binutils-gdb/gdb/mips-tdep.c
Kevin Buettner f796e4be80 * frame.c (generic_unwind_get_saved_register): Make non-static.
* frame.h (generic_unwind_get_saved_register): Declare.
	* mips-tdep.c (read_next_frame_reg): Fetch register from
	current regcache when frame is NULL.
	(mips_init_extra_frame_info): Pass NULL explicitly for parameter
	that must be NULL.
	(mips_get_saved_register): Call generic_unwind_get_saved_register()
	instead of frame_register_unwind().
2003-02-20 16:35:51 +00:00

6592 lines
210 KiB
C

/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "block.h"
#include "opcode/mips.h"
#include "elf/mips.h"
#include "elf-bfd.h"
#include "symcat.h"
/* A useful bit in the CP0 status register (PS_REGNUM). */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
#define ST0_FR (1 << 26)
/* The sizes of floating point registers. */
enum
{
MIPS_FPU_SINGLE_REGSIZE = 4,
MIPS_FPU_DOUBLE_REGSIZE = 8
};
static const char *mips_abi_string;
static const char *mips_abi_strings[] = {
"auto",
"n32",
"o32",
"n64",
"o64",
"eabi32",
"eabi64",
NULL
};
struct frame_extra_info
{
mips_extra_func_info_t proc_desc;
int num_args;
};
/* Various MIPS ISA options (related to stack analysis) can be
overridden dynamically. Establish an enum/array for managing
them. */
static const char size_auto[] = "auto";
static const char size_32[] = "32";
static const char size_64[] = "64";
static const char *size_enums[] = {
size_auto,
size_32,
size_64,
0
};
/* Some MIPS boards don't support floating point while others only
support single-precision floating-point operations. See also
FP_REGISTER_DOUBLE. */
enum mips_fpu_type
{
MIPS_FPU_DOUBLE, /* Full double precision floating point. */
MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
MIPS_FPU_NONE /* No floating point. */
};
#ifndef MIPS_DEFAULT_FPU_TYPE
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
#endif
static int mips_fpu_type_auto = 1;
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
static int mips_debug = 0;
/* MIPS specific per-architecture information */
struct gdbarch_tdep
{
/* from the elf header */
int elf_flags;
/* mips options */
enum mips_abi mips_abi;
enum mips_abi found_abi;
enum mips_fpu_type mips_fpu_type;
int mips_last_arg_regnum;
int mips_last_fp_arg_regnum;
int mips_default_saved_regsize;
int mips_fp_register_double;
int mips_default_stack_argsize;
int gdb_target_is_mips64;
int default_mask_address_p;
};
#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
|| gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
/* Return the currently configured (or set) saved register size. */
#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
static const char *mips_saved_regsize_string = size_auto;
#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
/* Return the MIPS ABI associated with GDBARCH. */
enum mips_abi
mips_abi (struct gdbarch *gdbarch)
{
return gdbarch_tdep (gdbarch)->mips_abi;
}
static unsigned int
mips_saved_regsize (void)
{
if (mips_saved_regsize_string == size_auto)
return MIPS_DEFAULT_SAVED_REGSIZE;
else if (mips_saved_regsize_string == size_64)
return 8;
else /* if (mips_saved_regsize_string == size_32) */
return 4;
}
/* Functions for setting and testing a bit in a minimal symbol that
marks it as 16-bit function. The MSB of the minimal symbol's
"info" field is used for this purpose. This field is already
being used to store the symbol size, so the assumption is
that the symbol size cannot exceed 2^31.
ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
i.e. refers to a 16-bit function, and sets a "special" bit in a
minimal symbol to mark it as a 16-bit function
MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
the "info" field with the "special" bit masked out */
static void
mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
{
MSYMBOL_INFO (msym) = (char *)
(((long) MSYMBOL_INFO (msym)) | 0x80000000);
SYMBOL_VALUE_ADDRESS (msym) |= 1;
}
}
static int
msymbol_is_special (struct minimal_symbol *msym)
{
return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
}
static long
msymbol_size (struct minimal_symbol *msym)
{
return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
}
/* XFER a value from the big/little/left end of the register.
Depending on the size of the value it might occupy the entire
register or just part of it. Make an allowance for this, aligning
things accordingly. */
static void
mips_xfer_register (struct regcache *regcache, int reg_num, int length,
enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
int buf_offset)
{
bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
int reg_offset = 0;
/* Need to transfer the left or right part of the register, based on
the targets byte order. */
switch (endian)
{
case BFD_ENDIAN_BIG:
reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
break;
case BFD_ENDIAN_LITTLE:
reg_offset = 0;
break;
case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
reg_offset = 0;
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
if (mips_debug)
fprintf_unfiltered (gdb_stderr,
"xfer $%d, reg offset %d, buf offset %d, length %d, ",
reg_num, reg_offset, buf_offset, length);
if (mips_debug && out != NULL)
{
int i;
fprintf_unfiltered (gdb_stdlog, "out ");
for (i = 0; i < length; i++)
fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
}
if (in != NULL)
regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
if (out != NULL)
regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
if (mips_debug && in != NULL)
{
int i;
fprintf_unfiltered (gdb_stdlog, "in ");
for (i = 0; i < length; i++)
fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
compatiblity mode. A return value of 1 means that we have
physical 64-bit registers, but should treat them as 32-bit registers. */
static int
mips2_fp_compat (void)
{
/* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
meaningful. */
if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
return 0;
#if 0
/* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
in all the places we deal with FP registers. PR gdb/413. */
/* Otherwise check the FR bit in the status register - it controls
the FP compatiblity mode. If it is clear we are in compatibility
mode. */
if ((read_register (PS_REGNUM) & ST0_FR) == 0)
return 1;
#endif
return 0;
}
/* Indicate that the ABI makes use of double-precision registers
provided by the FPU (rather than combining pairs of registers to
form double-precision values). Do not use "TARGET_IS_MIPS64" to
determine if the ABI is using double-precision registers. See also
MIPS_FPU_TYPE. */
#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
/* The amount of space reserved on the stack for registers. This is
different to MIPS_SAVED_REGSIZE as it determines the alignment of
data allocated after the registers have run out. */
#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
static const char *mips_stack_argsize_string = size_auto;
static unsigned int
mips_stack_argsize (void)
{
if (mips_stack_argsize_string == size_auto)
return MIPS_DEFAULT_STACK_ARGSIZE;
else if (mips_stack_argsize_string == size_64)
return 8;
else /* if (mips_stack_argsize_string == size_32) */
return 4;
}
#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
int gdb_print_insn_mips (bfd_vma, disassemble_info *);
static void mips_print_register (int, int);
static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
struct frame_info *, int);
static CORE_ADDR heuristic_proc_start (CORE_ADDR);
static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
static int mips_set_processor_type (char *);
static void mips_show_processor_type_command (char *, int);
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
struct frame_info *next_frame,
int cur_frame);
static CORE_ADDR after_prologue (CORE_ADDR pc,
mips_extra_func_info_t proc_desc);
static void mips_read_fp_register_single (int regno, char *rare_buffer);
static void mips_read_fp_register_double (int regno, char *rare_buffer);
static struct type *mips_float_register_type (void);
static struct type *mips_double_register_type (void);
/* This value is the model of MIPS in use. It is derived from the value
of the PrID register. */
char *mips_processor_type;
char *tmp_mips_processor_type;
/* The list of available "set mips " and "show mips " commands */
static struct cmd_list_element *setmipscmdlist = NULL;
static struct cmd_list_element *showmipscmdlist = NULL;
/* A set of original names, to be used when restoring back to generic
registers from a specific set. */
char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
char **mips_processor_reg_names = mips_generic_reg_names;
static const char *
mips_register_name (int i)
{
return mips_processor_reg_names[i];
}
/* *INDENT-OFF* */
/* Names of IDT R3041 registers. */
char *mips_r3041_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"sr", "lo", "hi", "bad", "cause","pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", "",/*"fp"*/ "",
"", "", "bus", "ccfg", "", "", "", "",
"", "", "port", "cmp", "", "", "epc", "prid",
};
/* Names of IDT R3051 registers. */
char *mips_r3051_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"sr", "lo", "hi", "bad", "cause","pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", ""/*"fp"*/, "",
"inx", "rand", "elo", "", "ctxt", "", "", "",
"", "", "ehi", "", "", "", "epc", "prid",
};
/* Names of IDT R3081 registers. */
char *mips_r3081_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"sr", "lo", "hi", "bad", "cause","pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", ""/*"fp"*/, "",
"inx", "rand", "elo", "cfg", "ctxt", "", "", "",
"", "", "ehi", "", "", "", "epc", "prid",
};
/* Names of LSI 33k registers. */
char *mips_lsi33k_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"epc", "hi", "lo", "sr", "cause","badvaddr",
"dcic", "bpc", "bda", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
};
struct {
char *name;
char **regnames;
} mips_processor_type_table[] = {
{ "generic", mips_generic_reg_names },
{ "r3041", mips_r3041_reg_names },
{ "r3051", mips_r3051_reg_names },
{ "r3071", mips_r3081_reg_names },
{ "r3081", mips_r3081_reg_names },
{ "lsi33k", mips_lsi33k_reg_names },
{ NULL, NULL }
};
/* *INDENT-ON* */
/* Table to translate MIPS16 register field to actual register number. */
static int mips16_to_32_reg[8] =
{16, 17, 2, 3, 4, 5, 6, 7};
/* Heuristic_proc_start may hunt through the text section for a long
time across a 2400 baud serial line. Allows the user to limit this
search. */
static unsigned int heuristic_fence_post = 0;
#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
this will corrupt pdr.iline. Fortunately we don't use it. */
#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
#define _PROC_MAGIC_ 0x0F0F0F0F
#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
struct linked_proc_info
{
struct mips_extra_func_info info;
struct linked_proc_info *next;
}
*linked_proc_desc_table = NULL;
void
mips_print_extra_frame_info (struct frame_info *fi)
{
if (fi
&& get_frame_extra_info (fi)
&& get_frame_extra_info (fi)->proc_desc
&& get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
printf_filtered (" frame pointer is at %s+%s\n",
REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
}
/* Number of bytes of storage in the actual machine representation for
register N. NOTE: This indirectly defines the register size
transfered by the GDB protocol. */
static int mips64_transfers_32bit_regs_p = 0;
static int
mips_register_raw_size (int reg_nr)
{
if (mips64_transfers_32bit_regs_p)
return REGISTER_VIRTUAL_SIZE (reg_nr);
else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
&& FP_REGISTER_DOUBLE)
/* For MIPS_ABI_N32 (for example) we need 8 byte floating point
registers. */
return 8;
else
return MIPS_REGSIZE;
}
/* Convert between RAW and VIRTUAL registers. The RAW register size
defines the remote-gdb packet. */
static int
mips_register_convertible (int reg_nr)
{
if (mips64_transfers_32bit_regs_p)
return 0;
else
return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
}
static void
mips_register_convert_to_virtual (int n, struct type *virtual_type,
char *raw_buf, char *virt_buf)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
memcpy (virt_buf,
raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
TYPE_LENGTH (virtual_type));
else
memcpy (virt_buf,
raw_buf,
TYPE_LENGTH (virtual_type));
}
static void
mips_register_convert_to_raw (struct type *virtual_type, int n,
char *virt_buf, char *raw_buf)
{
memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
virt_buf,
TYPE_LENGTH (virtual_type));
else
memcpy (raw_buf,
virt_buf,
TYPE_LENGTH (virtual_type));
}
void
mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& REGISTER_RAW_SIZE (regnum) == 4
&& (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
&& TYPE_CODE(type) == TYPE_CODE_FLT
&& TYPE_LENGTH(type) == 8)
{
char temp[4];
memcpy (temp, ((char *)(buffer))+4, 4);
memcpy (((char *)(buffer))+4, (buffer), 4);
memcpy (((char *)(buffer)), temp, 4);
}
}
void
mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& REGISTER_RAW_SIZE (regnum) == 4
&& (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
&& TYPE_CODE(type) == TYPE_CODE_FLT
&& TYPE_LENGTH(type) == 8)
{
char temp[4];
memcpy (temp, ((char *)(buffer))+4, 4);
memcpy (((char *)(buffer))+4, (buffer), 4);
memcpy (((char *)(buffer)), temp, 4);
}
}
/* Return the GDB type object for the "standard" data type
of data in register REG.
Note: kevinb/2002-08-01: The definition below should faithfully
reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
definitions found in config/mips/tm-*.h. I'm concerned about
the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
though. In some cases FP_REGNUM is in this range, and I doubt
that this code is correct for the 64-bit case. */
static struct type *
mips_register_virtual_type (int reg)
{
if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
{
/* Floating point registers... */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
return builtin_type_ieee_double_big;
else
return builtin_type_ieee_double_little;
}
else if (reg == PS_REGNUM /* CR */)
return builtin_type_uint32;
else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
return builtin_type_uint32;
else
{
/* Everything else...
Return type appropriate for width of register. */
if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
return builtin_type_uint64;
else
return builtin_type_uint32;
}
}
/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
static CORE_ADDR
mips_read_sp (void)
{
return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
}
/* Should the upper word of 64-bit addresses be zeroed? */
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
static int
mips_mask_address_p (void)
{
switch (mask_address_var)
{
case AUTO_BOOLEAN_TRUE:
return 1;
case AUTO_BOOLEAN_FALSE:
return 0;
break;
case AUTO_BOOLEAN_AUTO:
return MIPS_DEFAULT_MASK_ADDRESS_P;
default:
internal_error (__FILE__, __LINE__,
"mips_mask_address_p: bad switch");
return -1;
}
}
static void
show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
{
switch (mask_address_var)
{
case AUTO_BOOLEAN_TRUE:
printf_filtered ("The 32 bit mips address mask is enabled\n");
break;
case AUTO_BOOLEAN_FALSE:
printf_filtered ("The 32 bit mips address mask is disabled\n");
break;
case AUTO_BOOLEAN_AUTO:
printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
mips_mask_address_p () ? "enabled" : "disabled");
break;
default:
internal_error (__FILE__, __LINE__,
"show_mask_address: bad switch");
break;
}
}
/* Should call_function allocate stack space for a struct return? */
static int
mips_eabi_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
}
static int
mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
}
static int
mips_o32_use_struct_convention (int gcc_p, struct type *type)
{
return 1; /* Structures are returned by ref in extra arg0. */
}
/* Should call_function pass struct by reference?
For each architecture, structs are passed either by
value or by reference, depending on their size. */
static int
mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
{
enum type_code typecode = TYPE_CODE (check_typedef (type));
int len = TYPE_LENGTH (check_typedef (type));
if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
return (len > MIPS_SAVED_REGSIZE);
return 0;
}
static int
mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
{
return 0; /* Assumption: N32/N64 never passes struct by ref. */
}
static int
mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
{
return 0; /* Assumption: O32/O64 never passes struct by ref. */
}
/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
static int
pc_is_mips16 (bfd_vma memaddr)
{
struct minimal_symbol *sym;
/* If bit 0 of the address is set, assume this is a MIPS16 address. */
if (IS_MIPS16_ADDR (memaddr))
return 1;
/* A flag indicating that this is a MIPS16 function is stored by elfread.c in
the high bit of the info field. Use this to decide if the function is
MIPS16 or normal MIPS. */
sym = lookup_minimal_symbol_by_pc (memaddr);
if (sym)
return msymbol_is_special (sym);
else
return 0;
}
/* MIPS believes that the PC has a sign extended value. Perhaphs the
all registers should be sign extended for simplicity? */
static CORE_ADDR
mips_read_pc (ptid_t ptid)
{
return read_signed_register_pid (PC_REGNUM, ptid);
}
/* This returns the PC of the first inst after the prologue. If we can't
find the prologue, then return 0. */
static CORE_ADDR
after_prologue (CORE_ADDR pc,
mips_extra_func_info_t proc_desc)
{
struct symtab_and_line sal;
CORE_ADDR func_addr, func_end;
/* Pass cur_frame == 0 to find_proc_desc. We should not attempt
to read the stack pointer from the current machine state, because
the current machine state has nothing to do with the information
we need from the proc_desc; and the process may or may not exist
right now. */
if (!proc_desc)
proc_desc = find_proc_desc (pc, NULL, 0);
if (proc_desc)
{
/* If function is frameless, then we need to do it the hard way. I
strongly suspect that frameless always means prologueless... */
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
&& PROC_FRAME_OFFSET (proc_desc) == 0)
return 0;
}
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
return 0; /* Unknown */
sal = find_pc_line (func_addr, 0);
if (sal.end < func_end)
return sal.end;
/* The line after the prologue is after the end of the function. In this
case, tell the caller to find the prologue the hard way. */
return 0;
}
/* Decode a MIPS32 instruction that saves a register in the stack, and
set the appropriate bit in the general register mask or float register mask
to indicate which register is saved. This is a helper function
for mips_find_saved_regs. */
static void
mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
unsigned long *float_mask)
{
int reg;
if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
|| (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
|| (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
{
/* It might be possible to use the instruction to
find the offset, rather than the code below which
is based on things being in a certain order in the
frame, but figuring out what the instruction's offset
is relative to might be a little tricky. */
reg = (inst & 0x001f0000) >> 16;
*gen_mask |= (1 << reg);
}
else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
|| (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
|| (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
{
reg = ((inst & 0x001f0000) >> 16);
*float_mask |= (1 << reg);
}
}
/* Decode a MIPS16 instruction that saves a register in the stack, and
set the appropriate bit in the general register or float register mask
to indicate which register is saved. This is a helper function
for mips_find_saved_regs. */
static void
mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
{
if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
{
int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
*gen_mask |= (1 << reg);
}
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
{
int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
*gen_mask |= (1 << reg);
}
else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
|| (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
*gen_mask |= (1 << RA_REGNUM);
}
/* Fetch and return instruction from the specified location. If the PC
is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
static t_inst
mips_fetch_instruction (CORE_ADDR addr)
{
char buf[MIPS_INSTLEN];
int instlen;
int status;
if (pc_is_mips16 (addr))
{
instlen = MIPS16_INSTLEN;
addr = UNMAKE_MIPS16_ADDR (addr);
}
else
instlen = MIPS_INSTLEN;
status = read_memory_nobpt (addr, buf, instlen);
if (status)
memory_error (status, addr);
return extract_unsigned_integer (buf, instlen);
}
/* These the fields of 32 bit mips instructions */
#define mips32_op(x) (x >> 26)
#define itype_op(x) (x >> 26)
#define itype_rs(x) ((x >> 21) & 0x1f)
#define itype_rt(x) ((x >> 16) & 0x1f)
#define itype_immediate(x) (x & 0xffff)
#define jtype_op(x) (x >> 26)
#define jtype_target(x) (x & 0x03ffffff)
#define rtype_op(x) (x >> 26)
#define rtype_rs(x) ((x >> 21) & 0x1f)
#define rtype_rt(x) ((x >> 16) & 0x1f)
#define rtype_rd(x) ((x >> 11) & 0x1f)
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_funct(x) (x & 0x3f)
static CORE_ADDR
mips32_relative_offset (unsigned long inst)
{
long x;
x = itype_immediate (inst);
if (x & 0x8000) /* sign bit set */
{
x |= 0xffff0000; /* sign extension */
}
x = x << 2;
return x;
}
/* Determine whate to set a single step breakpoint while considering
branch prediction */
static CORE_ADDR
mips32_next_pc (CORE_ADDR pc)
{
unsigned long inst;
int op;
inst = mips_fetch_instruction (pc);
if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
{
if (itype_op (inst) >> 2 == 5)
/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
{
op = (itype_op (inst) & 0x03);
switch (op)
{
case 0: /* BEQL */
goto equal_branch;
case 1: /* BNEL */
goto neq_branch;
case 2: /* BLEZL */
goto less_branch;
case 3: /* BGTZ */
goto greater_branch;
default:
pc += 4;
}
}
else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
{
int tf = itype_rt (inst) & 0x01;
int cnum = itype_rt (inst) >> 2;
int fcrcs = read_signed_register (FCRCS_REGNUM);
int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
if (((cond >> cnum) & 0x01) == tf)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
}
else
pc += 4; /* Not a branch, next instruction is easy */
}
else
{ /* This gets way messy */
/* Further subdivide into SPECIAL, REGIMM and other */
switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
{
case 0: /* SPECIAL */
op = rtype_funct (inst);
switch (op)
{
case 8: /* JR */
case 9: /* JALR */
/* Set PC to that address */
pc = read_signed_register (rtype_rs (inst));
break;
default:
pc += 4;
}
break; /* end SPECIAL */
case 1: /* REGIMM */
{
op = itype_rt (inst); /* branch condition */
switch (op)
{
case 0: /* BLTZ */
case 2: /* BLTZL */
case 16: /* BLTZAL */
case 18: /* BLTZALL */
less_branch:
if (read_signed_register (itype_rs (inst)) < 0)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8; /* after the delay slot */
break;
case 1: /* BGEZ */
case 3: /* BGEZL */
case 17: /* BGEZAL */
case 19: /* BGEZALL */
greater_equal_branch:
if (read_signed_register (itype_rs (inst)) >= 0)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8; /* after the delay slot */
break;
/* All of the other instructions in the REGIMM category */
default:
pc += 4;
}
}
break; /* end REGIMM */
case 2: /* J */
case 3: /* JAL */
{
unsigned long reg;
reg = jtype_target (inst) << 2;
/* Upper four bits get never changed... */
pc = reg + ((pc + 4) & 0xf0000000);
}
break;
/* FIXME case JALX : */
{
unsigned long reg;
reg = jtype_target (inst) << 2;
pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
/* Add 1 to indicate 16 bit mode - Invert ISA mode */
}
break; /* The new PC will be alternate mode */
case 4: /* BEQ, BEQL */
equal_branch:
if (read_signed_register (itype_rs (inst)) ==
read_signed_register (itype_rt (inst)))
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
case 5: /* BNE, BNEL */
neq_branch:
if (read_signed_register (itype_rs (inst)) !=
read_signed_register (itype_rt (inst)))
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
case 6: /* BLEZ, BLEZL */
less_zero_branch:
if (read_signed_register (itype_rs (inst) <= 0))
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
case 7:
default:
greater_branch: /* BGTZ, BGTZL */
if (read_signed_register (itype_rs (inst) > 0))
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
} /* switch */
} /* else */
return pc;
} /* mips32_next_pc */
/* Decoding the next place to set a breakpoint is irregular for the
mips 16 variant, but fortunately, there fewer instructions. We have to cope
ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
We dont want to set a single step instruction on the extend instruction
either.
*/
/* Lots of mips16 instruction formats */
/* Predicting jumps requires itype,ritype,i8type
and their extensions extItype,extritype,extI8type
*/
enum mips16_inst_fmts
{
itype, /* 0 immediate 5,10 */
ritype, /* 1 5,3,8 */
rrtype, /* 2 5,3,3,5 */
rritype, /* 3 5,3,3,5 */
rrrtype, /* 4 5,3,3,3,2 */
rriatype, /* 5 5,3,3,1,4 */
shifttype, /* 6 5,3,3,3,2 */
i8type, /* 7 5,3,8 */
i8movtype, /* 8 5,3,3,5 */
i8mov32rtype, /* 9 5,3,5,3 */
i64type, /* 10 5,3,8 */
ri64type, /* 11 5,3,3,5 */
jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
extRRItype, /* 15 5,5,5,5,3,3,5 */
extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
extRi64type, /* 20 5,6,5,5,3,3,5 */
extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
};
/* I am heaping all the fields of the formats into one structure and
then, only the fields which are involved in instruction extension */
struct upk_mips16
{
CORE_ADDR offset;
unsigned int regx; /* Function in i8 type */
unsigned int regy;
};
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
for the bits which make up the immediatate extension. */
static CORE_ADDR
extended_offset (unsigned int extension)
{
CORE_ADDR value;
value = (extension >> 21) & 0x3f; /* * extract 15:11 */
value = value << 6;
value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
value = value << 5;
value |= extension & 0x01f; /* extract 4:0 */
return value;
}
/* Only call this function if you know that this is an extendable
instruction, It wont malfunction, but why make excess remote memory references?
If the immediate operands get sign extended or somthing, do it after
the extension is performed.
*/
/* FIXME: Every one of these cases needs to worry about sign extension
when the offset is to be used in relative addressing */
static unsigned int
fetch_mips_16 (CORE_ADDR pc)
{
char buf[8];
pc &= 0xfffffffe; /* clear the low order bit */
target_read_memory (pc, buf, 2);
return extract_unsigned_integer (buf, 2);
}
static void
unpack_mips16 (CORE_ADDR pc,
unsigned int extension,
unsigned int inst,
enum mips16_inst_fmts insn_format,
struct upk_mips16 *upk)
{
CORE_ADDR offset;
int regx;
int regy;
switch (insn_format)
{
case itype:
{
CORE_ADDR value;
if (extension)
{
value = extended_offset (extension);
value = value << 11; /* rom for the original value */
value |= inst & 0x7ff; /* eleven bits from instruction */
}
else
{
value = inst & 0x7ff;
/* FIXME : Consider sign extension */
}
offset = value;
regx = -1;
regy = -1;
}
break;
case ritype:
case i8type:
{ /* A register identifier and an offset */
/* Most of the fields are the same as I type but the
immediate value is of a different length */
CORE_ADDR value;
if (extension)
{
value = extended_offset (extension);
value = value << 8; /* from the original instruction */
value |= inst & 0xff; /* eleven bits from instruction */
regx = (extension >> 8) & 0x07; /* or i8 funct */
if (value & 0x4000) /* test the sign bit , bit 26 */
{
value &= ~0x3fff; /* remove the sign bit */
value = -value;
}
}
else
{
value = inst & 0xff; /* 8 bits */
regx = (inst >> 8) & 0x07; /* or i8 funct */
/* FIXME: Do sign extension , this format needs it */
if (value & 0x80) /* THIS CONFUSES ME */
{
value &= 0xef; /* remove the sign bit */
value = -value;
}
}
offset = value;
regy = -1;
break;
}
case jalxtype:
{
unsigned long value;
unsigned int nexthalf;
value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
value = value << 16;
nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
value |= nexthalf;
offset = value;
regx = -1;
regy = -1;
break;
}
default:
internal_error (__FILE__, __LINE__,
"bad switch");
}
upk->offset = offset;
upk->regx = regx;
upk->regy = regy;
}
static CORE_ADDR
add_offset_16 (CORE_ADDR pc, int offset)
{
return ((offset << 2) | ((pc + 2) & (0xf0000000)));
}
static CORE_ADDR
extended_mips16_next_pc (CORE_ADDR pc,
unsigned int extension,
unsigned int insn)
{
int op = (insn >> 11);
switch (op)
{
case 2: /* Branch */
{
CORE_ADDR offset;
struct upk_mips16 upk;
unpack_mips16 (pc, extension, insn, itype, &upk);
offset = upk.offset;
if (offset & 0x800)
{
offset &= 0xeff;
offset = -offset;
}
pc += (offset << 1) + 2;
break;
}
case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
{
struct upk_mips16 upk;
unpack_mips16 (pc, extension, insn, jalxtype, &upk);
pc = add_offset_16 (pc, upk.offset);
if ((insn >> 10) & 0x01) /* Exchange mode */
pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
else
pc |= 0x01;
break;
}
case 4: /* beqz */
{
struct upk_mips16 upk;
int reg;
unpack_mips16 (pc, extension, insn, ritype, &upk);
reg = read_signed_register (upk.regx);
if (reg == 0)
pc += (upk.offset << 1) + 2;
else
pc += 2;
break;
}
case 5: /* bnez */
{
struct upk_mips16 upk;
int reg;
unpack_mips16 (pc, extension, insn, ritype, &upk);
reg = read_signed_register (upk.regx);
if (reg != 0)
pc += (upk.offset << 1) + 2;
else
pc += 2;
break;
}
case 12: /* I8 Formats btez btnez */
{
struct upk_mips16 upk;
int reg;
unpack_mips16 (pc, extension, insn, i8type, &upk);
/* upk.regx contains the opcode */
reg = read_signed_register (24); /* Test register is 24 */
if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
|| ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
/* pc = add_offset_16(pc,upk.offset) ; */
pc += (upk.offset << 1) + 2;
else
pc += 2;
break;
}
case 29: /* RR Formats JR, JALR, JALR-RA */
{
struct upk_mips16 upk;
/* upk.fmt = rrtype; */
op = insn & 0x1f;
if (op == 0)
{
int reg;
upk.regx = (insn >> 8) & 0x07;
upk.regy = (insn >> 5) & 0x07;
switch (upk.regy)
{
case 0:
reg = upk.regx;
break;
case 1:
reg = 31;
break; /* Function return instruction */
case 2:
reg = upk.regx;
break;
default:
reg = 31;
break; /* BOGUS Guess */
}
pc = read_signed_register (reg);
}
else
pc += 2;
break;
}
case 30:
/* This is an instruction extension. Fetch the real instruction
(which follows the extension) and decode things based on
that. */
{
pc += 2;
pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
break;
}
default:
{
pc += 2;
break;
}
}
return pc;
}
static CORE_ADDR
mips16_next_pc (CORE_ADDR pc)
{
unsigned int insn = fetch_mips_16 (pc);
return extended_mips16_next_pc (pc, 0, insn);
}
/* The mips_next_pc function supports single_step when the remote
target monitor or stub is not developed enough to do a single_step.
It works by decoding the current instruction and predicting where a
branch will go. This isnt hard because all the data is available.
The MIPS32 and MIPS16 variants are quite different */
CORE_ADDR
mips_next_pc (CORE_ADDR pc)
{
if (pc & 0x01)
return mips16_next_pc (pc);
else
return mips32_next_pc (pc);
}
/* Guaranteed to set fci->saved_regs to some values (it never leaves it
NULL).
Note: kevinb/2002-08-09: The only caller of this function is (and
should remain) mips_frame_init_saved_regs(). In fact,
aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
does nothing more than set frame->saved_regs[SP_REGNUM]. These two
functions should really be combined and now that there is only one
caller, it should be straightforward. (Watch out for multiple returns
though.) */
static void
mips_find_saved_regs (struct frame_info *fci)
{
int ireg;
CORE_ADDR reg_position;
/* r0 bit means kernel trap */
int kernel_trap;
/* What registers have been saved? Bitmasks. */
unsigned long gen_mask, float_mask;
mips_extra_func_info_t proc_desc;
t_inst inst;
frame_saved_regs_zalloc (fci);
/* If it is the frame for sigtramp, the saved registers are located
in a sigcontext structure somewhere on the stack.
If the stack layout for sigtramp changes we might have to change these
constants and the companion fixup_sigtramp in mdebugread.c */
#ifndef SIGFRAME_BASE
/* To satisfy alignment restrictions, sigcontext is located 4 bytes
above the sigtramp frame. */
#define SIGFRAME_BASE MIPS_REGSIZE
/* FIXME! Are these correct?? */
#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
#define SIGFRAME_FPREGSAVE_OFF \
(SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
#endif
#ifndef SIGFRAME_REG_SIZE
/* FIXME! Is this correct?? */
#define SIGFRAME_REG_SIZE MIPS_REGSIZE
#endif
if ((get_frame_type (fci) == SIGTRAMP_FRAME))
{
for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
{
reg_position = get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
+ ireg * SIGFRAME_REG_SIZE;
get_frame_saved_regs (fci)[ireg] = reg_position;
}
for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
{
reg_position = get_frame_base (fci) + SIGFRAME_FPREGSAVE_OFF
+ ireg * SIGFRAME_REG_SIZE;
get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
}
get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_base (fci) + SIGFRAME_PC_OFF;
return;
}
proc_desc = get_frame_extra_info (fci)->proc_desc;
if (proc_desc == NULL)
/* I'm not sure how/whether this can happen. Normally when we can't
find a proc_desc, we "synthesize" one using heuristic_proc_desc
and set the saved_regs right away. */
return;
kernel_trap = PROC_REG_MASK (proc_desc) & 1;
gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
if ( /* In any frame other than the innermost or a frame interrupted by
a signal, we assume that all registers have been saved.
This assumes that all register saves in a function happen before
the first function call. */
(get_next_frame (fci) == NULL
|| (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
/* In a dummy frame we know exactly where things are saved. */
&& !PROC_DESC_IS_DUMMY (proc_desc)
/* Don't bother unless we are inside a function prologue. Outside the
prologue, we know where everything is. */
&& in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
/* Not sure exactly what kernel_trap means, but if it means
the kernel saves the registers without a prologue doing it,
we better not examine the prologue to see whether registers
have been saved yet. */
&& !kernel_trap)
{
/* We need to figure out whether the registers that the proc_desc
claims are saved have been saved yet. */
CORE_ADDR addr;
/* Bitmasks; set if we have found a save for the register. */
unsigned long gen_save_found = 0;
unsigned long float_save_found = 0;
int instlen;
/* If the address is odd, assume this is MIPS16 code. */
addr = PROC_LOW_ADDR (proc_desc);
instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
/* Scan through this function's instructions preceding the current
PC, and look for those that save registers. */
while (addr < get_frame_pc (fci))
{
inst = mips_fetch_instruction (addr);
if (pc_is_mips16 (addr))
mips16_decode_reg_save (inst, &gen_save_found);
else
mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
addr += instlen;
}
gen_mask = gen_save_found;
float_mask = float_save_found;
}
/* Fill in the offsets for the registers which gen_mask says
were saved. */
reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
if (gen_mask & 0x80000000)
{
get_frame_saved_regs (fci)[ireg] = reg_position;
reg_position -= MIPS_SAVED_REGSIZE;
}
/* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
of that normally used by gcc. Therefore, we have to fetch the first
instruction of the function, and if it's an entry instruction that
saves $s0 or $s1, correct their saved addresses. */
if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
{
inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
{
int reg;
int sreg_count = (inst >> 6) & 3;
/* Check if the ra register was pushed on the stack. */
reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
if (inst & 0x20)
reg_position -= MIPS_SAVED_REGSIZE;
/* Check if the s0 and s1 registers were pushed on the stack. */
for (reg = 16; reg < sreg_count + 16; reg++)
{
get_frame_saved_regs (fci)[reg] = reg_position;
reg_position -= MIPS_SAVED_REGSIZE;
}
}
}
/* Fill in the offsets for the registers which float_mask says
were saved. */
reg_position = get_frame_base (fci) + PROC_FREG_OFFSET (proc_desc);
/* Apparently, the freg_offset gives the offset to the first 64 bit
saved.
When the ABI specifies 64 bit saved registers, the FREG_OFFSET
designates the first saved 64 bit register.
When the ABI specifies 32 bit saved registers, the ``64 bit saved
DOUBLE'' consists of two adjacent 32 bit registers, Hence
FREG_OFFSET, designates the address of the lower register of the
register pair. Adjust the offset so that it designates the upper
register of the pair -- i.e., the address of the first saved 32
bit register. */
if (MIPS_SAVED_REGSIZE == 4)
reg_position += MIPS_SAVED_REGSIZE;
/* Fill in the offsets for the float registers which float_mask says
were saved. */
for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
if (float_mask & 0x80000000)
{
get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
reg_position -= MIPS_SAVED_REGSIZE;
}
get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
}
/* Set up the 'saved_regs' array. This is a data structure containing
the addresses on the stack where each register has been saved, for
each stack frame. Registers that have not been saved will have
zero here. The stack pointer register is special: rather than the
address where the stack register has been saved, saved_regs[SP_REGNUM]
will have the actual value of the previous frame's stack register. */
static void
mips_frame_init_saved_regs (struct frame_info *frame)
{
if (get_frame_saved_regs (frame) == NULL)
{
mips_find_saved_regs (frame);
}
get_frame_saved_regs (frame)[SP_REGNUM] = get_frame_base (frame);
}
static CORE_ADDR
read_next_frame_reg (struct frame_info *fi, int regno)
{
int optimized;
CORE_ADDR addr;
int realnum;
enum lval_type lval;
void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
if (fi == NULL)
{
regcache_cooked_read (current_regcache, regno, raw_buffer);
}
else
{
frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
raw_buffer);
/* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
should have a pseudo register range that correspons to the ABI's,
rather than the ISA's, view of registers. These registers would
then implicitly describe their size and hence could be used
without the below munging. */
if (lval == lval_memory)
{
if (regno < 32)
{
/* Only MIPS_SAVED_REGSIZE bytes of GP registers are
saved. */
return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
}
}
}
return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
}
/* mips_addr_bits_remove - remove useless address bits */
static CORE_ADDR
mips_addr_bits_remove (CORE_ADDR addr)
{
if (GDB_TARGET_IS_MIPS64)
{
if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
{
/* This hack is a work-around for existing boards using
PMON, the simulator, and any other 64-bit targets that
doesn't have true 64-bit addressing. On these targets,
the upper 32 bits of addresses are ignored by the
hardware. Thus, the PC or SP are likely to have been
sign extended to all 1s by instruction sequences that
load 32-bit addresses. For example, a typical piece of
code that loads an address is this:
lui $r2, <upper 16 bits>
ori $r2, <lower 16 bits>
But the lui sign-extends the value such that the upper 32
bits may be all 1s. The workaround is simply to mask off
these bits. In the future, gcc may be changed to support
true 64-bit addressing, and this masking will have to be
disabled. */
addr &= (CORE_ADDR) 0xffffffff;
}
}
else if (mips_mask_address_p ())
{
/* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
masking off bits, instead, the actual target should be asking
for the address to be converted to a valid pointer. */
/* Even when GDB is configured for some 32-bit targets
(e.g. mips-elf), BFD is configured to handle 64-bit targets,
so CORE_ADDR is 64 bits. So we still have to mask off
useless bits from addresses. */
addr &= (CORE_ADDR) 0xffffffff;
}
return addr;
}
/* mips_software_single_step() is called just before we want to resume
the inferior, if we want to single-step it but there is no hardware
or kernel single-step support (MIPS on GNU/Linux for example). We find
the target of the coming instruction and breakpoint it.
single_step is also called just after the inferior stops. If we had
set up a simulated single-step, we undo our damage. */
void
mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
{
static CORE_ADDR next_pc;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem;
CORE_ADDR pc;
if (insert_breakpoints_p)
{
pc = read_register (PC_REGNUM);
next_pc = mips_next_pc (pc);
target_insert_breakpoint (next_pc, break_mem);
}
else
target_remove_breakpoint (next_pc, break_mem);
}
static CORE_ADDR
mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
{
CORE_ADDR pc, tmp;
pc = ((fromleaf)
? SAVED_PC_AFTER_CALL (get_next_frame (prev))
: get_next_frame (prev)
? FRAME_SAVED_PC (get_next_frame (prev))
: read_pc ());
tmp = SKIP_TRAMPOLINE_CODE (pc);
return tmp ? tmp : pc;
}
static CORE_ADDR
mips_frame_saved_pc (struct frame_info *frame)
{
CORE_ADDR saved_pc;
mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
/* We have to get the saved pc from the sigcontext
if it is a signal handler frame. */
int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
: (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
{
LONGEST tmp;
frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
saved_pc = tmp;
}
else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
else
saved_pc = read_next_frame_reg (frame, pcreg);
return ADDR_BITS_REMOVE (saved_pc);
}
static struct mips_extra_func_info temp_proc_desc;
/* This hack will go away once the get_prev_frame() code has been
modified to set the frame's type first. That is BEFORE init extra
frame info et.al. is called. This is because it will become
possible to skip the init extra info call for sigtramp and dummy
frames. */
static CORE_ADDR *temp_saved_regs;
/* Set a register's saved stack address in temp_saved_regs. If an address
has already been set for this register, do nothing; this way we will
only recognize the first save of a given register in a function prologue.
This is a helper function for mips{16,32}_heuristic_proc_desc. */
static void
set_reg_offset (int regno, CORE_ADDR offset)
{
if (temp_saved_regs[regno] == 0)
temp_saved_regs[regno] = offset;
}
/* Test whether the PC points to the return instruction at the
end of a function. */
static int
mips_about_to_return (CORE_ADDR pc)
{
if (pc_is_mips16 (pc))
/* This mips16 case isn't necessarily reliable. Sometimes the compiler
generates a "jr $ra"; other times it generates code to load
the return address from the stack to an accessible register (such
as $a3), then a "jr" using that register. This second case
is almost impossible to distinguish from an indirect jump
used for switch statements, so we don't even try. */
return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
else
return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
}
/* This fencepost looks highly suspicious to me. Removing it also
seems suspicious as it could affect remote debugging across serial
lines. */
static CORE_ADDR
heuristic_proc_start (CORE_ADDR pc)
{
CORE_ADDR start_pc;
CORE_ADDR fence;
int instlen;
int seen_adjsp = 0;
pc = ADDR_BITS_REMOVE (pc);
start_pc = pc;
fence = start_pc - heuristic_fence_post;
if (start_pc == 0)
return 0;
if (heuristic_fence_post == UINT_MAX
|| fence < VM_MIN_ADDRESS)
fence = VM_MIN_ADDRESS;
instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
/* search back for previous return */
for (start_pc -= instlen;; start_pc -= instlen)
if (start_pc < fence)
{
/* It's not clear to me why we reach this point when
stop_soon_quietly, but with this test, at least we
don't print out warnings for every child forked (eg, on
decstation). 22apr93 rich@cygnus.com. */
if (!stop_soon_quietly)
{
static int blurb_printed = 0;
warning ("Warning: GDB can't find the start of the function at 0x%s.",
paddr_nz (pc));
if (!blurb_printed)
{
/* This actually happens frequently in embedded
development, when you first connect to a board
and your stack pointer and pc are nowhere in
particular. This message needs to give people
in that situation enough information to
determine that it's no big deal. */
printf_filtered ("\n\
GDB is unable to find the start of the function at 0x%s\n\
and thus can't determine the size of that function's stack frame.\n\
This means that GDB may be unable to access that stack frame, or\n\
the frames below it.\n\
This problem is most likely caused by an invalid program counter or\n\
stack pointer.\n\
However, if you think GDB should simply search farther back\n\
from 0x%s for code which looks like the beginning of a\n\
function, you can increase the range of the search using the `set\n\
heuristic-fence-post' command.\n",
paddr_nz (pc), paddr_nz (pc));
blurb_printed = 1;
}
}
return 0;
}
else if (pc_is_mips16 (start_pc))
{
unsigned short inst;
/* On MIPS16, any one of the following is likely to be the
start of a function:
entry
addiu sp,-n
daddiu sp,-n
extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
inst = mips_fetch_instruction (start_pc);
if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|| (inst & 0xff80) == 0x6380 /* addiu sp,-n */
|| (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
|| ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
break;
else if ((inst & 0xff00) == 0x6300 /* addiu sp */
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
seen_adjsp = 1;
else
seen_adjsp = 0;
}
else if (mips_about_to_return (start_pc))
{
start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
break;
}
return start_pc;
}
/* Fetch the immediate value from a MIPS16 instruction.
If the previous instruction was an EXTEND, use it to extend
the upper bits of the immediate value. This is a helper function
for mips16_heuristic_proc_desc. */
static int
mips16_get_imm (unsigned short prev_inst, /* previous instruction */
unsigned short inst, /* current instruction */
int nbits, /* number of bits in imm field */
int scale, /* scale factor to be applied to imm */
int is_signed) /* is the imm field signed? */
{
int offset;
if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
{
offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
if (offset & 0x8000) /* check for negative extend */
offset = 0 - (0x10000 - (offset & 0xffff));
return offset | (inst & 0x1f);
}
else
{
int max_imm = 1 << nbits;
int mask = max_imm - 1;
int sign_bit = max_imm >> 1;
offset = inst & mask;
if (is_signed && (offset & sign_bit))
offset = 0 - (max_imm - offset);
return offset * scale;
}
}
/* Fill in values in temp_proc_desc based on the MIPS16 instruction
stream from start_pc to limit_pc. */
static void
mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
struct frame_info *next_frame, CORE_ADDR sp)
{
CORE_ADDR cur_pc;
CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
unsigned short prev_inst = 0; /* saved copy of previous instruction */
unsigned inst = 0; /* current instruction */
unsigned entry_inst = 0; /* the entry instruction */
int reg, offset;
PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
{
/* Save the previous instruction. If it's an EXTEND, we'll extract
the immediate offset extension from it in mips16_get_imm. */
prev_inst = inst;
/* Fetch and decode the instruction. */
inst = (unsigned short) mips_fetch_instruction (cur_pc);
if ((inst & 0xff00) == 0x6300 /* addiu sp */
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
{
offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
if (offset < 0) /* negative stack adjustment? */
PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
else
/* Exit loop if a positive stack adjustment is found, which
usually means that the stack cleanup code in the function
epilogue is reached. */
break;
}
else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
reg = mips16_to_32_reg[(inst & 0x700) >> 8];
PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
set_reg_offset (reg, sp + offset);
}
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
set_reg_offset (reg, sp + offset);
}
else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
set_reg_offset (RA_REGNUM, sp + offset);
}
else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
set_reg_offset (RA_REGNUM, sp + offset);
}
else if (inst == 0x673d) /* move $s1, $sp */
{
frame_addr = sp;
PROC_FRAME_REG (&temp_proc_desc) = 17;
}
else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
frame_addr = sp + offset;
PROC_FRAME_REG (&temp_proc_desc) = 17;
PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
}
else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, frame_addr + offset);
}
else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, frame_addr + offset);
}
else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
entry_inst = inst; /* save for later processing */
else if ((inst & 0xf800) == 0x1800) /* jal(x) */
cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
}
/* The entry instruction is typically the first instruction in a function,
and it stores registers at offsets relative to the value of the old SP
(before the prologue). But the value of the sp parameter to this
function is the new SP (after the prologue has been executed). So we
can't calculate those offsets until we've seen the entire prologue,
and can calculate what the old SP must have been. */
if (entry_inst != 0)
{
int areg_count = (entry_inst >> 8) & 7;
int sreg_count = (entry_inst >> 6) & 3;
/* The entry instruction always subtracts 32 from the SP. */
PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
/* Now we can calculate what the SP must have been at the
start of the function prologue. */
sp += PROC_FRAME_OFFSET (&temp_proc_desc);
/* Check if a0-a3 were saved in the caller's argument save area. */
for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
{
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, sp + offset);
offset += MIPS_SAVED_REGSIZE;
}
/* Check if the ra register was pushed on the stack. */
offset = -4;
if (entry_inst & 0x20)
{
PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
set_reg_offset (RA_REGNUM, sp + offset);
offset -= MIPS_SAVED_REGSIZE;
}
/* Check if the s0 and s1 registers were pushed on the stack. */
for (reg = 16; reg < sreg_count + 16; reg++)
{
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, sp + offset);
offset -= MIPS_SAVED_REGSIZE;
}
}
}
static void
mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
struct frame_info *next_frame, CORE_ADDR sp)
{
CORE_ADDR cur_pc;
CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
restart:
temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
{
unsigned long inst, high_word, low_word;
int reg;
/* Fetch the instruction. */
inst = (unsigned long) mips_fetch_instruction (cur_pc);
/* Save some code by pre-extracting some useful fields. */
high_word = (inst >> 16) & 0xffff;
low_word = inst & 0xffff;
reg = high_word & 0x1f;
if (high_word == 0x27bd /* addiu $sp,$sp,-i */
|| high_word == 0x23bd /* addi $sp,$sp,-i */
|| high_word == 0x67bd) /* daddiu $sp,$sp,-i */
{
if (low_word & 0x8000) /* negative stack adjustment? */
PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
else
/* Exit loop if a positive stack adjustment is found, which
usually means that the stack cleanup code in the function
epilogue is reached. */
break;
}
else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
{
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, sp + low_word);
}
else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
{
/* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
but the register size used is only 32 bits. Make the address
for the saved register point to the lower 32 bits. */
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
}
else if (high_word == 0x27be) /* addiu $30,$sp,size */
{
/* Old gcc frame, r30 is virtual frame pointer. */
if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
frame_addr = sp + low_word;
else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
{
unsigned alloca_adjust;
PROC_FRAME_REG (&temp_proc_desc) = 30;
frame_addr = read_next_frame_reg (next_frame, 30);
alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
if (alloca_adjust > 0)
{
/* FP > SP + frame_size. This may be because
* of an alloca or somethings similar.
* Fix sp to "pre-alloca" value, and try again.
*/
sp += alloca_adjust;
goto restart;
}
}
}
/* move $30,$sp. With different versions of gas this will be either
`addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
Accept any one of these. */
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
{
/* New gcc frame, virtual frame pointer is at r30 + frame_size. */
if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
{
unsigned alloca_adjust;
PROC_FRAME_REG (&temp_proc_desc) = 30;
frame_addr = read_next_frame_reg (next_frame, 30);
alloca_adjust = (unsigned) (frame_addr - sp);
if (alloca_adjust > 0)
{
/* FP > SP + frame_size. This may be because
* of an alloca or somethings similar.
* Fix sp to "pre-alloca" value, and try again.
*/
sp += alloca_adjust;
goto restart;
}
}
}
else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
{
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
set_reg_offset (reg, frame_addr + low_word);
}
}
}
static mips_extra_func_info_t
heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
struct frame_info *next_frame, int cur_frame)
{
CORE_ADDR sp;
if (cur_frame)
sp = read_next_frame_reg (next_frame, SP_REGNUM);
else
sp = 0;
if (start_pc == 0)
return NULL;
memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
if (start_pc + 200 < limit_pc)
limit_pc = start_pc + 200;
if (pc_is_mips16 (start_pc))
mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
else
mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
return &temp_proc_desc;
}
struct mips_objfile_private
{
bfd_size_type size;
char *contents;
};
/* Global used to communicate between non_heuristic_proc_desc and
compare_pdr_entries within qsort (). */
static bfd *the_bfd;
static int
compare_pdr_entries (const void *a, const void *b)
{
CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
if (lhs < rhs)
return -1;
else if (lhs == rhs)
return 0;
else
return 1;
}
static mips_extra_func_info_t
non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
{
CORE_ADDR startaddr;
mips_extra_func_info_t proc_desc;
struct block *b = block_for_pc (pc);
struct symbol *sym;
struct obj_section *sec;
struct mips_objfile_private *priv;
if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
return NULL;
find_pc_partial_function (pc, NULL, &startaddr, NULL);
if (addrptr)
*addrptr = startaddr;
priv = NULL;
sec = find_pc_section (pc);
if (sec != NULL)
{
priv = (struct mips_objfile_private *) sec->objfile->obj_private;
/* Search the ".pdr" section generated by GAS. This includes most of
the information normally found in ECOFF PDRs. */
the_bfd = sec->objfile->obfd;
if (priv == NULL
&& (the_bfd->format == bfd_object
&& bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
&& elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
{
/* Right now GAS only outputs the address as a four-byte sequence.
This means that we should not bother with this method on 64-bit
targets (until that is fixed). */
priv = obstack_alloc (& sec->objfile->psymbol_obstack,
sizeof (struct mips_objfile_private));
priv->size = 0;
sec->objfile->obj_private = priv;
}
else if (priv == NULL)
{
asection *bfdsec;
priv = obstack_alloc (& sec->objfile->psymbol_obstack,
sizeof (struct mips_objfile_private));
bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
if (bfdsec != NULL)
{
priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
priv->size);
bfd_get_section_contents (sec->objfile->obfd, bfdsec,
priv->contents, 0, priv->size);
/* In general, the .pdr section is sorted. However, in the
presence of multiple code sections (and other corner cases)
it can become unsorted. Sort it so that we can use a faster
binary search. */
qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
}
else
priv->size = 0;
sec->objfile->obj_private = priv;
}
the_bfd = NULL;
if (priv->size != 0)
{
int low, mid, high;
char *ptr;
low = 0;
high = priv->size / 32;
do
{
CORE_ADDR pdr_pc;
mid = (low + high) / 2;
ptr = priv->contents + mid * 32;
pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
pdr_pc += ANOFFSET (sec->objfile->section_offsets,
SECT_OFF_TEXT (sec->objfile));
if (pdr_pc == startaddr)
break;
if (pdr_pc > startaddr)
high = mid;
else
low = mid + 1;
}
while (low != high);
if (low != high)
{
struct symbol *sym = find_pc_function (pc);
/* Fill in what we need of the proc_desc. */
proc_desc = (mips_extra_func_info_t)
obstack_alloc (&sec->objfile->psymbol_obstack,
sizeof (struct mips_extra_func_info));
PROC_LOW_ADDR (proc_desc) = startaddr;
/* Only used for dummy frames. */
PROC_HIGH_ADDR (proc_desc) = 0;
PROC_FRAME_OFFSET (proc_desc)
= bfd_get_32 (sec->objfile->obfd, ptr + 20);
PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
ptr + 24);
PROC_FRAME_ADJUST (proc_desc) = 0;
PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
ptr + 4);
PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
ptr + 12);
PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
ptr + 8);
PROC_FREG_OFFSET (proc_desc)
= bfd_get_32 (sec->objfile->obfd, ptr + 16);
PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
ptr + 28);
proc_desc->pdr.isym = (long) sym;
return proc_desc;
}
}
}
if (b == NULL)
return NULL;
if (startaddr > BLOCK_START (b))
{
/* This is the "pathological" case referred to in a comment in
print_frame_info. It might be better to move this check into
symbol reading. */
return NULL;
}
sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
/* If we never found a PDR for this function in symbol reading, then
examine prologues to find the information. */
if (sym)
{
proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
if (PROC_FRAME_REG (proc_desc) == -1)
return NULL;
else
return proc_desc;
}
else
return NULL;
}
static mips_extra_func_info_t
find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
{
mips_extra_func_info_t proc_desc;
CORE_ADDR startaddr = 0;
proc_desc = non_heuristic_proc_desc (pc, &startaddr);
if (proc_desc)
{
/* IF this is the topmost frame AND
* (this proc does not have debugging information OR
* the PC is in the procedure prologue)
* THEN create a "heuristic" proc_desc (by analyzing
* the actual code) to replace the "official" proc_desc.
*/
if (next_frame == NULL)
{
struct symtab_and_line val;
struct symbol *proc_symbol =
PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
if (proc_symbol)
{
val = find_pc_line (BLOCK_START
(SYMBOL_BLOCK_VALUE (proc_symbol)),
0);
val.pc = val.end ? val.end : pc;
}
if (!proc_symbol || pc < val.pc)
{
mips_extra_func_info_t found_heuristic =
heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
pc, next_frame, cur_frame);
if (found_heuristic)
proc_desc = found_heuristic;
}
}
}
else
{
/* Is linked_proc_desc_table really necessary? It only seems to be used
by procedure call dummys. However, the procedures being called ought
to have their own proc_descs, and even if they don't,
heuristic_proc_desc knows how to create them! */
register struct linked_proc_info *link;
for (link = linked_proc_desc_table; link; link = link->next)
if (PROC_LOW_ADDR (&link->info) <= pc
&& PROC_HIGH_ADDR (&link->info) > pc)
return &link->info;
if (startaddr == 0)
startaddr = heuristic_proc_start (pc);
proc_desc =
heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
}
return proc_desc;
}
static CORE_ADDR
get_frame_pointer (struct frame_info *frame,
mips_extra_func_info_t proc_desc)
{
return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
PROC_FRAME_REG (proc_desc)) +
PROC_FRAME_OFFSET (proc_desc) -
PROC_FRAME_ADJUST (proc_desc));
}
static mips_extra_func_info_t cached_proc_desc;
static CORE_ADDR
mips_frame_chain (struct frame_info *frame)
{
mips_extra_func_info_t proc_desc;
CORE_ADDR tmp;
CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
if (saved_pc == 0 || inside_entry_file (saved_pc))
return 0;
/* Check if the PC is inside a call stub. If it is, fetch the
PC of the caller of that stub. */
if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
saved_pc = tmp;
if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
{
/* A dummy frame, uses SP not FP. Get the old SP value. If all
is well, frame->frame the bottom of the current frame will
contain that value. */
return get_frame_base (frame);
}
/* Look up the procedure descriptor for this PC. */
proc_desc = find_proc_desc (saved_pc, frame, 1);
if (!proc_desc)
return 0;
cached_proc_desc = proc_desc;
/* If no frame pointer and frame size is zero, we must be at end
of stack (or otherwise hosed). If we don't check frame size,
we loop forever if we see a zero size frame. */
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
&& PROC_FRAME_OFFSET (proc_desc) == 0
/* The previous frame from a sigtramp frame might be frameless
and have frame size zero. */
&& !(get_frame_type (frame) == SIGTRAMP_FRAME)
/* For a generic dummy frame, let get_frame_pointer() unwind a
register value saved as part of the dummy frame call. */
&& !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
return 0;
else
return get_frame_pointer (frame, proc_desc);
}
static void
mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
{
int regnum;
mips_extra_func_info_t proc_desc;
if (get_frame_type (fci) == DUMMY_FRAME)
return;
/* Use proc_desc calculated in frame_chain. When there is no
next frame, i.e, get_next_frame (fci) == NULL, we call
find_proc_desc () to calculate it, passing an explicit
NULL as the frame parameter. */
proc_desc =
get_next_frame (fci)
? cached_proc_desc
: find_proc_desc (get_frame_pc (fci),
NULL /* i.e, get_next_frame (fci) */,
1);
frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
deprecated_set_frame_saved_regs_hack (fci, NULL);
get_frame_extra_info (fci)->proc_desc =
proc_desc == &temp_proc_desc ? 0 : proc_desc;
if (proc_desc)
{
/* Fixup frame-pointer - only needed for top frame */
/* This may not be quite right, if proc has a real frame register.
Get the value of the frame relative sp, procedure might have been
interrupted by a signal at it's very start. */
if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
&& !PROC_DESC_IS_DUMMY (proc_desc))
deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
/* Do not ``fix'' fci->frame. It will have the value of the
generic dummy frame's top-of-stack (since the draft
fci->frame is obtained by returning the unwound stack
pointer) and that is what we want. That way the fci->frame
value will match the top-of-stack value that was saved as
part of the dummy frames data. */
/* Do nothing. */;
else
deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
if (proc_desc == &temp_proc_desc)
{
char *name;
/* Do not set the saved registers for a sigtramp frame,
mips_find_saved_registers will do that for us. We can't
use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
yet set. */
/* FIXME: cagney/2002-11-18: This problem will go away once
frame.c:get_prev_frame() is modified to set the frame's
type before calling functions like this. */
find_pc_partial_function (get_frame_pc (fci), &name,
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
{
frame_saved_regs_zalloc (fci);
memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
get_frame_saved_regs (fci)[PC_REGNUM]
= get_frame_saved_regs (fci)[RA_REGNUM];
/* Set value of previous frame's stack pointer. Remember that
saved_regs[SP_REGNUM] is special in that it contains the
value of the stack pointer register. The other saved_regs
values are addresses (in the inferior) at which a given
register's value may be found. */
get_frame_saved_regs (fci)[SP_REGNUM] = get_frame_base (fci);
}
}
/* hack: if argument regs are saved, guess these contain args */
/* assume we can't tell how many args for now */
get_frame_extra_info (fci)->num_args = -1;
for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
{
if (PROC_REG_MASK (proc_desc) & (1 << regnum))
{
get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
break;
}
}
}
}
/* MIPS stack frames are almost impenetrable. When execution stops,
we basically have to look at symbol information for the function
that we stopped in, which tells us *which* register (if any) is
the base of the frame pointer, and what offset from that register
the frame itself is at.
This presents a problem when trying to examine a stack in memory
(that isn't executing at the moment), using the "frame" command. We
don't have a PC, nor do we have any registers except SP.
This routine takes two arguments, SP and PC, and tries to make the
cached frames look as if these two arguments defined a frame on the
cache. This allows the rest of info frame to extract the important
arguments without difficulty. */
struct frame_info *
setup_arbitrary_frame (int argc, CORE_ADDR *argv)
{
if (argc != 2)
error ("MIPS frame specifications require two arguments: sp and pc");
return create_new_frame (argv[0], argv[1]);
}
/* According to the current ABI, should the type be passed in a
floating-point register (assuming that there is space)? When there
is no FPU, FP are not even considered as possibile candidates for
FP registers and, consequently this returns false - forces FP
arguments into integer registers. */
static int
fp_register_arg_p (enum type_code typecode, struct type *arg_type)
{
return ((typecode == TYPE_CODE_FLT
|| (MIPS_EABI
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
&& TYPE_NFIELDS (arg_type) == 1
&& TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
&& MIPS_FPU_TYPE != MIPS_FPU_NONE);
}
/* On o32, argument passing in GPRs depends on the alignment of the type being
passed. Return 1 if this type must be aligned to a doubleword boundary. */
static int
mips_type_needs_double_align (struct type *type)
{
enum type_code typecode = TYPE_CODE (type);
if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
return 1;
else if (typecode == TYPE_CODE_STRUCT)
{
if (TYPE_NFIELDS (type) < 1)
return 0;
return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
}
else if (typecode == TYPE_CODE_UNION)
{
int i, n;
n = TYPE_NFIELDS (type);
for (i = 0; i < n; i++)
if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
return 1;
return 0;
}
return 0;
}
/* Macros to round N up or down to the next A boundary;
A must be a power of two. */
#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
/* Adjust the address downward (direction of stack growth) so that it
is correctly aligned for a new stack frame. */
static CORE_ADDR
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
return ROUND_DOWN (addr, 16);
}
static CORE_ADDR
mips_eabi_push_arguments (int nargs,
struct value **args,
CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = ROUND_DOWN (sp, 16);
struct_addr = ROUND_DOWN (struct_addr, 16);
/* Now make space on the stack for the args. We allocate more
than necessary for EABI, because the first few arguments are
passed in registers, but that's OK. */
for (argnum = 0; argnum < nargs; argnum++)
len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
MIPS_STACK_ARGSIZE);
sp -= ROUND_UP (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_eabi_push_arguments: sp=0x%s allocated %d\n",
paddr_nz (sp), ROUND_UP (len, 16));
/* Initialize the integer and float register pointers. */
argreg = A0_REGNUM;
float_argreg = FPA0_REGNUM;
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
write_register (argreg++, struct_addr);
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
char *val;
char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_eabi_push_arguments: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
/* The EABI passes structures that do not fit in a register by
reference. */
if (len > MIPS_SAVED_REGSIZE
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
{
store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
typecode = TYPE_CODE_PTR;
len = MIPS_SAVED_REGSIZE;
val = valbuf;
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " push");
}
else
val = (char *) VALUE_CONTENTS (arg);
/* 32-bit ABIs always start floating point arguments in an
even-numbered floating point register. Round the FP register
up before the check to see if there are any FP registers
left. Non MIPS_EABI targets also pass the FP in the integer
registers so also round up normal registers. */
if (!FP_REGISTER_DOUBLE
&& fp_register_arg_p (typecode, arg_type))
{
if ((float_argreg & 1))
float_argreg++;
}
/* Floating point arguments passed in registers have to be
treated specially. On 32-bit architectures, doubles
are passed in register pairs; the even register gets
the low word, and the odd register gets the high word.
On non-EABI processors, the first two floating point arguments are
also copied to general registers, because MIPS16 functions
don't use float registers for arguments. This duplication of
arguments in general registers can't hurt non-MIPS16 functions
because those registers are normally skipped. */
/* MIPS_EABI squeezes a struct that contains a single floating
point value into an FP register instead of pushing it onto the
stack. */
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
if (!FP_REGISTER_DOUBLE && len == 8)
{
int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
unsigned long regval;
/* Write the low word of the double to the even register(s). */
regval = extract_unsigned_integer (val + low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
write_register (float_argreg++, regval);
/* Write the high word of the double to the odd register(s). */
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
write_register (float_argreg++, regval);
}
else
{
/* This is a floating point value that fits entirely
in a single register. */
/* On 32 bit ABI's the float_argreg is further adjusted
above to ensure that it is even register aligned. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
write_register (float_argreg++, regval);
}
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of MIPS_REGSIZE
are treated specially: Irix cc passes them in registers
where gcc sometimes puts them on the stack. For maximum
compatibility, we will put them in both places. */
int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
(len % MIPS_SAVED_REGSIZE != 0));
/* Note: Floating-point values that didn't fit into an FP
register are only written to memory. */
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len =
len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct
|| fp_register_arg_p (typecode, arg_type))
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (MIPS_STACK_ARGSIZE == 8 &&
(typecode == TYPE_CODE_INT ||
typecode == TYPE_CODE_PTR ||
typecode == TYPE_CODE_FLT) && len <= 4)
longword_offset = MIPS_STACK_ARGSIZE - len;
else if ((typecode == TYPE_CODE_STRUCT ||
typecode == TYPE_CODE_UNION) &&
TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
longword_offset = MIPS_STACK_ARGSIZE - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. Floating point
arguments will not. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM
&& !fp_register_arg_p (typecode, arg_type))
{
LONGEST regval = extract_unsigned_integer (val, partial_len);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS_SAVED_REGSIZE));
write_register (argreg, regval);
argreg++;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In the new EABI (and the NABI32), the stack_offset
only needs to be adjusted when it has been used. */
if (stack_used_p)
stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
/* Return adjusted stack pointer. */
return sp;
}
/* N32/N64 version of push_arguments. */
static CORE_ADDR
mips_n32n64_push_arguments (int nargs,
struct value **args,
CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = ROUND_DOWN (sp, 16);
struct_addr = ROUND_DOWN (struct_addr, 16);
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
MIPS_STACK_ARGSIZE);
sp -= ROUND_UP (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
paddr_nz (sp), ROUND_UP (len, 16));
/* Initialize the integer and float register pointers. */
argreg = A0_REGNUM;
float_argreg = FPA0_REGNUM;
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
write_register (argreg++, struct_addr);
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
char *val;
char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_n32n64_push_arguments: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
val = (char *) VALUE_CONTENTS (arg);
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
/* This is a floating point value that fits entirely
in a single register. */
/* On 32 bit ABI's the float_argreg is further adjusted
above to ensure that it is even register aligned. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
write_register (float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, len));
write_register (argreg, regval);
argreg += 1;
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of MIPS_REGSIZE
are treated specially: Irix cc passes them in registers
where gcc sometimes puts them on the stack. For maximum
compatibility, we will put them in both places. */
int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
(len % MIPS_SAVED_REGSIZE != 0));
/* Note: Floating-point values that didn't fit into an FP
register are only written to memory. */
while (len > 0)
{
/* Rememer if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len = len < MIPS_SAVED_REGSIZE ?
len : MIPS_SAVED_REGSIZE;
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct
|| fp_register_arg_p (typecode, arg_type))
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (MIPS_STACK_ARGSIZE == 8 &&
(typecode == TYPE_CODE_INT ||
typecode == TYPE_CODE_PTR ||
typecode == TYPE_CODE_FLT) && len <= 4)
longword_offset = MIPS_STACK_ARGSIZE - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. Floating point
arguments will not. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM
&& !fp_register_arg_p (typecode, arg_type))
{
LONGEST regval = extract_unsigned_integer (val, partial_len);
/* A non-floating-point argument being passed in a
general register. If a struct or union, and if
the remaining length is smaller than the register
size, we have to adjust the register value on
big endian targets.
It does not seem to be necessary to do the
same for integral types.
cagney/2001-07-23: gdb/179: Also, GCC, when
outputting LE O32 with sizeof (struct) <
MIPS_SAVED_REGSIZE, generates a left shift as
part of storing the argument in a register a
register (the left shift isn't generated when
sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
is quite possible that this is GCC contradicting
the LE/O32 ABI, GDB has not been adjusted to
accommodate this. Either someone needs to
demonstrate that the LE/O32 ABI specifies such a
left shift OR this new ABI gets identified as
such and GDB gets tweaked accordingly. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& partial_len < MIPS_SAVED_REGSIZE
&& (typecode == TYPE_CODE_STRUCT ||
typecode == TYPE_CODE_UNION))
regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
TARGET_CHAR_BIT);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS_SAVED_REGSIZE));
write_register (argreg, regval);
argreg++;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In N32 (N64?), the stack_offset only needs to be
adjusted when it has been used. */
if (stack_used_p)
stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
/* Return adjusted stack pointer. */
return sp;
}
/* O32 version of push_arguments. */
static CORE_ADDR
mips_o32_push_arguments (int nargs,
struct value **args,
CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = ROUND_DOWN (sp, 16);
struct_addr = ROUND_DOWN (struct_addr, 16);
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
MIPS_STACK_ARGSIZE);
sp -= ROUND_UP (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o32_push_arguments: sp=0x%s allocated %d\n",
paddr_nz (sp), ROUND_UP (len, 16));
/* Initialize the integer and float register pointers. */
argreg = A0_REGNUM;
float_argreg = FPA0_REGNUM;
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
write_register (argreg++, struct_addr);
stack_offset += MIPS_STACK_ARGSIZE;
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
char *val;
char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o32_push_arguments: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
val = (char *) VALUE_CONTENTS (arg);
/* 32-bit ABIs always start floating point arguments in an
even-numbered floating point register. Round the FP register
up before the check to see if there are any FP registers
left. O32/O64 targets also pass the FP in the integer
registers so also round up normal registers. */
if (!FP_REGISTER_DOUBLE
&& fp_register_arg_p (typecode, arg_type))
{
if ((float_argreg & 1))
float_argreg++;
}
/* Floating point arguments passed in registers have to be
treated specially. On 32-bit architectures, doubles
are passed in register pairs; the even register gets
the low word, and the odd register gets the high word.
On O32/O64, the first two floating point arguments are
also copied to general registers, because MIPS16 functions
don't use float registers for arguments. This duplication of
arguments in general registers can't hurt non-MIPS16 functions
because those registers are normally skipped. */
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
if (!FP_REGISTER_DOUBLE && len == 8)
{
int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
unsigned long regval;
/* Write the low word of the double to the even register(s). */
regval = extract_unsigned_integer (val + low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
write_register (float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, 4));
write_register (argreg++, regval);
/* Write the high word of the double to the odd register(s). */
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
write_register (float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, 4));
write_register (argreg++, regval);
}
else
{
/* This is a floating point value that fits entirely
in a single register. */
/* On 32 bit ABI's the float_argreg is further adjusted
above to ensure that it is even register aligned. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
write_register (float_argreg++, regval);
/* CAGNEY: 32 bit MIPS ABI's always reserve two FP
registers for each argument. The below is (my
guess) to ensure that the corresponding integer
register has reserved the same space. */
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, len));
write_register (argreg, regval);
argreg += FP_REGISTER_DOUBLE ? 1 : 2;
}
/* Reserve space for the FP register. */
stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of MIPS_REGSIZE
are treated specially: Irix cc passes them in registers
where gcc sometimes puts them on the stack. For maximum
compatibility, we will put them in both places. */
int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
(len % MIPS_SAVED_REGSIZE != 0));
/* Structures should be aligned to eight bytes (even arg registers)
on MIPS_ABI_O32, if their first member has double precision. */
if (MIPS_SAVED_REGSIZE < 8
&& mips_type_needs_double_align (arg_type))
{
if ((argreg & 1))
argreg++;
}
/* Note: Floating-point values that didn't fit into an FP
register are only written to memory. */
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len =
len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct
|| fp_register_arg_p (typecode, arg_type))
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (MIPS_STACK_ARGSIZE == 8 &&
(typecode == TYPE_CODE_INT ||
typecode == TYPE_CODE_PTR ||
typecode == TYPE_CODE_FLT) && len <= 4)
longword_offset = MIPS_STACK_ARGSIZE - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. Floating point
arguments will not. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM
&& !fp_register_arg_p (typecode, arg_type))
{
LONGEST regval = extract_signed_integer (val, partial_len);
/* Value may need to be sign extended, because
MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
/* A non-floating-point argument being passed in a
general register. If a struct or union, and if
the remaining length is smaller than the register
size, we have to adjust the register value on
big endian targets.
It does not seem to be necessary to do the
same for integral types.
Also don't do this adjustment on O64 binaries.
cagney/2001-07-23: gdb/179: Also, GCC, when
outputting LE O32 with sizeof (struct) <
MIPS_SAVED_REGSIZE, generates a left shift as
part of storing the argument in a register a
register (the left shift isn't generated when
sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
is quite possible that this is GCC contradicting
the LE/O32 ABI, GDB has not been adjusted to
accommodate this. Either someone needs to
demonstrate that the LE/O32 ABI specifies such a
left shift OR this new ABI gets identified as
such and GDB gets tweaked accordingly. */
if (MIPS_SAVED_REGSIZE < 8
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& partial_len < MIPS_SAVED_REGSIZE
&& (typecode == TYPE_CODE_STRUCT ||
typecode == TYPE_CODE_UNION))
regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
TARGET_CHAR_BIT);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS_SAVED_REGSIZE));
write_register (argreg, regval);
argreg++;
/* Prevent subsequent floating point arguments from
being passed in floating point registers. */
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In older ABIs, the caller reserved space for
registers that contained arguments. This was loosely
refered to as their "home". Consequently, space is
always allocated. */
stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
/* Return adjusted stack pointer. */
return sp;
}
/* O64 version of push_arguments. */
static CORE_ADDR
mips_o64_push_arguments (int nargs,
struct value **args,
CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = ROUND_DOWN (sp, 16);
struct_addr = ROUND_DOWN (struct_addr, 16);
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
MIPS_STACK_ARGSIZE);
sp -= ROUND_UP (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o64_push_arguments: sp=0x%s allocated %d\n",
paddr_nz (sp), ROUND_UP (len, 16));
/* Initialize the integer and float register pointers. */
argreg = A0_REGNUM;
float_argreg = FPA0_REGNUM;
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
write_register (argreg++, struct_addr);
stack_offset += MIPS_STACK_ARGSIZE;
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
char *val;
char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o64_push_arguments: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
val = (char *) VALUE_CONTENTS (arg);
/* 32-bit ABIs always start floating point arguments in an
even-numbered floating point register. Round the FP register
up before the check to see if there are any FP registers
left. O32/O64 targets also pass the FP in the integer
registers so also round up normal registers. */
if (!FP_REGISTER_DOUBLE
&& fp_register_arg_p (typecode, arg_type))
{
if ((float_argreg & 1))
float_argreg++;
}
/* Floating point arguments passed in registers have to be
treated specially. On 32-bit architectures, doubles
are passed in register pairs; the even register gets
the low word, and the odd register gets the high word.
On O32/O64, the first two floating point arguments are
also copied to general registers, because MIPS16 functions
don't use float registers for arguments. This duplication of
arguments in general registers can't hurt non-MIPS16 functions
because those registers are normally skipped. */
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
if (!FP_REGISTER_DOUBLE && len == 8)
{
int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
unsigned long regval;
/* Write the low word of the double to the even register(s). */
regval = extract_unsigned_integer (val + low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
write_register (float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, 4));
write_register (argreg++, regval);
/* Write the high word of the double to the odd register(s). */
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
write_register (float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, 4));
write_register (argreg++, regval);
}
else
{
/* This is a floating point value that fits entirely
in a single register. */
/* On 32 bit ABI's the float_argreg is further adjusted
above to ensure that it is even register aligned. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
write_register (float_argreg++, regval);
/* CAGNEY: 32 bit MIPS ABI's always reserve two FP
registers for each argument. The below is (my
guess) to ensure that the corresponding integer
register has reserved the same space. */
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, len));
write_register (argreg, regval);
argreg += FP_REGISTER_DOUBLE ? 1 : 2;
}
/* Reserve space for the FP register. */
stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of MIPS_REGSIZE
are treated specially: Irix cc passes them in registers
where gcc sometimes puts them on the stack. For maximum
compatibility, we will put them in both places. */
int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
(len % MIPS_SAVED_REGSIZE != 0));
/* Structures should be aligned to eight bytes (even arg registers)
on MIPS_ABI_O32, if their first member has double precision. */
if (MIPS_SAVED_REGSIZE < 8
&& mips_type_needs_double_align (arg_type))
{
if ((argreg & 1))
argreg++;
}
/* Note: Floating-point values that didn't fit into an FP
register are only written to memory. */
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len =
len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct
|| fp_register_arg_p (typecode, arg_type))
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (MIPS_STACK_ARGSIZE == 8 &&
(typecode == TYPE_CODE_INT ||
typecode == TYPE_CODE_PTR ||
typecode == TYPE_CODE_FLT) && len <= 4)
longword_offset = MIPS_STACK_ARGSIZE - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. Floating point
arguments will not. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM
&& !fp_register_arg_p (typecode, arg_type))
{
LONGEST regval = extract_signed_integer (val, partial_len);
/* Value may need to be sign extended, because
MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
/* A non-floating-point argument being passed in a
general register. If a struct or union, and if
the remaining length is smaller than the register
size, we have to adjust the register value on
big endian targets.
It does not seem to be necessary to do the
same for integral types.
Also don't do this adjustment on O64 binaries.
cagney/2001-07-23: gdb/179: Also, GCC, when
outputting LE O32 with sizeof (struct) <
MIPS_SAVED_REGSIZE, generates a left shift as
part of storing the argument in a register a
register (the left shift isn't generated when
sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
is quite possible that this is GCC contradicting
the LE/O32 ABI, GDB has not been adjusted to
accommodate this. Either someone needs to
demonstrate that the LE/O32 ABI specifies such a
left shift OR this new ABI gets identified as
such and GDB gets tweaked accordingly. */
if (MIPS_SAVED_REGSIZE < 8
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& partial_len < MIPS_SAVED_REGSIZE
&& (typecode == TYPE_CODE_STRUCT ||
typecode == TYPE_CODE_UNION))
regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
TARGET_CHAR_BIT);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS_SAVED_REGSIZE));
write_register (argreg, regval);
argreg++;
/* Prevent subsequent floating point arguments from
being passed in floating point registers. */
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In older ABIs, the caller reserved space for
registers that contained arguments. This was loosely
refered to as their "home". Consequently, space is
always allocated. */
stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
/* Return adjusted stack pointer. */
return sp;
}
static CORE_ADDR
mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
/* Set the return address register to point to the entry
point of the program, where a breakpoint lies in wait. */
write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
return sp;
}
static void
mips_push_register (CORE_ADDR * sp, int regno)
{
char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
int regsize;
int offset;
if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
{
regsize = MIPS_SAVED_REGSIZE;
offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
: 0);
}
else
{
regsize = REGISTER_RAW_SIZE (regno);
offset = 0;
}
*sp -= regsize;
deprecated_read_register_gen (regno, buffer);
write_memory (*sp, buffer + offset, regsize);
}
/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
static void
mips_push_dummy_frame (void)
{
int ireg;
struct linked_proc_info *link = (struct linked_proc_info *)
xmalloc (sizeof (struct linked_proc_info));
mips_extra_func_info_t proc_desc = &link->info;
CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
CORE_ADDR old_sp = sp;
link->next = linked_proc_desc_table;
linked_proc_desc_table = link;
/* FIXME! are these correct ? */
#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
#define FLOAT_REG_SAVE_MASK MASK(0,19)
#define FLOAT_SINGLE_REG_SAVE_MASK \
((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
/*
* The registers we must save are all those not preserved across
* procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
* In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
* and FP Control/Status registers.
*
*
* Dummy frame layout:
* (high memory)
* Saved PC
* Saved MMHI, MMLO, FPC_CSR
* Saved R31
* Saved R28
* ...
* Saved R1
* Saved D18 (i.e. F19, F18)
* ...
* Saved D0 (i.e. F1, F0)
* Argument build area and stack arguments written via mips_push_arguments
* (low memory)
*/
/* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
PROC_FRAME_OFFSET (proc_desc) = 0;
PROC_FRAME_ADJUST (proc_desc) = 0;
mips_push_register (&sp, PC_REGNUM);
mips_push_register (&sp, HI_REGNUM);
mips_push_register (&sp, LO_REGNUM);
mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
/* Save general CPU registers */
PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
/* PROC_REG_OFFSET is the offset of the first saved register from FP. */
PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
for (ireg = 32; --ireg >= 0;)
if (PROC_REG_MASK (proc_desc) & (1 << ireg))
mips_push_register (&sp, ireg);
/* Save floating point registers starting with high order word */
PROC_FREG_MASK (proc_desc) =
MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
: MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
/* PROC_FREG_OFFSET is the offset of the first saved *double* register
from FP. */
PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
for (ireg = 32; --ireg >= 0;)
if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
mips_push_register (&sp, ireg + FP0_REGNUM);
/* Update the frame pointer for the call dummy and the stack pointer.
Set the procedure's starting and ending addresses to point to the
call dummy address at the entry point. */
write_register (PUSH_FP_REGNUM, old_sp);
write_register (SP_REGNUM, sp);
PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
SET_PROC_DESC_IS_DUMMY (proc_desc);
PROC_PC_REG (proc_desc) = RA_REGNUM;
}
static void
mips_pop_frame (void)
{
register int regnum;
struct frame_info *frame = get_current_frame ();
CORE_ADDR new_sp = get_frame_base (frame);
mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
{
generic_pop_dummy_frame ();
flush_cached_frames ();
return;
}
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
if (get_frame_saved_regs (frame) == NULL)
FRAME_INIT_SAVED_REGS (frame);
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (regnum != SP_REGNUM && regnum != PC_REGNUM
&& get_frame_saved_regs (frame)[regnum])
{
/* Floating point registers must not be sign extended,
in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
write_register (regnum,
read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
MIPS_SAVED_REGSIZE));
else
write_register (regnum,
read_memory_integer (get_frame_saved_regs (frame)[regnum],
MIPS_SAVED_REGSIZE));
}
write_register (SP_REGNUM, new_sp);
flush_cached_frames ();
if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
{
struct linked_proc_info *pi_ptr, *prev_ptr;
for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
pi_ptr != NULL;
prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
{
if (&pi_ptr->info == proc_desc)
break;
}
if (pi_ptr == NULL)
error ("Can't locate dummy extra frame info\n");
if (prev_ptr != NULL)
prev_ptr->next = pi_ptr->next;
else
linked_proc_desc_table = pi_ptr->next;
xfree (pi_ptr);
write_register (HI_REGNUM,
read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
MIPS_SAVED_REGSIZE));
write_register (LO_REGNUM,
read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
MIPS_SAVED_REGSIZE));
if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
write_register (FCRCS_REGNUM,
read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
MIPS_SAVED_REGSIZE));
}
}
static void
mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p)
{
write_register(T9_REGNUM, fun);
}
/* Floating point register management.
Background: MIPS1 & 2 fp registers are 32 bits wide. To support
64bit operations, these early MIPS cpus treat fp register pairs
(f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
registers and offer a compatibility mode that emulates the MIPS2 fp
model. When operating in MIPS2 fp compat mode, later cpu's split
double precision floats into two 32-bit chunks and store them in
consecutive fp regs. To display 64-bit floats stored in this
fashion, we have to combine 32 bits from f0 and 32 bits from f1.
Throw in user-configurable endianness and you have a real mess.
The way this works is:
- If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
double-precision value will be split across two logical registers.
The lower-numbered logical register will hold the low-order bits,
regardless of the processor's endianness.
- If we are on a 64-bit processor, and we are looking for a
single-precision value, it will be in the low ordered bits
of a 64-bit GPR (after mfc1, for example) or a 64-bit register
save slot in memory.
- If we are in 64-bit mode, everything is straightforward.
Note that this code only deals with "live" registers at the top of the
stack. We will attempt to deal with saved registers later, when
the raw/cooked register interface is in place. (We need a general
interface that can deal with dynamic saved register sizes -- fp
regs could be 32 bits wide in one frame and 64 on the frame above
and below). */
static struct type *
mips_float_register_type (void)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
return builtin_type_ieee_single_big;
else
return builtin_type_ieee_single_little;
}
static struct type *
mips_double_register_type (void)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
return builtin_type_ieee_double_big;
else
return builtin_type_ieee_double_little;
}
/* Copy a 32-bit single-precision value from the current frame
into rare_buffer. */
static void
mips_read_fp_register_single (int regno, char *rare_buffer)
{
int raw_size = REGISTER_RAW_SIZE (regno);
char *raw_buffer = alloca (raw_size);
if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
if (raw_size == 8)
{
/* We have a 64-bit value for this register. Find the low-order
32 bits. */
int offset;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
offset = 4;
else
offset = 0;
memcpy (rare_buffer, raw_buffer + offset, 4);
}
else
{
memcpy (rare_buffer, raw_buffer, 4);
}
}
/* Copy a 64-bit double-precision value from the current frame into
rare_buffer. This may include getting half of it from the next
register. */
static void
mips_read_fp_register_double (int regno, char *rare_buffer)
{
int raw_size = REGISTER_RAW_SIZE (regno);
if (raw_size == 8 && !mips2_fp_compat ())
{
/* We have a 64-bit value for this register, and we should use
all 64 bits. */
if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
}
else
{
if ((regno - FP0_REGNUM) & 1)
internal_error (__FILE__, __LINE__,
"mips_read_fp_register_double: bad access to "
"odd-numbered FP register");
/* mips_read_fp_register_single will find the correct 32 bits from
each register. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
mips_read_fp_register_single (regno, rare_buffer + 4);
mips_read_fp_register_single (regno + 1, rare_buffer);
}
else
{
mips_read_fp_register_single (regno, rare_buffer);
mips_read_fp_register_single (regno + 1, rare_buffer + 4);
}
}
}
static void
mips_print_register (int regnum, int all)
{
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
/* Get the data in raw format. */
if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
{
printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
return;
}
/* If we have a actual 32-bit floating point register (or we are in
32-bit compatibility mode), and the register is even-numbered,
also print it as a double (spanning two registers). */
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
&& (REGISTER_RAW_SIZE (regnum) == 4
|| mips2_fp_compat ())
&& !((regnum - FP0_REGNUM) & 1))
{
char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
mips_read_fp_register_double (regnum, dbuffer);
printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
val_print (mips_double_register_type (), dbuffer, 0, 0,
gdb_stdout, 0, 1, 0, Val_pretty_default);
printf_filtered ("); ");
}
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
/* The problem with printing numeric register names (r26, etc.) is that
the user can't use them on input. Probably the best solution is to
fix it so that either the numeric or the funky (a2, etc.) names
are accepted on input. */
if (regnum < MIPS_NUMREGS)
printf_filtered ("(r%d): ", regnum);
else
printf_filtered (": ");
/* If virtual format is floating, print it that way. */
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
{
/* We have a meaningful 64-bit value in this register. Show
it as a 32-bit float and a 64-bit double. */
int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
printf_filtered (" (float) ");
val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
gdb_stdout, 0, 1, 0, Val_pretty_default);
printf_filtered (", (double) ");
val_print (mips_double_register_type (), raw_buffer, 0, 0,
gdb_stdout, 0, 1, 0, Val_pretty_default);
}
else
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
gdb_stdout, 0, 1, 0, Val_pretty_default);
/* Else print as integer in hex. */
else
{
int offset;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
else
offset = 0;
print_scalar_formatted (raw_buffer + offset,
REGISTER_VIRTUAL_TYPE (regnum),
'x', 0, gdb_stdout);
}
}
/* Replacement for generic do_registers_info.
Print regs in pretty columns. */
static int
do_fp_register_row (int regnum)
{ /* do values for FP (float) regs */
char *raw_buffer;
double doub, flt1, flt2; /* doubles extracted from raw hex data */
int inv1, inv2, inv3;
raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
{
/* 4-byte registers: we can fit two registers per row. */
/* Also print every pair of 4-byte regs as an 8-byte double. */
mips_read_fp_register_single (regnum, raw_buffer);
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
mips_read_fp_register_single (regnum + 1, raw_buffer);
flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
mips_read_fp_register_double (regnum, raw_buffer);
doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
printf_filtered (" %-5s", REGISTER_NAME (regnum));
if (inv1)
printf_filtered (": <invalid float>");
else
printf_filtered ("%-17.9g", flt1);
printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
if (inv2)
printf_filtered (": <invalid float>");
else
printf_filtered ("%-17.9g", flt2);
printf_filtered (" dbl: ");
if (inv3)
printf_filtered ("<invalid double>");
else
printf_filtered ("%-24.17g", doub);
printf_filtered ("\n");
/* may want to do hex display here (future enhancement) */
regnum += 2;
}
else
{
/* Eight byte registers: print each one as float AND as double. */
mips_read_fp_register_single (regnum, raw_buffer);
flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
mips_read_fp_register_double (regnum, raw_buffer);
doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
if (inv1)
printf_filtered ("<invalid float>");
else
printf_filtered ("flt: %-17.9g", flt1);
printf_filtered (" dbl: ");
if (inv3)
printf_filtered ("<invalid double>");
else
printf_filtered ("%-24.17g", doub);
printf_filtered ("\n");
/* may want to do hex display here (future enhancement) */
regnum++;
}
return regnum;
}
/* Print a row's worth of GP (int) registers, with name labels above */
static int
do_gp_register_row (int regnum)
{
/* do values for GP (int) regs */
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
int col, byte;
int start_regnum = regnum;
int numregs = NUM_REGS;
/* For GP registers, we print a separate row of names above the vals */
printf_filtered (" ");
for (col = 0; col < ncols && regnum < numregs; regnum++)
{
if (*REGISTER_NAME (regnum) == '\0')
continue; /* unused register */
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
break; /* end the row: reached FP register */
printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
REGISTER_NAME (regnum));
col++;
}
printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
start_regnum); /* print the R0 to R31 names */
regnum = start_regnum; /* go back to start of row */
/* now print the values in hex, 4 or 8 to the row */
for (col = 0; col < ncols && regnum < numregs; regnum++)
{
if (*REGISTER_NAME (regnum) == '\0')
continue; /* unused register */
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
break; /* end row: reached FP register */
/* OK: get the data in raw format. */
if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
/* pad small registers */
for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
printf_filtered (" ");
/* Now print the register value in hex, endian order. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
byte < REGISTER_RAW_SIZE (regnum);
byte++)
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
else
for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
byte >= 0;
byte--)
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
printf_filtered (" ");
col++;
}
if (col > 0) /* ie. if we actually printed anything... */
printf_filtered ("\n");
return regnum;
}
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
static void
mips_do_registers_info (int regnum, int fpregs)
{
if (regnum != -1) /* do one specified register */
{
if (*(REGISTER_NAME (regnum)) == '\0')
error ("Not a valid register for the current processor type");
mips_print_register (regnum, 0);
printf_filtered ("\n");
}
else
/* do all (or most) registers */
{
regnum = 0;
while (regnum < NUM_REGS)
{
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
if (fpregs) /* true for "INFO ALL-REGISTERS" command */
regnum = do_fp_register_row (regnum); /* FP regs */
else
regnum += MIPS_NUMREGS; /* skip floating point regs */
else
regnum = do_gp_register_row (regnum); /* GP (int) regs */
}
}
}
/* Is this a branch with a delay slot? */
static int is_delayed (unsigned long);
static int
is_delayed (unsigned long insn)
{
int i;
for (i = 0; i < NUMOPCODES; ++i)
if (mips_opcodes[i].pinfo != INSN_MACRO
&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
break;
return (i < NUMOPCODES
&& (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY)));
}
int
mips_step_skips_delay (CORE_ADDR pc)
{
char buf[MIPS_INSTLEN];
/* There is no branch delay slot on MIPS16. */
if (pc_is_mips16 (pc))
return 0;
if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
/* If error reading memory, guess that it is not a delayed branch. */
return 0;
return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
}
/* Skip the PC past function prologue instructions (32-bit version).
This is a helper function for mips_skip_prologue. */
static CORE_ADDR
mips32_skip_prologue (CORE_ADDR pc)
{
t_inst inst;
CORE_ADDR end_pc;
int seen_sp_adjust = 0;
int load_immediate_bytes = 0;
/* Skip the typical prologue instructions. These are the stack adjustment
instruction and the instructions that save registers on the stack
or in the gcc frame. */
for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
{
unsigned long high_word;
inst = mips_fetch_instruction (pc);
high_word = (inst >> 16) & 0xffff;
if (high_word == 0x27bd /* addiu $sp,$sp,offset */
|| high_word == 0x67bd) /* daddiu $sp,$sp,offset */
seen_sp_adjust = 1;
else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
seen_sp_adjust = 1;
else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
|| (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
&& (inst & 0x001F0000)) /* reg != $zero */
continue;
else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
continue;
else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
/* sx reg,n($s8) */
continue; /* reg != $zero */
/* move $s8,$sp. With different versions of gas this will be either
`addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
Accept any one of these. */
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
continue;
else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
continue;
else if (high_word == 0x3c1c) /* lui $gp,n */
continue;
else if (high_word == 0x279c) /* addiu $gp,$gp,n */
continue;
else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
|| inst == 0x033ce021) /* addu $gp,$t9,$gp */
continue;
/* The following instructions load $at or $t0 with an immediate
value in preparation for a stack adjustment via
subu $sp,$sp,[$at,$t0]. These instructions could also initialize
a local variable, so we accept them only before a stack adjustment
instruction was seen. */
else if (!seen_sp_adjust)
{
if (high_word == 0x3c01 || /* lui $at,n */
high_word == 0x3c08) /* lui $t0,n */
{
load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
continue;
}
else if (high_word == 0x3421 || /* ori $at,$at,n */
high_word == 0x3508 || /* ori $t0,$t0,n */
high_word == 0x3401 || /* ori $at,$zero,n */
high_word == 0x3408) /* ori $t0,$zero,n */
{
load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
continue;
}
else
break;
}
else
break;
}
/* In a frameless function, we might have incorrectly
skipped some load immediate instructions. Undo the skipping
if the load immediate was not followed by a stack adjustment. */
if (load_immediate_bytes && !seen_sp_adjust)
pc -= load_immediate_bytes;
return pc;
}
/* Skip the PC past function prologue instructions (16-bit version).
This is a helper function for mips_skip_prologue. */
static CORE_ADDR
mips16_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR end_pc;
int extend_bytes = 0;
int prev_extend_bytes;
/* Table of instructions likely to be found in a function prologue. */
static struct
{
unsigned short inst;
unsigned short mask;
}
table[] =
{
{
0x6300, 0xff00
}
, /* addiu $sp,offset */
{
0xfb00, 0xff00
}
, /* daddiu $sp,offset */
{
0xd000, 0xf800
}
, /* sw reg,n($sp) */
{
0xf900, 0xff00
}
, /* sd reg,n($sp) */
{
0x6200, 0xff00
}
, /* sw $ra,n($sp) */
{
0xfa00, 0xff00
}
, /* sd $ra,n($sp) */
{
0x673d, 0xffff
}
, /* move $s1,sp */
{
0xd980, 0xff80
}
, /* sw $a0-$a3,n($s1) */
{
0x6704, 0xff1c
}
, /* move reg,$a0-$a3 */
{
0xe809, 0xf81f
}
, /* entry pseudo-op */
{
0x0100, 0xff00
}
, /* addiu $s1,$sp,n */
{
0, 0
} /* end of table marker */
};
/* Skip the typical prologue instructions. These are the stack adjustment
instruction and the instructions that save registers on the stack
or in the gcc frame. */
for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
{
unsigned short inst;
int i;
inst = mips_fetch_instruction (pc);
/* Normally we ignore an extend instruction. However, if it is
not followed by a valid prologue instruction, we must adjust
the pc back over the extend so that it won't be considered
part of the prologue. */
if ((inst & 0xf800) == 0xf000) /* extend */
{
extend_bytes = MIPS16_INSTLEN;
continue;
}
prev_extend_bytes = extend_bytes;
extend_bytes = 0;
/* Check for other valid prologue instructions besides extend. */
for (i = 0; table[i].mask != 0; i++)
if ((inst & table[i].mask) == table[i].inst) /* found, get out */
break;
if (table[i].mask != 0) /* it was in table? */
continue; /* ignore it */
else
/* non-prologue */
{
/* Return the current pc, adjusted backwards by 2 if
the previous instruction was an extend. */
return pc - prev_extend_bytes;
}
}
return pc;
}
/* To skip prologues, I use this predicate. Returns either PC itself
if the code at PC does not look like a function prologue; otherwise
returns an address that (if we're lucky) follows the prologue. If
LENIENT, then we must skip everything which is involved in setting
up the frame (it's OK to skip more, just so long as we don't skip
anything which might clobber the registers which are being saved.
We must skip more in the case where part of the prologue is in the
delay slot of a non-prologue instruction). */
static CORE_ADDR
mips_skip_prologue (CORE_ADDR pc)
{
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
if (post_prologue_pc != 0)
return max (pc, post_prologue_pc);
/* Can't determine prologue from the symbol table, need to examine
instructions. */
if (pc_is_mips16 (pc))
return mips16_skip_prologue (pc);
else
return mips32_skip_prologue (pc);
}
/* Determine how a return value is stored within the MIPS register
file, given the return type `valtype'. */
struct return_value_word
{
int len;
int reg;
int reg_offset;
int buf_offset;
};
static void
return_value_location (struct type *valtype,
struct return_value_word *hi,
struct return_value_word *lo)
{
int len = TYPE_LENGTH (valtype);
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
&& ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
|| (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
{
if (!FP_REGISTER_DOUBLE && len == 8)
{
/* We need to break a 64bit float in two 32 bit halves and
spread them across a floating-point register pair. */
lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
? 4 : 0);
hi->reg_offset = lo->reg_offset;
lo->reg = FP0_REGNUM + 0;
hi->reg = FP0_REGNUM + 1;
lo->len = 4;
hi->len = 4;
}
else
{
/* The floating point value fits in a single floating-point
register. */
lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& REGISTER_RAW_SIZE (FP0_REGNUM) == 8
&& len == 4)
? 4 : 0);
lo->reg = FP0_REGNUM;
lo->len = len;
lo->buf_offset = 0;
hi->len = 0;
hi->reg_offset = 0;
hi->buf_offset = 0;
hi->reg = 0;
}
}
else
{
/* Locate a result possibly spread across two registers. */
int regnum = 2;
lo->reg = regnum + 0;
hi->reg = regnum + 1;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& len < MIPS_SAVED_REGSIZE)
{
/* "un-left-justify" the value in the low register */
lo->reg_offset = MIPS_SAVED_REGSIZE - len;
lo->len = len;
hi->reg_offset = 0;
hi->len = 0;
}
else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& len > MIPS_SAVED_REGSIZE /* odd-size structs */
&& len < MIPS_SAVED_REGSIZE * 2
&& (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
TYPE_CODE (valtype) == TYPE_CODE_UNION))
{
/* "un-left-justify" the value spread across two registers. */
lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
hi->reg_offset = 0;
hi->len = len - lo->len;
}
else
{
/* Only perform a partial copy of the second register. */
lo->reg_offset = 0;
hi->reg_offset = 0;
if (len > MIPS_SAVED_REGSIZE)
{
lo->len = MIPS_SAVED_REGSIZE;
hi->len = len - MIPS_SAVED_REGSIZE;
}
else
{
lo->len = len;
hi->len = 0;
}
}
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& REGISTER_RAW_SIZE (regnum) == 8
&& MIPS_SAVED_REGSIZE == 4)
{
/* Account for the fact that only the least-signficant part
of the register is being used */
lo->reg_offset += 4;
hi->reg_offset += 4;
}
lo->buf_offset = 0;
hi->buf_offset = lo->len;
}
}
/* Given a return value in `regbuf' with a type `valtype', extract and
copy its value into `valbuf'. */
static void
mips_eabi_extract_return_value (struct type *valtype,
char regbuf[REGISTER_BYTES],
char *valbuf)
{
struct return_value_word lo;
struct return_value_word hi;
return_value_location (valtype, &hi, &lo);
memcpy (valbuf + lo.buf_offset,
regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
lo.len);
if (hi.len > 0)
memcpy (valbuf + hi.buf_offset,
regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
hi.len);
}
static void
mips_o64_extract_return_value (struct type *valtype,
char regbuf[REGISTER_BYTES],
char *valbuf)
{
struct return_value_word lo;
struct return_value_word hi;
return_value_location (valtype, &hi, &lo);
memcpy (valbuf + lo.buf_offset,
regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
lo.len);
if (hi.len > 0)
memcpy (valbuf + hi.buf_offset,
regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
hi.len);
}
/* Given a return value in `valbuf' with a type `valtype', write it's
value into the appropriate register. */
static void
mips_eabi_store_return_value (struct type *valtype, char *valbuf)
{
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
struct return_value_word lo;
struct return_value_word hi;
return_value_location (valtype, &hi, &lo);
memset (raw_buffer, 0, sizeof (raw_buffer));
memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
REGISTER_RAW_SIZE (lo.reg));
if (hi.len > 0)
{
memset (raw_buffer, 0, sizeof (raw_buffer));
memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
REGISTER_RAW_SIZE (hi.reg));
}
}
static void
mips_o64_store_return_value (struct type *valtype, char *valbuf)
{
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
struct return_value_word lo;
struct return_value_word hi;
return_value_location (valtype, &hi, &lo);
memset (raw_buffer, 0, sizeof (raw_buffer));
memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
REGISTER_RAW_SIZE (lo.reg));
if (hi.len > 0)
{
memset (raw_buffer, 0, sizeof (raw_buffer));
memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
REGISTER_RAW_SIZE (hi.reg));
}
}
/* O32 ABI stuff. */
static void
mips_o32_xfer_return_value (struct type *type,
struct regcache *regcache,
bfd_byte *in, const bfd_byte *out)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
if (TYPE_CODE (type) == TYPE_CODE_FLT
&& TYPE_LENGTH (type) == 4
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A single-precision floating-point value. It fits in the
least significant part of FP0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
TARGET_BYTE_ORDER, in, out, 0);
}
else if (TYPE_CODE (type) == TYPE_CODE_FLT
&& TYPE_LENGTH (type) == 8
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A double-precision floating-point value. It fits in the
least significant part of FP0/FP1 but with byte ordering
based on the target (???). */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
switch (TARGET_BYTE_ORDER)
{
case BFD_ENDIAN_LITTLE:
mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
TARGET_BYTE_ORDER, in, out, 0);
mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
TARGET_BYTE_ORDER, in, out, 4);
break;
case BFD_ENDIAN_BIG:
mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
TARGET_BYTE_ORDER, in, out, 0);
mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
TARGET_BYTE_ORDER, in, out, 4);
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
}
#if 0
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) <= 2
&& TYPE_NFIELDS (type) >= 1
&& ((TYPE_NFIELDS (type) == 1
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_FLT))
|| (TYPE_NFIELDS (type) == 2
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_FLT)
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
== TYPE_CODE_FLT)))
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A struct that contains one or two floats. Each value is part
in the least significant part of their floating point
register.. */
bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
int regnum;
int field;
for (field = 0, regnum = FP0_REGNUM;
field < TYPE_NFIELDS (type);
field++, regnum += 2)
{
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
/ TARGET_CHAR_BIT);
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
TARGET_BYTE_ORDER, in, out, offset);
}
}
#endif
#if 0
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* A structure or union. Extract the left justified value,
regardless of the byte order. I.e. DO NOT USE
mips_xfer_lower. */
int offset;
int regnum;
for (offset = 0, regnum = V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += REGISTER_RAW_SIZE (regnum), regnum++)
{
int xfer = REGISTER_RAW_SIZE (regnum);
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
in, out, offset);
}
}
#endif
else
{
/* A scalar extract each part but least-significant-byte
justified. o32 thinks registers are 4 byte, regardless of
the ISA. mips_stack_argsize controls this. */
int offset;
int regnum;
for (offset = 0, regnum = V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += mips_stack_argsize (), regnum++)
{
int xfer = mips_stack_argsize ();
int pos = 0;
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
in, out, offset);
}
}
}
static void
mips_o32_extract_return_value (struct type *type,
struct regcache *regcache,
void *valbuf)
{
mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
}
static void
mips_o32_store_return_value (struct type *type, char *valbuf)
{
mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
}
/* N32/N44 ABI stuff. */
static void
mips_n32n64_xfer_return_value (struct type *type,
struct regcache *regcache,
bfd_byte *in, const bfd_byte *out)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
if (TYPE_CODE (type) == TYPE_CODE_FLT
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A floating-point value belongs in the least significant part
of FP0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
TARGET_BYTE_ORDER, in, out, 0);
}
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) <= 2
&& TYPE_NFIELDS (type) >= 1
&& ((TYPE_NFIELDS (type) == 1
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_FLT))
|| (TYPE_NFIELDS (type) == 2
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_FLT)
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
== TYPE_CODE_FLT)))
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A struct that contains one or two floats. Each value is part
in the least significant part of their floating point
register.. */
bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
int regnum;
int field;
for (field = 0, regnum = FP0_REGNUM;
field < TYPE_NFIELDS (type);
field++, regnum += 2)
{
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
/ TARGET_CHAR_BIT);
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
TARGET_BYTE_ORDER, in, out, offset);
}
}
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* A structure or union. Extract the left justified value,
regardless of the byte order. I.e. DO NOT USE
mips_xfer_lower. */
int offset;
int regnum;
for (offset = 0, regnum = V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += REGISTER_RAW_SIZE (regnum), regnum++)
{
int xfer = REGISTER_RAW_SIZE (regnum);
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
in, out, offset);
}
}
else
{
/* A scalar extract each part but least-significant-byte
justified. */
int offset;
int regnum;
for (offset = 0, regnum = V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += REGISTER_RAW_SIZE (regnum), regnum++)
{
int xfer = REGISTER_RAW_SIZE (regnum);
int pos = 0;
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
in, out, offset);
}
}
}
static void
mips_n32n64_extract_return_value (struct type *type,
struct regcache *regcache,
void *valbuf)
{
mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
}
static void
mips_n32n64_store_return_value (struct type *type, char *valbuf)
{
mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
}
static void
mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
/* Nothing to do -- push_arguments does all the work. */
}
static CORE_ADDR
mips_extract_struct_value_address (struct regcache *regcache)
{
/* FIXME: This will only work at random. The caller passes the
struct_return address in V0, but it is not preserved. It may
still be there, or this may be a random value. */
LONGEST val;
regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
return val;
}
/* Exported procedure: Is PC in the signal trampoline code */
static int
mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
{
if (sigtramp_address == 0)
fixup_sigtramp ();
return (pc >= sigtramp_address && pc < sigtramp_end);
}
/* Root of all "set mips "/"show mips " commands. This will eventually be
used for all MIPS-specific commands. */
static void
show_mips_command (char *args, int from_tty)
{
help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
}
static void
set_mips_command (char *args, int from_tty)
{
printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
}
/* Commands to show/set the MIPS FPU type. */
static void
show_mipsfpu_command (char *args, int from_tty)
{
char *fpu;
switch (MIPS_FPU_TYPE)
{
case MIPS_FPU_SINGLE:
fpu = "single-precision";
break;
case MIPS_FPU_DOUBLE:
fpu = "double-precision";
break;
case MIPS_FPU_NONE:
fpu = "absent (none)";
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
if (mips_fpu_type_auto)
printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
fpu);
else
printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
fpu);
}
static void
set_mipsfpu_command (char *args, int from_tty)
{
printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
show_mipsfpu_command (args, from_tty);
}
static void
set_mipsfpu_single_command (char *args, int from_tty)
{
mips_fpu_type = MIPS_FPU_SINGLE;
mips_fpu_type_auto = 0;
gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
}
static void
set_mipsfpu_double_command (char *args, int from_tty)
{
mips_fpu_type = MIPS_FPU_DOUBLE;
mips_fpu_type_auto = 0;
gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
}
static void
set_mipsfpu_none_command (char *args, int from_tty)
{
mips_fpu_type = MIPS_FPU_NONE;
mips_fpu_type_auto = 0;
gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
}
static void
set_mipsfpu_auto_command (char *args, int from_tty)
{
mips_fpu_type_auto = 1;
}
/* Command to set the processor type. */
void
mips_set_processor_type_command (char *args, int from_tty)
{
int i;
if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
{
printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
/* Restore the value. */
tmp_mips_processor_type = xstrdup (mips_processor_type);
return;
}
if (!mips_set_processor_type (tmp_mips_processor_type))
{
error ("Unknown processor type `%s'.", tmp_mips_processor_type);
/* Restore its value. */
tmp_mips_processor_type = xstrdup (mips_processor_type);
}
}
static void
mips_show_processor_type_command (char *args, int from_tty)
{
}
/* Modify the actual processor type. */
static int
mips_set_processor_type (char *str)
{
int i;
if (str == NULL)
return 0;
for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
{
if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
{
mips_processor_type = str;
mips_processor_reg_names = mips_processor_type_table[i].regnames;
return 1;
/* FIXME tweak fpu flag too */
}
}
return 0;
}
/* Attempt to identify the particular processor model by reading the
processor id. */
char *
mips_read_processor_type (void)
{
CORE_ADDR prid;
prid = read_register (PRID_REGNUM);
if ((prid & ~0xf) == 0x700)
return savestring ("r3041", strlen ("r3041"));
return NULL;
}
/* Just like reinit_frame_cache, but with the right arguments to be
callable as an sfunc. */
static void
reinit_frame_cache_sfunc (char *args, int from_tty,
struct cmd_list_element *c)
{
reinit_frame_cache ();
}
int
gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
{
mips_extra_func_info_t proc_desc;
/* Search for the function containing this address. Set the low bit
of the address when searching, in case we were given an even address
that is the start of a 16-bit function. If we didn't do this,
the search would fail because the symbol table says the function
starts at an odd address, i.e. 1 byte past the given address. */
memaddr = ADDR_BITS_REMOVE (memaddr);
proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
/* Make an attempt to determine if this is a 16-bit function. If
the procedure descriptor exists and the address therein is odd,
it's definitely a 16-bit function. Otherwise, we have to just
guess that if the address passed in is odd, it's 16-bits. */
if (proc_desc)
info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
bfd_mach_mips16 : TM_PRINT_INSN_MACH;
else
info->mach = pc_is_mips16 (memaddr) ?
bfd_mach_mips16 : TM_PRINT_INSN_MACH;
/* Round down the instruction address to the appropriate boundary. */
memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
/* Call the appropriate disassembler based on the target endian-ness. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
return print_insn_big_mips (memaddr, info);
else
return print_insn_little_mips (memaddr, info);
}
/* Old-style breakpoint macros.
The IDT board uses an unusual breakpoint value, and sometimes gets
confused when it sees the usual MIPS breakpoint instruction. */
#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
counter value to determine whether a 16- or 32-bit breakpoint should be
used. It returns a pointer to a string of bytes that encode a breakpoint
instruction, stores the length of the string to *lenptr, and adjusts pc
(if necessary) to point to the actual memory location where the
breakpoint should be inserted. */
static const unsigned char *
mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (pc_is_mips16 (*pcptr))
{
static unsigned char mips16_big_breakpoint[] =
MIPS16_BIG_BREAKPOINT;
*pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
*lenptr = sizeof (mips16_big_breakpoint);
return mips16_big_breakpoint;
}
else
{
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
*lenptr = sizeof (big_breakpoint);
if (strcmp (target_shortname, "mips") == 0)
return idt_big_breakpoint;
else if (strcmp (target_shortname, "ddb") == 0
|| strcmp (target_shortname, "pmon") == 0
|| strcmp (target_shortname, "lsi") == 0)
return pmon_big_breakpoint;
else
return big_breakpoint;
}
}
else
{
if (pc_is_mips16 (*pcptr))
{
static unsigned char mips16_little_breakpoint[] =
MIPS16_LITTLE_BREAKPOINT;
*pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
*lenptr = sizeof (mips16_little_breakpoint);
return mips16_little_breakpoint;
}
else
{
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
static unsigned char pmon_little_breakpoint[] =
PMON_LITTLE_BREAKPOINT;
static unsigned char idt_little_breakpoint[] =
IDT_LITTLE_BREAKPOINT;
*lenptr = sizeof (little_breakpoint);
if (strcmp (target_shortname, "mips") == 0)
return idt_little_breakpoint;
else if (strcmp (target_shortname, "ddb") == 0
|| strcmp (target_shortname, "pmon") == 0
|| strcmp (target_shortname, "lsi") == 0)
return pmon_little_breakpoint;
else
return little_breakpoint;
}
}
}
/* If PC is in a mips16 call or return stub, return the address of the target
PC, which is either the callee or the caller. There are several
cases which must be handled:
* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
target PC is in $31 ($ra).
* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
and the target PC is in $2.
* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
before the jal instruction, this is effectively a call stub
and the the target PC is in $2. Otherwise this is effectively
a return stub and the target PC is in $18.
See the source code for the stubs in gcc/config/mips/mips16.S for
gory details.
This function implements the SKIP_TRAMPOLINE_CODE macro.
*/
static CORE_ADDR
mips_skip_stub (CORE_ADDR pc)
{
char *name;
CORE_ADDR start_addr;
/* Find the starting address and name of the function containing the PC. */
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
return 0;
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
target PC is in $31 ($ra). */
if (strcmp (name, "__mips16_ret_sf") == 0
|| strcmp (name, "__mips16_ret_df") == 0)
return read_signed_register (RA_REGNUM);
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
{
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
and the target PC is in $2. */
if (name[19] >= '0' && name[19] <= '9')
return read_signed_register (2);
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
before the jal instruction, this is effectively a call stub
and the the target PC is in $2. Otherwise this is effectively
a return stub and the target PC is in $18. */
else if (name[19] == 's' || name[19] == 'd')
{
if (pc == start_addr)
{
/* Check if the target of the stub is a compiler-generated
stub. Such a stub for a function bar might have a name
like __fn_stub_bar, and might look like this:
mfc1 $4,$f13
mfc1 $5,$f12
mfc1 $6,$f15
mfc1 $7,$f14
la $1,bar (becomes a lui/addiu pair)
jr $1
So scan down to the lui/addi and extract the target
address from those two instructions. */
CORE_ADDR target_pc = read_signed_register (2);
t_inst inst;
int i;
/* See if the name of the target function is __fn_stub_*. */
if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
return target_pc;
if (strncmp (name, "__fn_stub_", 10) != 0
&& strcmp (name, "etext") != 0
&& strcmp (name, "_etext") != 0)
return target_pc;
/* Scan through this _fn_stub_ code for the lui/addiu pair.
The limit on the search is arbitrarily set to 20
instructions. FIXME. */
for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
{
inst = mips_fetch_instruction (target_pc);
if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
pc = (inst << 16) & 0xffff0000; /* high word */
else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
return pc | (inst & 0xffff); /* low word */
}
/* Couldn't find the lui/addui pair, so return stub address. */
return target_pc;
}
else
/* This is the 'return' part of a call stub. The return
address is in $r18. */
return read_signed_register (18);
}
}
return 0; /* not a stub */
}
/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
static int
mips_in_call_stub (CORE_ADDR pc, char *name)
{
CORE_ADDR start_addr;
/* Find the starting address of the function containing the PC. If the
caller didn't give us a name, look it up at the same time. */
if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
return 0;
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
{
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
if (name[19] >= '0' && name[19] <= '9')
return 1;
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
before the jal instruction, this is effectively a call stub. */
else if (name[19] == 's' || name[19] == 'd')
return pc == start_addr;
}
return 0; /* not a stub */
}
/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
static int
mips_in_return_stub (CORE_ADDR pc, char *name)
{
CORE_ADDR start_addr;
/* Find the starting address of the function containing the PC. */
if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
return 0;
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
if (strcmp (name, "__mips16_ret_sf") == 0
|| strcmp (name, "__mips16_ret_df") == 0)
return 1;
/* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
i.e. after the jal instruction, this is effectively a return stub. */
if (strncmp (name, "__mips16_call_stub_", 19) == 0
&& (name[19] == 's' || name[19] == 'd')
&& pc != start_addr)
return 1;
return 0; /* not a stub */
}
/* Return non-zero if the PC is in a library helper function that should
be ignored. This implements the IGNORE_HELPER_CALL macro. */
int
mips_ignore_helper (CORE_ADDR pc)
{
char *name;
/* Find the starting address and name of the function containing the PC. */
if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
return 0;
/* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
that we want to ignore. */
return (strcmp (name, "__mips16_ret_sf") == 0
|| strcmp (name, "__mips16_ret_df") == 0);
}
/* Return a location where we can set a breakpoint that will be hit
when an inferior function call returns. This is normally the
program's entry point. Executables that don't have an entry
point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
whose address is the location where the breakpoint should be placed. */
static CORE_ADDR
mips_call_dummy_address (void)
{
struct minimal_symbol *sym;
sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
if (sym)
return SYMBOL_VALUE_ADDRESS (sym);
else
return entry_point_address ();
}
/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
the register stored on the stack (32) is different to its real raw
size (64). The below ensures that registers are fetched from the
stack using their ABI size and then stored into the RAW_BUFFER
using their raw size.
The alternative to adding this function would be to add an ABI
macro - REGISTER_STACK_SIZE(). */
static void
mips_get_saved_register (char *raw_buffer,
int *optimizedp,
CORE_ADDR *addrp,
struct frame_info *frame,
int regnum,
enum lval_type *lvalp)
{
CORE_ADDR addrx;
enum lval_type lvalx;
int optimizedx;
if (!target_has_registers)
error ("No registers.");
/* Make certain that all needed parameters are present. */
if (addrp == NULL)
addrp = &addrx;
if (lvalp == NULL)
lvalp = &lvalx;
if (optimizedp == NULL)
optimizedp = &optimizedx;
generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
regnum, lvalp);
/* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
have a pseudo register range that correspons to the ABI's, rather
than the ISA's, view of registers. These registers would then
implicitly describe their size and hence could be used without
the below munging. */
if ((*lvalp) == lval_memory)
{
if (raw_buffer != NULL)
{
if (regnum < 32)
{
/* Only MIPS_SAVED_REGSIZE bytes of GP registers are
saved. */
LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
}
}
}
}
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
static CORE_ADDR
mips_saved_pc_after_call (struct frame_info *frame)
{
return read_signed_register (RA_REGNUM);
}
/* Convert a dbx stab register number (from `r' declaration) to a gdb
REGNUM */
static int
mips_stab_reg_to_regnum (int num)
{
if (num < 32)
return num;
else
return num + FP0_REGNUM - 38;
}
/* Convert a ecoff register number to a gdb REGNUM */
static int
mips_ecoff_reg_to_regnum (int num)
{
if (num < 32)
return num;
else
return num + FP0_REGNUM - 32;
}
/* Convert an integer into an address. By first converting the value
into a pointer and then extracting it signed, the address is
guarenteed to be correctly sign extended. */
static CORE_ADDR
mips_integer_to_address (struct type *type, void *buf)
{
char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
LONGEST val = unpack_long (type, buf);
store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
return extract_signed_integer (tmp,
TYPE_LENGTH (builtin_type_void_data_ptr));
}
static void
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
{
enum mips_abi *abip = (enum mips_abi *) obj;
const char *name = bfd_get_section_name (abfd, sect);
if (*abip != MIPS_ABI_UNKNOWN)
return;
if (strncmp (name, ".mdebug.", 8) != 0)
return;
if (strcmp (name, ".mdebug.abi32") == 0)
*abip = MIPS_ABI_O32;
else if (strcmp (name, ".mdebug.abiN32") == 0)
*abip = MIPS_ABI_N32;
else if (strcmp (name, ".mdebug.abi64") == 0)
*abip = MIPS_ABI_N64;
else if (strcmp (name, ".mdebug.abiO64") == 0)
*abip = MIPS_ABI_O64;
else if (strcmp (name, ".mdebug.eabi32") == 0)
*abip = MIPS_ABI_EABI32;
else if (strcmp (name, ".mdebug.eabi64") == 0)
*abip = MIPS_ABI_EABI64;
else
warning ("unsupported ABI %s.", name + 8);
}
static enum mips_abi
global_mips_abi (void)
{
int i;
for (i = 0; mips_abi_strings[i] != NULL; i++)
if (mips_abi_strings[i] == mips_abi_string)
return (enum mips_abi) i;
internal_error (__FILE__, __LINE__,
"unknown ABI string");
}
static struct gdbarch *
mips_gdbarch_init (struct gdbarch_info info,
struct gdbarch_list *arches)
{
static LONGEST mips_call_dummy_words[] =
{0};
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
int elf_flags;
enum mips_abi mips_abi, found_abi, wanted_abi;
/* Reset the disassembly info, in case it was set to something
non-default. */
tm_print_insn_info.flavour = bfd_target_unknown_flavour;
tm_print_insn_info.arch = bfd_arch_unknown;
tm_print_insn_info.mach = 0;
elf_flags = 0;
if (info.abfd)
{
/* First of all, extract the elf_flags, if available. */
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
elf_flags = elf_elfheader (info.abfd)->e_flags;
}
/* Check ELF_FLAGS to see if it specifies the ABI being used. */
switch ((elf_flags & EF_MIPS_ABI))
{
case E_MIPS_ABI_O32:
mips_abi = MIPS_ABI_O32;
break;
case E_MIPS_ABI_O64:
mips_abi = MIPS_ABI_O64;
break;
case E_MIPS_ABI_EABI32:
mips_abi = MIPS_ABI_EABI32;
break;
case E_MIPS_ABI_EABI64:
mips_abi = MIPS_ABI_EABI64;
break;
default:
if ((elf_flags & EF_MIPS_ABI2))
mips_abi = MIPS_ABI_N32;
else
mips_abi = MIPS_ABI_UNKNOWN;
break;
}
/* GCC creates a pseudo-section whose name describes the ABI. */
if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
/* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
Use the ABI from the last architecture if there is one. */
if (info.abfd == NULL && arches != NULL)
mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
/* Try the architecture for any hint of the correct ABI. */
if (mips_abi == MIPS_ABI_UNKNOWN
&& info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mips)
{
switch (info.bfd_arch_info->mach)
{
case bfd_mach_mips3900:
mips_abi = MIPS_ABI_EABI32;
break;
case bfd_mach_mips4100:
case bfd_mach_mips5000:
mips_abi = MIPS_ABI_EABI64;
break;
case bfd_mach_mips8000:
case bfd_mach_mips10000:
/* On Irix, ELF64 executables use the N64 ABI. The
pseudo-sections which describe the ABI aren't present
on IRIX. (Even for executables created by gcc.) */
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
&& elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
mips_abi = MIPS_ABI_N64;
else
mips_abi = MIPS_ABI_N32;
break;
}
}
if (mips_abi == MIPS_ABI_UNKNOWN)
mips_abi = MIPS_ABI_O32;
/* Now that we have found what the ABI for this binary would be,
check whether the user is overriding it. */
found_abi = mips_abi;
wanted_abi = global_mips_abi ();
if (wanted_abi != MIPS_ABI_UNKNOWN)
mips_abi = wanted_abi;
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"mips_gdbarch_init: elf_flags = 0x%08x\n",
elf_flags);
fprintf_unfiltered (gdb_stdlog,
"mips_gdbarch_init: mips_abi = %d\n",
mips_abi);
fprintf_unfiltered (gdb_stdlog,
"mips_gdbarch_init: found_mips_abi = %d\n",
found_abi);
}
/* try to find a pre-existing architecture */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
/* MIPS needs to be pedantic about which ABI the object is
using. */
if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
continue;
if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
continue;
return arches->gdbarch;
}
/* Need a new architecture. Fill in a target specific vector. */
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
tdep->elf_flags = elf_flags;
/* Initially set everything according to the default ABI/ISA. */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, 8);
set_gdbarch_max_register_virtual_size (gdbarch, 8);
tdep->found_abi = found_abi;
tdep->mips_abi = mips_abi;
set_gdbarch_elf_make_msymbol_special (gdbarch,
mips_elf_make_msymbol_special);
if (info.osabi == GDB_OSABI_IRIX)
set_gdbarch_num_regs (gdbarch, 71);
else
set_gdbarch_num_regs (gdbarch, 90);
switch (mips_abi)
{
case MIPS_ABI_O32:
set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
tdep->mips_default_saved_regsize = 4;
tdep->mips_default_stack_argsize = 4;
tdep->mips_fp_register_double = 0;
tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
tdep->gdb_target_is_mips64 = 0;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_reg_struct_has_addr (gdbarch,
mips_o32_reg_struct_has_addr);
set_gdbarch_use_struct_convention (gdbarch,
mips_o32_use_struct_convention);
break;
case MIPS_ABI_O64:
set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
tdep->mips_default_saved_regsize = 8;
tdep->mips_default_stack_argsize = 8;
tdep->mips_fp_register_double = 1;
tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
tdep->gdb_target_is_mips64 = 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_reg_struct_has_addr (gdbarch,
mips_o32_reg_struct_has_addr);
set_gdbarch_use_struct_convention (gdbarch,
mips_o32_use_struct_convention);
break;
case MIPS_ABI_EABI32:
set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
tdep->mips_default_saved_regsize = 4;
tdep->mips_default_stack_argsize = 4;
tdep->mips_fp_register_double = 0;
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
tdep->gdb_target_is_mips64 = 0;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_reg_struct_has_addr (gdbarch,
mips_eabi_reg_struct_has_addr);
set_gdbarch_use_struct_convention (gdbarch,
mips_eabi_use_struct_convention);
break;
case MIPS_ABI_EABI64:
set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
tdep->mips_default_saved_regsize = 8;
tdep->mips_default_stack_argsize = 8;
tdep->mips_fp_register_double = 1;
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
tdep->gdb_target_is_mips64 = 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_reg_struct_has_addr (gdbarch,
mips_eabi_reg_struct_has_addr);
set_gdbarch_use_struct_convention (gdbarch,
mips_eabi_use_struct_convention);
break;
case MIPS_ABI_N32:
set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
tdep->mips_default_saved_regsize = 8;
tdep->mips_default_stack_argsize = 8;
tdep->mips_fp_register_double = 1;
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
tdep->gdb_target_is_mips64 = 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
/* Set up the disassembler info, so that we get the right
register names from libopcodes. */
tm_print_insn_info.flavour = bfd_target_elf_flavour;
tm_print_insn_info.arch = bfd_arch_mips;
if (info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mips
&& info.bfd_arch_info->mach)
tm_print_insn_info.mach = info.bfd_arch_info->mach;
else
tm_print_insn_info.mach = bfd_mach_mips8000;
set_gdbarch_use_struct_convention (gdbarch,
mips_n32n64_use_struct_convention);
set_gdbarch_reg_struct_has_addr (gdbarch,
mips_n32n64_reg_struct_has_addr);
break;
case MIPS_ABI_N64:
set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
tdep->mips_default_saved_regsize = 8;
tdep->mips_default_stack_argsize = 8;
tdep->mips_fp_register_double = 1;
tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
tdep->gdb_target_is_mips64 = 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
/* Set up the disassembler info, so that we get the right
register names from libopcodes. */
tm_print_insn_info.flavour = bfd_target_elf_flavour;
tm_print_insn_info.arch = bfd_arch_mips;
if (info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mips
&& info.bfd_arch_info->mach)
tm_print_insn_info.mach = info.bfd_arch_info->mach;
else
tm_print_insn_info.mach = bfd_mach_mips8000;
set_gdbarch_use_struct_convention (gdbarch,
mips_n32n64_use_struct_convention);
set_gdbarch_reg_struct_has_addr (gdbarch,
mips_n32n64_reg_struct_has_addr);
break;
default:
internal_error (__FILE__, __LINE__,
"unknown ABI in switch");
}
/* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
that could indicate -gp32 BUT gas/config/tc-mips.c contains the
comment:
``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
flag in object files because to do so would make it impossible to
link with libraries compiled without "-gp32". This is
unnecessarily restrictive.
We could solve this problem by adding "-gp32" multilibs to gcc,
but to set this flag before gcc is built with such multilibs will
break too many systems.''
But even more unhelpfully, the default linker output target for
mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
for 64-bit programs - you need to change the ABI to change this,
and not all gcc targets support that currently. Therefore using
this flag to detect 32-bit mode would do the wrong thing given
the current gcc - it would make GDB treat these 64-bit programs
as 32-bit programs by default. */
/* enable/disable the MIPS FPU */
if (!mips_fpu_type_auto)
tdep->mips_fpu_type = mips_fpu_type;
else if (info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mips)
switch (info.bfd_arch_info->mach)
{
case bfd_mach_mips3900:
case bfd_mach_mips4100:
case bfd_mach_mips4111:
tdep->mips_fpu_type = MIPS_FPU_NONE;
break;
case bfd_mach_mips4650:
tdep->mips_fpu_type = MIPS_FPU_SINGLE;
break;
default:
tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
break;
}
else
tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
/* MIPS version of register names. NOTE: At present the MIPS
register name management is part way between the old -
#undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
Further work on it is required. */
/* NOTE: many targets (esp. embedded) do not go thru the
gdbarch_register_name vector at all, instead bypassing it
by defining REGISTER_NAMES. */
set_gdbarch_register_name (gdbarch, mips_register_name);
set_gdbarch_read_pc (gdbarch, mips_read_pc);
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
set_gdbarch_read_sp (gdbarch, mips_read_sp);
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
/* Add/remove bits from an address. The MIPS needs be careful to
ensure that all 32 bit addresses are sign extended to 64 bits. */
set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
/* There's a mess in stack frame creation. See comments in
blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
/* Map debug register numbers onto internal register numbers. */
set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
/* Initialize a frame */
set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
/* MIPS version of CALL_DUMMY */
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_length (gdbarch, 0);
set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
set_gdbarch_frame_align (gdbarch, mips_frame_align);
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
set_gdbarch_register_convert_to_virtual (gdbarch,
mips_register_convert_to_virtual);
set_gdbarch_register_convert_to_raw (gdbarch,
mips_register_convert_to_raw);
set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
set_gdbarch_frameless_function_invocation (gdbarch,
generic_frameless_function_invocation_not);
set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
set_gdbarch_frame_args_skip (gdbarch, 0);
set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
set_gdbarch_decr_pc_after_break (gdbarch, 0);
set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
set_gdbarch_function_start_offset (gdbarch, 0);
/* There are MIPS targets which do not yet use this since they still
define REGISTER_VIRTUAL_TYPE. */
set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
/* Hook in OS ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
set_gdbarch_extract_struct_value_address (gdbarch,
mips_extract_struct_value_address);
set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
return gdbarch;
}
static void
mips_abi_update (char *ignore_args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
/* Force the architecture to update, and (if it's a MIPS architecture)
mips_gdbarch_init will take care of the rest. */
gdbarch_info_init (&info);
gdbarch_update_p (info);
}
static void
mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
if (tdep != NULL)
{
int ef_mips_arch;
int ef_mips_32bitmode;
/* determine the ISA */
switch (tdep->elf_flags & EF_MIPS_ARCH)
{
case E_MIPS_ARCH_1:
ef_mips_arch = 1;
break;
case E_MIPS_ARCH_2:
ef_mips_arch = 2;
break;
case E_MIPS_ARCH_3:
ef_mips_arch = 3;
break;
case E_MIPS_ARCH_4:
ef_mips_arch = 4;
break;
default:
ef_mips_arch = 0;
break;
}
/* determine the size of a pointer */
ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
fprintf_unfiltered (file,
"mips_dump_tdep: tdep->elf_flags = 0x%x\n",
tdep->elf_flags);
fprintf_unfiltered (file,
"mips_dump_tdep: ef_mips_32bitmode = %d\n",
ef_mips_32bitmode);
fprintf_unfiltered (file,
"mips_dump_tdep: ef_mips_arch = %d\n",
ef_mips_arch);
fprintf_unfiltered (file,
"mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
tdep->mips_abi,
mips_abi_strings[tdep->mips_abi]);
fprintf_unfiltered (file,
"mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
mips_mask_address_p (),
tdep->default_mask_address_p);
}
fprintf_unfiltered (file,
"mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
FP_REGISTER_DOUBLE);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
MIPS_DEFAULT_FPU_TYPE,
(MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
: "???"));
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_EABI = %d\n",
MIPS_EABI);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
MIPS_LAST_FP_ARG_REGNUM,
MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
MIPS_FPU_TYPE,
(MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
: MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
: MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
: "???"));
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
MIPS_DEFAULT_SAVED_REGSIZE);
fprintf_unfiltered (file,
"mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
FP_REGISTER_DOUBLE);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
MIPS_DEFAULT_STACK_ARGSIZE);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
MIPS_STACK_ARGSIZE);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_REGSIZE = %d\n",
MIPS_REGSIZE);
fprintf_unfiltered (file,
"mips_dump_tdep: A0_REGNUM = %d\n",
A0_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
XSTRING (ADDR_BITS_REMOVE(ADDR)));
fprintf_unfiltered (file,
"mips_dump_tdep: ATTACH_DETACH # %s\n",
XSTRING (ATTACH_DETACH));
fprintf_unfiltered (file,
"mips_dump_tdep: BADVADDR_REGNUM = %d\n",
BADVADDR_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: CAUSE_REGNUM = %d\n",
CAUSE_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
fprintf_unfiltered (file,
"mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
fprintf_unfiltered (file,
"mips_dump_tdep: FCRCS_REGNUM = %d\n",
FCRCS_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: FCRIR_REGNUM = %d\n",
FCRIR_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
FIRST_EMBED_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: FPA0_REGNUM = %d\n",
FPA0_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
GDB_TARGET_IS_MIPS64);
fprintf_unfiltered (file,
"mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
GEN_REG_SAVE_MASK);
fprintf_unfiltered (file,
"mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
fprintf_unfiltered (file,
"mips_dump_tdep: HI_REGNUM = %d\n",
HI_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
XSTRING (IGNORE_HELPER_CALL (PC)));
fprintf_unfiltered (file,
"mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
fprintf_unfiltered (file,
"mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
fprintf_unfiltered (file,
"mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
fprintf_unfiltered (file,
"mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
LAST_EMBED_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: LO_REGNUM = %d\n",
LO_REGNUM);
#ifdef MACHINE_CPROC_FP_OFFSET
fprintf_unfiltered (file,
"mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
MACHINE_CPROC_FP_OFFSET);
#endif
#ifdef MACHINE_CPROC_PC_OFFSET
fprintf_unfiltered (file,
"mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
MACHINE_CPROC_PC_OFFSET);
#endif
#ifdef MACHINE_CPROC_SP_OFFSET
fprintf_unfiltered (file,
"mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
MACHINE_CPROC_SP_OFFSET);
#endif
fprintf_unfiltered (file,
"mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS16_INSTLEN = %d\n",
MIPS16_INSTLEN);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_INSTLEN = %d\n",
MIPS_INSTLEN);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
MIPS_LAST_ARG_REGNUM,
MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_NUMREGS = %d\n",
MIPS_NUMREGS);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
MIPS_SAVED_REGSIZE);
fprintf_unfiltered (file,
"mips_dump_tdep: OP_LDFPR = used?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: OP_LDGPR = used?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PRID_REGNUM = %d\n",
PRID_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_FRAME_REG = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_FREG_MASK = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_LOW_ADDR = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_PC_REG = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_REG_MASK = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_REG_OFFSET = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PROC_SYMBOL = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: PS_REGNUM = %d\n",
PS_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
PUSH_FP_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: RA_REGNUM = %d\n",
RA_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
fprintf_unfiltered (file,
"mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
fprintf_unfiltered (file,
"mips_dump_tdep: REGISTER_NAMES = delete?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: ROUND_DOWN = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: ROUND_UP = function?\n");
#ifdef SAVED_BYTES
fprintf_unfiltered (file,
"mips_dump_tdep: SAVED_BYTES = %d\n",
SAVED_BYTES);
#endif
#ifdef SAVED_FP
fprintf_unfiltered (file,
"mips_dump_tdep: SAVED_FP = %d\n",
SAVED_FP);
#endif
#ifdef SAVED_PC
fprintf_unfiltered (file,
"mips_dump_tdep: SAVED_PC = %d\n",
SAVED_PC);
#endif
fprintf_unfiltered (file,
"mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
fprintf_unfiltered (file,
"mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: SIGFRAME_BASE = %d\n",
SIGFRAME_BASE);
fprintf_unfiltered (file,
"mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
SIGFRAME_FPREGSAVE_OFF);
fprintf_unfiltered (file,
"mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
SIGFRAME_PC_OFF);
fprintf_unfiltered (file,
"mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
SIGFRAME_REGSAVE_OFF);
fprintf_unfiltered (file,
"mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
SIGFRAME_REG_SIZE);
fprintf_unfiltered (file,
"mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
fprintf_unfiltered (file,
"mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
fprintf_unfiltered (file,
"mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
SOFTWARE_SINGLE_STEP_P ());
fprintf_unfiltered (file,
"mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
#ifdef STACK_END_ADDR
fprintf_unfiltered (file,
"mips_dump_tdep: STACK_END_ADDR = %d\n",
STACK_END_ADDR);
#endif
fprintf_unfiltered (file,
"mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
XSTRING (STEP_SKIPS_DELAY (PC)));
fprintf_unfiltered (file,
"mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
STEP_SKIPS_DELAY_P);
fprintf_unfiltered (file,
"mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
XSTRING (STOPPED_BY_WATCHPOINT (WS)));
fprintf_unfiltered (file,
"mips_dump_tdep: T9_REGNUM = %d\n",
T9_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
fprintf_unfiltered (file,
"mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
fprintf_unfiltered (file,
"mips_dump_tdep: TARGET_MIPS = used?\n");
fprintf_unfiltered (file,
"mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
XSTRING (TM_PRINT_INSN_MACH));
#ifdef TRACE_CLEAR
fprintf_unfiltered (file,
"mips_dump_tdep: TRACE_CLEAR # %s\n",
XSTRING (TRACE_CLEAR (THREAD, STATE)));
#endif
#ifdef TRACE_FLAVOR
fprintf_unfiltered (file,
"mips_dump_tdep: TRACE_FLAVOR = %d\n",
TRACE_FLAVOR);
#endif
#ifdef TRACE_FLAVOR_SIZE
fprintf_unfiltered (file,
"mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
TRACE_FLAVOR_SIZE);
#endif
#ifdef TRACE_SET
fprintf_unfiltered (file,
"mips_dump_tdep: TRACE_SET # %s\n",
XSTRING (TRACE_SET (X,STATE)));
#endif
fprintf_unfiltered (file,
"mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
#ifdef UNUSED_REGNUM
fprintf_unfiltered (file,
"mips_dump_tdep: UNUSED_REGNUM = %d\n",
UNUSED_REGNUM);
#endif
fprintf_unfiltered (file,
"mips_dump_tdep: V0_REGNUM = %d\n",
V0_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
(long) VM_MIN_ADDRESS);
#ifdef VX_NUM_REGS
fprintf_unfiltered (file,
"mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
VX_NUM_REGS);
#endif
fprintf_unfiltered (file,
"mips_dump_tdep: ZERO_REGNUM = %d\n",
ZERO_REGNUM);
fprintf_unfiltered (file,
"mips_dump_tdep: _PROC_MAGIC_ = %d\n",
_PROC_MAGIC_);
}
void
_initialize_mips_tdep (void)
{
static struct cmd_list_element *mipsfpulist = NULL;
struct cmd_list_element *c;
mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
if (MIPS_ABI_LAST + 1
!= sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
if (!tm_print_insn) /* Someone may have already set it */
tm_print_insn = gdb_print_insn_mips;
/* Add root prefix command for all "set mips"/"show mips" commands */
add_prefix_cmd ("mips", no_class, set_mips_command,
"Various MIPS specific commands.",
&setmipscmdlist, "set mips ", 0, &setlist);
add_prefix_cmd ("mips", no_class, show_mips_command,
"Various MIPS specific commands.",
&showmipscmdlist, "show mips ", 0, &showlist);
/* Allow the user to override the saved register size. */
add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
class_obscure,
size_enums,
&mips_saved_regsize_string, "\
Set size of general purpose registers saved on the stack.\n\
This option can be set to one of:\n\
32 - Force GDB to treat saved GP registers as 32-bit\n\
64 - Force GDB to treat saved GP registers as 64-bit\n\
auto - Allow GDB to use the target's default setting or autodetect the\n\
saved GP register size from information contained in the executable.\n\
(default: auto)",
&setmipscmdlist),
&showmipscmdlist);
/* Allow the user to override the argument stack size. */
add_show_from_set (add_set_enum_cmd ("stack-arg-size",
class_obscure,
size_enums,
&mips_stack_argsize_string, "\
Set the amount of stack space reserved for each argument.\n\
This option can be set to one of:\n\
32 - Force GDB to allocate 32-bit chunks per argument\n\
64 - Force GDB to allocate 64-bit chunks per argument\n\
auto - Allow GDB to determine the correct setting from the current\n\
target and executable (default)",
&setmipscmdlist),
&showmipscmdlist);
/* Allow the user to override the ABI. */
c = add_set_enum_cmd
("abi", class_obscure, mips_abi_strings, &mips_abi_string,
"Set the ABI used by this program.\n"
"This option can be set to one of:\n"
" auto - the default ABI associated with the current binary\n"
" o32\n"
" o64\n"
" n32\n"
" n64\n"
" eabi32\n"
" eabi64",
&setmipscmdlist);
add_show_from_set (c, &showmipscmdlist);
set_cmd_sfunc (c, mips_abi_update);
/* Let the user turn off floating point and set the fence post for
heuristic_proc_start. */
add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
"Set use of MIPS floating-point coprocessor.",
&mipsfpulist, "set mipsfpu ", 0, &setlist);
add_cmd ("single", class_support, set_mipsfpu_single_command,
"Select single-precision MIPS floating-point coprocessor.",
&mipsfpulist);
add_cmd ("double", class_support, set_mipsfpu_double_command,
"Select double-precision MIPS floating-point coprocessor.",
&mipsfpulist);
add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
add_cmd ("none", class_support, set_mipsfpu_none_command,
"Select no MIPS floating-point coprocessor.",
&mipsfpulist);
add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
add_cmd ("auto", class_support, set_mipsfpu_auto_command,
"Select MIPS floating-point coprocessor automatically.",
&mipsfpulist);
add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
"Show current use of MIPS floating-point coprocessor target.",
&showlist);
/* We really would like to have both "0" and "unlimited" work, but
command.c doesn't deal with that. So make it a var_zinteger
because the user can always use "999999" or some such for unlimited. */
c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
(char *) &heuristic_fence_post,
"\
Set the distance searched for the start of a function.\n\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function. This command sets the distance of the\n\
search. The only need to set it is when debugging a stripped executable.",
&setlist);
/* We need to throw away the frame cache when we set this, since it
might change our ability to get backtraces. */
set_cmd_sfunc (c, reinit_frame_cache_sfunc);
add_show_from_set (c, &showlist);
/* Allow the user to control whether the upper bits of 64-bit
addresses should be zeroed. */
add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
Set zeroing of upper 32 bits of 64-bit addresses.\n\
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
allow GDB to determine the correct value.\n", "\
Show zeroing of upper 32 bits of 64-bit addresses.",
NULL, show_mask_address,
&setmipscmdlist, &showmipscmdlist);
/* Allow the user to control the size of 32 bit registers within the
raw remote packet. */
add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
class_obscure,
var_boolean,
(char *)&mips64_transfers_32bit_regs_p, "\
Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
64 bits for others. Use \"off\" to disable compatibility mode",
&setlist),
&showlist);
/* Debug this files internals. */
add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
&mips_debug, "Set mips debugging.\n\
When non-zero, mips specific debugging is enabled.", &setdebuglist),
&showdebuglist);
}