cdd238daf9
This patch uses XCNEW gdbarch_tdep instead of XNEW. gdb: 2017-05-24 Yao Qi <yao.qi@linaro.org> * alpha-tdep.c (alpha_gdbarch_init): Use XCNEW instead of XNEW. * avr-tdep.c (avr_gdbarch_init): Likewise. * bfin-tdep.c (bfin_gdbarch_init): Likewise. * cris-tdep.c (cris_gdbarch_init): Likewise. * ft32-tdep.c (ft32_gdbarch_init): Likewise. * lm32-tdep.c (lm32_gdbarch_init): Likewise. * m32r-tdep.c (m32r_gdbarch_init): Likewise. * m68hc11-tdep.c (m68hc11_gdbarch_init): Likewise. * mep-tdep.c (mep_gdbarch_init): Likewise. * microblaze-tdep.c (microblaze_gdbarch_init): Likewise. * mips-tdep.c (mips_gdbarch_init): Likewise. * mn10300-tdep.c (mn10300_gdbarch_init): Likewise. * moxie-tdep.c (moxie_gdbarch_init): Likewise. * msp430-tdep.c (msp430_gdbarch_init): Likewise. * sh64-tdep.c (sh64_gdbarch_init): Likewise. * v850-tdep.c (v850_gdbarch_init): Likewise.
1034 lines
29 KiB
C
1034 lines
29 KiB
C
/* Target-dependent code for the Texas Instruments MSP430 for GDB, the
|
|
GNU debugger.
|
|
|
|
Copyright (C) 2012-2017 Free Software Foundation, Inc.
|
|
|
|
Contributed by Red Hat, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "prologue-value.h"
|
|
#include "target.h"
|
|
#include "regcache.h"
|
|
#include "dis-asm.h"
|
|
#include "gdbtypes.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "value.h"
|
|
#include "gdbcore.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "reggroups.h"
|
|
|
|
#include "elf/msp430.h"
|
|
#include "opcode/msp430-decode.h"
|
|
#include "elf-bfd.h"
|
|
|
|
/* Register Numbers. */
|
|
|
|
enum
|
|
{
|
|
MSP430_PC_RAW_REGNUM,
|
|
MSP430_SP_RAW_REGNUM,
|
|
MSP430_SR_RAW_REGNUM,
|
|
MSP430_CG_RAW_REGNUM,
|
|
MSP430_R4_RAW_REGNUM,
|
|
MSP430_R5_RAW_REGNUM,
|
|
MSP430_R6_RAW_REGNUM,
|
|
MSP430_R7_RAW_REGNUM,
|
|
MSP430_R8_RAW_REGNUM,
|
|
MSP430_R9_RAW_REGNUM,
|
|
MSP430_R10_RAW_REGNUM,
|
|
MSP430_R11_RAW_REGNUM,
|
|
MSP430_R12_RAW_REGNUM,
|
|
MSP430_R13_RAW_REGNUM,
|
|
MSP430_R14_RAW_REGNUM,
|
|
MSP430_R15_RAW_REGNUM,
|
|
|
|
MSP430_NUM_REGS,
|
|
|
|
MSP430_PC_REGNUM = MSP430_NUM_REGS,
|
|
MSP430_SP_REGNUM,
|
|
MSP430_SR_REGNUM,
|
|
MSP430_CG_REGNUM,
|
|
MSP430_R4_REGNUM,
|
|
MSP430_R5_REGNUM,
|
|
MSP430_R6_REGNUM,
|
|
MSP430_R7_REGNUM,
|
|
MSP430_R8_REGNUM,
|
|
MSP430_R9_REGNUM,
|
|
MSP430_R10_REGNUM,
|
|
MSP430_R11_REGNUM,
|
|
MSP430_R12_REGNUM,
|
|
MSP430_R13_REGNUM,
|
|
MSP430_R14_REGNUM,
|
|
MSP430_R15_REGNUM,
|
|
|
|
MSP430_NUM_TOTAL_REGS,
|
|
MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
|
|
};
|
|
|
|
enum
|
|
{
|
|
/* TI MSP430 Architecture. */
|
|
MSP_ISA_MSP430,
|
|
|
|
/* TI MSP430X Architecture. */
|
|
MSP_ISA_MSP430X
|
|
};
|
|
|
|
enum
|
|
{
|
|
/* The small code model limits code addresses to 16 bits. */
|
|
MSP_SMALL_CODE_MODEL,
|
|
|
|
/* The large code model uses 20 bit addresses for function
|
|
pointers. These are stored in memory using four bytes (32 bits). */
|
|
MSP_LARGE_CODE_MODEL
|
|
};
|
|
|
|
/* Architecture specific data. */
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
/* The ELF header flags specify the multilib used. */
|
|
int elf_flags;
|
|
|
|
/* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
|
|
int isa;
|
|
|
|
/* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
|
|
some point, we support different data models too, we'll probably
|
|
structure things so that we can combine values using logical
|
|
"or". */
|
|
int code_model;
|
|
};
|
|
|
|
/* This structure holds the results of a prologue analysis. */
|
|
|
|
struct msp430_prologue
|
|
{
|
|
/* The offset from the frame base to the stack pointer --- always
|
|
zero or negative.
|
|
|
|
Calling this a "size" is a bit misleading, but given that the
|
|
stack grows downwards, using offsets for everything keeps one
|
|
from going completely sign-crazy: you never change anything's
|
|
sign for an ADD instruction; always change the second operand's
|
|
sign for a SUB instruction; and everything takes care of
|
|
itself. */
|
|
int frame_size;
|
|
|
|
/* Non-zero if this function has initialized the frame pointer from
|
|
the stack pointer, zero otherwise. */
|
|
int has_frame_ptr;
|
|
|
|
/* If has_frame_ptr is non-zero, this is the offset from the frame
|
|
base to where the frame pointer points. This is always zero or
|
|
negative. */
|
|
int frame_ptr_offset;
|
|
|
|
/* The address of the first instruction at which the frame has been
|
|
set up and the arguments are where the debug info says they are
|
|
--- as best as we can tell. */
|
|
CORE_ADDR prologue_end;
|
|
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
|
saved, or 1 if register R has not been saved. (Real values are
|
|
always zero or negative.) */
|
|
int reg_offset[MSP430_NUM_TOTAL_REGS];
|
|
};
|
|
|
|
/* Implement the "register_type" gdbarch method. */
|
|
|
|
static struct type *
|
|
msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr < MSP430_NUM_REGS)
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
else if (reg_nr == MSP430_PC_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
else
|
|
return builtin_type (gdbarch)->builtin_uint16;
|
|
}
|
|
|
|
/* Implement another version of the "register_type" gdbarch method
|
|
for msp430x. */
|
|
|
|
static struct type *
|
|
msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr < MSP430_NUM_REGS)
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
else if (reg_nr == MSP430_PC_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
else
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
}
|
|
|
|
/* Implement the "register_name" gdbarch method. */
|
|
|
|
static const char *
|
|
msp430_register_name (struct gdbarch *gdbarch, int regnr)
|
|
{
|
|
static const char *const reg_names[] = {
|
|
/* Raw registers. */
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
/* Pseudo registers. */
|
|
"pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
|
};
|
|
|
|
return reg_names[regnr];
|
|
}
|
|
|
|
/* Implement the "register_reggroup_p" gdbarch method. */
|
|
|
|
static int
|
|
msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
if (group == all_reggroup)
|
|
return 1;
|
|
|
|
/* All other registers are saved and restored. */
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
|
|
|
|
return group == general_reggroup;
|
|
}
|
|
|
|
/* Implement the "pseudo_register_read" gdbarch method. */
|
|
|
|
static enum register_status
|
|
msp430_pseudo_register_read (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regnum, gdb_byte *buffer)
|
|
{
|
|
if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
|
|
{
|
|
enum register_status status;
|
|
ULONGEST val;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int regsize = register_size (gdbarch, regnum);
|
|
int raw_regnum = regnum - MSP430_NUM_REGS;
|
|
|
|
status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
|
|
if (status == REG_VALID)
|
|
store_unsigned_integer (buffer, regsize, byte_order, val);
|
|
|
|
return status;
|
|
}
|
|
else
|
|
gdb_assert_not_reached ("invalid pseudo register number");
|
|
}
|
|
|
|
/* Implement the "pseudo_register_write" gdbarch method. */
|
|
|
|
static void
|
|
msp430_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regnum, const gdb_byte *buffer)
|
|
{
|
|
if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
|
|
|
|
{
|
|
ULONGEST val;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int regsize = register_size (gdbarch, regnum);
|
|
int raw_regnum = regnum - MSP430_NUM_REGS;
|
|
|
|
val = extract_unsigned_integer (buffer, regsize, byte_order);
|
|
regcache_raw_write_unsigned (regcache, raw_regnum, val);
|
|
|
|
}
|
|
else
|
|
gdb_assert_not_reached ("invalid pseudo register number");
|
|
}
|
|
|
|
/* Implement the `register_sim_regno' gdbarch method. */
|
|
|
|
static int
|
|
msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
gdb_assert (regnum < MSP430_NUM_REGS);
|
|
|
|
/* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
|
|
just want to override the default here which disallows register
|
|
numbers which have no names. */
|
|
return regnum;
|
|
}
|
|
|
|
constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
|
|
|
|
typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
|
|
|
|
/* Define a "handle" struct for fetching the next opcode. */
|
|
|
|
struct msp430_get_opcode_byte_handle
|
|
{
|
|
CORE_ADDR pc;
|
|
};
|
|
|
|
/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
|
|
the memory address of the next byte to fetch. If successful,
|
|
the address in the handle is updated and the byte fetched is
|
|
returned as the value of the function. If not successful, -1
|
|
is returned. */
|
|
|
|
static int
|
|
msp430_get_opcode_byte (void *handle)
|
|
{
|
|
struct msp430_get_opcode_byte_handle *opcdata
|
|
= (struct msp430_get_opcode_byte_handle *) handle;
|
|
int status;
|
|
gdb_byte byte;
|
|
|
|
status = target_read_memory (opcdata->pc, &byte, 1);
|
|
if (status == 0)
|
|
{
|
|
opcdata->pc += 1;
|
|
return byte;
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/* Function for finding saved registers in a 'struct pv_area'; this
|
|
function is passed to pv_area_scan.
|
|
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
|
offset from the frame base, and SIZE indicates that the whole
|
|
register was saved, record its offset. */
|
|
|
|
static void
|
|
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
|
{
|
|
struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
|
|
|
|
if (value.kind == pvk_register
|
|
&& value.k == 0
|
|
&& pv_is_register (addr, MSP430_SP_REGNUM)
|
|
&& size == register_size (target_gdbarch (), value.reg))
|
|
result->reg_offset[value.reg] = addr.k;
|
|
}
|
|
|
|
/* Analyze a prologue starting at START_PC, going no further than
|
|
LIMIT_PC. Fill in RESULT as appropriate. */
|
|
|
|
static void
|
|
msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
|
|
CORE_ADDR limit_pc, struct msp430_prologue *result)
|
|
{
|
|
CORE_ADDR pc, next_pc;
|
|
int rn;
|
|
pv_t reg[MSP430_NUM_TOTAL_REGS];
|
|
struct pv_area *stack;
|
|
struct cleanup *back_to;
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
|
int code_model = gdbarch_tdep (gdbarch)->code_model;
|
|
int sz;
|
|
|
|
memset (result, 0, sizeof (*result));
|
|
|
|
for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
|
|
{
|
|
reg[rn] = pv_register (rn, 0);
|
|
result->reg_offset[rn] = 1;
|
|
}
|
|
|
|
stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
|
back_to = make_cleanup_free_pv_area (stack);
|
|
|
|
/* The call instruction has saved the return address on the stack. */
|
|
sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
|
|
reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
|
|
pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
|
|
|
|
pc = start_pc;
|
|
while (pc < limit_pc)
|
|
{
|
|
int bytes_read;
|
|
struct msp430_get_opcode_byte_handle opcode_handle;
|
|
MSP430_Opcode_Decoded opc;
|
|
|
|
opcode_handle.pc = pc;
|
|
bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
|
|
&opcode_handle);
|
|
next_pc = pc + bytes_read;
|
|
|
|
if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
|
|
{
|
|
int rsrc = opc.op[0].reg;
|
|
|
|
reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
|
|
pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
else if (opc.id == MSO_push /* PUSHM */
|
|
&& opc.op[0].type == MSP430_Operand_None
|
|
&& opc.op[1].type == MSP430_Operand_Register)
|
|
{
|
|
int rsrc = opc.op[1].reg;
|
|
int count = opc.repeats + 1;
|
|
int size = opc.size == 16 ? 2 : 4;
|
|
|
|
while (count > 0)
|
|
{
|
|
reg[MSP430_SP_REGNUM]
|
|
= pv_add_constant (reg[MSP430_SP_REGNUM], -size);
|
|
pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
|
|
rsrc--;
|
|
count--;
|
|
}
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
else if (opc.id == MSO_sub
|
|
&& opc.op[0].type == MSP430_Operand_Register
|
|
&& opc.op[0].reg == MSR_SP
|
|
&& opc.op[1].type == MSP430_Operand_Immediate)
|
|
{
|
|
int addend = opc.op[1].addend;
|
|
|
|
reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
|
|
-addend);
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
else if (opc.id == MSO_mov
|
|
&& opc.op[0].type == MSP430_Operand_Immediate
|
|
&& 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
|
|
after_last_frame_setup_insn = next_pc;
|
|
else
|
|
{
|
|
/* Terminate the prologue scan. */
|
|
break;
|
|
}
|
|
|
|
pc = next_pc;
|
|
}
|
|
|
|
/* Is the frame size (offset, really) a known constant? */
|
|
if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
|
|
result->frame_size = reg[MSP430_SP_REGNUM].k;
|
|
|
|
/* Record where all the registers were saved. */
|
|
pv_area_scan (stack, check_for_saved, result);
|
|
|
|
result->prologue_end = after_last_frame_setup_insn;
|
|
|
|
do_cleanups (back_to);
|
|
}
|
|
|
|
/* Implement the "skip_prologue" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
const char *name;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct msp430_prologue p;
|
|
|
|
/* Try to find the extent of the function that contains PC. */
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
|
return pc;
|
|
|
|
msp430_analyze_prologue (gdbarch, pc, func_end, &p);
|
|
return p.prologue_end;
|
|
}
|
|
|
|
/* Implement the "unwind_pc" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
|
|
}
|
|
|
|
/* Implement the "unwind_sp" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
|
|
}
|
|
|
|
/* Given a frame described by THIS_FRAME, decode the prologue of its
|
|
associated function if there is not cache entry as specified by
|
|
THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
|
|
return that struct as the value of this function. */
|
|
|
|
static struct msp430_prologue *
|
|
msp430_analyze_frame_prologue (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
if (!*this_prologue_cache)
|
|
{
|
|
CORE_ADDR func_start, stop_addr;
|
|
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
|
|
|
|
func_start = get_frame_func (this_frame);
|
|
stop_addr = get_frame_pc (this_frame);
|
|
|
|
/* If we couldn't find any function containing the PC, then
|
|
just initialize the prologue cache, but don't do anything. */
|
|
if (!func_start)
|
|
stop_addr = func_start;
|
|
|
|
msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
|
|
stop_addr,
|
|
(struct msp430_prologue *) *this_prologue_cache);
|
|
}
|
|
|
|
return (struct msp430_prologue *) *this_prologue_cache;
|
|
}
|
|
|
|
/* Given a frame and a prologue cache, return this frame's base. */
|
|
|
|
static CORE_ADDR
|
|
msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
|
|
{
|
|
struct msp430_prologue *p
|
|
= msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
|
|
|
|
return sp - p->frame_size;
|
|
}
|
|
|
|
/* Implement the "frame_this_id" method for unwinding frames. */
|
|
|
|
static void
|
|
msp430_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
*this_id = frame_id_build (msp430_frame_base (this_frame,
|
|
this_prologue_cache),
|
|
get_frame_func (this_frame));
|
|
}
|
|
|
|
/* Implement the "frame_prev_register" method for unwinding frames. */
|
|
|
|
static struct value *
|
|
msp430_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct msp430_prologue *p
|
|
= msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
|
|
CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
|
|
|
|
if (regnum == MSP430_SP_REGNUM)
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
|
|
|
/* If prologue analysis says we saved this register somewhere,
|
|
return a description of the stack slot holding it. */
|
|
else if (p->reg_offset[regnum] != 1)
|
|
{
|
|
struct value *rv = frame_unwind_got_memory (this_frame, regnum,
|
|
frame_base +
|
|
p->reg_offset[regnum]);
|
|
|
|
if (regnum == MSP430_PC_REGNUM)
|
|
{
|
|
ULONGEST pc = value_as_long (rv);
|
|
|
|
return frame_unwind_got_constant (this_frame, regnum, pc);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Otherwise, presume we haven't changed the value of this
|
|
register, and get it from the next frame. */
|
|
else
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind msp430_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
msp430_this_id,
|
|
msp430_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
/* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
|
|
|
|
static int
|
|
msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
if (reg >= 0 && reg < MSP430_NUM_REGS)
|
|
return reg + MSP430_NUM_REGS;
|
|
return -1;
|
|
}
|
|
|
|
/* Implement the "return_value" gdbarch method. */
|
|
|
|
static enum return_value_convention
|
|
msp430_return_value (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct type *valtype,
|
|
struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
LONGEST valtype_len = TYPE_LENGTH (valtype);
|
|
int code_model = gdbarch_tdep (gdbarch)->code_model;
|
|
|
|
if (TYPE_LENGTH (valtype) > 8
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (readbuf)
|
|
{
|
|
ULONGEST u;
|
|
int argreg = MSP430_R12_REGNUM;
|
|
int offset = 0;
|
|
|
|
while (valtype_len > 0)
|
|
{
|
|
int size = 2;
|
|
|
|
if (code_model == MSP_LARGE_CODE_MODEL
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_PTR)
|
|
{
|
|
size = 4;
|
|
}
|
|
|
|
regcache_cooked_read_unsigned (regcache, argreg, &u);
|
|
store_unsigned_integer (readbuf + offset, size, byte_order, u);
|
|
valtype_len -= size;
|
|
offset += size;
|
|
argreg++;
|
|
}
|
|
}
|
|
|
|
if (writebuf)
|
|
{
|
|
ULONGEST u;
|
|
int argreg = MSP430_R12_REGNUM;
|
|
int offset = 0;
|
|
|
|
while (valtype_len > 0)
|
|
{
|
|
int size = 2;
|
|
|
|
if (code_model == MSP_LARGE_CODE_MODEL
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_PTR)
|
|
{
|
|
size = 4;
|
|
}
|
|
|
|
u = extract_unsigned_integer (writebuf + offset, size, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, argreg, u);
|
|
valtype_len -= size;
|
|
offset += size;
|
|
argreg++;
|
|
}
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
|
|
/* Implement the "frame_align" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
return align_down (sp, 2);
|
|
}
|
|
|
|
|
|
/* Implement the "dummy_id" gdbarch method. */
|
|
|
|
static struct frame_id
|
|
msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
return
|
|
frame_id_build (get_frame_register_unsigned
|
|
(this_frame, MSP430_SP_REGNUM),
|
|
get_frame_pc (this_frame));
|
|
}
|
|
|
|
|
|
/* Implement the "push_dummy_call" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int write_pass;
|
|
int sp_off = 0;
|
|
CORE_ADDR cfa;
|
|
int code_model = gdbarch_tdep (gdbarch)->code_model;
|
|
|
|
struct type *func_type = value_type (function);
|
|
|
|
/* Dereference function pointer types. */
|
|
while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
|
|
func_type = TYPE_TARGET_TYPE (func_type);
|
|
|
|
/* The end result had better be a function or a method. */
|
|
gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (func_type) == TYPE_CODE_METHOD);
|
|
|
|
/* We make two passes; the first does the stack allocation,
|
|
the second actually stores the arguments. */
|
|
for (write_pass = 0; write_pass <= 1; write_pass++)
|
|
{
|
|
int i;
|
|
int arg_reg = MSP430_R12_REGNUM;
|
|
int args_on_stack = 0;
|
|
|
|
if (write_pass)
|
|
sp = align_down (sp - sp_off, 4);
|
|
sp_off = 0;
|
|
|
|
if (struct_return)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
|
|
arg_reg++;
|
|
}
|
|
|
|
/* Push the arguments. */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
const gdb_byte *arg_bits = value_contents_all (arg);
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
ULONGEST arg_size = TYPE_LENGTH (arg_type);
|
|
int offset;
|
|
int current_arg_on_stack;
|
|
|
|
current_arg_on_stack = 0;
|
|
|
|
if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_UNION)
|
|
{
|
|
/* Aggregates of any size are passed by reference. */
|
|
gdb_byte struct_addr[4];
|
|
|
|
store_unsigned_integer (struct_addr, 4, byte_order,
|
|
value_address (arg));
|
|
arg_bits = struct_addr;
|
|
arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
|
|
}
|
|
else
|
|
{
|
|
/* Scalars bigger than 8 bytes such as complex doubles are passed
|
|
on the stack. */
|
|
if (arg_size > 8)
|
|
current_arg_on_stack = 1;
|
|
}
|
|
|
|
|
|
for (offset = 0; offset < arg_size; offset += 2)
|
|
{
|
|
/* The condition below prevents 8 byte scalars from being split
|
|
between registers and memory (stack). It also prevents other
|
|
splits once the stack has been written to. */
|
|
if (!current_arg_on_stack
|
|
&& (arg_reg
|
|
+ ((arg_size == 8 || args_on_stack)
|
|
? ((arg_size - offset) / 2 - 1)
|
|
: 0) <= MSP430_R15_REGNUM))
|
|
{
|
|
int size = 2;
|
|
|
|
if (code_model == MSP_LARGE_CODE_MODEL
|
|
&& (TYPE_CODE (arg_type) == TYPE_CODE_PTR
|
|
|| TYPE_IS_REFERENCE (arg_type)
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_UNION))
|
|
{
|
|
/* When using the large memory model, pointer,
|
|
reference, struct, and union arguments are
|
|
passed using the entire register. (As noted
|
|
earlier, aggregates are always passed by
|
|
reference.) */
|
|
if (offset != 0)
|
|
continue;
|
|
size = 4;
|
|
}
|
|
|
|
if (write_pass)
|
|
regcache_cooked_write_unsigned (regcache, arg_reg,
|
|
extract_unsigned_integer
|
|
(arg_bits + offset, size,
|
|
byte_order));
|
|
|
|
arg_reg++;
|
|
}
|
|
else
|
|
{
|
|
if (write_pass)
|
|
write_memory (sp + sp_off, arg_bits + offset, 2);
|
|
|
|
sp_off += 2;
|
|
args_on_stack = 1;
|
|
current_arg_on_stack = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Keep track of the stack address prior to pushing the return address.
|
|
This is the value that we'll return. */
|
|
cfa = sp;
|
|
|
|
/* Push the return address. */
|
|
{
|
|
int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
|
|
? 2 : 4;
|
|
sp = sp - sz;
|
|
write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
|
|
}
|
|
|
|
/* Update the stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
|
|
|
|
return cfa;
|
|
}
|
|
|
|
/* In order to keep code size small, the compiler may create epilogue
|
|
code through which more than one function epilogue is routed. I.e.
|
|
the epilogue and return may just be a branch to some common piece of
|
|
code which is responsible for tearing down the frame and performing
|
|
the return. These epilog (label) names will have the common prefix
|
|
defined here. */
|
|
|
|
static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
|
|
|
|
/* Implement the "in_return_stub" gdbarch method. */
|
|
|
|
static int
|
|
msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
|
|
const char *name)
|
|
{
|
|
return (name != NULL
|
|
&& startswith (name, msp430_epilog_name_prefix));
|
|
}
|
|
|
|
/* Implement the "skip_trampoline_code" gdbarch method. */
|
|
static CORE_ADDR
|
|
msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
struct bound_minimal_symbol bms;
|
|
const char *stub_name;
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
|
|
bms = lookup_minimal_symbol_by_pc (pc);
|
|
if (!bms.minsym)
|
|
return pc;
|
|
|
|
stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
|
|
|
|
if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
|
|
&& msp430_in_return_stub (gdbarch, pc, stub_name))
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
|
|
|
|
return read_memory_integer
|
|
(sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
|
|
2, gdbarch_byte_order (gdbarch));
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Allocate and initialize a gdbarch object. */
|
|
|
|
static struct gdbarch *
|
|
msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags, isa, code_model;
|
|
|
|
/* Extract the elf_flags if available. */
|
|
if (info.abfd != NULL
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
|
else
|
|
elf_flags = 0;
|
|
|
|
if (info.abfd != NULL)
|
|
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
|
|
OFBA_MSPABI_Tag_ISA))
|
|
{
|
|
case 1:
|
|
isa = MSP_ISA_MSP430;
|
|
code_model = MSP_SMALL_CODE_MODEL;
|
|
break;
|
|
case 2:
|
|
isa = MSP_ISA_MSP430X;
|
|
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
|
|
OFBA_MSPABI_Tag_Code_Model))
|
|
{
|
|
case 1:
|
|
code_model = MSP_SMALL_CODE_MODEL;
|
|
break;
|
|
case 2:
|
|
code_model = MSP_LARGE_CODE_MODEL;
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
_("Unknown msp430x code memory model"));
|
|
break;
|
|
}
|
|
break;
|
|
case 0:
|
|
/* This can happen when loading a previously dumped data structure.
|
|
Use the ISA and code model from the current architecture, provided
|
|
it's compatible. */
|
|
{
|
|
struct gdbarch *ca = get_current_arch ();
|
|
if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
|
|
{
|
|
struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
|
|
|
|
elf_flags = ca_tdep->elf_flags;
|
|
isa = ca_tdep->isa;
|
|
code_model = ca_tdep->code_model;
|
|
break;
|
|
}
|
|
/* Otherwise, fall through... */
|
|
}
|
|
default:
|
|
error (_("Unknown msp430 isa"));
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
isa = MSP_ISA_MSP430;
|
|
code_model = MSP_SMALL_CODE_MODEL;
|
|
}
|
|
|
|
|
|
/* Try to find the architecture in the list of already defined
|
|
architectures. */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
|
|
|
|
if (candidate_tdep->elf_flags != elf_flags
|
|
|| candidate_tdep->isa != isa
|
|
|| candidate_tdep->code_model != code_model)
|
|
continue;
|
|
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
tdep = XCNEW (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
tdep->elf_flags = elf_flags;
|
|
tdep->isa = isa;
|
|
tdep->code_model = code_model;
|
|
|
|
/* Registers. */
|
|
set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
|
|
set_gdbarch_register_name (gdbarch, msp430_register_name);
|
|
if (isa == MSP_ISA_MSP430)
|
|
set_gdbarch_register_type (gdbarch, msp430_register_type);
|
|
else
|
|
set_gdbarch_register_type (gdbarch, msp430x_register_type);
|
|
set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
|
|
set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
|
|
set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
|
|
set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
|
|
|
|
/* Data types. */
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 16);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
if (code_model == MSP_SMALL_CODE_MODEL)
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 16);
|
|
set_gdbarch_addr_bit (gdbarch, 16);
|
|
}
|
|
else /* MSP_LARGE_CODE_MODEL */
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
}
|
|
set_gdbarch_dwarf2_addr_size (gdbarch, 4);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
|
|
|
/* Breakpoints. */
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
|
|
msp430_breakpoint::kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
|
|
msp430_breakpoint::bp_from_kind);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 1);
|
|
|
|
/* Frames, prologues, etc. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
|
|
set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
|
|
set_gdbarch_frame_align (gdbarch, msp430_frame_align);
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
|
|
|
|
/* Dummy frames, return values. */
|
|
set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
|
|
set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, msp430_return_value);
|
|
|
|
/* Trampolines. */
|
|
set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
|
|
set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
|
|
|
|
/* Virtual tables. */
|
|
set_gdbarch_vbit_in_delta (gdbarch, 0);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* -Wmissing-prototypes */
|
|
extern initialize_file_ftype _initialize_msp430_tdep;
|
|
|
|
/* Register the initialization routine. */
|
|
|
|
void
|
|
_initialize_msp430_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
|
|
}
|