477b242500
* eval.c (evaluate_subexp_standard): Remove unused variable. (calc_f77_array_dims): Add parens to expression. * f-exp.y (yylex): Add parens to expression, remove unused label. * f-lang.h (calc_f77_array_dims): Declare. * f-valprint.c (f_val_print): Remove unused variables.
1585 lines
47 KiB
C
1585 lines
47 KiB
C
/* Evaluate expressions for GDB.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include <string.h>
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "expression.h"
|
||
#include "target.h"
|
||
#include "frame.h"
|
||
#include "demangle.h"
|
||
#include "language.h" /* For CAST_IS_CONVERSION */
|
||
#include "f-lang.h" /* for array bound stuff */
|
||
|
||
/* Prototypes for local functions. */
|
||
|
||
static value_ptr evaluate_subexp_for_sizeof PARAMS ((struct expression *,
|
||
int *));
|
||
|
||
static value_ptr evaluate_subexp_for_address PARAMS ((struct expression *,
|
||
int *, enum noside));
|
||
|
||
#ifdef __GNUC__
|
||
inline
|
||
#endif
|
||
static value_ptr
|
||
evaluate_subexp (expect_type, exp, pos, noside)
|
||
struct type *expect_type;
|
||
register struct expression *exp;
|
||
register int *pos;
|
||
enum noside noside;
|
||
{
|
||
return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
|
||
}
|
||
|
||
/* Parse the string EXP as a C expression, evaluate it,
|
||
and return the result as a number. */
|
||
|
||
CORE_ADDR
|
||
parse_and_eval_address (exp)
|
||
char *exp;
|
||
{
|
||
struct expression *expr = parse_expression (exp);
|
||
register CORE_ADDR addr;
|
||
register struct cleanup *old_chain =
|
||
make_cleanup (free_current_contents, &expr);
|
||
|
||
addr = value_as_pointer (evaluate_expression (expr));
|
||
do_cleanups (old_chain);
|
||
return addr;
|
||
}
|
||
|
||
/* Like parse_and_eval_address but takes a pointer to a char * variable
|
||
and advanced that variable across the characters parsed. */
|
||
|
||
CORE_ADDR
|
||
parse_and_eval_address_1 (expptr)
|
||
char **expptr;
|
||
{
|
||
struct expression *expr = parse_exp_1 (expptr, (struct block *)0, 0);
|
||
register CORE_ADDR addr;
|
||
register struct cleanup *old_chain =
|
||
make_cleanup (free_current_contents, &expr);
|
||
|
||
addr = value_as_pointer (evaluate_expression (expr));
|
||
do_cleanups (old_chain);
|
||
return addr;
|
||
}
|
||
|
||
value_ptr
|
||
parse_and_eval (exp)
|
||
char *exp;
|
||
{
|
||
struct expression *expr = parse_expression (exp);
|
||
register value_ptr val;
|
||
register struct cleanup *old_chain
|
||
= make_cleanup (free_current_contents, &expr);
|
||
|
||
val = evaluate_expression (expr);
|
||
do_cleanups (old_chain);
|
||
return val;
|
||
}
|
||
|
||
/* Parse up to a comma (or to a closeparen)
|
||
in the string EXPP as an expression, evaluate it, and return the value.
|
||
EXPP is advanced to point to the comma. */
|
||
|
||
value_ptr
|
||
parse_to_comma_and_eval (expp)
|
||
char **expp;
|
||
{
|
||
struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
|
||
register value_ptr val;
|
||
register struct cleanup *old_chain
|
||
= make_cleanup (free_current_contents, &expr);
|
||
|
||
val = evaluate_expression (expr);
|
||
do_cleanups (old_chain);
|
||
return val;
|
||
}
|
||
|
||
/* Evaluate an expression in internal prefix form
|
||
such as is constructed by parse.y.
|
||
|
||
See expression.h for info on the format of an expression. */
|
||
|
||
value_ptr
|
||
evaluate_expression (exp)
|
||
struct expression *exp;
|
||
{
|
||
int pc = 0;
|
||
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
|
||
}
|
||
|
||
/* Evaluate an expression, avoiding all memory references
|
||
and getting a value whose type alone is correct. */
|
||
|
||
value_ptr
|
||
evaluate_type (exp)
|
||
struct expression *exp;
|
||
{
|
||
int pc = 0;
|
||
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
|
||
}
|
||
|
||
/* Helper function called by evaluate_subexp to initialize a field
|
||
a structure from a tuple in Chill. This is recursive, to handle
|
||
more than one field name labels.
|
||
|
||
STRUCT_VAL is the structure value we are constructing.
|
||
(*FIELDNOP) is the field to set, if there is no label.
|
||
It is set to the field following this one.
|
||
EXP, POS, and NOSIDE are as for evaluate_subexp.
|
||
|
||
This function does not handle variant records. FIXME */
|
||
|
||
static value_ptr
|
||
evaluate_labeled_field_init (struct_val, fieldnop, exp, pos, noside)
|
||
value_ptr struct_val;
|
||
int *fieldnop;
|
||
register struct expression *exp;
|
||
register int *pos;
|
||
enum noside noside;
|
||
{
|
||
int fieldno = *fieldnop;
|
||
value_ptr val;
|
||
int bitpos, bitsize;
|
||
char *addr;
|
||
struct type *struct_type = VALUE_TYPE (struct_val);
|
||
if (exp->elts[*pos].opcode == OP_LABELED)
|
||
{
|
||
int pc = (*pos)++;
|
||
char *name = &exp->elts[pc + 2].string;
|
||
int tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
for (fieldno = 0; ; fieldno++)
|
||
{
|
||
if (fieldno >= TYPE_NFIELDS (struct_type))
|
||
error ("there is no field named %s", name);
|
||
if (STREQ (TYPE_FIELD_NAME (struct_type, fieldno), name))
|
||
break;
|
||
}
|
||
*fieldnop = fieldno;
|
||
val = evaluate_labeled_field_init (struct_val, fieldnop,
|
||
exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
fieldno = (*fieldnop)++;
|
||
if (fieldno >= TYPE_NFIELDS (struct_type))
|
||
error ("too many initializers");
|
||
val = evaluate_subexp (TYPE_FIELD_TYPE (struct_type, fieldno),
|
||
exp, pos, noside);
|
||
}
|
||
|
||
/* Assign val to field fieldno. */
|
||
if (VALUE_TYPE (val) != TYPE_FIELD_TYPE (struct_type, fieldno))
|
||
val = value_cast (TYPE_FIELD_TYPE (struct_type, fieldno), val);
|
||
#if 1
|
||
bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
|
||
bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
|
||
addr = VALUE_CONTENTS (struct_val);
|
||
addr += bitpos / 8;
|
||
if (bitsize)
|
||
modify_field (addr, value_as_long (val),
|
||
bitpos % 8, bitsize);
|
||
else
|
||
memcpy (addr, VALUE_CONTENTS (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)));
|
||
#else
|
||
value_assign (value_primitive_field (struct_val, 0, fieldno, struct_type),
|
||
val);
|
||
#endif
|
||
return val;
|
||
}
|
||
|
||
value_ptr
|
||
evaluate_subexp_standard (expect_type, exp, pos, noside)
|
||
struct type *expect_type;
|
||
register struct expression *exp;
|
||
register int *pos;
|
||
enum noside noside;
|
||
{
|
||
enum exp_opcode op;
|
||
int tem, tem2, tem3;
|
||
register int pc, pc2 = 0, oldpos;
|
||
register value_ptr arg1 = NULL, arg2 = NULL, arg3;
|
||
struct type *type;
|
||
int nargs;
|
||
value_ptr *argvec;
|
||
struct symbol *tmp_symbol;
|
||
int upper, lower, retcode;
|
||
int code;
|
||
struct internalvar *var;
|
||
|
||
/* This expect_type crap should not be used for C. C expressions do
|
||
not have any notion of expected types, never has and (goddess
|
||
willing) never will. The C++ code uses it for some twisted
|
||
purpose (I haven't investigated but I suspect it just the usual
|
||
combination of Stroustrup figuring out some crazy language
|
||
feature and Tiemann figuring out some crazier way to try to
|
||
implement it). CHILL has the tuple stuff; I don't know enough
|
||
about CHILL to know whether expected types is the way to do it.
|
||
FORTRAN I don't know. */
|
||
if (exp->language_defn->la_language != language_cplus
|
||
&& exp->language_defn->la_language != language_chill)
|
||
expect_type = NULL_TYPE;
|
||
|
||
pc = (*pos)++;
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
case OP_SCOPE:
|
||
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
||
(*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = value_struct_elt_for_reference (exp->elts[pc + 1].type,
|
||
0,
|
||
exp->elts[pc + 1].type,
|
||
&exp->elts[pc + 3].string,
|
||
expect_type);
|
||
if (arg1 == NULL)
|
||
error ("There is no field named %s", &exp->elts[pc + 3].string);
|
||
return arg1;
|
||
|
||
case OP_LONG:
|
||
(*pos) += 3;
|
||
return value_from_longest (exp->elts[pc + 1].type,
|
||
exp->elts[pc + 2].longconst);
|
||
|
||
case OP_DOUBLE:
|
||
(*pos) += 3;
|
||
return value_from_double (exp->elts[pc + 1].type,
|
||
exp->elts[pc + 2].doubleconst);
|
||
|
||
case OP_VAR_VALUE:
|
||
(*pos) += 3;
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct symbol * sym = exp->elts[pc + 2].symbol;
|
||
enum lval_type lv;
|
||
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_CONST:
|
||
case LOC_LABEL:
|
||
case LOC_CONST_BYTES:
|
||
lv = not_lval;
|
||
break;
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_REGPARM:
|
||
lv = lval_register;
|
||
break;
|
||
|
||
default:
|
||
lv = lval_memory;
|
||
break;
|
||
}
|
||
|
||
return value_zero (SYMBOL_TYPE (sym), lv);
|
||
}
|
||
else
|
||
return value_of_variable (exp->elts[pc + 2].symbol,
|
||
exp->elts[pc + 1].block);
|
||
|
||
case OP_LAST:
|
||
(*pos) += 2;
|
||
return
|
||
access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
|
||
|
||
case OP_REGISTER:
|
||
(*pos) += 2;
|
||
return value_of_register (longest_to_int (exp->elts[pc + 1].longconst));
|
||
|
||
case OP_BOOL:
|
||
(*pos) += 2;
|
||
if (current_language->la_language == language_fortran)
|
||
return value_from_longest (builtin_type_f_logical_s2,
|
||
exp->elts[pc + 1].longconst);
|
||
else
|
||
return value_from_longest (builtin_type_chill_bool,
|
||
exp->elts[pc + 1].longconst);
|
||
|
||
case OP_INTERNALVAR:
|
||
(*pos) += 2;
|
||
return value_of_internalvar (exp->elts[pc + 1].internalvar);
|
||
|
||
case OP_STRING:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
return value_string (&exp->elts[pc + 2].string, tem);
|
||
|
||
case OP_BITSTRING:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos)
|
||
+= 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
return value_bitstring (&exp->elts[pc + 2].string, tem);
|
||
break;
|
||
|
||
case OP_ARRAY:
|
||
(*pos) += 3;
|
||
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
|
||
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
|
||
nargs = tem3 - tem2 + 1;
|
||
|
||
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
||
&& TYPE_CODE (expect_type) == TYPE_CODE_STRUCT)
|
||
{
|
||
value_ptr rec = allocate_value (expect_type);
|
||
int fieldno = 0;
|
||
memset (VALUE_CONTENTS_RAW (rec), '\0', TYPE_LENGTH (expect_type));
|
||
for (tem = 0; tem < nargs; tem++)
|
||
evaluate_labeled_field_init (rec, &fieldno, exp, pos, noside);
|
||
return rec;
|
||
}
|
||
|
||
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
||
&& TYPE_CODE (expect_type) == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *range_type = TYPE_FIELD_TYPE (expect_type, 0);
|
||
struct type *element_type = TYPE_TARGET_TYPE (expect_type);
|
||
LONGEST low_bound = TYPE_FIELD_BITPOS (range_type, 0);
|
||
LONGEST high_bound = TYPE_FIELD_BITPOS (range_type, 1);
|
||
int element_size = TYPE_LENGTH (element_type);
|
||
value_ptr array = allocate_value (expect_type);
|
||
if (nargs != (high_bound - low_bound + 1))
|
||
error ("wrong number of initialiers for array type");
|
||
for (tem = low_bound; tem <= high_bound; tem++)
|
||
{
|
||
value_ptr element = evaluate_subexp (element_type,
|
||
exp, pos, noside);
|
||
if (VALUE_TYPE (element) != element_type)
|
||
element = value_cast (element_type, element);
|
||
memcpy (VALUE_CONTENTS_RAW (array)
|
||
+ (tem - low_bound) * element_size,
|
||
VALUE_CONTENTS (element),
|
||
element_size);
|
||
}
|
||
return array;
|
||
}
|
||
|
||
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
||
&& TYPE_CODE (expect_type) == TYPE_CODE_SET)
|
||
{
|
||
value_ptr set = allocate_value (expect_type);
|
||
struct type *element_type = TYPE_INDEX_TYPE (expect_type);
|
||
int low_bound = TYPE_LOW_BOUND (element_type);
|
||
int high_bound = TYPE_HIGH_BOUND (element_type);
|
||
char *valaddr = VALUE_CONTENTS_RAW (set);
|
||
memset (valaddr, '\0', TYPE_LENGTH (expect_type));
|
||
for (tem = 0; tem < nargs; tem++)
|
||
{
|
||
value_ptr element_val = evaluate_subexp (element_type,
|
||
exp, pos, noside);
|
||
LONGEST element = value_as_long (element_val);
|
||
int bit_index;
|
||
if (element < low_bound || element > high_bound)
|
||
error ("POWERSET tuple element out of range");
|
||
element -= low_bound;
|
||
bit_index = (unsigned) element % TARGET_CHAR_BIT;
|
||
if (BITS_BIG_ENDIAN)
|
||
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
|
||
valaddr [(unsigned) element / TARGET_CHAR_BIT] |= 1 << bit_index;
|
||
}
|
||
return set;
|
||
}
|
||
|
||
argvec = (value_ptr *) alloca (sizeof (value_ptr) * nargs);
|
||
for (tem = 0; tem < nargs; tem++)
|
||
{
|
||
/* Ensure that array expressions are coerced into pointer objects. */
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
}
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
return value_array (tem2, tem3, argvec);
|
||
|
||
case TERNOP_SLICE:
|
||
{
|
||
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
int lowbound
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
int upper
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
return value_slice (array, lowbound, upper - lowbound + 1);
|
||
}
|
||
|
||
case TERNOP_SLICE_COUNT:
|
||
{
|
||
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
int lowbound
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
int length
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
return value_slice (array, lowbound, length);
|
||
}
|
||
|
||
case TERNOP_COND:
|
||
/* Skip third and second args to evaluate the first one. */
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (value_logical_not (arg1))
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return arg2;
|
||
}
|
||
|
||
case OP_FUNCALL:
|
||
(*pos) += 2;
|
||
op = exp->elts[*pos].opcode;
|
||
if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
||
{
|
||
LONGEST fnptr;
|
||
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
|
||
/* First, evaluate the structure into arg2 */
|
||
pc2 = (*pos)++;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (op == STRUCTOP_MEMBER)
|
||
{
|
||
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
|
||
/* If the function is a virtual function, then the
|
||
aggregate value (providing the structure) plays
|
||
its part by providing the vtable. Otherwise,
|
||
it is just along for the ride: call the function
|
||
directly. */
|
||
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
fnptr = value_as_long (arg1);
|
||
|
||
if (METHOD_PTR_IS_VIRTUAL(fnptr))
|
||
{
|
||
int fnoffset = METHOD_PTR_TO_VOFFSET(fnptr);
|
||
struct type *basetype;
|
||
struct type *domain_type =
|
||
TYPE_DOMAIN_TYPE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
|
||
int i, j;
|
||
basetype = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
|
||
if (domain_type != basetype)
|
||
arg2 = value_cast(lookup_pointer_type (domain_type), arg2);
|
||
basetype = TYPE_VPTR_BASETYPE (domain_type);
|
||
for (i = TYPE_NFN_FIELDS (basetype) - 1; i >= 0; i--)
|
||
{
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (basetype, i);
|
||
/* If one is virtual, then all are virtual. */
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, 0))
|
||
for (j = TYPE_FN_FIELDLIST_LENGTH (basetype, i) - 1; j >= 0; --j)
|
||
if (TYPE_FN_FIELD_VOFFSET (f, j) == fnoffset)
|
||
{
|
||
value_ptr temp = value_ind (arg2);
|
||
arg1 = value_virtual_fn_field (&temp, f, j, domain_type, 0);
|
||
arg2 = value_addr (temp);
|
||
goto got_it;
|
||
}
|
||
}
|
||
if (i < 0)
|
||
error ("virtual function at index %d not found", fnoffset);
|
||
}
|
||
else
|
||
{
|
||
VALUE_TYPE (arg1) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
|
||
}
|
||
got_it:
|
||
|
||
/* Now, say which argument to start evaluating from */
|
||
tem = 2;
|
||
}
|
||
else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
||
{
|
||
/* Hair for method invocations */
|
||
int tem2;
|
||
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
|
||
/* First, evaluate the structure into arg2 */
|
||
pc2 = (*pos)++;
|
||
tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
|
||
*pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (op == STRUCTOP_STRUCT)
|
||
{
|
||
/* If v is a variable in a register, and the user types
|
||
v.method (), this will produce an error, because v has
|
||
no address.
|
||
|
||
A possible way around this would be to allocate a
|
||
copy of the variable on the stack, copy in the
|
||
contents, call the function, and copy out the
|
||
contents. I.e. convert this from call by reference
|
||
to call by copy-return (or whatever it's called).
|
||
However, this does not work because it is not the
|
||
same: the method being called could stash a copy of
|
||
the address, and then future uses through that address
|
||
(after the method returns) would be expected to
|
||
use the variable itself, not some copy of it. */
|
||
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
/* Now, say which argument to start evaluating from */
|
||
tem = 2;
|
||
}
|
||
else
|
||
{
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
tem = 0;
|
||
}
|
||
/* Allocate arg vector, including space for the function to be
|
||
called in argvec[0] and a terminating NULL */
|
||
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 2));
|
||
for (; tem <= nargs; tem++)
|
||
/* Ensure that array expressions are coerced into pointer objects. */
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
|
||
/* signal end of arglist */
|
||
argvec[tem] = 0;
|
||
|
||
if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
||
{
|
||
int static_memfuncp;
|
||
value_ptr temp = arg2;
|
||
char tstr[64];
|
||
|
||
argvec[1] = arg2;
|
||
argvec[0] = 0;
|
||
strcpy(tstr, &exp->elts[pc2+2].string);
|
||
if (!argvec[0])
|
||
{
|
||
temp = arg2;
|
||
argvec[0] =
|
||
value_struct_elt (&temp, argvec+1, tstr,
|
||
&static_memfuncp,
|
||
op == STRUCTOP_STRUCT
|
||
? "structure" : "structure pointer");
|
||
}
|
||
arg2 = value_from_longest (lookup_pointer_type(VALUE_TYPE (temp)),
|
||
VALUE_ADDRESS (temp)+VALUE_OFFSET (temp));
|
||
argvec[1] = arg2;
|
||
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
nargs--;
|
||
argvec++;
|
||
}
|
||
}
|
||
else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
||
{
|
||
argvec[1] = arg2;
|
||
argvec[0] = arg1;
|
||
}
|
||
|
||
do_call_it:
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the return type doesn't look like a function type, call an
|
||
error. This can happen if somebody tries to turn a variable into
|
||
a function call. This is here because people often want to
|
||
call, eg, strcmp, which gdb doesn't know is a function. If
|
||
gdb isn't asked for it's opinion (ie. through "whatis"),
|
||
it won't offer it. */
|
||
|
||
struct type *ftype =
|
||
TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0]));
|
||
|
||
if (ftype)
|
||
return allocate_value (TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0])));
|
||
else
|
||
error ("Expression of type other than \"Function returning ...\" used as function");
|
||
}
|
||
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
||
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
|
||
/* Remember that in F77, functions, substring ops and
|
||
array subscript operations cannot be disambiguated
|
||
at parse time. We have made all array subscript operations,
|
||
substring operations as well as function calls come here
|
||
and we now have to discover what the heck this thing actually was.
|
||
If it is a function, we process just as if we got an OP_FUNCALL. */
|
||
|
||
nargs = longest_to_int (exp->elts[pc+1].longconst);
|
||
(*pos) += 2;
|
||
|
||
/* First determine the type code we are dealing with. */
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
code = TYPE_CODE (VALUE_TYPE (arg1));
|
||
|
||
switch (code)
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
goto multi_f77_subscript;
|
||
|
||
case TYPE_CODE_STRING:
|
||
goto op_f77_substr;
|
||
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
/* It's a function call. */
|
||
/* Allocate arg vector, including space for the function to be
|
||
called in argvec[0] and a terminating NULL */
|
||
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 2));
|
||
argvec[0] = arg1;
|
||
tem = 1;
|
||
for (; tem <= nargs; tem++)
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
argvec[tem] = 0; /* signal end of arglist */
|
||
goto do_call_it;
|
||
|
||
default:
|
||
error ("Cannot perform substring on this type");
|
||
}
|
||
|
||
op_f77_substr:
|
||
/* We have a substring operation on our hands here,
|
||
let us get the string we will be dealing with */
|
||
|
||
/* Now evaluate the 'from' and 'to' */
|
||
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT)
|
||
error ("Substring arguments must be of type integer");
|
||
|
||
if (nargs < 2)
|
||
return value_subscript (arg1, arg2);
|
||
|
||
arg3 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg3)) != TYPE_CODE_INT)
|
||
error ("Substring arguments must be of type integer");
|
||
|
||
tem2 = *((int *) VALUE_CONTENTS_RAW (arg2));
|
||
tem3 = *((int *) VALUE_CONTENTS_RAW (arg3));
|
||
|
||
if ((tem2 < 1) || (tem2 > tem3))
|
||
error ("Bad 'from' value %d on substring operation", tem2);
|
||
|
||
if ((tem3 < tem2) || (tem3 > (TYPE_LENGTH (VALUE_TYPE (arg1)))))
|
||
error ("Bad 'to' value %d on substring operation", tem3);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
return value_slice (arg1, tem2, tem3 - tem2 + 1);
|
||
|
||
case OP_COMPLEX:
|
||
/* We have a complex number, There should be 2 floating
|
||
point numbers that compose it */
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
|
||
|
||
case STRUCTOP_STRUCT:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
|
||
&exp->elts[pc + 2].string,
|
||
0),
|
||
lval_memory);
|
||
else
|
||
{
|
||
value_ptr temp = arg1;
|
||
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
||
NULL, "structure");
|
||
}
|
||
|
||
case STRUCTOP_PTR:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
|
||
&exp->elts[pc + 2].string,
|
||
0),
|
||
lval_memory);
|
||
else
|
||
{
|
||
value_ptr temp = arg1;
|
||
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
||
NULL, "structure pointer");
|
||
}
|
||
|
||
case STRUCTOP_MEMBER:
|
||
arg1 = evaluate_subexp_for_address (exp, pos, noside);
|
||
goto handle_pointer_to_member;
|
||
case STRUCTOP_MPTR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
handle_pointer_to_member:
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_PTR)
|
||
goto bad_pointer_to_member;
|
||
type = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
|
||
if (TYPE_CODE (type) == TYPE_CODE_METHOD)
|
||
error ("not implemented: pointer-to-method in pointer-to-member construct");
|
||
if (TYPE_CODE (type) != TYPE_CODE_MEMBER)
|
||
goto bad_pointer_to_member;
|
||
/* Now, convert these values to an address. */
|
||
arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
|
||
arg1);
|
||
arg3 = value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
value_as_long (arg1) + value_as_long (arg2));
|
||
return value_ind (arg3);
|
||
bad_pointer_to_member:
|
||
error("non-pointer-to-member value used in pointer-to-member construct");
|
||
|
||
case BINOP_CONCAT:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
else
|
||
return value_concat (arg1, arg2);
|
||
|
||
case BINOP_ASSIGN:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
else
|
||
return value_assign (arg1, arg2);
|
||
|
||
case BINOP_ASSIGN_MODIFY:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
op = exp->elts[pc + 1].opcode;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op);
|
||
else if (op == BINOP_ADD)
|
||
arg2 = value_add (arg1, arg2);
|
||
else if (op == BINOP_SUB)
|
||
arg2 = value_sub (arg1, arg2);
|
||
else
|
||
arg2 = value_binop (arg1, arg2, op);
|
||
return value_assign (arg1, arg2);
|
||
|
||
case BINOP_ADD:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
else
|
||
return value_add (arg1, arg2);
|
||
|
||
case BINOP_SUB:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
else
|
||
return value_sub (arg1, arg2);
|
||
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_LSH:
|
||
case BINOP_RSH:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
else
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
&& (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
|
||
return value_zero (VALUE_TYPE (arg1), not_lval);
|
||
else
|
||
return value_binop (arg1, arg2, op);
|
||
|
||
case BINOP_SUBSCRIPT:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the user attempts to subscript something that has no target
|
||
type (like a plain int variable for example), then report this
|
||
as an error. */
|
||
|
||
type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
|
||
if (type)
|
||
return value_zero (type, VALUE_LVAL (arg1));
|
||
else
|
||
error ("cannot subscript something of type `%s'",
|
||
TYPE_NAME (VALUE_TYPE (arg1)));
|
||
}
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
else
|
||
return value_subscript (arg1, arg2);
|
||
|
||
case BINOP_IN:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
return value_in (arg1, arg2);
|
||
|
||
case MULTI_SUBSCRIPT:
|
||
(*pos) += 2;
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
while (nargs-- > 0)
|
||
{
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
/* FIXME: EVAL_SKIP handling may not be correct. */
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
if (nargs > 0)
|
||
{
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
goto nosideret;
|
||
}
|
||
}
|
||
/* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the user attempts to subscript something that has no target
|
||
type (like a plain int variable for example), then report this
|
||
as an error. */
|
||
|
||
type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
|
||
if (type != NULL)
|
||
{
|
||
arg1 = value_zero (type, VALUE_LVAL (arg1));
|
||
noside = EVAL_SKIP;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
error ("cannot subscript something of type `%s'",
|
||
TYPE_NAME (VALUE_TYPE (arg1)));
|
||
}
|
||
}
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
arg1 = value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
arg1 = value_subscript (arg1, arg2);
|
||
}
|
||
}
|
||
return (arg1);
|
||
|
||
multi_f77_subscript:
|
||
{
|
||
int subscript_array[MAX_FORTRAN_DIMS+1]; /* 1-based array of
|
||
subscripts, max == 7 */
|
||
int array_size_array[MAX_FORTRAN_DIMS+1];
|
||
int ndimensions=1,i;
|
||
struct type *tmp_type;
|
||
int offset_item; /* The array offset where the item lives */
|
||
|
||
if (nargs > MAX_FORTRAN_DIMS)
|
||
error ("Too many subscripts for F77 (%d Max)", MAX_FORTRAN_DIMS);
|
||
|
||
ndimensions = calc_f77_array_dims (VALUE_TYPE (arg1));
|
||
|
||
if (nargs != ndimensions)
|
||
error ("Wrong number of subscripts");
|
||
|
||
/* Now that we know we have a legal array subscript expression
|
||
let us actually find out where this element exists in the array. */
|
||
|
||
tmp_type = VALUE_TYPE (arg1);
|
||
offset_item = 0;
|
||
for (i = 1; i <= nargs; i++)
|
||
{
|
||
/* Evaluate each subscript, It must be a legal integer in F77 */
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT)
|
||
error ("Array subscripts must be of type integer");
|
||
|
||
/* Fill in the subscript and array size arrays */
|
||
|
||
subscript_array[i] = (* (unsigned int *) VALUE_CONTENTS(arg2));
|
||
|
||
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
|
||
if (retcode == BOUND_FETCH_ERROR)
|
||
error ("Cannot obtain dynamic upper bound");
|
||
|
||
retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
|
||
if (retcode == BOUND_FETCH_ERROR)
|
||
error("Cannot obtain dynamic lower bound");
|
||
|
||
array_size_array[i] = upper - lower + 1;
|
||
|
||
/* Zero-normalize subscripts so that offsetting will work. */
|
||
|
||
subscript_array[i] -= lower;
|
||
|
||
/* If we are at the bottom of a multidimensional
|
||
array type then keep a ptr to the last ARRAY
|
||
type around for use when calling value_subscript()
|
||
below. This is done because we pretend to value_subscript
|
||
that we actually have a one-dimensional array
|
||
of base element type that we apply a simple
|
||
offset to. */
|
||
|
||
if (i < nargs)
|
||
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
||
}
|
||
|
||
/* Now let us calculate the offset for this item */
|
||
|
||
offset_item = subscript_array[ndimensions];
|
||
|
||
for (i = ndimensions - 1; i >= 1; i--)
|
||
offset_item =
|
||
array_size_array[i] * offset_item + subscript_array[i];
|
||
|
||
/* Construct a value node with the value of the offset */
|
||
|
||
arg2 = value_from_longest (builtin_type_f_integer, offset_item);
|
||
|
||
/* Let us now play a dirty trick: we will take arg1
|
||
which is a value node pointing to the topmost level
|
||
of the multidimensional array-set and pretend
|
||
that it is actually a array of the final element
|
||
type, this will ensure that value_subscript()
|
||
returns the correct type value */
|
||
|
||
VALUE_TYPE (arg1) = tmp_type;
|
||
return value_ind (value_add (value_coerce_array (arg1), arg2));
|
||
}
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
goto nosideret;
|
||
}
|
||
|
||
oldpos = *pos;
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
*pos = oldpos;
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_logical_not (arg1);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
||
(tem ? EVAL_SKIP : noside));
|
||
return value_from_longest (builtin_type_int,
|
||
(LONGEST) (!tem && !value_logical_not (arg2)));
|
||
}
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
goto nosideret;
|
||
}
|
||
|
||
oldpos = *pos;
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
*pos = oldpos;
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_logical_not (arg1);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
||
(!tem ? EVAL_SKIP : noside));
|
||
return value_from_longest (builtin_type_int,
|
||
(LONGEST) (!tem || !value_logical_not (arg2)));
|
||
}
|
||
|
||
case BINOP_EQUAL:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_equal (arg1, arg2);
|
||
return value_from_longest (builtin_type_int, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_NOTEQUAL:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_equal (arg1, arg2);
|
||
return value_from_longest (builtin_type_int, (LONGEST) ! tem);
|
||
}
|
||
|
||
case BINOP_LESS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_less (arg1, arg2);
|
||
return value_from_longest (builtin_type_int, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_GTR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_less (arg2, arg1);
|
||
return value_from_longest (builtin_type_int, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_GEQ:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
|
||
return value_from_longest (builtin_type_int, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_LEQ:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL);
|
||
}
|
||
else
|
||
{
|
||
tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
|
||
return value_from_longest (builtin_type_int, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_REPEAT:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT)
|
||
error ("Non-integral right operand for \"@\" operator.");
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_repeat_value (VALUE_TYPE (arg1),
|
||
longest_to_int (value_as_long (arg2)));
|
||
else
|
||
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
|
||
|
||
case BINOP_COMMA:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
case UNOP_NEG:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op);
|
||
else
|
||
return value_neg (arg1);
|
||
|
||
case UNOP_COMPLEMENT:
|
||
/* C++: check for and handle destructor names. */
|
||
op = exp->elts[*pos].opcode;
|
||
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
|
||
return value_x_unop (arg1, UNOP_COMPLEMENT);
|
||
else
|
||
return value_complement (arg1);
|
||
|
||
case UNOP_LOGICAL_NOT:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op);
|
||
else
|
||
return value_from_longest (builtin_type_int,
|
||
(LONGEST) value_logical_not (arg1));
|
||
|
||
case UNOP_IND:
|
||
if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
|
||
expect_type = TYPE_TARGET_TYPE (expect_type);
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
|
||
/* In C you can dereference an array to get the 1st elt. */
|
||
|| TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY
|
||
)
|
||
return value_zero (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
|
||
lval_memory);
|
||
else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
|
||
/* GDB allows dereferencing an int. */
|
||
return value_zero (builtin_type_int, lval_memory);
|
||
else
|
||
error ("Attempt to take contents of a non-pointer value.");
|
||
}
|
||
return value_ind (arg1);
|
||
|
||
case UNOP_ADDR:
|
||
/* C++: check for and handle pointer to members. */
|
||
|
||
op = exp->elts[*pos].opcode;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
if (op == OP_SCOPE)
|
||
{
|
||
int temm = longest_to_int (exp->elts[pc+3].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (temm + 1);
|
||
}
|
||
else
|
||
evaluate_subexp (expect_type, exp, pos, EVAL_SKIP);
|
||
goto nosideret;
|
||
}
|
||
|
||
return evaluate_subexp_for_address (exp, pos, noside);
|
||
|
||
case UNOP_SIZEOF:
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
goto nosideret;
|
||
}
|
||
return evaluate_subexp_for_sizeof (exp, pos);
|
||
|
||
case UNOP_CAST:
|
||
(*pos) += 2;
|
||
type = exp->elts[pc + 1].type;
|
||
arg1 = evaluate_subexp (type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (type != VALUE_TYPE (arg1))
|
||
arg1 = value_cast (type, arg1);
|
||
return arg1;
|
||
|
||
case UNOP_MEMVAL:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (exp->elts[pc + 1].type, lval_memory);
|
||
else
|
||
return value_at_lazy (exp->elts[pc + 1].type,
|
||
value_as_pointer (arg1));
|
||
|
||
case UNOP_PREINCREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op);
|
||
}
|
||
else
|
||
{
|
||
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
|
||
(LONGEST) 1));
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
|
||
case UNOP_PREDECREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op);
|
||
}
|
||
else
|
||
{
|
||
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
|
||
(LONGEST) 1));
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
|
||
case UNOP_POSTINCREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op);
|
||
}
|
||
else
|
||
{
|
||
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
|
||
(LONGEST) 1));
|
||
value_assign (arg1, arg2);
|
||
return arg1;
|
||
}
|
||
|
||
case UNOP_POSTDECREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op);
|
||
}
|
||
else
|
||
{
|
||
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
|
||
(LONGEST) 1));
|
||
value_assign (arg1, arg2);
|
||
return arg1;
|
||
}
|
||
|
||
case OP_THIS:
|
||
(*pos) += 1;
|
||
return value_of_this (1);
|
||
|
||
case OP_TYPE:
|
||
error ("Attempt to use a type name as an expression");
|
||
|
||
default:
|
||
/* Removing this case and compiling with gcc -Wall reveals that
|
||
a lot of cases are hitting this case. Some of these should
|
||
probably be removed from expression.h (e.g. do we need a BINOP_SCOPE
|
||
and an OP_SCOPE?); others are legitimate expressions which are
|
||
(apparently) not fully implemented.
|
||
|
||
If there are any cases landing here which mean a user error,
|
||
then they should be separate cases, with more descriptive
|
||
error messages. */
|
||
|
||
error ("\
|
||
GDB does not (yet) know how to evaluate that kind of expression");
|
||
}
|
||
|
||
nosideret:
|
||
return value_from_longest (builtin_type_long, (LONGEST) 1);
|
||
}
|
||
|
||
/* Evaluate a subexpression of EXP, at index *POS,
|
||
and return the address of that subexpression.
|
||
Advance *POS over the subexpression.
|
||
If the subexpression isn't an lvalue, get an error.
|
||
NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
|
||
then only the type of the result need be correct. */
|
||
|
||
static value_ptr
|
||
evaluate_subexp_for_address (exp, pos, noside)
|
||
register struct expression *exp;
|
||
register int *pos;
|
||
enum noside noside;
|
||
{
|
||
enum exp_opcode op;
|
||
register int pc;
|
||
struct symbol *var;
|
||
|
||
pc = (*pos);
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
case UNOP_IND:
|
||
(*pos)++;
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
case UNOP_MEMVAL:
|
||
(*pos) += 3;
|
||
return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
|
||
case OP_VAR_VALUE:
|
||
var = exp->elts[pc + 2].symbol;
|
||
|
||
/* C++: The "address" of a reference should yield the address
|
||
* of the object pointed to. Let value_addr() deal with it. */
|
||
if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
|
||
goto default_case;
|
||
|
||
(*pos) += 4;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type =
|
||
lookup_pointer_type (SYMBOL_TYPE (var));
|
||
enum address_class sym_class = SYMBOL_CLASS (var);
|
||
|
||
if (sym_class == LOC_CONST
|
||
|| sym_class == LOC_CONST_BYTES
|
||
|| sym_class == LOC_REGISTER
|
||
|| sym_class == LOC_REGPARM)
|
||
error ("Attempt to take address of register or constant.");
|
||
|
||
return
|
||
value_zero (type, not_lval);
|
||
}
|
||
else
|
||
return
|
||
locate_var_value
|
||
(var,
|
||
block_innermost_frame (exp->elts[pc + 1].block));
|
||
|
||
default:
|
||
default_case:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
value_ptr x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (VALUE_LVAL (x) == lval_memory)
|
||
return value_zero (lookup_pointer_type (VALUE_TYPE (x)),
|
||
not_lval);
|
||
else
|
||
error ("Attempt to take address of non-lval");
|
||
}
|
||
return value_addr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
}
|
||
}
|
||
|
||
/* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
|
||
When used in contexts where arrays will be coerced anyway, this is
|
||
equivalent to `evaluate_subexp' but much faster because it avoids
|
||
actually fetching array contents (perhaps obsolete now that we have
|
||
VALUE_LAZY).
|
||
|
||
Note that we currently only do the coercion for C expressions, where
|
||
arrays are zero based and the coercion is correct. For other languages,
|
||
with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
|
||
to decide if coercion is appropriate.
|
||
|
||
*/
|
||
|
||
value_ptr
|
||
evaluate_subexp_with_coercion (exp, pos, noside)
|
||
register struct expression *exp;
|
||
register int *pos;
|
||
enum noside noside;
|
||
{
|
||
register enum exp_opcode op;
|
||
register int pc;
|
||
register value_ptr val;
|
||
struct symbol *var;
|
||
|
||
pc = (*pos);
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
case OP_VAR_VALUE:
|
||
var = exp->elts[pc + 2].symbol;
|
||
if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_ARRAY
|
||
&& CAST_IS_CONVERSION)
|
||
{
|
||
(*pos) += 4;
|
||
val =
|
||
locate_var_value
|
||
(var, block_innermost_frame (exp->elts[pc + 1].block));
|
||
return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (SYMBOL_TYPE (var))),
|
||
val);
|
||
}
|
||
/* FALLTHROUGH */
|
||
|
||
default:
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
}
|
||
|
||
/* Evaluate a subexpression of EXP, at index *POS,
|
||
and return a value for the size of that subexpression.
|
||
Advance *POS over the subexpression. */
|
||
|
||
static value_ptr
|
||
evaluate_subexp_for_sizeof (exp, pos)
|
||
register struct expression *exp;
|
||
register int *pos;
|
||
{
|
||
enum exp_opcode op;
|
||
register int pc;
|
||
value_ptr val;
|
||
|
||
pc = (*pos);
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
/* This case is handled specially
|
||
so that we avoid creating a value for the result type.
|
||
If the result type is very big, it's desirable not to
|
||
create a value unnecessarily. */
|
||
case UNOP_IND:
|
||
(*pos)++;
|
||
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
return value_from_longest (builtin_type_int, (LONGEST)
|
||
TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (val))));
|
||
|
||
case UNOP_MEMVAL:
|
||
(*pos) += 3;
|
||
return value_from_longest (builtin_type_int,
|
||
(LONGEST) TYPE_LENGTH (exp->elts[pc + 1].type));
|
||
|
||
case OP_VAR_VALUE:
|
||
(*pos) += 4;
|
||
return
|
||
value_from_longest
|
||
(builtin_type_int,
|
||
(LONGEST) TYPE_LENGTH (SYMBOL_TYPE (exp->elts[pc + 2].symbol)));
|
||
|
||
default:
|
||
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
return value_from_longest (builtin_type_int,
|
||
(LONGEST) TYPE_LENGTH (VALUE_TYPE (val)));
|
||
}
|
||
}
|
||
|
||
/* Parse a type expression in the string [P..P+LENGTH). */
|
||
|
||
struct type *
|
||
parse_and_eval_type (p, length)
|
||
char *p;
|
||
int length;
|
||
{
|
||
char *tmp = (char *)alloca (length + 4);
|
||
struct expression *expr;
|
||
tmp[0] = '(';
|
||
memcpy (tmp+1, p, length);
|
||
tmp[length+1] = ')';
|
||
tmp[length+2] = '0';
|
||
tmp[length+3] = '\0';
|
||
expr = parse_expression (tmp);
|
||
if (expr->elts[0].opcode != UNOP_CAST)
|
||
error ("Internal error in eval_type.");
|
||
return expr->elts[1].type;
|
||
}
|
||
|
||
int
|
||
calc_f77_array_dims (array_type)
|
||
struct type *array_type;
|
||
{
|
||
int ndimen = 1;
|
||
struct type *tmp_type;
|
||
|
||
if ((TYPE_CODE(array_type) != TYPE_CODE_ARRAY))
|
||
error ("Can't get dimensions for a non-array type");
|
||
|
||
tmp_type = array_type;
|
||
|
||
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
||
{
|
||
if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
|
||
++ndimen;
|
||
}
|
||
return ndimen;
|
||
}
|