0930cb3021
This PR shows a fuzzed binary triggering a segfault via a bad relocation in .debug_line. It turns out that unlike normal relocations applied to a section, the linker applies those with symbols from discarded sections via _bfd_clear_contents without checking that the relocation is within the section bounds. The same thing now happens when reading debug sections since commit a4cd947aca23, the PR23425 fix. PR 23770 PR 23425 * reloc.c (_bfd_clear_contents): Replace "location" param with "buf" and "off". Bounds check "off". Return status. * cofflink.c (_bfd_coff_generic_relocate_section): Update _bfd_clear_contents call. * elf-bfd.h (RELOC_AGAINST_DISCARDED_SECTION): Likewise. * elf32-arc.c (elf_arc_relocate_section): Likewise. * elf32-i386.c (elf_i386_relocate_section): Likewise. * elf32-metag.c (metag_final_link_relocate): Likewise. * elf32-nds32.c (nds32_elf_get_relocated_section_contents): Likewise. * elf32-ppc.c (ppc_elf_relocate_section): Likewise. * elf32-visium.c (visium_elf_relocate_section): Likewise. * elf64-ppc.c (ppc64_elf_relocate_section): Likewise. * elf64-x86-64.c *(elf_x86_64_relocate_section): Likewise. * libbfd-in.h (_bfd_clear_contents): Update prototype. * libbfd.h: Regenerate.
4169 lines
118 KiB
C
4169 lines
118 KiB
C
/* Meta support for 32-bit ELF
|
|
Copyright (C) 2013-2018 Free Software Foundation, Inc.
|
|
Contributed by Imagination Technologies Ltd.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf32-metag.h"
|
|
#include "elf/metag.h"
|
|
|
|
#define GOT_ENTRY_SIZE 4
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld-uClibc.so.0"
|
|
|
|
/* ABI version:
|
|
0 - original
|
|
1 - with GOT offset */
|
|
#define METAG_ELF_ABI_VERSION 1
|
|
|
|
static const unsigned int plt0_entry[] =
|
|
{
|
|
0x02000005, /* MOVT D0Re0, #HI(GOT+4) */
|
|
0x02000000, /* ADD D0Re0, D0Re0, #LO(GOT+4) */
|
|
0xb70001e3, /* SETL [A0StP++], D0Re0, D1Re0 */
|
|
0xc600012a, /* GETD PC, [D0Re0+#4] */
|
|
0xa0fffffe /* NOP */
|
|
};
|
|
|
|
static const unsigned int plt0_pic_entry[] =
|
|
{
|
|
0x82900001, /* ADDT A0.2, CPC0, #0 */
|
|
0x82100000, /* ADD A0.2, A0.2, #0 */
|
|
0xa3100c20, /* MOV D0Re0, A0.2 */
|
|
0xb70001e3, /* SETL [A0StP++], D0Re0, D1Re0 */
|
|
0xc600012a, /* GETD PC, [D0Re0+#4] */
|
|
};
|
|
|
|
static const unsigned int plt_entry[] =
|
|
{
|
|
0x82100005, /* MOVT A0.2, #HI(GOT+off) */
|
|
0x82100000, /* ADD A0.2, A0.2, #LO(GOT+off) */
|
|
0xc600806a, /* GETD PC, [A0.2] */
|
|
0x03000004, /* MOV D1Re0, #LO(offset) */
|
|
0xa0000000 /* B PLT0 */
|
|
};
|
|
|
|
static const unsigned int plt_pic_entry[] =
|
|
{
|
|
0x82900001, /* ADDT A0.2, CPC0, #HI(GOT+off) */
|
|
0x82100000, /* ADD A0.2, A0.2, #LO(GOT+off) */
|
|
0xc600806a, /* GETD PC, [A0.2] */
|
|
0x03000004, /* MOV D1Re0, #LO(offset) */
|
|
0xa0000000 /* B PLT0 */
|
|
};
|
|
|
|
/* Variable names follow a coding style.
|
|
Please follow this (Apps Hungarian) style:
|
|
|
|
Structure/Variable Prefix
|
|
elf_link_hash_table "etab"
|
|
elf_link_hash_entry "eh"
|
|
|
|
elf_metag_link_hash_table "htab"
|
|
elf_metag_link_hash_entry "hh"
|
|
|
|
bfd_link_hash_table "btab"
|
|
bfd_link_hash_entry "bh"
|
|
|
|
bfd_hash_table containing stubs "bstab"
|
|
elf_metag_stub_hash_entry "hsh"
|
|
|
|
Always remember to use GNU Coding Style. */
|
|
|
|
#define PLT_ENTRY_SIZE sizeof(plt_entry)
|
|
|
|
static reloc_howto_type elf_metag_howto_table[] =
|
|
{
|
|
/* High order 16 bit absolute. */
|
|
HOWTO (R_METAG_HIADDR16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_HIADDR16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Low order 16 bit absolute. */
|
|
HOWTO (R_METAG_LOADDR16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_LOADDR16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 32 bit absolute. */
|
|
HOWTO (R_METAG_ADDR32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_ADDR32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000000, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* No relocation. */
|
|
HOWTO (R_METAG_NONE, /* type */
|
|
0, /* rightshift */
|
|
3, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_NONE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 19 bit pc relative */
|
|
HOWTO (R_METAG_RELBRANCH, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
19, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
5, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_RELBRANCH", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x00ffffe0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* GET/SET offset */
|
|
HOWTO (R_METAG_GETSETOFF, /* type */
|
|
0, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
7, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_GETSETOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
EMPTY_HOWTO (6),
|
|
EMPTY_HOWTO (7),
|
|
EMPTY_HOWTO (8),
|
|
EMPTY_HOWTO (9),
|
|
EMPTY_HOWTO (10),
|
|
EMPTY_HOWTO (11),
|
|
EMPTY_HOWTO (12),
|
|
EMPTY_HOWTO (13),
|
|
EMPTY_HOWTO (14),
|
|
EMPTY_HOWTO (15),
|
|
EMPTY_HOWTO (16),
|
|
EMPTY_HOWTO (17),
|
|
EMPTY_HOWTO (18),
|
|
EMPTY_HOWTO (19),
|
|
EMPTY_HOWTO (20),
|
|
EMPTY_HOWTO (21),
|
|
EMPTY_HOWTO (22),
|
|
EMPTY_HOWTO (23),
|
|
EMPTY_HOWTO (24),
|
|
EMPTY_HOWTO (25),
|
|
EMPTY_HOWTO (26),
|
|
EMPTY_HOWTO (27),
|
|
EMPTY_HOWTO (28),
|
|
EMPTY_HOWTO (29),
|
|
|
|
HOWTO (R_METAG_GNU_VTINHERIT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_METAG_GNU_VTINHERIT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_GNU_VTENTRY, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
|
"R_METAG_GNU_VTENTRY", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* High order 16 bit GOT offset */
|
|
HOWTO (R_METAG_HI16_GOTOFF, /* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_HI16_GOTOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Low order 16 bit GOT offset */
|
|
HOWTO (R_METAG_LO16_GOTOFF, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_LO16_GOTOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* GET/SET GOT offset */
|
|
HOWTO (R_METAG_GETSET_GOTOFF, /* type */
|
|
0, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
7, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_GETSET_GOTOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* GET/SET GOT relative */
|
|
HOWTO (R_METAG_GETSET_GOT, /* type */
|
|
0, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
7, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_GETSET_GOT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* High order 16 bit GOT reference */
|
|
HOWTO (R_METAG_HI16_GOTPC, /* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_HI16_GOTPC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Low order 16 bit GOT reference */
|
|
HOWTO (R_METAG_LO16_GOTPC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_LO16_GOTPC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* High order 16 bit PLT */
|
|
HOWTO (R_METAG_HI16_PLT, /* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_HI16_PLT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Low order 16 bit PLT */
|
|
HOWTO (R_METAG_LO16_PLT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_LO16_PLT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_RELBRANCH_PLT, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
19, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
5, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_RELBRANCH_PLT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x00ffffe0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Dummy relocs used by the linker internally. */
|
|
HOWTO (R_METAG_GOTOFF, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_GOTOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_PLT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_GOTOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* This is used only by the dynamic linker. The symbol should exist
|
|
both in the object being run and in some shared library. The
|
|
dynamic linker copies the data addressed by the symbol from the
|
|
shared library into the object, because the object being
|
|
run has to have the data at some particular address. */
|
|
HOWTO (R_METAG_COPY, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_COPY", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Marks a procedure linkage table entry for a symbol. */
|
|
HOWTO (R_METAG_JMP_SLOT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_JMP_SLOT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Used only by the dynamic linker. When the object is run, this
|
|
longword is set to the load address of the object, plus the
|
|
addend. */
|
|
HOWTO (R_METAG_RELATIVE, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_RELATIVE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_GLOB_DAT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_GLOB_DAT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_GD, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_GD", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_LDM, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LDM", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_LDO_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LDO_HI16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_LDO_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LDO_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Dummy reloc used by the linker internally. */
|
|
HOWTO (R_METAG_TLS_LDO, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LDO", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_IE, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
7, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_IE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007ff80, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Dummy reloc used by the linker internally. */
|
|
HOWTO (R_METAG_TLS_IENONPIC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_IENONPIC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_IENONPIC_HI16,/* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_IENONPIC_HI16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_IENONPIC_LO16,/* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_IENONPIC_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_TPOFF, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_TPOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_DTPMOD, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_DTPMOD", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_DTPOFF, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_DTPOFF", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Dummy reloc used by the linker internally. */
|
|
HOWTO (R_METAG_TLS_LE, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_LE_HI16, /* type */
|
|
16, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LE_HI16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_METAG_TLS_LE_LO16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
3, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_METAG_TLS_LE_LO16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0x0007fff8, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
};
|
|
|
|
#define BRANCH_BITS 19
|
|
|
|
/* The GOT is typically accessed using a [GS]ETD instruction. The size of the
|
|
immediate offset which can be used in such instructions therefore limits
|
|
the usable size of the GOT. If the base register for the [GS]ETD (A1LbP)
|
|
is pointing to the base of the GOT then the size is limited to the maximum
|
|
11 bits unsigned dword offset, or 2^13 = 0x2000 bytes. However the offset
|
|
in a [GS]ETD instruction is signed, so by setting the base address register
|
|
to an offset of that 0x2000 byte maximum unsigned offset from the base of
|
|
the GOT we can use negative offsets in addition to positive. This
|
|
effectively doubles the usable GOT size to 0x4000 bytes. */
|
|
#define GOT_REG_OFFSET 0x2000
|
|
|
|
struct metag_reloc_map
|
|
{
|
|
bfd_reloc_code_real_type bfd_reloc_val;
|
|
unsigned int metag_reloc_val;
|
|
};
|
|
|
|
static const struct metag_reloc_map metag_reloc_map [] =
|
|
{
|
|
{ BFD_RELOC_NONE, R_METAG_NONE },
|
|
{ BFD_RELOC_32, R_METAG_ADDR32 },
|
|
{ BFD_RELOC_METAG_HIADDR16, R_METAG_HIADDR16 },
|
|
{ BFD_RELOC_METAG_LOADDR16, R_METAG_LOADDR16 },
|
|
{ BFD_RELOC_METAG_RELBRANCH, R_METAG_RELBRANCH },
|
|
{ BFD_RELOC_METAG_GETSETOFF, R_METAG_GETSETOFF },
|
|
{ BFD_RELOC_VTABLE_INHERIT, R_METAG_GNU_VTINHERIT },
|
|
{ BFD_RELOC_VTABLE_ENTRY, R_METAG_GNU_VTENTRY },
|
|
{ BFD_RELOC_METAG_REL8, R_METAG_REL8 },
|
|
{ BFD_RELOC_METAG_REL16, R_METAG_REL16 },
|
|
{ BFD_RELOC_METAG_HI16_GOTOFF, R_METAG_HI16_GOTOFF },
|
|
{ BFD_RELOC_METAG_LO16_GOTOFF, R_METAG_LO16_GOTOFF },
|
|
{ BFD_RELOC_METAG_GETSET_GOTOFF, R_METAG_GETSET_GOTOFF },
|
|
{ BFD_RELOC_METAG_GETSET_GOT, R_METAG_GETSET_GOT },
|
|
{ BFD_RELOC_METAG_HI16_GOTPC, R_METAG_HI16_GOTPC },
|
|
{ BFD_RELOC_METAG_LO16_GOTPC, R_METAG_LO16_GOTPC },
|
|
{ BFD_RELOC_METAG_HI16_PLT, R_METAG_HI16_PLT },
|
|
{ BFD_RELOC_METAG_LO16_PLT, R_METAG_LO16_PLT },
|
|
{ BFD_RELOC_METAG_RELBRANCH_PLT, R_METAG_RELBRANCH_PLT },
|
|
{ BFD_RELOC_METAG_GOTOFF, R_METAG_GOTOFF },
|
|
{ BFD_RELOC_METAG_PLT, R_METAG_PLT },
|
|
{ BFD_RELOC_METAG_COPY, R_METAG_COPY },
|
|
{ BFD_RELOC_METAG_JMP_SLOT, R_METAG_JMP_SLOT },
|
|
{ BFD_RELOC_METAG_RELATIVE, R_METAG_RELATIVE },
|
|
{ BFD_RELOC_METAG_GLOB_DAT, R_METAG_GLOB_DAT },
|
|
{ BFD_RELOC_METAG_TLS_GD, R_METAG_TLS_GD },
|
|
{ BFD_RELOC_METAG_TLS_LDM, R_METAG_TLS_LDM },
|
|
{ BFD_RELOC_METAG_TLS_LDO_HI16, R_METAG_TLS_LDO_HI16 },
|
|
{ BFD_RELOC_METAG_TLS_LDO_LO16, R_METAG_TLS_LDO_LO16 },
|
|
{ BFD_RELOC_METAG_TLS_LDO, R_METAG_TLS_LDO },
|
|
{ BFD_RELOC_METAG_TLS_IE, R_METAG_TLS_IE },
|
|
{ BFD_RELOC_METAG_TLS_IENONPIC, R_METAG_TLS_IENONPIC },
|
|
{ BFD_RELOC_METAG_TLS_IENONPIC_HI16, R_METAG_TLS_IENONPIC_HI16 },
|
|
{ BFD_RELOC_METAG_TLS_IENONPIC_LO16, R_METAG_TLS_IENONPIC_LO16 },
|
|
{ BFD_RELOC_METAG_TLS_TPOFF, R_METAG_TLS_TPOFF },
|
|
{ BFD_RELOC_METAG_TLS_DTPMOD, R_METAG_TLS_DTPMOD },
|
|
{ BFD_RELOC_METAG_TLS_DTPOFF, R_METAG_TLS_DTPOFF },
|
|
{ BFD_RELOC_METAG_TLS_LE, R_METAG_TLS_LE },
|
|
{ BFD_RELOC_METAG_TLS_LE_HI16, R_METAG_TLS_LE_HI16 },
|
|
{ BFD_RELOC_METAG_TLS_LE_LO16, R_METAG_TLS_LE_LO16 },
|
|
};
|
|
|
|
enum elf_metag_stub_type
|
|
{
|
|
metag_stub_long_branch,
|
|
metag_stub_long_branch_shared,
|
|
metag_stub_none
|
|
};
|
|
|
|
struct elf_metag_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry bh_root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump. */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
enum elf_metag_stub_type stub_type;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf_metag_link_hash_entry *hh;
|
|
|
|
/* And the reloc addend that this was derived from. */
|
|
bfd_vma addend;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
};
|
|
|
|
struct elf_metag_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry eh;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf_metag_stub_hash_entry *hsh_cache;
|
|
|
|
/* Used to count relocations for delayed sizing of relocation
|
|
sections. */
|
|
struct elf_dyn_relocs *dyn_relocs;
|
|
|
|
enum
|
|
{
|
|
GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_IE = 2, GOT_TLS_LDM = 4, GOT_TLS_GD = 8
|
|
} tls_type;
|
|
};
|
|
|
|
struct elf_metag_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table etab;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table bstab;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection * (*add_stub_section) (const char *, asection *);
|
|
void (*layout_sections_again) (void);
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub
|
|
{
|
|
/* This is the section to which stubs in the group will be
|
|
attached. */
|
|
asection *link_sec;
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
} *stub_group;
|
|
|
|
/* Assorted information used by elf_metag_size_stubs. */
|
|
unsigned int bfd_count;
|
|
unsigned int top_index;
|
|
asection **input_list;
|
|
Elf_Internal_Sym **all_local_syms;
|
|
|
|
/* Small local sym cache. */
|
|
struct sym_cache sym_cache;
|
|
|
|
/* Data for LDM relocations. */
|
|
union
|
|
{
|
|
bfd_signed_vma refcount;
|
|
bfd_vma offset;
|
|
} tls_ldm_got;
|
|
};
|
|
|
|
/* Return the base vma address which should be subtracted from the
|
|
real address when resolving a dtpoff relocation. This is PT_TLS
|
|
segment p_vaddr. */
|
|
static bfd_vma
|
|
dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Return the relocation value for R_METAG_TLS_IE */
|
|
static bfd_vma
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
/* METAG TLS ABI is variant I and static TLS blocks start just after
|
|
tcbhead structure which has 2 pointer fields. */
|
|
return (address - elf_hash_table (info)->tls_sec->vma
|
|
+ align_power ((bfd_vma) 8,
|
|
elf_hash_table (info)->tls_sec->alignment_power));
|
|
}
|
|
|
|
static bfd_boolean
|
|
metag_info_to_howto_rela (bfd *abfd,
|
|
arelent *cache_ptr,
|
|
Elf_Internal_Rela *dst)
|
|
{
|
|
unsigned int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (dst->r_info);
|
|
if (r_type >= (unsigned int) R_METAG_MAX)
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
|
|
abfd, r_type);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
cache_ptr->howto = & elf_metag_howto_table [r_type];
|
|
return TRUE;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
metag_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type code)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sizeof (metag_reloc_map) / sizeof (metag_reloc_map[0]); i++)
|
|
if (metag_reloc_map [i].bfd_reloc_val == code)
|
|
return & elf_metag_howto_table [metag_reloc_map[i].metag_reloc_val];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
metag_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
const char *r_name)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sizeof (elf_metag_howto_table) / sizeof (elf_metag_howto_table[0]); i++)
|
|
if (elf_metag_howto_table[i].name != NULL
|
|
&& strcasecmp (elf_metag_howto_table[i].name, r_name) == 0)
|
|
return &elf_metag_howto_table[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Various hash macros and functions. */
|
|
#define metag_link_hash_table(p) \
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
|
== METAG_ELF_DATA ? ((struct elf_metag_link_hash_table *) ((p)->hash)) : NULL)
|
|
|
|
#define metag_elf_hash_entry(ent) \
|
|
((struct elf_metag_link_hash_entry *)(ent))
|
|
|
|
#define metag_stub_hash_entry(ent) \
|
|
((struct elf_metag_stub_hash_entry *)(ent))
|
|
|
|
#define metag_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf_metag_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
#define metag_elf_local_got_tls_type(abfd) \
|
|
((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info)))
|
|
|
|
/* Assorted hash table functions. */
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf_metag_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf_metag_stub_hash_entry *hsh;
|
|
|
|
/* Initialize the local fields. */
|
|
hsh = (struct elf_metag_stub_hash_entry *) entry;
|
|
hsh->stub_sec = NULL;
|
|
hsh->stub_offset = 0;
|
|
hsh->target_value = 0;
|
|
hsh->target_section = NULL;
|
|
hsh->stub_type = metag_stub_long_branch;
|
|
hsh->hh = NULL;
|
|
hsh->id_sec = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Initialize an entry in the link hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
metag_link_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf_metag_link_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf_metag_link_hash_entry *hh;
|
|
|
|
/* Initialize the local fields. */
|
|
hh = (struct elf_metag_link_hash_entry *) entry;
|
|
hh->hsh_cache = NULL;
|
|
hh->dyn_relocs = NULL;
|
|
hh->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
|
|
static void
|
|
elf_metag_link_hash_table_free (bfd *obfd)
|
|
{
|
|
struct elf_metag_link_hash_table *htab
|
|
= (struct elf_metag_link_hash_table *) obfd->link.hash;
|
|
|
|
bfd_hash_table_free (&htab->bstab);
|
|
_bfd_elf_link_hash_table_free (obfd);
|
|
}
|
|
|
|
/* Create the derived linker hash table. The Meta ELF port uses the derived
|
|
hash table to keep information specific to the Meta ELF linker (without
|
|
using static variables). */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf_metag_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct elf_metag_link_hash_table *htab;
|
|
bfd_size_type amt = sizeof (*htab);
|
|
|
|
htab = bfd_zmalloc (amt);
|
|
if (htab == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
|
|
metag_link_hash_newfunc,
|
|
sizeof (struct elf_metag_link_hash_entry),
|
|
METAG_ELF_DATA))
|
|
{
|
|
free (htab);
|
|
return NULL;
|
|
}
|
|
|
|
/* Init the stub hash table too. */
|
|
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
|
|
sizeof (struct elf_metag_stub_hash_entry)))
|
|
{
|
|
_bfd_elf_link_hash_table_free (abfd);
|
|
return NULL;
|
|
}
|
|
htab->etab.root.hash_table_free = elf_metag_link_hash_table_free;
|
|
|
|
return &htab->etab.root;
|
|
}
|
|
|
|
/* Section name for stubs is the associated section name plus this
|
|
string. */
|
|
#define STUB_SUFFIX ".stub"
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
|
|
static char *
|
|
metag_stub_name (const asection *input_section,
|
|
const asection *sym_sec,
|
|
const struct elf_metag_link_hash_entry *hh,
|
|
const Elf_Internal_Rela *rel)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (hh)
|
|
{
|
|
len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%s+%x",
|
|
input_section->id & 0xffffffff,
|
|
hh->eh.root.root.string,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%x:%x+%x",
|
|
input_section->id & 0xffffffff,
|
|
sym_sec->id & 0xffffffff,
|
|
(int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
}
|
|
return stub_name;
|
|
}
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
|
|
static struct elf_metag_stub_hash_entry *
|
|
metag_get_stub_entry (const asection *input_section,
|
|
const asection *sym_sec,
|
|
struct elf_metag_link_hash_entry *hh,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf_metag_link_hash_table *htab)
|
|
{
|
|
struct elf_metag_stub_hash_entry *hsh;
|
|
const asection *id_sec;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first section in the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
|
|
|
if (hh != NULL && hh->hsh_cache != NULL
|
|
&& hh->hsh_cache->hh == hh
|
|
&& hh->hsh_cache->id_sec == id_sec)
|
|
{
|
|
hsh = hh->hsh_cache;
|
|
}
|
|
else
|
|
{
|
|
char *stub_name;
|
|
|
|
stub_name = metag_stub_name (id_sec, sym_sec, hh, rel);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
|
|
hsh = metag_stub_hash_lookup (&htab->bstab,
|
|
stub_name, FALSE, FALSE);
|
|
|
|
if (hh != NULL)
|
|
hh->hsh_cache = hsh;
|
|
|
|
free (stub_name);
|
|
}
|
|
|
|
return hsh;
|
|
}
|
|
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|
stub entry are initialised. */
|
|
|
|
static struct elf_metag_stub_hash_entry *
|
|
metag_add_stub (const char *stub_name,
|
|
asection *section,
|
|
struct elf_metag_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
struct elf_metag_stub_hash_entry *hsh;
|
|
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
|
stub_sec = htab->stub_group[section->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
stub_sec = htab->stub_group[link_sec->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (link_sec->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, link_sec->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
htab->stub_group[link_sec->id].stub_sec = stub_sec;
|
|
}
|
|
htab->stub_group[section->id].stub_sec = stub_sec;
|
|
}
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
hsh = metag_stub_hash_lookup (&htab->bstab, stub_name,
|
|
TRUE, FALSE);
|
|
if (hsh == NULL)
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: cannot create stub entry %s"),
|
|
section->owner, stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
hsh->stub_sec = stub_sec;
|
|
hsh->stub_offset = 0;
|
|
hsh->id_sec = link_sec;
|
|
return hsh;
|
|
}
|
|
|
|
/* Check a signed integer value can be represented in the given number
|
|
of bits. */
|
|
|
|
static bfd_boolean
|
|
within_signed_range (int value, unsigned int bits)
|
|
{
|
|
int min_val = -(1 << (bits - 1));
|
|
int max_val = (1 << (bits - 1)) - 1;
|
|
return (value <= max_val) && (value >= min_val);
|
|
}
|
|
|
|
/* Perform a relocation as part of a final link. */
|
|
|
|
static bfd_reloc_status_type
|
|
metag_final_link_relocate (reloc_howto_type *howto,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma relocation,
|
|
struct elf_metag_link_hash_entry *hh,
|
|
struct elf_metag_link_hash_table *htab,
|
|
asection *sym_sec)
|
|
{
|
|
bfd_reloc_status_type r = bfd_reloc_ok;
|
|
bfd_byte *hit_data = contents + rel->r_offset;
|
|
int opcode, op_shift, op_extended, l1, l2;
|
|
bfd_signed_vma srel, addend = rel->r_addend;
|
|
struct elf_metag_stub_hash_entry *hsh = NULL;
|
|
bfd_vma location;
|
|
|
|
/* Find out where we are and where we're going. */
|
|
location = (rel->r_offset +
|
|
input_section->output_offset +
|
|
input_section->output_section->vma);
|
|
|
|
switch (howto->type)
|
|
{
|
|
case R_METAG_RELBRANCH:
|
|
case R_METAG_RELBRANCH_PLT:
|
|
/* Make it a pc relative offset. */
|
|
relocation -= location;
|
|
break;
|
|
case R_METAG_TLS_GD:
|
|
case R_METAG_TLS_IE:
|
|
relocation -= elf_gp (input_section->output_section->owner);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (howto->type)
|
|
{
|
|
case R_METAG_RELBRANCH_PLT:
|
|
case R_METAG_RELBRANCH:
|
|
opcode = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
srel = (bfd_signed_vma) relocation;
|
|
srel += addend;
|
|
|
|
/* If the branch is out of reach, then redirect the
|
|
call to the local stub for this function. */
|
|
if (srel > ((1 << (BRANCH_BITS + 1)) - 1) ||
|
|
(srel < - (1 << (BRANCH_BITS + 1))))
|
|
{
|
|
if (sym_sec == NULL)
|
|
break;
|
|
|
|
hsh = metag_get_stub_entry (input_section, sym_sec,
|
|
hh, rel, htab);
|
|
if (hsh == NULL)
|
|
return bfd_reloc_undefined;
|
|
|
|
/* Munge up the value and addend so that we call the stub
|
|
rather than the procedure directly. */
|
|
srel = (hsh->stub_offset
|
|
+ hsh->stub_sec->output_offset
|
|
+ hsh->stub_sec->output_section->vma);
|
|
srel -= location;
|
|
}
|
|
|
|
srel = srel >> 2;
|
|
|
|
if (!within_signed_range (srel, BRANCH_BITS))
|
|
{
|
|
if (hh && hh->eh.root.type == bfd_link_hash_undefweak)
|
|
srel = 0;
|
|
else
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
opcode &= ~(0x7ffff << 5);
|
|
opcode |= ((srel & 0x7ffff) << 5);
|
|
|
|
bfd_put_32 (input_bfd, opcode, hit_data);
|
|
break;
|
|
case R_METAG_GETSETOFF:
|
|
case R_METAG_GETSET_GOT:
|
|
case R_METAG_GETSET_GOTOFF:
|
|
opcode = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
srel = (bfd_signed_vma) relocation;
|
|
srel += addend;
|
|
|
|
/* Is this a standard or extended GET/SET? */
|
|
if ((opcode & 0xf0000000) == 0xa0000000)
|
|
{
|
|
/* Extended GET/SET. */
|
|
l1 = opcode & 0x2;
|
|
l2 = opcode & 0x4;
|
|
op_extended = 1;
|
|
}
|
|
else
|
|
{
|
|
/* Standard GET/SET. */
|
|
l1 = opcode & 0x01000000;
|
|
l2 = opcode & 0x04000000;
|
|
op_extended = 0;
|
|
}
|
|
|
|
/* Calculate the width of the GET/SET and how much we need to
|
|
shift the result by. */
|
|
if (l2)
|
|
if (l1)
|
|
op_shift = 3;
|
|
else
|
|
op_shift = 2;
|
|
else
|
|
if (l1)
|
|
op_shift = 1;
|
|
else
|
|
op_shift = 0;
|
|
|
|
/* GET/SET offsets are scaled by the width of the transfer. */
|
|
srel = srel >> op_shift;
|
|
|
|
/* Extended GET/SET has signed 12 bits of offset, standard has
|
|
signed 6 bits. */
|
|
if (op_extended)
|
|
{
|
|
if (!within_signed_range (srel, 12))
|
|
{
|
|
if (hh && hh->eh.root.type == bfd_link_hash_undefweak)
|
|
srel = 0;
|
|
else
|
|
return bfd_reloc_overflow;
|
|
}
|
|
opcode &= ~(0xfff << 7);
|
|
opcode |= ((srel & 0xfff) << 7);
|
|
}
|
|
else
|
|
{
|
|
if (!within_signed_range (srel, 5))
|
|
{
|
|
if (hh && hh->eh.root.type == bfd_link_hash_undefweak)
|
|
srel = 0;
|
|
else
|
|
return bfd_reloc_overflow;
|
|
}
|
|
opcode &= ~(0x3f << 8);
|
|
opcode |= ((srel & 0x3f) << 8);
|
|
}
|
|
|
|
bfd_put_32 (input_bfd, opcode, hit_data);
|
|
break;
|
|
case R_METAG_TLS_GD:
|
|
case R_METAG_TLS_LDM:
|
|
opcode = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
if ((bfd_signed_vma)relocation < 0)
|
|
{
|
|
/* sign extend immediate */
|
|
if ((opcode & 0xf2000001) == 0x02000000)
|
|
{
|
|
/* ADD De.e,Dx.r,#I16 */
|
|
/* set SE bit */
|
|
opcode |= (1 << 1);
|
|
} else
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
bfd_put_32 (input_bfd, opcode, hit_data);
|
|
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
default:
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* This is defined because R_METAG_NONE != 0...
|
|
See RELOC_AGAINST_DISCARDED_SECTION for details. */
|
|
#define METAG_RELOC_AGAINST_DISCARDED_SECTION(info, input_bfd, input_section, \
|
|
rel, relend, howto, contents) \
|
|
{ \
|
|
_bfd_clear_contents (howto, input_bfd, input_section, \
|
|
contents, rel->r_offset); \
|
|
\
|
|
if (bfd_link_relocatable (info) \
|
|
&& (input_section->flags & SEC_DEBUGGING)) \
|
|
{ \
|
|
/* Only remove relocations in debug sections since other \
|
|
sections may require relocations. */ \
|
|
Elf_Internal_Shdr *rel_hdr; \
|
|
\
|
|
rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section); \
|
|
\
|
|
/* Avoid empty output section. */ \
|
|
if (rel_hdr->sh_size > rel_hdr->sh_entsize) \
|
|
{ \
|
|
rel_hdr->sh_size -= rel_hdr->sh_entsize; \
|
|
rel_hdr = _bfd_elf_single_rel_hdr (input_section); \
|
|
rel_hdr->sh_size -= rel_hdr->sh_entsize; \
|
|
\
|
|
memmove (rel, rel + 1, (relend - rel) * sizeof (*rel)); \
|
|
\
|
|
input_section->reloc_count--; \
|
|
relend--; \
|
|
rel--; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
\
|
|
rel->r_info = R_METAG_NONE; \
|
|
rel->r_addend = 0; \
|
|
continue; \
|
|
}
|
|
|
|
/* Relocate a META ELF section.
|
|
|
|
The RELOCATE_SECTION function is called by the new ELF backend linker
|
|
to handle the relocations for a section.
|
|
|
|
The relocs are always passed as Rela structures; if the section
|
|
actually uses Rel structures, the r_addend field will always be
|
|
zero.
|
|
|
|
This function is responsible for adjusting the section contents as
|
|
necessary, and (if using Rela relocs and generating a relocatable
|
|
output file) adjusting the reloc addend as necessary.
|
|
|
|
This function does not have to worry about setting the reloc
|
|
address or the reloc symbol index.
|
|
|
|
LOCAL_SYMS is a pointer to the swapped in local symbols.
|
|
|
|
LOCAL_SECTIONS is an array giving the section in the input file
|
|
corresponding to the st_shndx field of each local symbol.
|
|
|
|
The global hash table entry for the global symbols can be found
|
|
via elf_sym_hashes (input_bfd).
|
|
|
|
When generating relocatable output, this function must handle
|
|
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
|
|
going to be the section symbol corresponding to the output
|
|
section, which means that the addend must be adjusted
|
|
accordingly. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
bfd_vma *local_got_offsets;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **eh_syms;
|
|
struct elf_metag_link_hash_table *htab;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
asection *sreloc;
|
|
|
|
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
|
eh_syms = elf_sym_hashes (input_bfd);
|
|
relend = relocs + input_section->reloc_count;
|
|
|
|
htab = metag_link_hash_table (info);
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
|
|
sreloc = NULL;
|
|
|
|
for (rel = relocs; rel < relend; rel ++)
|
|
{
|
|
reloc_howto_type *howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sec;
|
|
struct elf_metag_link_hash_entry *hh;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
const char *name;
|
|
int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
if (r_type == R_METAG_GNU_VTINHERIT
|
|
|| r_type == R_METAG_GNU_VTENTRY
|
|
|| r_type == R_METAG_NONE)
|
|
continue;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
howto = elf_metag_howto_table + ELF32_R_TYPE (rel->r_info);
|
|
hh = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections [r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
|
|
name = bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
|
name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
|
|
}
|
|
else
|
|
{
|
|
struct elf_link_hash_entry *eh;
|
|
bfd_boolean unresolved_reloc, warned, ignored;
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, eh_syms,
|
|
eh, sec, relocation,
|
|
unresolved_reloc, warned, ignored);
|
|
|
|
name = eh->root.root.string;
|
|
hh = (struct elf_metag_link_hash_entry *) eh;
|
|
}
|
|
|
|
if (sec != NULL && discarded_section (sec))
|
|
METAG_RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rel, relend, howto, contents);
|
|
|
|
if (bfd_link_relocatable (info))
|
|
continue;
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_METAG_ADDR32:
|
|
case R_METAG_RELBRANCH:
|
|
if ((input_section->flags & SEC_ALLOC) == 0)
|
|
break;
|
|
|
|
if ((bfd_link_pic (info)
|
|
&& r_symndx != STN_UNDEF
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
|
&& (r_type != R_METAG_RELBRANCH
|
|
|| !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
|
|
|| (!bfd_link_pic (info)
|
|
&& hh != NULL
|
|
&& hh->eh.dynindx != -1
|
|
&& !hh->eh.non_got_ref
|
|
&& ((hh->eh.def_dynamic
|
|
&& !hh->eh.def_regular)
|
|
|| hh->eh.root.type == bfd_link_hash_undefweak
|
|
|| hh->eh.root.type == bfd_link_hash_undefined)))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_boolean skip, relocate;
|
|
bfd_byte *loc;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at run
|
|
time. */
|
|
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
|
BFD_ASSERT (sreloc != NULL);
|
|
|
|
skip = FALSE;
|
|
relocate = FALSE;
|
|
|
|
outrel.r_offset = _bfd_elf_section_offset (output_bfd,
|
|
info,
|
|
input_section,
|
|
rel->r_offset);
|
|
if (outrel.r_offset == (bfd_vma) -1)
|
|
skip = TRUE;
|
|
else if (outrel.r_offset == (bfd_vma) -2)
|
|
skip = TRUE, relocate = TRUE;
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
|
|
if (skip)
|
|
{
|
|
memset (&outrel, 0, sizeof outrel);
|
|
outrel.r_info = ELF32_R_INFO (0, R_METAG_NONE);
|
|
}
|
|
else if (r_type == R_METAG_RELBRANCH)
|
|
{
|
|
BFD_ASSERT (hh != NULL && hh->eh.dynindx != -1);
|
|
outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
|
|
outrel.r_addend = rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
/* h->dynindx may be -1 if this symbol was marked to
|
|
become local. */
|
|
if (hh == NULL
|
|
|| ((info->symbolic || hh->eh.dynindx == -1)
|
|
&& hh->eh.def_regular))
|
|
{
|
|
relocate = TRUE;
|
|
outrel.r_info = ELF32_R_INFO (0, R_METAG_RELATIVE);
|
|
outrel.r_addend = relocation + rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (hh->eh.dynindx != -1);
|
|
outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
|
|
outrel.r_addend = rel->r_addend;
|
|
}
|
|
}
|
|
|
|
loc = sreloc->contents;
|
|
loc += sreloc->reloc_count * sizeof(Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
|
|
++sreloc->reloc_count;
|
|
|
|
/* If this reloc is against an external symbol, we do
|
|
not want to fiddle with the addend. Otherwise, we
|
|
need to include the symbol value so that it becomes
|
|
an addend for the dynamic reloc. */
|
|
if (! relocate)
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case R_METAG_RELBRANCH_PLT:
|
|
/* Relocation is to the entry for this symbol in the
|
|
procedure linkage table. */
|
|
|
|
if (hh == NULL)
|
|
break;
|
|
|
|
if (hh->eh.forced_local)
|
|
break;
|
|
|
|
if (hh->eh.plt.offset == (bfd_vma) -1 || htab->etab.splt == NULL)
|
|
{
|
|
/* We didn't make a PLT entry for this symbol. This
|
|
happens when statically linking PIC code, or when
|
|
using -Bsymbolic. */
|
|
break;
|
|
}
|
|
|
|
relocation = (htab->etab.splt->output_section->vma
|
|
+ htab->etab.splt->output_offset
|
|
+ hh->eh.plt.offset);
|
|
break;
|
|
case R_METAG_HI16_GOTPC:
|
|
case R_METAG_LO16_GOTPC:
|
|
BFD_ASSERT (htab->etab.sgot != NULL);
|
|
|
|
relocation = (htab->etab.sgot->output_section->vma +
|
|
htab->etab.sgot->output_offset);
|
|
relocation += GOT_REG_OFFSET;
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
break;
|
|
case R_METAG_HI16_GOTOFF:
|
|
case R_METAG_LO16_GOTOFF:
|
|
case R_METAG_GETSET_GOTOFF:
|
|
BFD_ASSERT (htab->etab.sgot != NULL);
|
|
|
|
relocation -= (htab->etab.sgot->output_section->vma +
|
|
htab->etab.sgot->output_offset);
|
|
relocation -= GOT_REG_OFFSET;
|
|
break;
|
|
case R_METAG_GETSET_GOT:
|
|
{
|
|
bfd_vma off;
|
|
bfd_boolean do_got = 0;
|
|
|
|
/* Relocation is to the entry for this symbol in the
|
|
global offset table. */
|
|
if (hh != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
|
|
off = hh->eh.got.offset;
|
|
dyn = htab->etab.dynamic_sections_created;
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
|
|
bfd_link_pic (info),
|
|
&hh->eh))
|
|
{
|
|
/* If we aren't going to call finish_dynamic_symbol,
|
|
then we need to handle initialisation of the .got
|
|
entry and create needed relocs here. Since the
|
|
offset must always be a multiple of 4, we use the
|
|
least significant bit to record whether we have
|
|
initialised it already. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
hh->eh.got.offset |= 1;
|
|
do_got = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local symbol case. */
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use
|
|
the least significant bit to record whether we have
|
|
already generated the necessary reloc. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
local_got_offsets[r_symndx] |= 1;
|
|
do_got = 1;
|
|
}
|
|
}
|
|
|
|
if (do_got)
|
|
{
|
|
if (bfd_link_pic (info))
|
|
{
|
|
/* Output a dynamic relocation for this GOT entry.
|
|
In this case it is relative to the base of the
|
|
object because the symbol index is zero. */
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
asection *s = htab->etab.srelgot;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->etab.sgot->output_offset
|
|
+ htab->etab.sgot->output_section->vma);
|
|
outrel.r_info = ELF32_R_INFO (0, R_METAG_RELATIVE);
|
|
outrel.r_addend = relocation;
|
|
loc = s->contents;
|
|
loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, relocation,
|
|
htab->etab.sgot->contents + off);
|
|
}
|
|
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
relocation = off - GOT_REG_OFFSET;
|
|
}
|
|
break;
|
|
case R_METAG_TLS_GD:
|
|
case R_METAG_TLS_IE:
|
|
{
|
|
/* XXXMJF There is room here for optimisations. For example
|
|
converting from GD->IE, etc. */
|
|
bfd_vma off;
|
|
int indx;
|
|
char tls_type;
|
|
|
|
if (htab->etab.sgot == NULL)
|
|
abort();
|
|
|
|
indx = 0;
|
|
if (hh != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
dyn = htab->etab.dynamic_sections_created;
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
|
|
bfd_link_pic (info),
|
|
&hh->eh)
|
|
&& (!bfd_link_pic (info)
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
|
|
{
|
|
indx = hh->eh.dynindx;
|
|
}
|
|
off = hh->eh.got.offset;
|
|
tls_type = hh->tls_type;
|
|
}
|
|
else
|
|
{
|
|
/* Local symbol case. */
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
tls_type = metag_elf_local_got_tls_type (input_bfd) [r_symndx];
|
|
}
|
|
|
|
if (tls_type == GOT_UNKNOWN)
|
|
abort ();
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_boolean need_relocs = FALSE;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc = NULL;
|
|
int cur_off = off;
|
|
|
|
/* The GOT entries have not been initialized yet. Do it
|
|
now, and emit any relocations. If both an IE GOT and a
|
|
GD GOT are necessary, we emit the GD first. */
|
|
|
|
if ((bfd_link_pic (info) || indx != 0)
|
|
&& (hh == NULL
|
|
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|
|
|| hh->eh.root.type != bfd_link_hash_undefweak))
|
|
{
|
|
need_relocs = TRUE;
|
|
loc = htab->etab.srelgot->contents;
|
|
/* FIXME (CAO): Should this be reloc_count++ ? */
|
|
loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_offset = (cur_off
|
|
+ htab->etab.sgot->output_section->vma
|
|
+ htab->etab.sgot->output_offset);
|
|
outrel.r_info = ELF32_R_INFO (indx, R_METAG_TLS_DTPMOD);
|
|
outrel.r_addend = 0;
|
|
bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
htab->etab.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
|
|
if (indx == 0)
|
|
bfd_put_32 (output_bfd, 0,
|
|
htab->etab.sgot->contents + cur_off + 4);
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, 0,
|
|
htab->etab.sgot->contents + cur_off + 4);
|
|
outrel.r_info = ELF32_R_INFO (indx,
|
|
R_METAG_TLS_DTPOFF);
|
|
outrel.r_offset += 4;
|
|
bfd_elf32_swap_reloca_out (output_bfd,
|
|
&outrel, loc);
|
|
htab->etab.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We don't support changing the TLS model. */
|
|
/* PR 20675 */
|
|
if (bfd_link_pic (info))
|
|
_bfd_error_handler (_("%pB(%pA): multiple TLS models are not supported"),
|
|
input_bfd, input_section);
|
|
else
|
|
_bfd_error_handler (_("%pB(%pA): shared library symbol %s encountered whilst performing a static link"),
|
|
input_bfd, input_section, name);
|
|
return FALSE;
|
|
}
|
|
|
|
cur_off += 8;
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_offset = (cur_off
|
|
+ htab->etab.sgot->output_section->vma
|
|
+ htab->etab.sgot->output_offset);
|
|
outrel.r_info = ELF32_R_INFO (indx, R_METAG_TLS_TPOFF);
|
|
|
|
if (indx == 0)
|
|
outrel.r_addend = relocation - dtpoff_base (info);
|
|
else
|
|
outrel.r_addend = 0;
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
htab->etab.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
|
htab->etab.sgot->contents + cur_off);
|
|
|
|
cur_off += 4;
|
|
}
|
|
|
|
if (hh != NULL)
|
|
hh->eh.got.offset |= 1;
|
|
else
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
/* Add the base of the GOT to the relocation value. */
|
|
relocation = off - GOT_REG_OFFSET;
|
|
|
|
break;
|
|
}
|
|
|
|
case R_METAG_TLS_IENONPIC_HI16:
|
|
case R_METAG_TLS_IENONPIC_LO16:
|
|
case R_METAG_TLS_LE_HI16:
|
|
case R_METAG_TLS_LE_LO16:
|
|
if (bfd_link_pic (info))
|
|
{
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB(%pA+%#" PRIx64 "): "
|
|
"%s relocation not permitted in shared object"),
|
|
input_bfd, input_section, (uint64_t) rel->r_offset,
|
|
howto->name);
|
|
return FALSE;
|
|
}
|
|
else
|
|
relocation = tpoff (info, relocation);
|
|
break;
|
|
case R_METAG_TLS_LDO_HI16:
|
|
case R_METAG_TLS_LDO_LO16:
|
|
if (! bfd_link_pic (info))
|
|
relocation = tpoff (info, relocation);
|
|
else
|
|
relocation -= dtpoff_base (info);
|
|
break;
|
|
case R_METAG_TLS_LDM:
|
|
{
|
|
bfd_vma off;
|
|
|
|
if (htab->etab.sgot == NULL)
|
|
abort();
|
|
off = htab->tls_ldm_got.offset;
|
|
if (off & 1)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->etab.sgot->output_section->vma
|
|
+ htab->etab.sgot->output_offset);
|
|
|
|
outrel.r_addend = 0;
|
|
outrel.r_info = ELF32_R_INFO (0, R_METAG_TLS_DTPMOD);
|
|
loc = htab->etab.srelgot->contents;
|
|
loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
htab->tls_ldm_got.offset |= 1;
|
|
}
|
|
|
|
relocation = off - GOT_REG_OFFSET;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
r = metag_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel, relocation, hh, htab,
|
|
sec);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
const char * msg = (const char *) NULL;
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
(*info->callbacks->reloc_overflow)
|
|
(info, (hh ? &hh->eh.root : NULL), name, howto->name,
|
|
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
(*info->callbacks->undefined_symbol)
|
|
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
msg = _("internal error: out of range error");
|
|
break;
|
|
|
|
case bfd_reloc_notsupported:
|
|
msg = _("internal error: unsupported relocation error");
|
|
break;
|
|
|
|
case bfd_reloc_dangerous:
|
|
msg = _("internal error: dangerous relocation");
|
|
break;
|
|
|
|
default:
|
|
msg = _("internal error: unknown error");
|
|
break;
|
|
}
|
|
|
|
if (msg)
|
|
(*info->callbacks->warning) (info, msg, name, input_bfd,
|
|
input_section, rel->r_offset);
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Create the .plt and .got sections, and set up our hash table
|
|
short-cuts to various dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
struct elf_metag_link_hash_table *htab;
|
|
struct elf_link_hash_entry *eh;
|
|
struct bfd_link_hash_entry *bh;
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
|
|
|
/* Don't try to create the .plt and .got twice. */
|
|
htab = metag_link_hash_table (info);
|
|
if (htab->etab.splt != NULL)
|
|
return TRUE;
|
|
|
|
/* Call the generic code to do most of the work. */
|
|
if (! _bfd_elf_create_dynamic_sections (abfd, info))
|
|
return FALSE;
|
|
|
|
/* The header goes at the start of the dynamic .got section, which
|
|
is placed after the dynamic .got.plt section. ie. The header is
|
|
not necessarily at the start of the output .got section. */
|
|
htab->etab.sgot->size += 12;
|
|
|
|
/* Define the symbol __GLOBAL_OFFSET_TABLE__ on the header. */
|
|
bh = NULL;
|
|
if (!(_bfd_generic_link_add_one_symbol
|
|
(info, abfd, "__GLOBAL_OFFSET_TABLE__", BSF_GLOBAL, htab->etab.sgot,
|
|
(bfd_vma) 0, NULL, FALSE, bed->collect, &bh)))
|
|
return FALSE;
|
|
eh = (struct elf_link_hash_entry *) bh;
|
|
eh->def_regular = 1;
|
|
eh->type = STT_OBJECT;
|
|
eh->other = STV_HIDDEN;
|
|
|
|
if (! bfd_link_executable (info)
|
|
&& ! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
|
|
htab->etab.hgot = eh;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase, and
|
|
calculate needed space in the global offset table, procedure linkage
|
|
table, and dynamic reloc sections. At this point we haven't
|
|
necessarily read all the input files. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_check_relocs (bfd *abfd,
|
|
struct bfd_link_info *info,
|
|
asection *sec,
|
|
const Elf_Internal_Rela *relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **eh_syms;
|
|
const Elf_Internal_Rela *rel;
|
|
const Elf_Internal_Rela *rel_end;
|
|
struct elf_metag_link_hash_table *htab;
|
|
asection *sreloc;
|
|
bfd *dynobj;
|
|
int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return TRUE;
|
|
|
|
htab = metag_link_hash_table (info);
|
|
dynobj = htab->etab.dynobj;
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
eh_syms = elf_sym_hashes (abfd);
|
|
sreloc = NULL;
|
|
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
int r_type;
|
|
struct elf_metag_link_hash_entry *hh;
|
|
Elf_Internal_Sym *isym;
|
|
unsigned long r_symndx;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
|
|
hh = NULL;
|
|
}
|
|
else
|
|
{
|
|
isym = NULL;
|
|
|
|
hh = (struct elf_metag_link_hash_entry *)
|
|
eh_syms[r_symndx - symtab_hdr->sh_info];
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
|
hh = (struct elf_metag_link_hash_entry *) hh->eh.root.u.i.link;
|
|
}
|
|
|
|
/* Some relocs require a global offset table. */
|
|
if (htab->etab.sgot == NULL)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
case R_METAG_TLS_GD:
|
|
case R_METAG_TLS_LDM:
|
|
case R_METAG_TLS_IE:
|
|
if (bfd_link_pic (info))
|
|
info->flags |= DF_STATIC_TLS;
|
|
/* Fall through. */
|
|
|
|
case R_METAG_HI16_GOTOFF:
|
|
case R_METAG_LO16_GOTOFF:
|
|
case R_METAG_GETSET_GOTOFF:
|
|
case R_METAG_GETSET_GOT:
|
|
case R_METAG_HI16_GOTPC:
|
|
case R_METAG_LO16_GOTPC:
|
|
if (dynobj == NULL)
|
|
htab->etab.dynobj = dynobj = abfd;
|
|
if (!elf_metag_create_dynamic_sections (dynobj, info))
|
|
return FALSE;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_METAG_TLS_IE:
|
|
case R_METAG_TLS_GD:
|
|
case R_METAG_GETSET_GOT:
|
|
switch (r_type)
|
|
{
|
|
default:
|
|
tls_type = GOT_NORMAL;
|
|
break;
|
|
case R_METAG_TLS_IE:
|
|
tls_type = GOT_TLS_IE;
|
|
break;
|
|
case R_METAG_TLS_GD:
|
|
tls_type = GOT_TLS_GD;
|
|
break;
|
|
}
|
|
|
|
if (hh != NULL)
|
|
{
|
|
hh->eh.got.refcount += 1;
|
|
old_tls_type = hh->tls_type;
|
|
}
|
|
else
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
|
|
/* This is a global offset table entry for a local
|
|
symbol. */
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
if (local_got_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
size = symtab_hdr->sh_info;
|
|
size *= sizeof (bfd_signed_vma);
|
|
/* Add in space to store the local GOT TLS types. */
|
|
size += symtab_hdr->sh_info;
|
|
local_got_refcounts = ((bfd_signed_vma *)
|
|
bfd_zalloc (abfd, size));
|
|
if (local_got_refcounts == NULL)
|
|
return FALSE;
|
|
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
|
memset (metag_elf_local_got_tls_type (abfd),
|
|
GOT_UNKNOWN, symtab_hdr->sh_info);
|
|
}
|
|
local_got_refcounts[r_symndx] += 1;
|
|
old_tls_type = metag_elf_local_got_tls_type (abfd) [r_symndx];
|
|
}
|
|
|
|
if (old_tls_type != tls_type)
|
|
{
|
|
if (hh != NULL)
|
|
{
|
|
hh->tls_type = tls_type;
|
|
}
|
|
else
|
|
{
|
|
metag_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case R_METAG_TLS_LDM:
|
|
metag_link_hash_table (info)->tls_ldm_got.refcount += 1;
|
|
break;
|
|
|
|
case R_METAG_RELBRANCH_PLT:
|
|
/* This symbol requires a procedure linkage table entry. We
|
|
actually build the entry in adjust_dynamic_symbol,
|
|
because this might be a case of linking PIC code without
|
|
linking in any dynamic objects, in which case we don't
|
|
need to generate a procedure linkage table after all. */
|
|
|
|
/* If this is a local symbol, we resolve it directly without
|
|
creating a procedure linkage table entry. */
|
|
if (hh == NULL)
|
|
continue;
|
|
|
|
if (hh->eh.forced_local)
|
|
break;
|
|
|
|
hh->eh.needs_plt = 1;
|
|
hh->eh.plt.refcount += 1;
|
|
break;
|
|
|
|
case R_METAG_HIADDR16:
|
|
case R_METAG_LOADDR16:
|
|
/* Let's help debug shared library creation. These relocs
|
|
cannot be used in shared libs. Don't error out for
|
|
sections we don't care about, such as debug sections or
|
|
non-constant sections. */
|
|
if (bfd_link_pic (info)
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (sec->flags & SEC_READONLY) != 0)
|
|
{
|
|
const char *name;
|
|
|
|
if (hh)
|
|
name = hh->eh.root.root.string;
|
|
else
|
|
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
|
|
abfd, elf_metag_howto_table[r_type].name, name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Fall through. */
|
|
case R_METAG_ADDR32:
|
|
case R_METAG_RELBRANCH:
|
|
case R_METAG_GETSETOFF:
|
|
if (hh != NULL && !bfd_link_pic (info))
|
|
{
|
|
hh->eh.non_got_ref = 1;
|
|
hh->eh.plt.refcount += 1;
|
|
}
|
|
|
|
/* If we are creating a shared library, and this is a reloc
|
|
against a global symbol, or a non PC relative reloc
|
|
against a local symbol, then we need to copy the reloc
|
|
into the shared library. However, if we are linking with
|
|
-Bsymbolic, we do not need to copy a reloc against a
|
|
global symbol which is defined in an object we are
|
|
including in the link (i.e., DEF_REGULAR is set). At
|
|
this point we have not seen all the input files, so it is
|
|
possible that DEF_REGULAR is not set now but will be set
|
|
later (it is never cleared). We account for that
|
|
possibility below by storing information in the
|
|
dyn_relocs field of the hash table entry. A similar
|
|
situation occurs when creating shared libraries and symbol
|
|
visibility changes render the symbol local.
|
|
|
|
If on the other hand, we are creating an executable, we
|
|
may need to keep relocations for symbols satisfied by a
|
|
dynamic library if we manage to avoid copy relocs for the
|
|
symbol. */
|
|
if ((bfd_link_pic (info)
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (r_type != R_METAG_RELBRANCH
|
|
|| (hh != NULL
|
|
&& (! info->symbolic
|
|
|| hh->eh.root.type == bfd_link_hash_defweak
|
|
|| !hh->eh.def_regular))))
|
|
|| (!bfd_link_pic (info)
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& hh != NULL
|
|
&& (hh->eh.root.type == bfd_link_hash_defweak
|
|
|| !hh->eh.def_regular)))
|
|
{
|
|
struct elf_dyn_relocs *hdh_p;
|
|
struct elf_dyn_relocs **hdh_head;
|
|
|
|
if (dynobj == NULL)
|
|
htab->etab.dynobj = dynobj = abfd;
|
|
|
|
/* When creating a shared object, we must copy these
|
|
relocs into the output file. We create a reloc
|
|
section in dynobj and make room for the reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
|
|
|
|
if (sreloc == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
elf_section_data (sec)->sreloc = sreloc;
|
|
}
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (hh != NULL)
|
|
hdh_head = &((struct elf_metag_link_hash_entry *) hh)->dyn_relocs;
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too. */
|
|
asection *sr;
|
|
void *vpp;
|
|
|
|
sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
if (sr == NULL)
|
|
sr = sec;
|
|
|
|
vpp = &elf_section_data (sr)->local_dynrel;
|
|
hdh_head = (struct elf_dyn_relocs **) vpp;
|
|
}
|
|
|
|
hdh_p = *hdh_head;
|
|
if (hdh_p == NULL || hdh_p->sec != sec)
|
|
{
|
|
hdh_p = ((struct elf_dyn_relocs *)
|
|
bfd_alloc (dynobj, sizeof *hdh_p));
|
|
if (hdh_p == NULL)
|
|
return FALSE;
|
|
hdh_p->next = *hdh_head;
|
|
*hdh_head = hdh_p;
|
|
hdh_p->sec = sec;
|
|
hdh_p->count = 0;
|
|
hdh_p->pc_count = 0;
|
|
}
|
|
|
|
hdh_p->count += 1;
|
|
if (ELF32_R_TYPE (rel->r_info) == R_METAG_RELBRANCH)
|
|
hdh_p->pc_count += 1;
|
|
}
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_METAG_GNU_VTINHERIT:
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh,
|
|
rel->r_offset))
|
|
return FALSE;
|
|
break;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_METAG_GNU_VTENTRY:
|
|
BFD_ASSERT (hh != NULL);
|
|
if (hh != NULL
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rel->r_addend))
|
|
return FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
elf_metag_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh_dir,
|
|
struct elf_link_hash_entry *eh_ind)
|
|
{
|
|
struct elf_metag_link_hash_entry *hh_dir, *hh_ind;
|
|
|
|
hh_dir = metag_elf_hash_entry (eh_dir);
|
|
hh_ind = metag_elf_hash_entry (eh_ind);
|
|
|
|
if (hh_ind->dyn_relocs != NULL)
|
|
{
|
|
if (hh_dir->dyn_relocs != NULL)
|
|
{
|
|
struct elf_dyn_relocs **hdh_pp;
|
|
struct elf_dyn_relocs *hdh_p;
|
|
|
|
if (eh_ind->root.type == bfd_link_hash_indirect)
|
|
abort ();
|
|
|
|
/* Add reloc counts against the weak sym to the strong sym
|
|
list. Merge any entries against the same section. */
|
|
for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
|
|
{
|
|
struct elf_dyn_relocs *hdh_q;
|
|
|
|
for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL;
|
|
hdh_q = hdh_q->next)
|
|
if (hdh_q->sec == hdh_p->sec)
|
|
{
|
|
hdh_q->pc_count += hdh_p->pc_count;
|
|
hdh_q->count += hdh_p->count;
|
|
*hdh_pp = hdh_p->next;
|
|
break;
|
|
}
|
|
if (hdh_q == NULL)
|
|
hdh_pp = &hdh_p->next;
|
|
}
|
|
*hdh_pp = hh_dir->dyn_relocs;
|
|
}
|
|
|
|
hh_dir->dyn_relocs = hh_ind->dyn_relocs;
|
|
hh_ind->dyn_relocs = NULL;
|
|
}
|
|
|
|
if (eh_ind->root.type == bfd_link_hash_indirect
|
|
&& eh_dir->got.refcount <= 0)
|
|
{
|
|
hh_dir->tls_type = hh_ind->tls_type;
|
|
hh_ind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
_bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
|
|
}
|
|
|
|
/* Find dynamic relocs for H that apply to read-only sections. */
|
|
|
|
static asection *
|
|
readonly_dynrelocs (struct elf_link_hash_entry *h)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = metag_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *s = p->sec->output_section;
|
|
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
return p->sec;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh)
|
|
{
|
|
struct elf_metag_link_hash_table *htab;
|
|
asection *s, *srel;
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later,
|
|
when we know the address of the .got section. */
|
|
if (eh->type == STT_FUNC
|
|
|| eh->needs_plt)
|
|
{
|
|
if (eh->plt.refcount <= 0
|
|
|| SYMBOL_CALLS_LOCAL (info, eh)
|
|
|| (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
|
|
&& eh->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This case can occur if we saw a PLT reloc in an input
|
|
file, but the symbol was never referred to by a dynamic
|
|
object. In such a case, we don't actually need to build
|
|
a procedure linkage table, and we can just do a PCREL
|
|
reloc instead. */
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
eh->needs_plt = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
else
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (eh->is_weakalias)
|
|
{
|
|
struct elf_link_hash_entry *def = weakdef (eh);
|
|
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
|
|
eh->root.u.def.section = def->root.u.def.section;
|
|
eh->root.u.def.value = def->root.u.def.value;
|
|
eh->non_got_ref = def->non_got_ref;
|
|
return TRUE;
|
|
}
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (bfd_link_pic (info))
|
|
return TRUE;
|
|
|
|
/* If there are no references to this symbol that do not use the
|
|
GOT, we don't need to generate a copy reloc. */
|
|
if (!eh->non_got_ref)
|
|
return TRUE;
|
|
|
|
/* If -z nocopyreloc was given, we won't generate them either. */
|
|
if (info->nocopyreloc)
|
|
{
|
|
eh->non_got_ref = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
/* If we don't find any dynamic relocs in read-only sections, then
|
|
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
|
if (!readonly_dynrelocs (eh))
|
|
{
|
|
eh->non_got_ref = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
|
|
htab = metag_link_hash_table (info);
|
|
|
|
/* We must generate a COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. */
|
|
if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
|
|
{
|
|
s = htab->etab.sdynrelro;
|
|
srel = htab->etab.sreldynrelro;
|
|
}
|
|
else
|
|
{
|
|
s = htab->etab.sdynbss;
|
|
srel = htab->etab.srelbss;
|
|
}
|
|
if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
|
|
{
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
eh->needs_copy = 1;
|
|
}
|
|
|
|
return _bfd_elf_adjust_dynamic_copy (info, eh, s);
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
global syms. */
|
|
|
|
static bfd_boolean
|
|
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf_metag_link_hash_table *htab;
|
|
struct elf_metag_link_hash_entry *hh;
|
|
struct elf_dyn_relocs *hdh_p;
|
|
|
|
if (eh->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
if (eh->root.type == bfd_link_hash_warning)
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
|
|
|
info = inf;
|
|
htab = metag_link_hash_table (info);
|
|
|
|
if (htab->etab.dynamic_sections_created
|
|
&& eh->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (eh->dynindx == -1
|
|
&& !eh->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
|
|
{
|
|
asection *s = htab->etab.splt;
|
|
|
|
/* If this is the first .plt entry, make room for the special
|
|
first entry. */
|
|
if (s->size == 0)
|
|
s->size += PLT_ENTRY_SIZE;
|
|
|
|
eh->plt.offset = s->size;
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (! bfd_link_pic (info)
|
|
&& !eh->def_regular)
|
|
{
|
|
eh->root.u.def.section = s;
|
|
eh->root.u.def.value = eh->plt.offset;
|
|
}
|
|
|
|
/* Make room for this entry. */
|
|
s->size += PLT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .got.plt section, which
|
|
will be placed in the .got section by the linker script. */
|
|
htab->etab.sgotplt->size += 4;
|
|
|
|
/* We also need to make an entry in the .rel.plt section. */
|
|
htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
{
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
eh->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
eh->plt.offset = (bfd_vma) -1;
|
|
eh->needs_plt = 0;
|
|
}
|
|
|
|
if (eh->got.refcount > 0)
|
|
{
|
|
asection *s;
|
|
bfd_boolean dyn;
|
|
int tls_type = metag_elf_hash_entry (eh)->tls_type;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (eh->dynindx == -1
|
|
&& !eh->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
|
|
s = htab->etab.sgot;
|
|
|
|
eh->got.offset = s->size;
|
|
s->size += 4;
|
|
/* R_METAG_TLS_GD needs 2 consecutive GOT slots. */
|
|
if (tls_type == GOT_TLS_GD)
|
|
s->size += 4;
|
|
dyn = htab->etab.dynamic_sections_created;
|
|
/* R_METAG_TLS_IE needs one dynamic relocation if dynamic,
|
|
R_METAG_TLS_GD needs one if local symbol and two if global. */
|
|
if ((tls_type == GOT_TLS_GD && eh->dynindx == -1)
|
|
|| (tls_type == GOT_TLS_IE && dyn))
|
|
htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
|
|
else if (tls_type == GOT_TLS_GD)
|
|
htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
|
|
else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
|
|
bfd_link_pic (info),
|
|
eh))
|
|
htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
eh->got.offset = (bfd_vma) -1;
|
|
|
|
hh = (struct elf_metag_link_hash_entry *) eh;
|
|
if (hh->dyn_relocs == NULL)
|
|
return TRUE;
|
|
|
|
/* If this is a -Bsymbolic shared link, then we need to discard all
|
|
space allocated for dynamic pc-relative relocs against symbols
|
|
defined in a regular object. For the normal shared case, discard
|
|
space for relocs that have become local due to symbol visibility
|
|
changes. */
|
|
if (bfd_link_pic (info))
|
|
{
|
|
if (SYMBOL_CALLS_LOCAL (info, eh))
|
|
{
|
|
struct elf_dyn_relocs **hdh_pp;
|
|
|
|
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
|
|
{
|
|
hdh_p->count -= hdh_p->pc_count;
|
|
hdh_p->pc_count = 0;
|
|
if (hdh_p->count == 0)
|
|
*hdh_pp = hdh_p->next;
|
|
else
|
|
hdh_pp = &hdh_p->next;
|
|
}
|
|
}
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (hh->dyn_relocs != NULL
|
|
&& eh->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
|
|
hh->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (eh->dynindx == -1
|
|
&& !eh->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
if (!eh->non_got_ref
|
|
&& ((eh->def_dynamic
|
|
&& !eh->def_regular)
|
|
|| (htab->etab.dynamic_sections_created
|
|
&& (eh->root.type == bfd_link_hash_undefweak
|
|
|| eh->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (eh->dynindx == -1
|
|
&& !eh->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
|
return FALSE;
|
|
}
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (eh->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
hh->dyn_relocs = NULL;
|
|
return TRUE;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
|
|
{
|
|
asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
|
|
sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set DF_TEXTREL if we find any dynamic relocs that apply to
|
|
read-only sections. */
|
|
|
|
static bfd_boolean
|
|
maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
|
|
{
|
|
asection *sec;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
sec = readonly_dynrelocs (h);
|
|
if (sec != NULL)
|
|
{
|
|
struct bfd_link_info *info = (struct bfd_link_info *) info_p;
|
|
|
|
info->flags |= DF_TEXTREL;
|
|
info->callbacks->minfo
|
|
(_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
|
|
sec->owner, h->root.root.string, sec);
|
|
|
|
/* Not an error, just cut short the traversal. */
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_metag_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
bfd *ibfd;
|
|
asection *s;
|
|
bfd_boolean relocs;
|
|
|
|
htab = metag_link_hash_table (info);
|
|
dynobj = htab->etab.dynobj;
|
|
if (dynobj == NULL)
|
|
abort ();
|
|
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (bfd_link_executable (info) && !info->nointerp)
|
|
{
|
|
s = bfd_get_linker_section (dynobj, ".interp");
|
|
if (s == NULL)
|
|
abort ();
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
char *local_tls_type;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf_dyn_relocs *hdh_p;
|
|
|
|
for (hdh_p = ((struct elf_dyn_relocs *)
|
|
elf_section_data (s)->local_dynrel);
|
|
hdh_p != NULL;
|
|
hdh_p = hdh_p->next)
|
|
{
|
|
if (!bfd_is_abs_section (hdh_p->sec)
|
|
&& bfd_is_abs_section (hdh_p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (hdh_p->count != 0)
|
|
{
|
|
srel = elf_section_data (hdh_p->sec)->sreloc;
|
|
srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
|
|
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
local_tls_type = metag_elf_local_got_tls_type (ibfd);
|
|
s = htab->etab.sgot;
|
|
srel = htab->etab.srelgot;
|
|
for (; local_got < end_local_got; ++local_got)
|
|
{
|
|
if (*local_got > 0)
|
|
{
|
|
*local_got = s->size;
|
|
s->size += GOT_ENTRY_SIZE;
|
|
/* R_METAG_TLS_GD relocs need 2 consecutive GOT entries. */
|
|
if (*local_tls_type == GOT_TLS_GD)
|
|
s->size += 4;
|
|
if (bfd_link_pic (info))
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
++local_tls_type;
|
|
}
|
|
}
|
|
|
|
if (htab->tls_ldm_got.refcount > 0)
|
|
{
|
|
/* Allocate 2 got entries and 1 dynamic reloc for R_METAG_TLS_LDM
|
|
reloc. */
|
|
htab->tls_ldm_got.offset = htab->etab.sgot->size;
|
|
htab->etab.sgot->size += 8;
|
|
htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
htab->tls_ldm_got.offset = -1;
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
|
|
|
|
/* We now have determined the sizes of the various dynamic sections.
|
|
Allocate memory for them. */
|
|
relocs = FALSE;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
bfd_boolean reloc_section = FALSE;
|
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
if (s == htab->etab.splt
|
|
|| s == htab->etab.sgot
|
|
|| s == htab->etab.sgotplt
|
|
|| s == htab->etab.sdynbss
|
|
|| s == htab->etab.sdynrelro)
|
|
{
|
|
/* Strip this section if we don't need it; see the
|
|
comment below. */
|
|
}
|
|
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
|
|
{
|
|
if (s->size != 0 && s != htab->etab.srelplt)
|
|
relocs = TRUE;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
reloc_section = TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rela.bss and
|
|
.rela.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. */
|
|
s->contents = bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return FALSE;
|
|
else if (reloc_section)
|
|
{
|
|
unsigned char *contents = s->contents;
|
|
Elf32_External_Rela reloc;
|
|
|
|
/* Fill the reloc section with a R_METAG_NONE type reloc. */
|
|
memset(&reloc, 0, sizeof(Elf32_External_Rela));
|
|
reloc.r_info[0] = R_METAG_NONE;
|
|
for (; contents < (s->contents + s->size);
|
|
contents += sizeof(Elf32_External_Rela))
|
|
{
|
|
memcpy(contents, &reloc, sizeof(Elf32_External_Rela));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elf_metag_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
|
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0))
|
|
return FALSE;
|
|
|
|
if (bfd_link_executable (info))
|
|
{
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (htab->etab.srelplt->size != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
|
return FALSE;
|
|
|
|
/* If any dynamic relocs apply to a read-only section,
|
|
then we need a DT_TEXTREL entry. */
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
|
elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_finish_dynamic_symbol (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *eh,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
struct elf_metag_link_hash_table *htab;
|
|
Elf_Internal_Rela rel;
|
|
bfd_byte *loc;
|
|
|
|
htab = metag_link_hash_table (info);
|
|
|
|
if (eh->plt.offset != (bfd_vma) -1)
|
|
{
|
|
asection *splt;
|
|
asection *sgot;
|
|
asection *srela;
|
|
|
|
bfd_vma plt_index;
|
|
bfd_vma got_offset;
|
|
bfd_vma got_entry;
|
|
|
|
if (eh->plt.offset & 1)
|
|
abort ();
|
|
|
|
BFD_ASSERT (eh->dynindx != -1);
|
|
|
|
splt = htab->etab.splt;
|
|
sgot = htab->etab.sgotplt;
|
|
srela = htab->etab.srelplt;
|
|
BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
|
|
|
|
/* Get the index in the procedure linkage table which
|
|
corresponds to this symbol. This is the index of this symbol
|
|
in all the symbols for which we are making plt entries. The
|
|
first entry in the procedure linkage table is reserved. */
|
|
plt_index = eh->plt.offset / PLT_ENTRY_SIZE - 1;
|
|
|
|
/* Get the offset into the .got.plt table of the entry that
|
|
corresponds to this function. */
|
|
got_offset = plt_index * GOT_ENTRY_SIZE;
|
|
|
|
BFD_ASSERT (got_offset < (1 << 16));
|
|
|
|
got_entry = sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ got_offset;
|
|
|
|
BFD_ASSERT (plt_index < (1 << 16));
|
|
|
|
/* Fill in the entry in the procedure linkage table. */
|
|
if (! bfd_link_pic (info))
|
|
{
|
|
bfd_put_32 (output_bfd,
|
|
(plt_entry[0]
|
|
| (((got_entry >> 16) & 0xffff) << 3)),
|
|
splt->contents + eh->plt.offset);
|
|
bfd_put_32 (output_bfd,
|
|
(plt_entry[1]
|
|
| ((got_entry & 0xffff) << 3)),
|
|
splt->contents + eh->plt.offset + 4);
|
|
bfd_put_32 (output_bfd, plt_entry[2],
|
|
splt->contents + eh->plt.offset + 8);
|
|
bfd_put_32 (output_bfd,
|
|
(plt_entry[3] | (plt_index << 3)),
|
|
splt->contents + eh->plt.offset + 12);
|
|
bfd_put_32 (output_bfd,
|
|
(plt_entry[4]
|
|
| ((((unsigned int) ((- (eh->plt.offset + 16)) >> 2)) & 0x7ffff) << 5)),
|
|
splt->contents + eh->plt.offset + 16);
|
|
}
|
|
else
|
|
{
|
|
bfd_vma addr = got_entry - (splt->output_section->vma +
|
|
splt->output_offset + eh->plt.offset);
|
|
|
|
bfd_put_32 (output_bfd,
|
|
plt_pic_entry[0] | (((addr >> 16) & 0xffff) << 3),
|
|
splt->contents + eh->plt.offset);
|
|
bfd_put_32 (output_bfd,
|
|
plt_pic_entry[1] | ((addr & 0xffff) << 3),
|
|
splt->contents + eh->plt.offset + 4);
|
|
bfd_put_32 (output_bfd, plt_pic_entry[2],
|
|
splt->contents + eh->plt.offset + 8);
|
|
bfd_put_32 (output_bfd,
|
|
(plt_pic_entry[3] | (plt_index << 3)),
|
|
splt->contents + eh->plt.offset + 12);
|
|
bfd_put_32 (output_bfd,
|
|
(plt_pic_entry[4]
|
|
+ ((((unsigned int) ((- (eh->plt.offset + 16)) >> 2)) & 0x7ffff) << 5)),
|
|
splt->contents + eh->plt.offset + 16);
|
|
}
|
|
|
|
/* Fill in the entry in the global offset table. */
|
|
bfd_put_32 (output_bfd,
|
|
(splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ eh->plt.offset
|
|
+ 12), /* offset within PLT entry */
|
|
sgot->contents + got_offset);
|
|
|
|
/* Fill in the entry in the .rela.plt section. */
|
|
rel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ got_offset);
|
|
rel.r_info = ELF32_R_INFO (eh->dynindx, R_METAG_JMP_SLOT);
|
|
rel.r_addend = 0;
|
|
loc = htab->etab.srelplt->contents;
|
|
loc += plt_index * sizeof(Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
|
|
if (!eh->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
}
|
|
}
|
|
|
|
if (eh->got.offset != (bfd_vma) -1
|
|
&& (metag_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
|
|
&& (metag_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
|
|
{
|
|
/* This symbol has an entry in the global offset table. Set it
|
|
up. */
|
|
|
|
rel.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
|
|
+ htab->etab.sgot->output_offset
|
|
+ htab->etab.sgot->output_section->vma);
|
|
|
|
/* If this is a -Bsymbolic link and the symbol is defined
|
|
locally or was forced to be local because of a version file,
|
|
we just want to emit a RELATIVE reloc. The entry in the
|
|
global offset table will already have been initialized in the
|
|
relocate_section function. */
|
|
if (bfd_link_pic (info)
|
|
&& (info->symbolic || eh->dynindx == -1)
|
|
&& eh->def_regular)
|
|
{
|
|
rel.r_info = ELF32_R_INFO (0, R_METAG_RELATIVE);
|
|
rel.r_addend = (eh->root.u.def.value
|
|
+ eh->root.u.def.section->output_offset
|
|
+ eh->root.u.def.section->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
if ((eh->got.offset & 1) != 0)
|
|
abort ();
|
|
bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + eh->got.offset);
|
|
rel.r_info = ELF32_R_INFO (eh->dynindx, R_METAG_GLOB_DAT);
|
|
rel.r_addend = 0;
|
|
}
|
|
|
|
loc = htab->etab.srelgot->contents;
|
|
loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
}
|
|
|
|
if (eh->needs_copy)
|
|
{
|
|
asection *s;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
|
|
if (! (eh->dynindx != -1
|
|
&& (eh->root.type == bfd_link_hash_defined
|
|
|| eh->root.type == bfd_link_hash_defweak)))
|
|
abort ();
|
|
|
|
rel.r_offset = (eh->root.u.def.value
|
|
+ eh->root.u.def.section->output_offset
|
|
+ eh->root.u.def.section->output_section->vma);
|
|
rel.r_addend = 0;
|
|
rel.r_info = ELF32_R_INFO (eh->dynindx, R_METAG_COPY);
|
|
if (eh->root.u.def.section == htab->etab.sdynrelro)
|
|
s = htab->etab.sreldynrelro;
|
|
else
|
|
s = htab->etab.srelbss;
|
|
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
|
if (eh->root.root.string[0] == '_'
|
|
&& (strcmp (eh->root.root.string, "_DYNAMIC") == 0
|
|
|| eh == htab->etab.hgot))
|
|
{
|
|
sym->st_shndx = SHN_ABS;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set the Meta ELF ABI version. */
|
|
|
|
static void
|
|
elf_metag_post_process_headers (bfd * abfd, struct bfd_link_info * link_info)
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
|
|
|
|
_bfd_elf_post_process_headers (abfd, link_info);
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = METAG_ELF_ABI_VERSION;
|
|
}
|
|
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
|
dynamic linker, before writing them out. */
|
|
|
|
static enum elf_reloc_type_class
|
|
elf_metag_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_METAG_RELATIVE:
|
|
return reloc_class_relative;
|
|
case R_METAG_JMP_SLOT:
|
|
return reloc_class_plt;
|
|
case R_METAG_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *dynobj;
|
|
struct elf_metag_link_hash_table *htab;
|
|
asection *sdyn;
|
|
|
|
htab = metag_link_hash_table (info);
|
|
dynobj = htab->etab.dynobj;
|
|
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
if (htab->etab.dynamic_sections_created)
|
|
{
|
|
asection *splt;
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
if (sdyn == NULL)
|
|
abort ();
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
continue;
|
|
|
|
case DT_PLTGOT:
|
|
s = htab->etab.sgot;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_JMPREL:
|
|
s = htab->etab.srelplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->etab.srelplt;
|
|
dyn.d_un.d_val = s->size;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/* Fill in the first entry in the procedure linkage table. */
|
|
splt = htab->etab.splt;
|
|
if (splt && splt->size > 0)
|
|
{
|
|
unsigned long addr;
|
|
/* addr = .got + 4 */
|
|
addr = (htab->etab.sgot->output_section->vma
|
|
+ htab->etab.sgot->output_offset + 4);
|
|
if (bfd_link_pic (info))
|
|
{
|
|
addr -= splt->output_section->vma + splt->output_offset;
|
|
bfd_put_32 (output_bfd,
|
|
plt0_pic_entry[0] | (((addr >> 16) & 0xffff) << 3),
|
|
splt->contents);
|
|
bfd_put_32 (output_bfd,
|
|
plt0_pic_entry[1] | ((addr & 0xffff) << 3),
|
|
splt->contents + 4);
|
|
bfd_put_32 (output_bfd, plt0_pic_entry[2], splt->contents + 8);
|
|
bfd_put_32 (output_bfd, plt0_pic_entry[3], splt->contents + 12);
|
|
bfd_put_32 (output_bfd, plt0_pic_entry[4], splt->contents + 16);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd,
|
|
plt0_entry[0] | (((addr >> 16) & 0xffff) << 3),
|
|
splt->contents);
|
|
bfd_put_32 (output_bfd,
|
|
plt0_entry[1] | ((addr & 0xffff) << 3),
|
|
splt->contents + 4);
|
|
bfd_put_32 (output_bfd, plt0_entry[2], splt->contents + 8);
|
|
bfd_put_32 (output_bfd, plt0_entry[3], splt->contents + 12);
|
|
bfd_put_32 (output_bfd, plt0_entry[4], splt->contents + 16);
|
|
}
|
|
|
|
elf_section_data (splt->output_section)->this_hdr.sh_entsize =
|
|
PLT_ENTRY_SIZE;
|
|
}
|
|
}
|
|
|
|
if (htab->etab.sgot != NULL && htab->etab.sgot->size != 0)
|
|
{
|
|
/* Fill in the first entry in the global offset table.
|
|
We use it to point to our dynamic section, if we have one. */
|
|
bfd_put_32 (output_bfd,
|
|
sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
|
|
htab->etab.sgot->contents);
|
|
|
|
/* The second entry is reserved for use by the dynamic linker. */
|
|
memset (htab->etab.sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
|
|
|
|
/* Set .got entry size. */
|
|
elf_section_data (htab->etab.sgot->output_section)
|
|
->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return the section that should be marked against GC for a given
|
|
relocation. */
|
|
|
|
static asection *
|
|
elf_metag_gc_mark_hook (asection *sec,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Rela *rela,
|
|
struct elf_link_hash_entry *hh,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
if (hh != NULL)
|
|
switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_METAG_GNU_VTINHERIT:
|
|
case R_METAG_GNU_VTENTRY:
|
|
return NULL;
|
|
}
|
|
|
|
return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
|
|
static enum elf_metag_stub_type
|
|
metag_type_of_stub (asection *input_sec,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf_metag_link_hash_entry *hh,
|
|
bfd_vma destination,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd_vma location;
|
|
bfd_vma branch_offset;
|
|
bfd_vma max_branch_offset;
|
|
|
|
if (hh != NULL &&
|
|
!(hh->eh.root.type == bfd_link_hash_defined
|
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
|
return metag_stub_none;
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma
|
|
+ rel->r_offset);
|
|
|
|
branch_offset = destination - location;
|
|
|
|
/* Determine if a long branch stub is needed. Meta branch offsets
|
|
are signed 19 bits 4 byte aligned. */
|
|
max_branch_offset = (1 << (BRANCH_BITS-1)) << 2;
|
|
|
|
if (branch_offset + max_branch_offset >= 2*max_branch_offset)
|
|
{
|
|
if (bfd_link_pic (info))
|
|
return metag_stub_long_branch_shared;
|
|
else
|
|
return metag_stub_long_branch;
|
|
}
|
|
|
|
return metag_stub_none;
|
|
}
|
|
|
|
#define MOVT_A0_3 0x82180005
|
|
#define JUMP_A0_3 0xac180003
|
|
|
|
#define MOVT_A1LBP 0x83080005
|
|
#define ADD_A1LBP 0x83080000
|
|
|
|
#define ADDT_A0_3_CPC 0x82980001
|
|
#define ADD_A0_3_A0_3 0x82180000
|
|
#define MOV_PC_A0_3 0xa3180ca0
|
|
|
|
static bfd_boolean
|
|
metag_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf_metag_stub_hash_entry *hsh;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
bfd_vma sym_value;
|
|
int size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
hsh = (struct elf_metag_stub_hash_entry *) gen_entry;
|
|
|
|
stub_sec = hsh->stub_sec;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
hsh->stub_offset = stub_sec->size;
|
|
loc = stub_sec->contents + hsh->stub_offset;
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
switch (hsh->stub_type)
|
|
{
|
|
case metag_stub_long_branch_shared:
|
|
/* A PIC long branch stub is an ADDT and an ADD instruction used to
|
|
calculate the jump target using A0.3 as a temporary. Then a MOV
|
|
to PC carries out the jump. */
|
|
sym_value = (hsh->target_value
|
|
+ hsh->target_section->output_offset
|
|
+ hsh->target_section->output_section->vma
|
|
+ hsh->addend);
|
|
|
|
sym_value -= (hsh->stub_offset
|
|
+ stub_sec->output_offset
|
|
+ stub_sec->output_section->vma);
|
|
|
|
bfd_put_32 (stub_bfd, ADDT_A0_3_CPC | (((sym_value >> 16) & 0xffff) << 3),
|
|
loc);
|
|
|
|
bfd_put_32 (stub_bfd, ADD_A0_3_A0_3 | ((sym_value & 0xffff) << 3),
|
|
loc + 4);
|
|
|
|
bfd_put_32 (stub_bfd, MOV_PC_A0_3, loc + 8);
|
|
|
|
size = 12;
|
|
break;
|
|
case metag_stub_long_branch:
|
|
/* A standard long branch stub is a MOVT instruction followed by a
|
|
JUMP instruction using the A0.3 register as a temporary. This is
|
|
the same method used by the LDLK linker (patch.c). */
|
|
sym_value = (hsh->target_value
|
|
+ hsh->target_section->output_offset
|
|
+ hsh->target_section->output_section->vma
|
|
+ hsh->addend);
|
|
|
|
bfd_put_32 (stub_bfd, MOVT_A0_3 | (((sym_value >> 16) & 0xffff) << 3),
|
|
loc);
|
|
|
|
bfd_put_32 (stub_bfd, JUMP_A0_3 | ((sym_value & 0xffff) << 3), loc + 4);
|
|
|
|
size = 8;
|
|
break;
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
|
|
stub_sec->size += size;
|
|
return TRUE;
|
|
}
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static bfd_boolean
|
|
metag_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf_metag_stub_hash_entry *hsh;
|
|
int size = 0;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
hsh = (struct elf_metag_stub_hash_entry *) gen_entry;
|
|
|
|
if (hsh->stub_type == metag_stub_long_branch)
|
|
size = 8;
|
|
else if (hsh->stub_type == metag_stub_long_branch_shared)
|
|
size = 12;
|
|
|
|
hsh->stub_sec->size += size;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
|
|
int
|
|
elf_metag_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
unsigned int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct elf_metag_link_hash_table *htab = metag_link_hash_table (info);
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
}
|
|
|
|
htab->bfd_count = bfd_count;
|
|
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
strip_excluded_output_sections doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
}
|
|
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
|
|
for (section = output_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
/* FIXME: This is a bit of hack. Currently our .ctors and .dtors
|
|
* have PC relative relocs in them but no code flag set. */
|
|
if (((section->flags & SEC_CODE) != 0) ||
|
|
strcmp(".ctors", section->name) ||
|
|
strcmp(".dtors", section->name))
|
|
input_list[section->index] = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
|
|
void
|
|
elf_metag_next_input_section (struct bfd_link_info *info, asection *isec)
|
|
{
|
|
struct elf_metag_link_hash_table *htab = metag_link_hash_table (info);
|
|
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
if (*list != bfd_abs_section_ptr)
|
|
{
|
|
/* Steal the link_sec pointer for our list. */
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
|
/* This happens to make the list in reverse order,
|
|
which is what we want. */
|
|
PREV_SEC (isec) = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the beginning of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea. */
|
|
|
|
static void
|
|
group_sections (struct elf_metag_link_hash_table *htab,
|
|
bfd_size_type stub_group_size,
|
|
bfd_boolean stubs_always_before_branch)
|
|
{
|
|
asection **list = htab->input_list + htab->top_index;
|
|
do
|
|
{
|
|
asection *tail = *list;
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
while (tail != NULL)
|
|
{
|
|
asection *curr;
|
|
asection *prev;
|
|
bfd_size_type total;
|
|
bfd_boolean big_sec;
|
|
|
|
curr = tail;
|
|
total = tail->size;
|
|
big_sec = total >= stub_group_size;
|
|
|
|
while ((prev = PREV_SEC (curr)) != NULL
|
|
&& ((total += curr->output_offset - prev->output_offset)
|
|
< stub_group_size))
|
|
curr = prev;
|
|
|
|
/* OK, the size from the start of CURR to the end is less
|
|
than stub_group_size bytes and thus can be handled by one stub
|
|
section. (or the tail section is itself larger than
|
|
stub_group_size bytes, in which case we may be toast.)
|
|
We should really be keeping track of the total size of
|
|
stubs added here, as stubs contribute to the final output
|
|
section size. */
|
|
do
|
|
{
|
|
prev = PREV_SEC (tail);
|
|
/* Set up this stub group. */
|
|
htab->stub_group[tail->id].link_sec = curr;
|
|
}
|
|
while (tail != curr && (tail = prev) != NULL);
|
|
|
|
/* But wait, there's more! Input sections up to stub_group_size
|
|
bytes before the stub section can be handled by it too.
|
|
Don't do this if we have a really large section after the
|
|
stubs, as adding more stubs increases the chance that
|
|
branches may not reach into the stub section. */
|
|
if (!stubs_always_before_branch && !big_sec)
|
|
{
|
|
total = 0;
|
|
while (prev != NULL
|
|
&& ((total += tail->output_offset - prev->output_offset)
|
|
< stub_group_size))
|
|
{
|
|
tail = prev;
|
|
prev = PREV_SEC (tail);
|
|
htab->stub_group[tail->id].link_sec = curr;
|
|
}
|
|
}
|
|
tail = prev;
|
|
}
|
|
}
|
|
while (list-- != htab->input_list);
|
|
free (htab->input_list);
|
|
#undef PREV_SEC
|
|
}
|
|
|
|
/* Read in all local syms for all input bfds.
|
|
Returns -1 on error, 0 otherwise. */
|
|
|
|
static int
|
|
get_local_syms (bfd *output_bfd ATTRIBUTE_UNUSED, bfd *input_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
unsigned int bfd_indx;
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
|
int stub_changed = 0;
|
|
struct elf_metag_link_hash_table *htab = metag_link_hash_table (info);
|
|
|
|
/* We want to read in symbol extension records only once. To do this
|
|
we need to read in the local symbols in parallel and save them for
|
|
later use; so hold pointers to the local symbols in an array. */
|
|
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
|
all_local_syms = bfd_zmalloc (amt);
|
|
htab->all_local_syms = all_local_syms;
|
|
if (all_local_syms == NULL)
|
|
return -1;
|
|
|
|
/* Walk over all the input BFDs, swapping in local symbols. */
|
|
for (bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
/* Cache them for elf_link_input_bfd. */
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
|
}
|
|
if (local_syms == NULL)
|
|
return -1;
|
|
|
|
all_local_syms[bfd_indx] = local_syms;
|
|
}
|
|
|
|
return stub_changed;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "CALLR"
|
|
instruction. */
|
|
|
|
/* See elf32-hppa.c and elf64-ppc.c. */
|
|
|
|
bfd_boolean
|
|
elf_metag_size_stubs(bfd *output_bfd, bfd *stub_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd_signed_vma group_size,
|
|
asection * (*add_stub_section) (const char *, asection *),
|
|
void (*layout_sections_again) (void))
|
|
{
|
|
bfd_size_type stub_group_size;
|
|
bfd_boolean stubs_always_before_branch;
|
|
bfd_boolean stub_changed;
|
|
struct elf_metag_link_hash_table *htab = metag_link_hash_table (info);
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
stubs_always_before_branch = group_size < 0;
|
|
if (group_size < 0)
|
|
stub_group_size = -group_size;
|
|
else
|
|
stub_group_size = group_size;
|
|
if (stub_group_size == 1)
|
|
{
|
|
/* Default values. */
|
|
/* FIXME: not sure what these values should be */
|
|
if (stubs_always_before_branch)
|
|
{
|
|
stub_group_size = (1 << BRANCH_BITS);
|
|
}
|
|
else
|
|
{
|
|
stub_group_size = (1 << BRANCH_BITS);
|
|
}
|
|
}
|
|
|
|
group_sections (htab, stub_group_size, stubs_always_before_branch);
|
|
|
|
switch (get_local_syms (output_bfd, info->input_bfds, info))
|
|
{
|
|
default:
|
|
if (htab->all_local_syms)
|
|
goto error_ret_free_local;
|
|
return FALSE;
|
|
|
|
case 0:
|
|
stub_changed = FALSE;
|
|
break;
|
|
|
|
case 1:
|
|
stub_changed = TRUE;
|
|
break;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_indx;
|
|
asection *stub_sec;
|
|
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
local_syms = htab->all_local_syms[bfd_indx];
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf_metag_stub_type stub_type;
|
|
struct elf_metag_stub_hash_entry *hsh;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct elf_metag_link_hash_entry *hh;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_METAG_MAX)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Only look for stubs on CALLR and B instructions. */
|
|
if (!(r_type == (unsigned int) R_METAG_RELBRANCH ||
|
|
r_type == (unsigned int) R_METAG_RELBRANCH_PLT))
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
hh = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
unsigned int shndx;
|
|
|
|
sym = local_syms + r_indx;
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
shndx = sym->st_shndx;
|
|
if (shndx < elf_numsections (input_bfd))
|
|
{
|
|
hdr = elf_elfsections (input_bfd)[shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
int e_indx;
|
|
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hh = ((struct elf_metag_link_hash_entry *)
|
|
elf_sym_hashes (input_bfd)[e_indx]);
|
|
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
|
hh = ((struct elf_metag_link_hash_entry *)
|
|
hh->eh.root.u.i.link);
|
|
|
|
if (hh->eh.root.type == bfd_link_hash_defined
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hh->eh.root.u.def.section;
|
|
sym_value = hh->eh.root.u.def.value;
|
|
if (hh->eh.plt.offset != (bfd_vma) -1
|
|
&& hh->eh.dynindx != -1
|
|
&& r_type == (unsigned int) R_METAG_RELBRANCH_PLT)
|
|
{
|
|
sym_sec = htab->etab.splt;
|
|
sym_value = hh->eh.plt.offset;
|
|
}
|
|
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
else
|
|
continue;
|
|
}
|
|
else if (hh->eh.root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! bfd_link_pic (info))
|
|
continue;
|
|
}
|
|
else if (hh->eh.root.type == bfd_link_hash_undefined)
|
|
{
|
|
if (! (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& (ELF_ST_VISIBILITY (hh->eh.other)
|
|
== STV_DEFAULT)))
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
}
|
|
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = metag_type_of_stub (section, irela, hh,
|
|
destination, info);
|
|
if (stub_type == metag_stub_none)
|
|
continue;
|
|
|
|
/* Support for grouping stub sections. */
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = metag_stub_name (id_sec, sym_sec, hh, irela);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
hsh = metag_stub_hash_lookup (&htab->bstab,
|
|
stub_name,
|
|
FALSE, FALSE);
|
|
if (hsh != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
continue;
|
|
}
|
|
|
|
hsh = metag_add_stub (stub_name, section, htab);
|
|
if (hsh == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
hsh->target_value = sym_value;
|
|
hsh->target_section = sym_sec;
|
|
hsh->stub_type = stub_type;
|
|
hsh->hh = hh;
|
|
hsh->addend = irela->r_addend;
|
|
stub_changed = TRUE;
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
stub_sec->size = 0;
|
|
|
|
bfd_hash_traverse (&htab->bstab, metag_size_one_stub, htab);
|
|
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
stub_changed = FALSE;
|
|
}
|
|
|
|
free (htab->all_local_syms);
|
|
return TRUE;
|
|
|
|
error_ret_free_local:
|
|
free (htab->all_local_syms);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. This function is called via metagelf_finish in the linker. */
|
|
|
|
bfd_boolean
|
|
elf_metag_build_stubs (struct bfd_link_info *info)
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf_metag_link_hash_table *htab;
|
|
|
|
htab = metag_link_hash_table (info);
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->size;
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return FALSE;
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->bstab;
|
|
bfd_hash_traverse (table, metag_build_one_stub, info);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return TRUE if SYM represents a local label symbol. */
|
|
|
|
static bfd_boolean
|
|
elf_metag_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
|
|
{
|
|
if (name[0] == '$' && name[1] == 'L')
|
|
return 1;
|
|
return _bfd_elf_is_local_label_name (abfd, name);
|
|
}
|
|
|
|
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
|
or (bfd_vma) -1 if it should not be included. */
|
|
|
|
static bfd_vma
|
|
elf_metag_plt_sym_val (bfd_vma i, const asection *plt,
|
|
const arelent *rel ATTRIBUTE_UNUSED)
|
|
{
|
|
return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
|
|
}
|
|
|
|
#define ELF_ARCH bfd_arch_metag
|
|
#define ELF_TARGET_ID METAG_ELF_DATA
|
|
#define ELF_MACHINE_CODE EM_METAG
|
|
#define ELF_MINPAGESIZE 0x1000
|
|
#define ELF_MAXPAGESIZE 0x4000
|
|
#define ELF_COMMONPAGESIZE 0x1000
|
|
|
|
#define TARGET_LITTLE_SYM metag_elf32_vec
|
|
#define TARGET_LITTLE_NAME "elf32-metag"
|
|
|
|
#define elf_symbol_leading_char '_'
|
|
|
|
#define elf_info_to_howto_rel NULL
|
|
#define elf_info_to_howto metag_info_to_howto_rela
|
|
|
|
#define bfd_elf32_bfd_is_local_label_name elf_metag_is_local_label_name
|
|
#define bfd_elf32_bfd_link_hash_table_create \
|
|
elf_metag_link_hash_table_create
|
|
#define elf_backend_relocate_section elf_metag_relocate_section
|
|
#define elf_backend_gc_mark_hook elf_metag_gc_mark_hook
|
|
#define elf_backend_check_relocs elf_metag_check_relocs
|
|
#define elf_backend_create_dynamic_sections elf_metag_create_dynamic_sections
|
|
#define elf_backend_adjust_dynamic_symbol elf_metag_adjust_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_symbol elf_metag_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections elf_metag_finish_dynamic_sections
|
|
#define elf_backend_size_dynamic_sections elf_metag_size_dynamic_sections
|
|
#define elf_backend_omit_section_dynsym \
|
|
_bfd_elf_omit_section_dynsym_all
|
|
#define elf_backend_post_process_headers elf_metag_post_process_headers
|
|
#define elf_backend_reloc_type_class elf_metag_reloc_type_class
|
|
#define elf_backend_copy_indirect_symbol elf_metag_copy_indirect_symbol
|
|
#define elf_backend_plt_sym_val elf_metag_plt_sym_val
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_rela_normal 1
|
|
#define elf_backend_want_got_plt 1
|
|
#define elf_backend_want_got_sym 0
|
|
#define elf_backend_want_plt_sym 0
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_dtrel_excludes_plt 1
|
|
#define elf_backend_want_dynrelro 1
|
|
|
|
#define bfd_elf32_bfd_reloc_type_lookup metag_reloc_type_lookup
|
|
#define bfd_elf32_bfd_reloc_name_lookup metag_reloc_name_lookup
|
|
|
|
#include "elf32-target.h"
|