
/* it was saved, grab it! */
|
|
dummy.regs[LR_REGNUM] += (fi->frame + frame_size);
|
|
fi->return_pc = read_memory_unsigned_integer(dummy.regs[LR_REGNUM],4);
|
|
}
|
|
else
|
|
fi->return_pc = read_register(LR_REGNUM);
|
|
}
|
|
|
|
void
|
|
d30v_init_frame_pc (fromleaf, prev)
|
|
int fromleaf;
|
|
struct frame_info *prev;
|
|
{
|
|
/* default value, put here so we can breakpoint on it and
|
|
see if the default value is really the right thing to use */
|
|
prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
|
|
prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
|
|
}
|
|
|
|
static void d30v_print_register PARAMS ((int regnum, int tabular));
|
|
|
|
static void
|
|
d30v_print_register (regnum, tabular)
|
|
int regnum;
|
|
int tabular;
|
|
{
|
|
if (regnum < A0_REGNUM)
|
|
{
|
|
if (tabular)
|
|
printf_filtered ("%08x", read_register (regnum));
|
|
else
|
|
printf_filtered ("0x%x %d", read_register (regnum),
|
|
read_register (regnum));
|
|
}
|
|
else
|
|
{
|
|
char regbuf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
read_relative_register_raw_bytes (regnum, regbuf);
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (regnum), regbuf, 0, 0,
|
|
gdb_stdout, 'x', 1, 0, Val_pretty_default);
|
|
|
|
if (!tabular)
|
|
{
|
|
printf_filtered (" ");
|
|
val_print (REGISTER_VIRTUAL_TYPE (regnum), regbuf, 0, 0,
|
|
gdb_stdout, 'd', 1, 0, Val_pretty_default);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
d30v_print_flags ()
|
|
{
|
|
long psw = read_register (PSW_REGNUM);
|
|
printf_filtered ("flags #1");
|
|
printf_filtered (" (sm) %d", (psw & PSW_SM) != 0);
|
|
printf_filtered (" (ea) %d", (psw & PSW_EA) != 0);
|
|
printf_filtered (" (db) %d", (psw & PSW_DB) != 0);
|
|
printf_filtered (" (ds) %d", (psw & PSW_DS) != 0);
|
|
printf_filtered (" (ie) %d", (psw & PSW_IE) != 0);
|
|
printf_filtered (" (rp) %d", (psw & PSW_RP) != 0);
|
|
printf_filtered (" (md) %d\n", (psw & PSW_MD) != 0);
|
|
|
|
printf_filtered ("flags #2");
|
|
printf_filtered (" (f0) %d", (psw & PSW_F0) != 0);
|
|
printf_filtered (" (f1) %d", (psw & PSW_F1) != 0);
|
|
printf_filtered (" (f2) %d", (psw & PSW_F2) != 0);
|
|
printf_filtered (" (f3) %d", (psw & PSW_F3) != 0);
|
|
printf_filtered (" (s) %d", (psw & PSW_S) != 0);
|
|
printf_filtered (" (v) %d", (psw & PSW_V) != 0);
|
|
printf_filtered (" (va) %d", (psw & PSW_VA) != 0);
|
|
printf_filtered (" (c) %d\n", (psw & PSW_C) != 0);
|
|
}
|
|
|
|
static void
|
|
print_flags_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
d30v_print_flags ();
|
|
}
|
|
|
|
void
|
|
d30v_do_registers_info (regnum, fpregs)
|
|
int regnum;
|
|
int fpregs;
|
|
{
|
|
long long num1, num2;
|
|
long psw;
|
|
|
|
if (regnum != -1)
|
|
{
|
|
if (REGISTER_NAME (0) == NULL || REGISTER_NAME (0)[0] == '\000')
|
|
return;
|
|
|
|
printf_filtered ("%s ", REGISTER_NAME (regnum));
|
|
d30v_print_register (regnum, 0);
|
|
|
|
printf_filtered ("\n");
|
|
return;
|
|
}
|
|
|
|
/* Have to print all the registers. Format them nicely. */
|
|
|
|
printf_filtered ("PC=");
|
|
print_address (read_pc (), gdb_stdout);
|
|
|
|
printf_filtered (" PSW=");
|
|
d30v_print_register (PSW_REGNUM, 1);
|
|
|
|
printf_filtered (" BPC=");
|
|
print_address (read_register (BPC_REGNUM), gdb_stdout);
|
|
|
|
printf_filtered (" BPSW=");
|
|
d30v_print_register (BPSW_REGNUM, 1);
|
|
printf_filtered ("\n");
|
|
|
|
printf_filtered ("DPC=");
|
|
print_address (read_register (DPC_REGNUM), gdb_stdout);
|
|
|
|
printf_filtered (" DPSW=");
|
|
d30v_print_register (DPSW_REGNUM, 1);
|
|
|
|
printf_filtered (" IBA=");
|
|
print_address (read_register (IBA_REGNUM), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
|
|
printf_filtered ("RPT_C=");
|
|
d30v_print_register (RPT_C_REGNUM, 1);
|
|
|
|
printf_filtered (" RPT_S=");
|
|
print_address (read_register (RPT_S_REGNUM), gdb_stdout);
|
|
|
|
printf_filtered (" RPT_E=");
|
|
print_address (read_register (RPT_E_REGNUM), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
|
|
printf_filtered ("MOD_S=");
|
|
print_address (read_register (MOD_S_REGNUM), gdb_stdout);
|
|
|
|
printf_filtered (" MOD_E=");
|
|
print_address (read_register (MOD_E_REGNUM), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
|
|
printf_filtered ("EIT_VB=");
|
|
print_address (read_register (EIT_VB_REGNUM), gdb_stdout);
|
|
|
|
printf_filtered (" INT_S=");
|
|
d30v_print_register (INT_S_REGNUM, 1);
|
|
|
|
printf_filtered (" INT_M=");
|
|
d30v_print_register (INT_M_REGNUM, 1);
|
|
printf_filtered ("\n");
|
|
|
|
d30v_print_flags ();
|
|
for (regnum = 0; regnum <= 63;)
|
|
{
|
|
int i;
|
|
|
|
printf_filtered ("R%d-R%d ", regnum, regnum + 7);
|
|
if (regnum < 10)
|
|
printf_filtered (" ");
|
|
if (regnum + 7 < 10)
|
|
printf_filtered (" ");
|
|
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
printf_filtered (" ");
|
|
d30v_print_register (regnum++, 1);
|
|
}
|
|
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
printf_filtered ("A0-A1 ");
|
|
|
|
d30v_print_register (A0_REGNUM, 1);
|
|
printf_filtered (" ");
|
|
d30v_print_register (A1_REGNUM, 1);
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
CORE_ADDR
|
|
d30v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
|
|
char *dummyname;
|
|
CORE_ADDR start_sp;
|
|
CORE_ADDR fun;
|
|
int nargs;
|
|
value_ptr *args;
|
|
struct type *type;
|
|
int gcc_p;
|
|
{
|
|
int regnum;
|
|
CORE_ADDR sp;
|
|
char buffer[MAX_REGISTER_RAW_SIZE];
|
|
struct frame_info *frame = get_current_frame ();
|
|
frame->dummy = start_sp;
|
|
/*start_sp |= DMEM_START;*/
|
|
|
|
sp = start_sp;
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
sp -= REGISTER_RAW_SIZE(regnum);
|
|
store_address (buffer, REGISTER_RAW_SIZE(regnum), read_register(regnum));
|
|
write_memory (sp, buffer, REGISTER_RAW_SIZE(regnum));
|
|
}
|
|
write_register (SP_REGNUM, (LONGEST)sp);
|
|
/* now we need to load LR with the return address */
|
|
write_register (LR_REGNUM, (LONGEST)d30v_call_dummy_address());
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
d30v_pop_dummy_frame (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
CORE_ADDR sp = fi->dummy;
|
|
int regnum;
|
|
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
sp -= REGISTER_RAW_SIZE(regnum);
|
|
write_register(regnum, read_memory_unsigned_integer (sp, REGISTER_RAW_SIZE(regnum)));
|
|
}
|
|
flush_cached_frames (); /* needed? */
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d30v_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
|
int nargs;
|
|
value_ptr *args;
|
|
CORE_ADDR sp;
|
|
int struct_return;
|
|
CORE_ADDR struct_addr;
|
|
{
|
|
int i, len, index=0, regnum=2;
|
|
char buffer[4], *contents;
|
|
LONGEST val;
|
|
CORE_ADDR ptrs[10];
|
|
|
|
#if 0
|
|
/* Pass 1. Put all large args on stack */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
value_ptr arg = args[i];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
len = TYPE_LENGTH (arg_type);
|
|
contents = VALUE_CONTENTS(arg);
|
|
val = extract_signed_integer (contents, len);
|
|
if (len > 4)
|
|
{
|
|
/* put on stack and pass pointers */
|
|
sp -= len;
|
|
write_memory (sp, contents, len);
|
|
ptrs[index++] = sp;
|
|
}
|
|
}
|
|
#endif
|
|
index = 0;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
value_ptr arg = args[i];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
len = TYPE_LENGTH (arg_type);
|
|
contents = VALUE_CONTENTS(arg);
|
|
if (len > 4)
|
|
{
|
|
/* we need multiple registers */
|
|
int ndx;
|
|
|
|
for (ndx = 0; len > 0; ndx += 8, len -= 8)
|
|
{
|
|
if (regnum & 1)
|
|
regnum++; /* all args > 4 bytes start in even register */
|
|
|
|
if (regnum < 18)
|
|
{
|
|
val = extract_signed_integer (&contents[ndx], 4);
|
|
write_register (regnum++, val);
|
|
|
|
if (len >= 8)
|
|
val = extract_signed_integer (&contents[ndx+4], 4);
|
|
else
|
|
val = extract_signed_integer (&contents[ndx+4], len-4);
|
|
write_register (regnum++, val);
|
|
}
|
|
else
|
|
{
|
|
/* no more registers available. put it on the stack */
|
|
|
|
/* all args > 4 bytes are padded to a multiple of 8 bytes
|
|
and start on an 8 byte boundary */
|
|
if (sp & 7)
|
|
sp -= (sp & 7); /* align it */
|
|
|
|
sp -= ((len + 7) & ~7); /* allocate space */
|
|
write_memory (sp, &contents[ndx], len);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (regnum < 18 )
|
|
{
|
|
val = extract_signed_integer (contents, len);
|
|
write_register (regnum++, val);
|
|
}
|
|
else
|
|
{
|
|
/* all args are padded to a multiple of 4 bytes (at least) */
|
|
sp -= ((len + 3) & ~3);
|
|
write_memory (sp, contents, len);
|
|
}
|
|
}
|
|
}
|
|
if (sp & 7)
|
|
/* stack pointer is not on an 8 byte boundary -- align it */
|
|
sp -= (sp & 7);
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* pick an out-of-the-way place to set the return value */
|
|
/* for an inferior function call. The link register is set to this */
|
|
/* value and a momentary breakpoint is set there. When the breakpoint */
|
|
/* is hit, the dummy frame is popped and the previous environment is */
|
|
/* restored. */
|
|
|
|
CORE_ADDR
|
|
d30v_call_dummy_address ()
|
|
{
|
|
CORE_ADDR entry;
|
|
struct minimal_symbol *sym;
|
|
|
|
entry = entry_point_address ();
|
|
|
|
if (entry != 0)
|
|
return entry;
|
|
|
|
sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
|
|
|
|
if (!sym || MSYMBOL_TYPE (sym) != mst_text)
|
|
return 0;
|
|
else
|
|
return SYMBOL_VALUE_ADDRESS (sym);
|
|
}
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
void
|
|
d30v_extract_return_value (valtype, regbuf, valbuf)
|
|
struct type *valtype;
|
|
char regbuf[REGISTER_BYTES];
|
|
char *valbuf;
|
|
{
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
|
|
}
|
|
|
|
/* The following code implements access to, and display of, the D30V's
|
|
instruction trace buffer. The buffer consists of 64K or more
|
|
4-byte words of data, of which each words includes an 8-bit count,
|
|
an 8-bit segment number, and a 16-bit instruction address.
|
|
|
|
In theory, the trace buffer is continuously capturing instruction
|
|
data that the CPU presents on its "debug bus", but in practice, the
|
|
ROMified GDB stub only enables tracing when it continues or steps
|
|
the program, and stops tracing when the program stops; so it
|
|
actually works for GDB to read the buffer counter out of memory and
|
|
then read each trace word. The counter records where the tracing
|
|
stops, but there is no record of where it started, so we remember
|
|
the PC when we resumed and then search backwards in the trace
|
|
buffer for a word that includes that address. This is not perfect,
|
|
because you will miss trace data if the resumption PC is the target
|
|
of a branch. (The value of the buffer counter is semi-random, any
|
|
trace data from a previous program stop is gone.) */
|
|
|
|
/* The address of the last word recorded in the trace buffer. */
|
|
|
|
#define DBBC_ADDR (0xd80000)
|
|
|
|
/* The base of the trace buffer, at least for the "Board_0". */
|
|
|
|
#define TRACE_BUFFER_BASE (0xf40000)
|
|
|
|
static void trace_command PARAMS ((char *, int));
|
|
|
|
static void untrace_command PARAMS ((char *, int));
|
|
|
|
static void trace_info PARAMS ((char *, int));
|
|
|
|
static void tdisassemble_command PARAMS ((char *, int));
|
|
|
|
static void display_trace PARAMS ((int, int));
|
|
|
|
/* True when instruction traces are being collected. */
|
|
|
|
static int tracing;
|
|
|
|
/* Remembered PC. */
|
|
|
|
static CORE_ADDR last_pc;
|
|
|
|
/* True when trace output should be displayed whenever program stops. */
|
|
|
|
static int trace_display;
|
|
|
|
/* True when trace listing should include source lines. */
|
|
|
|
static int default_trace_show_source = 1;
|
|
|
|
struct trace_buffer {
|
|
int size;
|
|
short *counts;
|
|
CORE_ADDR *addrs;
|
|
} trace_data;
|
|
|
|
static void
|
|
trace_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
/* Clear the host-side trace buffer, allocating space if needed. */
|
|
trace_data.size = 0;
|
|
if (trace_data.counts == NULL)
|
|
trace_data.counts = (short *) xmalloc (65536 * sizeof(short));
|
|
if (trace_data.addrs == NULL)
|
|
trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof(CORE_ADDR));
|
|
|
|
tracing = 1;
|
|
|
|
printf_filtered ("Tracing is now on.\n");
|
|
}
|
|
|
|
static void
|
|
untrace_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
tracing = 0;
|
|
|
|
printf_filtered ("Tracing is now off.\n");
|
|
}
|
|
|
|
static void
|
|
trace_info (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
int i;
|
|
|
|
if (trace_data.size)
|
|
{
|
|
printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
|
|
|
|
for (i = 0; i < trace_data.size; ++i)
|
|
{
|
|
printf_filtered ("%d: %d instruction%s at 0x%x\n",
|
|
i, trace_data.counts[i],
|
|
(trace_data.counts[i] == 1 ? "" : "s"),
|
|
trace_data.addrs[i]);
|
|
}
|
|
}
|
|
else
|
|
printf_filtered ("No entries in trace buffer.\n");
|
|
|
|
printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
|
|
}
|
|
|
|
/* Print the instruction at address MEMADDR in debugged memory,
|
|
on STREAM. Returns length of the instruction, in bytes. */
|
|
|
|
static int
|
|
print_insn (memaddr, stream)
|
|
CORE_ADDR memaddr;
|
|
GDB_FILE *stream;
|
|
{
|
|
/* If there's no disassembler, something is very wrong. */
|
|
if (tm_print_insn == NULL)
|
|
abort ();
|
|
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
|
|
else
|
|
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
|
|
return (*tm_print_insn) (memaddr, &tm_print_insn_info);
|
|
}
|
|
|
|
void
|
|
d30v_eva_prepare_to_trace ()
|
|
{
|
|
if (!tracing)
|
|
return;
|
|
|
|
last_pc = read_register (PC_REGNUM);
|
|
}
|
|
|
|
/* Collect trace data from the target board and format it into a form
|
|
more useful for display. */
|
|
|
|
void
|
|
d30v_eva_get_trace_data ()
|
|
{
|
|
int count, i, j, oldsize;
|
|
int trace_addr, trace_seg, trace_cnt, next_cnt;
|
|
unsigned int last_trace, trace_word, next_word;
|
|
unsigned int *tmpspace;
|
|
|
|
if (!tracing)
|
|
return;
|
|
|
|
tmpspace = xmalloc (65536 * sizeof(unsigned int));
|
|
|
|
last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
|
|
|
|
/* Collect buffer contents from the target, stopping when we reach
|
|
the word recorded when execution resumed. */
|
|
|
|
count = 0;
|
|
while (last_trace > 0)
|
|
{
|
|
QUIT;
|
|
trace_word =
|
|
read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
|
|
trace_addr = trace_word & 0xffff;
|
|
last_trace -= 4;
|
|
/* Ignore an apparently nonsensical entry. */
|
|
if (trace_addr == 0xffd5)
|
|
continue;
|
|
tmpspace[count++] = trace_word;
|
|
if (trace_addr == last_pc)
|
|
break;
|
|
if (count > 65535)
|
|
break;
|
|
}
|
|
|
|
/* Move the data to the host-side trace buffer, adjusting counts to
|
|
include the last instruction executed and transforming the address
|
|
into something that GDB likes. */
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
trace_word = tmpspace[i];
|
|
next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
|
|
trace_addr = trace_word & 0xffff;
|
|
next_cnt = (next_word >> 24) & 0xff;
|
|
j = trace_data.size + count - i - 1;
|
|
trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
|
|
trace_data.counts[j] = next_cnt + 1;
|
|
}
|
|
|
|
oldsize = trace_data.size;
|
|
trace_data.size += count;
|
|
|
|
free (tmpspace);
|
|
|
|
if (trace_display)
|
|
display_trace (oldsize, trace_data.size);
|
|
}
|
|
|
|
static void
|
|
tdisassemble_command (arg, from_tty)
|
|
char *arg;
|
|
int from_tty;
|
|
{
|
|
int i, count;
|
|
CORE_ADDR low, high;
|
|
char *space_index;
|
|
|
|
if (!arg)
|
|
{
|
|
low = 0;
|
|
high = trace_data.size;
|
|
}
|
|
else if (!(space_index = (char *) strchr (arg, ' ')))
|
|
{
|
|
low = parse_and_eval_address (arg);
|
|
high = low + 5;
|
|
}
|
|
else
|
|
{
|
|
/* Two arguments. */
|
|
*space_index = '\0';
|
|
low = parse_and_eval_address (arg);
|
|
high = parse_and_eval_address (space_index + 1);
|
|
if (high < low)
|
|
high = low;
|
|
}
|
|
|
|
printf_filtered ("Dump of trace from %d to %d:\n", low, high);
|
|
|
|
display_trace (low, high);
|
|
|
|
printf_filtered ("End of trace dump.\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
display_trace (low, high)
|
|
int low, high;
|
|
{
|
|
int i, count, trace_show_source, first, suppress;
|
|
CORE_ADDR next_address;
|
|
|
|
trace_show_source = default_trace_show_source;
|
|
if (!have_full_symbols () && !have_partial_symbols())
|
|
{
|
|
trace_show_source = 0;
|
|
printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
|
|
printf_filtered ("Trace will not display any source.\n");
|
|
}
|
|
|
|
first = 1;
|
|
suppress = 0;
|
|
for (i = low; i < high; ++i)
|
|
{
|
|
next_address = trace_data.addrs[i];
|
|
count = trace_data.counts[i];
|
|
while (count-- > 0)
|
|
{
|
|
QUIT;
|
|
if (trace_show_source)
|
|
{
|
|
struct symtab_and_line sal, sal_prev;
|
|
|
|
sal_prev = find_pc_line (next_address - 4, 0);
|
|
sal = find_pc_line (next_address, 0);
|
|
|
|
if (sal.symtab)
|
|
{
|
|
if (first || sal.line != sal_prev.line)
|
|
print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
|
|
suppress = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!suppress)
|
|
/* FIXME-32x64--assumes sal.pc fits in long. */
|
|
printf_filtered ("No source file for address %s.\n",
|
|
local_hex_string((unsigned long) sal.pc));
|
|
suppress = 1;
|
|
}
|
|
}
|
|
first = 0;
|
|
print_address (next_address, gdb_stdout);
|
|
printf_filtered (":");
|
|
printf_filtered ("\t");
|
|
wrap_here (" ");
|
|
next_address = next_address + print_insn (next_address, gdb_stdout);
|
|
printf_filtered ("\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
}
|
|
}
|
|
|
|
extern void (*target_resume_hook) PARAMS ((void));
|
|
extern void (*target_wait_loop_hook) PARAMS ((void));
|
|
|
|
void
|
|
_initialize_d30v_tdep ()
|
|
{
|
|
tm_print_insn = print_insn_d30v;
|
|
|
|
target_resume_hook = d30v_eva_prepare_to_trace;
|
|
target_wait_loop_hook = d30v_eva_get_trace_data;
|
|
|
|
add_info ("flags", print_flags_command, "Print d30v flags.");
|
|
|
|
add_com ("trace", class_support, trace_command,
|
|
"Enable tracing of instruction execution.");
|
|
|
|
add_com ("untrace", class_support, untrace_command,
|
|
"Disable tracing of instruction execution.");
|
|
|
|
add_com ("tdisassemble", class_vars, tdisassemble_command,
|
|
"Disassemble the trace buffer.\n\
|
|
Two optional arguments specify a range of trace buffer entries\n\
|
|
as reported by info trace (NOT addresses!).");
|
|
|
|
add_info ("trace", trace_info,
|
|
"Display info about the trace data buffer.");
|
|
|
|
add_show_from_set (add_set_cmd ("tracedisplay", no_class,
|
|
var_integer, (char *)&trace_display,
|
|
"Set automatic display of trace.\n", &setlist),
|
|
&showlist);
|
|
add_show_from_set (add_set_cmd ("tracesource", no_class,
|
|
var_integer, (char *)&default_trace_show_source,
|
|
"Set display of source code with trace.\n", &setlist),
|
|
&showlist);
|
|
|
|
}
|