binutils-gdb/bfd/archures.c

614 lines
14 KiB
C

/* BFD library support routines for architectures.
Copyright (C) 1990-1991 Free Software Foundation, Inc.
Hacked by John Gilmore and Steve Chamberlain of Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*doc*
@section Architectures
BFD's idea of an architecture is implimented in @code{archures.c}. BFD
keeps one atom in a BFD describing the architecture of the data
attached to the BFD; a pointer to a @code{bfd_arch_info_type}.
Pointers to structures can be requested independently of a bfd so that
an architecture's information can be interrogated without access to an
open bfd.
The arch information is provided by each architecture package. The
set of default architectures is selected by the #define
@code{SELECT_ARCHITECTURES}. This is normally set up in the
@code{config\/h\-} file of your choice. If the name is not defined,
then all the architectures supported are included.
When BFD starts up, all the architectures are called with an
initialize method. It is up to the architecture back end to insert as
many items into the list of arches as it wants to, generally this
would be one for each machine and one for the default case (an item
with a machine field of 0).
*/
/*proto* bfd_architecture
This enum gives the object file's CPU
architecture, in a global sense. E.g. what processor family does it
belong to? There is another field, which indicates what processor
within the family is in use. The machine gives a number which
distingushes different versions of the architecture, containing for
example 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for
Motorola 68020 and 68030.
*+
enum bfd_architecture
{
bfd_arch_unknown, {* File arch not known *}
bfd_arch_obscure, {* Arch known, not one of these *}
bfd_arch_m68k, {* Motorola 68xxx *}
bfd_arch_vax, {* DEC Vax *}
bfd_arch_i960, {* Intel 960 *}
{* The order of the following is important.
lower number indicates a machine type that
only accepts a subset of the instructions
available to machines with higher numbers.
The exception is the "ca", which is
incompatible with all other machines except
"core". *}
#define bfd_mach_i960_core 1
#define bfd_mach_i960_ka_sa 2
#define bfd_mach_i960_kb_sb 3
#define bfd_mach_i960_mc 4
#define bfd_mach_i960_xa 5
#define bfd_mach_i960_ca 6
bfd_arch_a29k, {* AMD 29000 *}
bfd_arch_sparc, {* SPARC *}
bfd_arch_mips, {* MIPS Rxxxx *}
bfd_arch_i386, {* Intel 386 *}
bfd_arch_ns32k, {* National Semiconductor 32xxx *}
bfd_arch_tahoe, {* CCI/Harris Tahoe *}
bfd_arch_i860, {* Intel 860 *}
bfd_arch_romp, {* IBM ROMP PC/RT *}
bfd_arch_alliant, {* Alliant *}
bfd_arch_convex, {* Convex *}
bfd_arch_m88k, {* Motorola 88xxx *}
bfd_arch_pyramid, {* Pyramid Technology *}
bfd_arch_h8300, {* Hitachi H8/300 *}
bfd_arch_rs6000, {* IBM RS/6000 *}
bfd_arch_last
};
*-
stuff
*/
/* $Id$ */
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
/*proto* bfd_arch_info
This structure contains information on architectures.
*+
typedef int bfd_reloc_code_type;
typedef struct bfd_arch_info
{
int bits_per_word;
int bits_per_address;
int bits_per_byte;
enum bfd_architecture arch;
long mach;
char *arch_name;
CONST char *printable_name;
{* true if this is the default machine for the architecture *}
boolean the_default;
CONST struct bfd_arch_info * EXFUN((*compatible),(CONST struct bfd_arch_info *a,
CONST struct bfd_arch_info *b));
boolean EXFUN((*scan),(CONST struct bfd_arch_info *,CONST char *));
unsigned int EXFUN((*disassemble),(bfd_vma addr, CONST char *data,
PTR stream));
CONST struct reloc_howto_struct *EXFUN((*reloc_type_lookup), (CONST struct
bfd_arch_info *,
bfd_reloc_code_type code));
struct bfd_arch_info *next;
} bfd_arch_info_type;
*-
*/
bfd_arch_info_type *bfd_arch_info_list;
/*proto* bfd_printable_name
Return a printable string representing the architecture and machine
from the pointer to the arch info structure
*; CONST char *EXFUN(bfd_printable_name,(bfd *abfd));
*/
CONST char *
DEFUN(bfd_printable_name, (abfd),
bfd *abfd)
{
return abfd->arch_info->printable_name;
}
/*proto*
*i bfd_scan_arch
This routine is provided with a string and tries to work out if bfd
supports any cpu which could be described with the name provided. The
routine returns a pointer to an arch_info structure if a machine is
found, otherwise NULL.
*; bfd_arch_info_type *EXFUN(bfd_scan_arch,(CONST char *));
*/
bfd_arch_info_type *
DEFUN(bfd_scan_arch,(string),
CONST char *string)
{
struct bfd_arch_info *ap;
/* Look through all the installed architectures */
for (ap = bfd_arch_info_list;
ap != (bfd_arch_info_type *)NULL;
ap = ap->next) {
if (ap->scan(ap, string))
return ap;
}
return (bfd_arch_info_type *)NULL;
}
/*proto* bfd_arch_get_compatible
This routine is used to determine whether two BFDs' architectures and
machine types are compatible. It calculates the lowest common
denominator between the two architectures and machine types implied by
the BFDs and returns a pointer to an arch_info structure describing
the compatible machine.
*; CONST bfd_arch_info_type *EXFUN(bfd_arch_get_compatible,
(CONST bfd *abfd,
CONST bfd *bbfd));
*/
CONST bfd_arch_info_type *
DEFUN(bfd_arch_get_compatible,(abfd, bbfd),
CONST bfd *abfd AND
CONST bfd *bbfd)
{
return abfd->arch_info->compatible(abfd->arch_info,bbfd->arch_info);
}
/*proto-internal* bfd_default_arch_struct
What bfds are seeded with
*+
extern bfd_arch_info_type bfd_default_arch_struct;
*-
*/
bfd_arch_info_type bfd_default_arch_struct =
{
32,32,8,bfd_arch_unknown,0,"unknown","unknown",true,
bfd_default_compatible, bfd_default_scan,
};
/*proto* bfd_set_arch_info
*; void EXFUN(bfd_set_arch_info,(bfd *, bfd_arch_info_type *));
*/
void DEFUN(bfd_set_arch_info,(abfd, arg),
bfd *abfd AND
bfd_arch_info_type *arg)
{
abfd->arch_info = arg;
}
/*proto-internal* bfd_default_set_arch_mach
Set the architecture and machine type in a bfd. This finds the correct
pointer to structure and inserts it into the arch_info pointer.
*; boolean EXFUN(bfd_default_set_arch_mach,(bfd *abfd,
enum bfd_architecture arch,
unsigned long mach));
*/
boolean DEFUN(bfd_default_set_arch_mach,(abfd, arch, mach),
bfd *abfd AND
enum bfd_architecture arch AND
unsigned long mach)
{
static struct bfd_arch_info *old_ptr = &bfd_default_arch_struct;
boolean found = false;
/* run through the table to find the one we want, we keep a little
cache to speed things up */
if (old_ptr == 0 || arch != old_ptr->arch || mach != old_ptr->mach) {
bfd_arch_info_type *ptr;
old_ptr = (bfd_arch_info_type *)NULL;
for (ptr = bfd_arch_info_list;
ptr != (bfd_arch_info_type *)NULL;
ptr= ptr->next) {
if (ptr->arch == arch &&
((ptr->mach == mach) || (ptr->the_default && mach == 0))) {
old_ptr = ptr;
found = true;
break;
}
}
if (found==false) {
/*looked for it and it wasn't there, so put in the default */
old_ptr = &bfd_default_arch_struct;
}
}
else {
/* it was in the cache */
found = true;
}
abfd->arch_info = old_ptr;
return found;
}
/*proto* bfd_get_arch
Returns the enumerated type which describes the supplied bfd's
architecture
*; enum bfd_architecture EXFUN(bfd_get_arch, (bfd *abfd));
*/
enum bfd_architecture DEFUN(bfd_get_arch, (abfd), bfd *abfd)
{
return abfd->arch_info->arch;
}
/*proto* bfd_get_mach
Returns the long type which describes the supplied bfd's
machine
*; unsigned long EXFUN(bfd_get_mach, (bfd *abfd));
*/
unsigned long DEFUN(bfd_get_mach, (abfd), bfd *abfd)
{
return abfd->arch_info->mach;
}
/*proto* bfd_arch_bits_per_byte
Returns the number of bits in one of the architectures bytes
*; unsigned int EXFUN(bfd_arch_bits_per_byte, (bfd *abfd));
*/
unsigned int DEFUN(bfd_arch_bits_per_byte, (abfd), bfd *abfd)
{
return abfd->arch_info->bits_per_byte;
}
/*proto* bfd_arch_bits_per_address
Returns the number of bits in one of the architectures addresses
*; unsigned int EXFUN(bfd_arch_bits_per_address, (bfd *abfd));
*/
unsigned int DEFUN(bfd_arch_bits_per_address, (abfd), bfd *abfd)
{
return abfd->arch_info->bits_per_address;
}
extern void EXFUN(bfd_h8300_arch,(void));
extern void EXFUN(bfd_i960_arch,(void));
extern void EXFUN(bfd_empty_arch,(void));
extern void EXFUN(bfd_sparc_arch,(void));
extern void EXFUN(bfd_m88k_arch,(void));
extern void EXFUN(bfd_m68k_arch,(void));
extern void EXFUN(bfd_vax_arch,(void));
extern void EXFUN(bfd_a29k_arch,(void));
extern void EXFUN(bfd_mips_arch,(void));
extern void EXFUN(bfd_i386_arch,(void));
extern void EXFUN(bfd_rs6000_arch,(void));
static void EXFUN((*archures_init_table[]),()) =
{
#ifdef SELECT_ARCHITECTURES
SELECT_ARCHITECTURES,
#else
bfd_sparc_arch,
bfd_a29k_arch,
bfd_mips_arch,
bfd_h8300_arch,
bfd_i386_arch,
bfd_m88k_arch,
bfd_i960_arch,
bfd_m68k_arch,
bfd_vax_arch,
bfd_rs6000_arch,
#endif
0
};
/*proto-internal*
This routine initializes the architecture dispatch table by calling
all installed architecture packages and getting them to poke around.
*; PROTO(void, bfd_arch_init,(void));
*/
void
DEFUN_VOID(bfd_arch_init)
{
void EXFUN((**ptable),());
for (ptable = archures_init_table;
*ptable ;
ptable++)
{
(*ptable)();
}
}
/*proto-internal* bfd_arch_linkin
Link the provided arch info structure into the list
*; void EXFUN(bfd_arch_linkin,(bfd_arch_info_type *));
*/
void DEFUN(bfd_arch_linkin,(ptr),
bfd_arch_info_type *ptr)
{
ptr->next = bfd_arch_info_list;
bfd_arch_info_list = ptr;
}
/*proto-internal* bfd_default_compatible
The default function for testing for compatibility
*; CONST bfd_arch_info_type *EXFUN(bfd_default_compatible,
(CONST bfd_arch_info_type *a,
CONST bfd_arch_info_type *b));
*/
CONST bfd_arch_info_type *
DEFUN(bfd_default_compatible,(a,b),
CONST bfd_arch_info_type *a AND
CONST bfd_arch_info_type *b)
{
if(a->arch != b->arch) return NULL;
if (a->mach > b->mach) {
return a;
}
if (b->mach > a->mach) {
return b;
}
return a;
}
/*proto-internal* bfd_default_scan
The default function for working out whether this is an architecture
hit and a machine hit
*; boolean EXFUN(bfd_default_scan,(CONST struct bfd_arch_info *, CONST char *));
*/
boolean
DEFUN(bfd_default_scan,(info, string),
CONST struct bfd_arch_info *info AND
CONST char *string)
{
CONST char *ptr_src;
CONST char *ptr_tst;
unsigned long number;
enum bfd_architecture arch;
/* First test for an exact match */
if (strcmp(string, info->printable_name) == 0) return true;
/* See how much of the supplied string matches with the
architecture, eg the string m68k:68020 would match the 68k entry
up to the :, then we get left with the machine number */
for (ptr_src = string,
ptr_tst = info->arch_name;
*ptr_src && *ptr_tst;
ptr_src++,
ptr_tst++)
{
if (*ptr_src != *ptr_tst) break;
}
/* Chewed up as much of the architecture as will match, skip any
colons */
if (*ptr_src == ':') ptr_src++;
if (*ptr_src == 0) {
/* nothing more, then only keep this one if it is the default
machine for this architecture */
return info->the_default;
}
number = 0;
while (isdigit(*ptr_src)) {
number = number * 10 + *ptr_src - '0';
ptr_src++;
}
switch (number) {
case 68010:
case 68020:
case 68030:
case 68040:
case 68332:
case 68050:
case 68000:
arch = bfd_arch_m68k;
break;
case 386:
case 80386:
case 486:
arch = bfd_arch_i386;
break;
case 29000:
arch = bfd_arch_a29k;
break;
case 32016:
case 32032:
case 32132:
case 32232:
case 32332:
case 32432:
case 32532:
case 32000:
arch = bfd_arch_ns32k;
break;
case 860:
case 80860:
arch = bfd_arch_i860;
break;
case 6000:
arch = bfd_arch_rs6000;
break;
default:
return false;
}
if (arch != info->arch)
return false;
if (number != info->mach)
return false;
return true;
}
/*proto* bfd_get_arch_info
*; bfd_arch_info_type * EXFUN(bfd_get_arch_info,(bfd *));
*/
bfd_arch_info_type *
DEFUN(bfd_get_arch_info,(abfd),
bfd *abfd)
{
return abfd->arch_info;
}
/*proto* bfd_lookup_arch
*; bfd_arch_info_type * EXFUN(bfd_lookup_arch,(enum
bfd_architecture arch,long machine));
Look for the architecure info struct which matches the arguments
given. A machine of 0 will match the machine/architecture structure which
marks itself as the default.
*/
bfd_arch_info_type *
DEFUN(bfd_lookup_arch,(arch, machine),
enum bfd_architecture arch AND
long machine)
{
bfd_arch_info_type *ap;
bfd_check_init();
for (ap = bfd_arch_info_list;
ap != (bfd_arch_info_type *)NULL;
ap = ap->next) {
if (ap->arch == arch &&
((ap->mach == machine) || (ap->the_default && machine == 0))) {
return ap;
}
}
return (bfd_arch_info_type *)NULL;
}
/*proto* bfd_printable_arch_mach
Return a printable string representing the architecture and machine
type.
NB. The use of this routine is depreciated.
*; PROTO(CONST char *,bfd_printable_arch_mach,
(enum bfd_architecture arch, unsigned long machine));
*/
CONST char *
DEFUN(bfd_printable_arch_mach,(arch, machine),
enum bfd_architecture arch AND
unsigned long machine)
{
bfd_arch_info_type *ap = bfd_lookup_arch(arch, machine);
if(ap) return ap->printable_name;
return "UNKNOWN!";
}