d4fb63e140
* configure.ac (build_warnings): Add -Wempty-body. * m68k-tdep.c (m68k_gdbarch_init): Remove empty 'if'. * remote.c (handle_notification): Use braces for empty 'else' body. * s390-tdep.c (s390_analyze_prologue): Use braces for empty 'else' body. * sh64-tdep.c (sh64_push_dummy_call): Use braces for empty 'else' body. * solib-som.c (som_relocate_section_addresses): Use braces for empty 'else' body. * ui-file.c (stdio_file_write): Use braces for empty 'if' body. (stdio_file_write_async_safe, stdio_file_fputs): Likewise.
2453 lines
76 KiB
C
2453 lines
76 KiB
C
/* Target-dependent code for Renesas Super-H, for GDB.
|
|
|
|
Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* Contributed by Steve Chamberlain
|
|
sac@cygnus.com. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "inferior.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "osabi.h"
|
|
#include "valprint.h"
|
|
|
|
#include "elf-bfd.h"
|
|
|
|
/* sh flags */
|
|
#include "elf/sh.h"
|
|
/* Register numbers shared with the simulator. */
|
|
#include "gdb/sim-sh.h"
|
|
#include "language.h"
|
|
#include "sh64-tdep.h"
|
|
|
|
/* Information that is dependent on the processor variant. */
|
|
enum sh_abi
|
|
{
|
|
SH_ABI_UNKNOWN,
|
|
SH_ABI_32,
|
|
SH_ABI_64
|
|
};
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
enum sh_abi sh_abi;
|
|
};
|
|
|
|
struct sh64_frame_cache
|
|
{
|
|
/* Base address. */
|
|
CORE_ADDR base;
|
|
LONGEST sp_offset;
|
|
CORE_ADDR pc;
|
|
|
|
/* Flag showing that a frame has been created in the prologue code. */
|
|
int uses_fp;
|
|
|
|
int media_mode;
|
|
|
|
/* Saved registers. */
|
|
CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
|
|
CORE_ADDR saved_sp;
|
|
};
|
|
|
|
/* Registers of SH5 */
|
|
enum
|
|
{
|
|
R0_REGNUM = 0,
|
|
DEFAULT_RETURN_REGNUM = 2,
|
|
STRUCT_RETURN_REGNUM = 2,
|
|
ARG0_REGNUM = 2,
|
|
ARGLAST_REGNUM = 9,
|
|
FLOAT_ARGLAST_REGNUM = 11,
|
|
MEDIA_FP_REGNUM = 14,
|
|
PR_REGNUM = 18,
|
|
SR_REGNUM = 65,
|
|
DR0_REGNUM = 141,
|
|
DR_LAST_REGNUM = 172,
|
|
/* FPP stands for Floating Point Pair, to avoid confusion with
|
|
GDB's gdbarch_fp0_regnum, which is the number of the first Floating
|
|
point register. Unfortunately on the sh5, the floating point
|
|
registers are called FR, and the floating point pairs are called FP. */
|
|
FPP0_REGNUM = 173,
|
|
FPP_LAST_REGNUM = 204,
|
|
FV0_REGNUM = 205,
|
|
FV_LAST_REGNUM = 220,
|
|
R0_C_REGNUM = 221,
|
|
R_LAST_C_REGNUM = 236,
|
|
PC_C_REGNUM = 237,
|
|
GBR_C_REGNUM = 238,
|
|
MACH_C_REGNUM = 239,
|
|
MACL_C_REGNUM = 240,
|
|
PR_C_REGNUM = 241,
|
|
T_C_REGNUM = 242,
|
|
FPSCR_C_REGNUM = 243,
|
|
FPUL_C_REGNUM = 244,
|
|
FP0_C_REGNUM = 245,
|
|
FP_LAST_C_REGNUM = 260,
|
|
DR0_C_REGNUM = 261,
|
|
DR_LAST_C_REGNUM = 268,
|
|
FV0_C_REGNUM = 269,
|
|
FV_LAST_C_REGNUM = 272,
|
|
FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
|
|
SSR_REGNUM = SIM_SH64_SSR_REGNUM,
|
|
SPC_REGNUM = SIM_SH64_SPC_REGNUM,
|
|
TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
|
|
FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
|
|
};
|
|
|
|
static const char *
|
|
sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
/* SH MEDIA MODE (ISA 32) */
|
|
/* general registers (64-bit) 0-63 */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
|
|
|
/* pc (64-bit) 64 */
|
|
"pc",
|
|
|
|
/* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
|
|
"sr", "ssr", "spc",
|
|
|
|
/* target registers (64-bit) 68-75 */
|
|
"tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
|
|
|
|
/* floating point state control register (32-bit) 76 */
|
|
"fpscr",
|
|
|
|
/* single precision floating point registers (32-bit) 77-140 */
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
|
|
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
|
|
"fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
|
|
"fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
|
|
"fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
|
|
"fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
|
|
|
|
/* double precision registers (pseudo) 141-172 */
|
|
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
|
"dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
|
|
"dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
|
|
"dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
|
|
|
|
/* floating point pairs (pseudo) 173-204 */
|
|
"fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
|
|
"fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
|
|
"fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
|
|
"fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
|
|
|
|
/* floating point vectors (4 floating point regs) (pseudo) 205-220 */
|
|
"fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
|
|
"fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
|
|
|
|
/* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
|
|
"r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
|
|
"r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
|
|
"pc_c",
|
|
"gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
|
|
"fpscr_c", "fpul_c",
|
|
"fr0_c", "fr1_c", "fr2_c", "fr3_c",
|
|
"fr4_c", "fr5_c", "fr6_c", "fr7_c",
|
|
"fr8_c", "fr9_c", "fr10_c", "fr11_c",
|
|
"fr12_c", "fr13_c", "fr14_c", "fr15_c",
|
|
"dr0_c", "dr2_c", "dr4_c", "dr6_c",
|
|
"dr8_c", "dr10_c", "dr12_c", "dr14_c",
|
|
"fv0_c", "fv4_c", "fv8_c", "fv12_c",
|
|
/* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
|
|
};
|
|
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
#define NUM_PSEUDO_REGS_SH_MEDIA 80
|
|
#define NUM_PSEUDO_REGS_SH_COMPACT 51
|
|
|
|
/* Macros and functions for setting and testing a bit in a minimal
|
|
symbol that marks it as 32-bit function. The MSB of the minimal
|
|
symbol's "info" field is used for this purpose.
|
|
|
|
gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
|
|
i.e. refers to a 32-bit function, and sets a "special" bit in a
|
|
minimal symbol to mark it as a 32-bit function
|
|
MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
|
|
|
|
#define MSYMBOL_IS_SPECIAL(msym) \
|
|
MSYMBOL_TARGET_FLAG_1 (msym)
|
|
|
|
static void
|
|
sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
|
|
{
|
|
if (msym == NULL)
|
|
return;
|
|
|
|
if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
|
|
{
|
|
MSYMBOL_TARGET_FLAG_1 (msym) = 1;
|
|
SYMBOL_VALUE_ADDRESS (msym) |= 1;
|
|
}
|
|
}
|
|
|
|
/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
|
|
are some macros to test, set, or clear bit 0 of addresses. */
|
|
#define IS_ISA32_ADDR(addr) ((addr) & 1)
|
|
#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
|
|
#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
|
|
|
|
static int
|
|
pc_is_isa32 (bfd_vma memaddr)
|
|
{
|
|
struct minimal_symbol *sym;
|
|
|
|
/* If bit 0 of the address is set, assume this is a
|
|
ISA32 (shmedia) address. */
|
|
if (IS_ISA32_ADDR (memaddr))
|
|
return 1;
|
|
|
|
/* A flag indicating that this is a ISA32 function is stored by elfread.c in
|
|
the high bit of the info field. Use this to decide if the function is
|
|
ISA16 or ISA32. */
|
|
sym = lookup_minimal_symbol_by_pc (memaddr);
|
|
if (sym)
|
|
return MSYMBOL_IS_SPECIAL (sym);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static const unsigned char *
|
|
sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
|
|
CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
/* The BRK instruction for shmedia is
|
|
01101111 11110101 11111111 11110000
|
|
which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
|
|
and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
|
|
|
|
/* The BRK instruction for shcompact is
|
|
00000000 00111011
|
|
which translates in big endian mode to 0x0, 0x3b
|
|
and in little endian mode to 0x3b, 0x0 */
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if (pc_is_isa32 (*pcptr))
|
|
{
|
|
static unsigned char big_breakpoint_media[] = {
|
|
0x6f, 0xf5, 0xff, 0xf0
|
|
};
|
|
*pcptr = UNMAKE_ISA32_ADDR (*pcptr);
|
|
*lenptr = sizeof (big_breakpoint_media);
|
|
return big_breakpoint_media;
|
|
}
|
|
else
|
|
{
|
|
static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
|
|
*lenptr = sizeof (big_breakpoint_compact);
|
|
return big_breakpoint_compact;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (pc_is_isa32 (*pcptr))
|
|
{
|
|
static unsigned char little_breakpoint_media[] = {
|
|
0xf0, 0xff, 0xf5, 0x6f
|
|
};
|
|
*pcptr = UNMAKE_ISA32_ADDR (*pcptr);
|
|
*lenptr = sizeof (little_breakpoint_media);
|
|
return little_breakpoint_media;
|
|
}
|
|
else
|
|
{
|
|
static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
|
|
*lenptr = sizeof (little_breakpoint_compact);
|
|
return little_breakpoint_compact;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Prologue looks like
|
|
[mov.l <regs>,@-r15]...
|
|
[sts.l pr,@-r15]
|
|
[mov.l r14,@-r15]
|
|
[mov r15,r14]
|
|
|
|
Actually it can be more complicated than this. For instance, with
|
|
newer gcc's:
|
|
|
|
mov.l r14,@-r15
|
|
add #-12,r15
|
|
mov r15,r14
|
|
mov r4,r1
|
|
mov r5,r2
|
|
mov.l r6,@(4,r14)
|
|
mov.l r7,@(8,r14)
|
|
mov.b r1,@r14
|
|
mov r14,r1
|
|
mov r14,r1
|
|
add #2,r1
|
|
mov.w r2,@r1
|
|
|
|
*/
|
|
|
|
/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
|
|
with l=1 and n = 18 0110101111110001010010100aaa0000 */
|
|
#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
|
|
|
|
/* STS.L PR,@-r0 0100000000100010
|
|
r0-4-->r0, PR-->(r0) */
|
|
#define IS_STS_R0(x) ((x) == 0x4022)
|
|
|
|
/* STS PR, Rm 0000mmmm00101010
|
|
PR-->Rm */
|
|
#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
|
|
|
|
/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
|
|
Rm-->(dispx4+r15) */
|
|
#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
|
|
|
|
/* MOV.L R14,@(disp,r15) 000111111110dddd
|
|
R14-->(dispx4+r15) */
|
|
#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
|
|
|
|
/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
|
|
R18-->(dispx8+R14) */
|
|
#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
|
|
|
|
/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
|
|
R18-->(dispx8+R15) */
|
|
#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
|
|
|
|
/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
|
|
R18-->(dispx4+R15) */
|
|
#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
|
|
|
|
/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
|
|
R14-->(dispx8+R15) */
|
|
#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
|
|
|
|
/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
|
|
R14-->(dispx4+R15) */
|
|
#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
|
|
|
|
/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
|
|
R15 + imm --> R15 */
|
|
#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
|
|
|
|
/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
|
|
R15 + imm --> R15 */
|
|
#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
|
|
|
|
/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
|
|
R15 + R63 --> R14 */
|
|
#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
|
|
|
|
/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
|
|
R15 + R63 --> R14 */
|
|
#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
|
|
|
|
#define IS_MOV_SP_FP_MEDIA(x) \
|
|
(IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
|
|
|
|
/* MOV #imm, R0 1110 0000 ssss ssss
|
|
#imm-->R0 */
|
|
#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
|
|
|
|
/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
|
|
#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
|
|
|
|
/* ADD r15,r0 0011 0000 1111 1100
|
|
r15+r0-->r0 */
|
|
#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
|
|
|
|
/* MOV.L R14 @-R0 0010 0000 1110 0110
|
|
R14-->(R0-4), R0-4-->R0 */
|
|
#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
|
|
|
|
/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
|
|
where Rm is one of r2-r9 which are the argument registers. */
|
|
/* FIXME: Recognize the float and double register moves too! */
|
|
#define IS_MEDIA_IND_ARG_MOV(x) \
|
|
((((x) & 0xfc0ffc0f) == 0x0009fc00) \
|
|
&& (((x) & 0x03f00000) >= 0x00200000 \
|
|
&& ((x) & 0x03f00000) <= 0x00900000))
|
|
|
|
/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
|
|
or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
|
|
where Rm is one of r2-r9 which are the argument registers. */
|
|
#define IS_MEDIA_ARG_MOV(x) \
|
|
(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
|
|
&& (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
|
|
|
|
/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
|
|
/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
|
|
/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
|
|
/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
|
|
/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
|
|
#define IS_MEDIA_MOV_TO_R14(x) \
|
|
((((x) & 0xfffffc0f) == 0xa0e00000) \
|
|
|| (((x) & 0xfffffc0f) == 0xa4e00000) \
|
|
|| (((x) & 0xfffffc0f) == 0xa8e00000) \
|
|
|| (((x) & 0xfffffc0f) == 0xb4e00000) \
|
|
|| (((x) & 0xfffffc0f) == 0xbce00000))
|
|
|
|
/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
|
|
where Rm is r2-r9 */
|
|
#define IS_COMPACT_IND_ARG_MOV(x) \
|
|
((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
|
|
&& (((x) & 0x00f0) <= 0x0090))
|
|
|
|
/* compact direct arg move!
|
|
MOV.L Rn, @r14 0010 1110 mmmm 0010 */
|
|
#define IS_COMPACT_ARG_MOV(x) \
|
|
(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
|
|
&& ((x) & 0x00f0) <= 0x0090))
|
|
|
|
/* MOV.B Rm, @R14 0010 1110 mmmm 0000
|
|
MOV.W Rm, @R14 0010 1110 mmmm 0001 */
|
|
#define IS_COMPACT_MOV_TO_R14(x) \
|
|
((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
|
|
|
|
#define IS_JSR_R0(x) ((x) == 0x400b)
|
|
#define IS_NOP(x) ((x) == 0x0009)
|
|
|
|
|
|
/* MOV r15,r14 0110111011110011
|
|
r15-->r14 */
|
|
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
|
|
|
/* ADD #imm,r15 01111111iiiiiiii
|
|
r15+imm-->r15 */
|
|
#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
|
|
|
|
/* Skip any prologue before the guts of a function. */
|
|
|
|
/* Skip the prologue using the debug information. If this fails we'll
|
|
fall back on the 'guess' method below. */
|
|
static CORE_ADDR
|
|
after_prologue (CORE_ADDR pc)
|
|
{
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
/* If we can not find the symbol in the partial symbol table, then
|
|
there is no hope we can determine the function's start address
|
|
with this code. */
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
return 0;
|
|
|
|
|
|
/* Get the line associated with FUNC_ADDR. */
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
/* There are only two cases to consider. First, the end of the source line
|
|
is within the function bounds. In that case we return the end of the
|
|
source line. Second is the end of the source line extends beyond the
|
|
bounds of the current function. We need to use the slow code to
|
|
examine instructions in that case. */
|
|
if (sal.end < func_end)
|
|
return sal.end;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
look_for_args_moves (struct gdbarch *gdbarch,
|
|
CORE_ADDR start_pc, int media_mode)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR here, end;
|
|
int w;
|
|
int insn_size = (media_mode ? 4 : 2);
|
|
|
|
for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
|
|
{
|
|
if (media_mode)
|
|
{
|
|
w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
|
|
insn_size, byte_order);
|
|
here += insn_size;
|
|
if (IS_MEDIA_IND_ARG_MOV (w))
|
|
{
|
|
/* This must be followed by a store to r14, so the argument
|
|
is where the debug info says it is. This can happen after
|
|
the SP has been saved, unfortunately. */
|
|
|
|
int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
|
|
insn_size, byte_order);
|
|
here += insn_size;
|
|
if (IS_MEDIA_MOV_TO_R14 (next_insn))
|
|
start_pc = here;
|
|
}
|
|
else if (IS_MEDIA_ARG_MOV (w))
|
|
{
|
|
/* These instructions store directly the argument in r14. */
|
|
start_pc = here;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
w = read_memory_integer (here, insn_size, byte_order);
|
|
w = w & 0xffff;
|
|
here += insn_size;
|
|
if (IS_COMPACT_IND_ARG_MOV (w))
|
|
{
|
|
/* This must be followed by a store to r14, so the argument
|
|
is where the debug info says it is. This can happen after
|
|
the SP has been saved, unfortunately. */
|
|
|
|
int next_insn = 0xffff & read_memory_integer (here, insn_size,
|
|
byte_order);
|
|
here += insn_size;
|
|
if (IS_COMPACT_MOV_TO_R14 (next_insn))
|
|
start_pc = here;
|
|
}
|
|
else if (IS_COMPACT_ARG_MOV (w))
|
|
{
|
|
/* These instructions store directly the argument in r14. */
|
|
start_pc = here;
|
|
}
|
|
else if (IS_MOVL_R0 (w))
|
|
{
|
|
/* There is a function that gcc calls to get the arguments
|
|
passed correctly to the function. Only after this
|
|
function call the arguments will be found at the place
|
|
where they are supposed to be. This happens in case the
|
|
argument has to be stored into a 64-bit register (for
|
|
instance doubles, long longs). SHcompact doesn't have
|
|
access to the full 64-bits, so we store the register in
|
|
stack slot and store the address of the stack slot in
|
|
the register, then do a call through a wrapper that
|
|
loads the memory value into the register. A SHcompact
|
|
callee calls an argument decoder
|
|
(GCC_shcompact_incoming_args) that stores the 64-bit
|
|
value in a stack slot and stores the address of the
|
|
stack slot in the register. GCC thinks the argument is
|
|
just passed by transparent reference, but this is only
|
|
true after the argument decoder is called. Such a call
|
|
needs to be considered part of the prologue. */
|
|
|
|
/* This must be followed by a JSR @r0 instruction and by
|
|
a NOP instruction. After these, the prologue is over! */
|
|
|
|
int next_insn = 0xffff & read_memory_integer (here, insn_size,
|
|
byte_order);
|
|
here += insn_size;
|
|
if (IS_JSR_R0 (next_insn))
|
|
{
|
|
next_insn = 0xffff & read_memory_integer (here, insn_size,
|
|
byte_order);
|
|
here += insn_size;
|
|
|
|
if (IS_NOP (next_insn))
|
|
start_pc = here;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR here, end;
|
|
int updated_fp = 0;
|
|
int insn_size = 4;
|
|
int media_mode = 1;
|
|
|
|
if (!start_pc)
|
|
return 0;
|
|
|
|
if (pc_is_isa32 (start_pc) == 0)
|
|
{
|
|
insn_size = 2;
|
|
media_mode = 0;
|
|
}
|
|
|
|
for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
|
|
{
|
|
|
|
if (media_mode)
|
|
{
|
|
int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
|
|
insn_size, byte_order);
|
|
here += insn_size;
|
|
if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
|
|
|| IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
|
|
|| IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
|
|
|| IS_PTABSL_R18 (w))
|
|
{
|
|
start_pc = here;
|
|
}
|
|
else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
|
|
{
|
|
start_pc = here;
|
|
updated_fp = 1;
|
|
}
|
|
else
|
|
if (updated_fp)
|
|
{
|
|
/* Don't bail out yet, we may have arguments stored in
|
|
registers here, according to the debug info, so that
|
|
gdb can print the frames correctly. */
|
|
start_pc = look_for_args_moves (gdbarch,
|
|
here - insn_size, media_mode);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
|
|
here += insn_size;
|
|
|
|
if (IS_STS_R0 (w) || IS_STS_PR (w)
|
|
|| IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
|
|
|| IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
|
|
{
|
|
start_pc = here;
|
|
}
|
|
else if (IS_MOV_SP_FP (w))
|
|
{
|
|
start_pc = here;
|
|
updated_fp = 1;
|
|
}
|
|
else
|
|
if (updated_fp)
|
|
{
|
|
/* Don't bail out yet, we may have arguments stored in
|
|
registers here, according to the debug info, so that
|
|
gdb can print the frames correctly. */
|
|
start_pc = look_for_args_moves (gdbarch,
|
|
here - insn_size, media_mode);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR post_prologue_pc;
|
|
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
post_prologue_pc = after_prologue (pc);
|
|
|
|
/* If after_prologue returned a useful address, then use it. Else
|
|
fall back on the instruction skipping code. */
|
|
if (post_prologue_pc != 0)
|
|
return max (pc, post_prologue_pc);
|
|
else
|
|
return sh64_skip_prologue_hard_way (gdbarch, pc);
|
|
}
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
static int
|
|
sh64_use_struct_convention (struct type *type)
|
|
{
|
|
return (TYPE_LENGTH (type) > 8);
|
|
}
|
|
|
|
/* For vectors of 4 floating point registers. */
|
|
static int
|
|
sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
|
|
return fp_regnum;
|
|
}
|
|
|
|
/* For double precision floating point registers, i.e 2 fp regs. */
|
|
static int
|
|
sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
|
|
return fp_regnum;
|
|
}
|
|
|
|
/* For pairs of floating point registers. */
|
|
static int
|
|
sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
|
|
return fp_regnum;
|
|
}
|
|
|
|
/* *INDENT-OFF* */
|
|
/*
|
|
SH COMPACT MODE (ISA 16) (all pseudo) 221-272
|
|
GDB_REGNUM BASE_REGNUM
|
|
r0_c 221 0
|
|
r1_c 222 1
|
|
r2_c 223 2
|
|
r3_c 224 3
|
|
r4_c 225 4
|
|
r5_c 226 5
|
|
r6_c 227 6
|
|
r7_c 228 7
|
|
r8_c 229 8
|
|
r9_c 230 9
|
|
r10_c 231 10
|
|
r11_c 232 11
|
|
r12_c 233 12
|
|
r13_c 234 13
|
|
r14_c 235 14
|
|
r15_c 236 15
|
|
|
|
pc_c 237 64
|
|
gbr_c 238 16
|
|
mach_c 239 17
|
|
macl_c 240 17
|
|
pr_c 241 18
|
|
t_c 242 19
|
|
fpscr_c 243 76
|
|
fpul_c 244 109
|
|
|
|
fr0_c 245 77
|
|
fr1_c 246 78
|
|
fr2_c 247 79
|
|
fr3_c 248 80
|
|
fr4_c 249 81
|
|
fr5_c 250 82
|
|
fr6_c 251 83
|
|
fr7_c 252 84
|
|
fr8_c 253 85
|
|
fr9_c 254 86
|
|
fr10_c 255 87
|
|
fr11_c 256 88
|
|
fr12_c 257 89
|
|
fr13_c 258 90
|
|
fr14_c 259 91
|
|
fr15_c 260 92
|
|
|
|
dr0_c 261 77
|
|
dr2_c 262 79
|
|
dr4_c 263 81
|
|
dr6_c 264 83
|
|
dr8_c 265 85
|
|
dr10_c 266 87
|
|
dr12_c 267 89
|
|
dr14_c 268 91
|
|
|
|
fv0_c 269 77
|
|
fv4_c 270 81
|
|
fv8_c 271 85
|
|
fv12_c 272 91
|
|
*/
|
|
/* *INDENT-ON* */
|
|
static int
|
|
sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
int base_regnum = reg_nr;
|
|
|
|
/* general register N maps to general register N */
|
|
if (reg_nr >= R0_C_REGNUM
|
|
&& reg_nr <= R_LAST_C_REGNUM)
|
|
base_regnum = reg_nr - R0_C_REGNUM;
|
|
|
|
/* floating point register N maps to floating point register N */
|
|
else if (reg_nr >= FP0_C_REGNUM
|
|
&& reg_nr <= FP_LAST_C_REGNUM)
|
|
base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
|
|
|
|
/* double prec register N maps to base regnum for double prec register N */
|
|
else if (reg_nr >= DR0_C_REGNUM
|
|
&& reg_nr <= DR_LAST_C_REGNUM)
|
|
base_regnum = sh64_dr_reg_base_num (gdbarch,
|
|
DR0_REGNUM + reg_nr - DR0_C_REGNUM);
|
|
|
|
/* vector N maps to base regnum for vector register N */
|
|
else if (reg_nr >= FV0_C_REGNUM
|
|
&& reg_nr <= FV_LAST_C_REGNUM)
|
|
base_regnum = sh64_fv_reg_base_num (gdbarch,
|
|
FV0_REGNUM + reg_nr - FV0_C_REGNUM);
|
|
|
|
else if (reg_nr == PC_C_REGNUM)
|
|
base_regnum = gdbarch_pc_regnum (gdbarch);
|
|
|
|
else if (reg_nr == GBR_C_REGNUM)
|
|
base_regnum = 16;
|
|
|
|
else if (reg_nr == MACH_C_REGNUM
|
|
|| reg_nr == MACL_C_REGNUM)
|
|
base_regnum = 17;
|
|
|
|
else if (reg_nr == PR_C_REGNUM)
|
|
base_regnum = PR_REGNUM;
|
|
|
|
else if (reg_nr == T_C_REGNUM)
|
|
base_regnum = 19;
|
|
|
|
else if (reg_nr == FPSCR_C_REGNUM)
|
|
base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
|
|
|
|
else if (reg_nr == FPUL_C_REGNUM)
|
|
base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
|
|
|
|
return base_regnum;
|
|
}
|
|
|
|
static int
|
|
sign_extend (int value, int bits)
|
|
{
|
|
value = value & ((1 << bits) - 1);
|
|
return (value & (1 << (bits - 1))
|
|
? value | (~((1 << bits) - 1))
|
|
: value);
|
|
}
|
|
|
|
static void
|
|
sh64_analyze_prologue (struct gdbarch *gdbarch,
|
|
struct sh64_frame_cache *cache,
|
|
CORE_ADDR func_pc,
|
|
CORE_ADDR current_pc)
|
|
{
|
|
int pc;
|
|
int opc;
|
|
int insn;
|
|
int r0_val = 0;
|
|
int insn_size;
|
|
int gdb_register_number;
|
|
int register_number;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
cache->sp_offset = 0;
|
|
|
|
/* Loop around examining the prologue insns until we find something
|
|
that does not appear to be part of the prologue. But give up
|
|
after 20 of them, since we're getting silly then. */
|
|
|
|
pc = func_pc;
|
|
|
|
if (cache->media_mode)
|
|
insn_size = 4;
|
|
else
|
|
insn_size = 2;
|
|
|
|
opc = pc + (insn_size * 28);
|
|
if (opc > current_pc)
|
|
opc = current_pc;
|
|
for ( ; pc <= opc; pc += insn_size)
|
|
{
|
|
insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
|
|
: pc,
|
|
insn_size, byte_order);
|
|
|
|
if (!cache->media_mode)
|
|
{
|
|
if (IS_STS_PR (insn))
|
|
{
|
|
int next_insn = read_memory_integer (pc + insn_size,
|
|
insn_size, byte_order);
|
|
if (IS_MOV_TO_R15 (next_insn))
|
|
{
|
|
cache->saved_regs[PR_REGNUM]
|
|
= cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
|
|
- 0x8) << 2);
|
|
pc += insn_size;
|
|
}
|
|
}
|
|
|
|
else if (IS_MOV_R14 (insn))
|
|
cache->saved_regs[MEDIA_FP_REGNUM] =
|
|
cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
|
|
|
|
else if (IS_MOV_R0 (insn))
|
|
{
|
|
/* Put in R0 the offset from SP at which to store some
|
|
registers. We are interested in this value, because it
|
|
will tell us where the given registers are stored within
|
|
the frame. */
|
|
r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
|
}
|
|
|
|
else if (IS_ADD_SP_R0 (insn))
|
|
{
|
|
/* This instruction still prepares r0, but we don't care.
|
|
We already have the offset in r0_val. */
|
|
}
|
|
|
|
else if (IS_STS_R0 (insn))
|
|
{
|
|
/* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
|
|
cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
|
|
r0_val -= 4;
|
|
}
|
|
|
|
else if (IS_MOV_R14_R0 (insn))
|
|
{
|
|
/* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
|
|
cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
|
|
- (r0_val - 4);
|
|
r0_val -= 4;
|
|
}
|
|
|
|
else if (IS_ADD_SP (insn))
|
|
cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
|
|
|
|
else if (IS_MOV_SP_FP (insn))
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
|
|
cache->sp_offset -=
|
|
sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
|
|
|
|
else if (IS_STQ_R18_R15 (insn))
|
|
cache->saved_regs[PR_REGNUM]
|
|
= cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
|
|
9) << 3);
|
|
|
|
else if (IS_STL_R18_R15 (insn))
|
|
cache->saved_regs[PR_REGNUM]
|
|
= cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
|
|
9) << 2);
|
|
|
|
else if (IS_STQ_R14_R15 (insn))
|
|
cache->saved_regs[MEDIA_FP_REGNUM]
|
|
= cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
|
|
9) << 3);
|
|
|
|
else if (IS_STL_R14_R15 (insn))
|
|
cache->saved_regs[MEDIA_FP_REGNUM]
|
|
= cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
|
|
9) << 2);
|
|
|
|
else if (IS_MOV_SP_FP_MEDIA (insn))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
|
|
cache->uses_fp = 1;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
|
|
{
|
|
return sp & ~7;
|
|
}
|
|
|
|
/* Function: push_dummy_call
|
|
Setup the function arguments for calling a function in the inferior.
|
|
|
|
On the Renesas SH architecture, there are four registers (R4 to R7)
|
|
which are dedicated for passing function arguments. Up to the first
|
|
four arguments (depending on size) may go into these registers.
|
|
The rest go on the stack.
|
|
|
|
Arguments that are smaller than 4 bytes will still take up a whole
|
|
register or a whole 32-bit word on the stack, and will be
|
|
right-justified in the register or the stack word. This includes
|
|
chars, shorts, and small aggregate types.
|
|
|
|
Arguments that are larger than 4 bytes may be split between two or
|
|
more registers. If there are not enough registers free, an argument
|
|
may be passed partly in a register (or registers), and partly on the
|
|
stack. This includes doubles, long longs, and larger aggregates.
|
|
As far as I know, there is no upper limit to the size of aggregates
|
|
that will be passed in this way; in other words, the convention of
|
|
passing a pointer to a large aggregate instead of a copy is not used.
|
|
|
|
An exceptional case exists for struct arguments (and possibly other
|
|
aggregates such as arrays) if the size is larger than 4 bytes but
|
|
not a multiple of 4 bytes. In this case the argument is never split
|
|
between the registers and the stack, but instead is copied in its
|
|
entirety onto the stack, AND also copied into as many registers as
|
|
there is room for. In other words, space in registers permitting,
|
|
two copies of the same argument are passed in. As far as I can tell,
|
|
only the one on the stack is used, although that may be a function
|
|
of the level of compiler optimization. I suspect this is a compiler
|
|
bug. Arguments of these odd sizes are left-justified within the
|
|
word (as opposed to arguments smaller than 4 bytes, which are
|
|
right-justified).
|
|
|
|
If the function is to return an aggregate type such as a struct, it
|
|
is either returned in the normal return value register R0 (if its
|
|
size is no greater than one byte), or else the caller must allocate
|
|
space into which the callee will copy the return value (if the size
|
|
is greater than one byte). In this case, a pointer to the return
|
|
value location is passed into the callee in register R2, which does
|
|
not displace any of the other arguments passed in via registers R4
|
|
to R7. */
|
|
|
|
/* R2-R9 for integer types and integer equivalent (char, pointers) and
|
|
non-scalar (struct, union) elements (even if the elements are
|
|
floats).
|
|
FR0-FR11 for single precision floating point (float)
|
|
DR0-DR10 for double precision floating point (double)
|
|
|
|
If a float is argument number 3 (for instance) and arguments number
|
|
1,2, and 4 are integer, the mapping will be:
|
|
arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
|
|
|
|
If a float is argument number 10 (for instance) and arguments number
|
|
1 through 10 are integer, the mapping will be:
|
|
arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
|
|
arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
|
|
arg11->stack(16,SP). I.e. there is hole in the stack.
|
|
|
|
Different rules apply for variable arguments functions, and for functions
|
|
for which the prototype is not known. */
|
|
|
|
static CORE_ADDR
|
|
sh64_push_dummy_call (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr,
|
|
int nargs, struct value **args,
|
|
CORE_ADDR sp, int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int stack_offset, stack_alloc;
|
|
int int_argreg;
|
|
int float_argreg;
|
|
int double_argreg;
|
|
int float_arg_index = 0;
|
|
int double_arg_index = 0;
|
|
int argnum;
|
|
struct type *type;
|
|
CORE_ADDR regval;
|
|
char *val;
|
|
char valbuf[8];
|
|
int len;
|
|
int argreg_size;
|
|
int fp_args[12];
|
|
|
|
memset (fp_args, 0, sizeof (fp_args));
|
|
|
|
/* First force sp to a 8-byte alignment. */
|
|
sp = sh64_frame_align (gdbarch, sp);
|
|
|
|
/* The "struct return pointer" pseudo-argument has its own dedicated
|
|
register. */
|
|
|
|
if (struct_return)
|
|
regcache_cooked_write_unsigned (regcache,
|
|
STRUCT_RETURN_REGNUM, struct_addr);
|
|
|
|
/* Now make sure there's space on the stack. */
|
|
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
|
stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
|
|
sp -= stack_alloc; /* Make room on stack for args. */
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 64 bytes
|
|
in eight registers available. Loop thru args from first to last. */
|
|
|
|
int_argreg = ARG0_REGNUM;
|
|
float_argreg = gdbarch_fp0_regnum (gdbarch);
|
|
double_argreg = DR0_REGNUM;
|
|
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = value_type (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
memset (valbuf, 0, sizeof (valbuf));
|
|
|
|
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
|
{
|
|
argreg_size = register_size (gdbarch, int_argreg);
|
|
|
|
if (len < argreg_size)
|
|
{
|
|
/* value gets right-justified in the register or stack word. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
memcpy (valbuf + argreg_size - len,
|
|
(char *) value_contents (args[argnum]), len);
|
|
else
|
|
memcpy (valbuf, (char *) value_contents (args[argnum]), len);
|
|
|
|
val = valbuf;
|
|
}
|
|
else
|
|
val = (char *) value_contents (args[argnum]);
|
|
|
|
while (len > 0)
|
|
{
|
|
if (int_argreg > ARGLAST_REGNUM)
|
|
{
|
|
/* Must go on the stack. */
|
|
write_memory (sp + stack_offset, (const bfd_byte *) val,
|
|
argreg_size);
|
|
stack_offset += 8;/*argreg_size;*/
|
|
}
|
|
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
|
That's because some *&^%$ things get passed on the stack
|
|
AND in the registers! */
|
|
if (int_argreg <= ARGLAST_REGNUM)
|
|
{
|
|
/* There's room in a register. */
|
|
regval = extract_unsigned_integer (val, argreg_size,
|
|
byte_order);
|
|
regcache_cooked_write_unsigned (regcache,
|
|
int_argreg, regval);
|
|
}
|
|
/* Store the value 8 bytes at a time. This means that
|
|
things larger than 8 bytes may go partly in registers
|
|
and partly on the stack. FIXME: argreg is incremented
|
|
before we use its size. */
|
|
len -= argreg_size;
|
|
val += argreg_size;
|
|
int_argreg++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
val = (char *) value_contents (args[argnum]);
|
|
if (len == 4)
|
|
{
|
|
/* Where is it going to be stored? */
|
|
while (fp_args[float_arg_index])
|
|
float_arg_index ++;
|
|
|
|
/* Now float_argreg points to the register where it
|
|
should be stored. Are we still within the allowed
|
|
register set? */
|
|
if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
|
|
{
|
|
/* Goes in FR0...FR11 */
|
|
regcache_cooked_write (regcache,
|
|
gdbarch_fp0_regnum (gdbarch)
|
|
+ float_arg_index,
|
|
val);
|
|
fp_args[float_arg_index] = 1;
|
|
/* Skip the corresponding general argument register. */
|
|
int_argreg ++;
|
|
}
|
|
else
|
|
{
|
|
/* Store it as the integers, 8 bytes at the time, if
|
|
necessary spilling on the stack. */
|
|
}
|
|
}
|
|
else if (len == 8)
|
|
{
|
|
/* Where is it going to be stored? */
|
|
while (fp_args[double_arg_index])
|
|
double_arg_index += 2;
|
|
/* Now double_argreg points to the register
|
|
where it should be stored.
|
|
Are we still within the allowed register set? */
|
|
if (double_arg_index < FLOAT_ARGLAST_REGNUM)
|
|
{
|
|
/* Goes in DR0...DR10 */
|
|
/* The numbering of the DRi registers is consecutive,
|
|
i.e. includes odd numbers. */
|
|
int double_register_offset = double_arg_index / 2;
|
|
int regnum = DR0_REGNUM + double_register_offset;
|
|
regcache_cooked_write (regcache, regnum, val);
|
|
fp_args[double_arg_index] = 1;
|
|
fp_args[double_arg_index + 1] = 1;
|
|
/* Skip the corresponding general argument register. */
|
|
int_argreg ++;
|
|
}
|
|
else
|
|
{
|
|
/* Store it as the integers, 8 bytes at the time, if
|
|
necessary spilling on the stack. */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Store return address. */
|
|
regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
|
|
|
|
/* Update stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache,
|
|
gdbarch_sp_regnum (gdbarch), sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* Find a function's return value in the appropriate registers (in
|
|
regbuf), and copy it into valbuf. Extract from an array REGBUF
|
|
containing the (raw) register state a function return value of type
|
|
TYPE, and copy that, in virtual format, into VALBUF. */
|
|
static void
|
|
sh64_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
if (len == 4)
|
|
{
|
|
/* Return value stored in gdbarch_fp0_regnum. */
|
|
regcache_raw_read (regcache,
|
|
gdbarch_fp0_regnum (gdbarch), valbuf);
|
|
}
|
|
else if (len == 8)
|
|
{
|
|
/* return value stored in DR0_REGNUM. */
|
|
DOUBLEST val;
|
|
gdb_byte buf[8];
|
|
|
|
regcache_cooked_read (regcache, DR0_REGNUM, buf);
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
|
buf, &val);
|
|
else
|
|
floatformat_to_doublest (&floatformat_ieee_double_big,
|
|
buf, &val);
|
|
store_typed_floating (valbuf, type, val);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (len <= 8)
|
|
{
|
|
int offset;
|
|
char buf[8];
|
|
/* Result is in register 2. If smaller than 8 bytes, it is padded
|
|
at the most significant end. */
|
|
regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
|
|
- len;
|
|
else
|
|
offset = 0;
|
|
memcpy (valbuf, buf + offset, len);
|
|
}
|
|
else
|
|
error (_("bad size for return value"));
|
|
}
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
If the architecture is sh4 or sh3e, store a function's return value
|
|
in the R0 general register or in the FP0 floating point register,
|
|
depending on the type of the return value. In all the other cases
|
|
the result is stored in r0, left-justified. */
|
|
|
|
static void
|
|
sh64_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
char buf[64]; /* more than enough... */
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
int i, regnum = gdbarch_fp0_regnum (gdbarch);
|
|
for (i = 0; i < len; i += 4)
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
regcache_raw_write (regcache, regnum++,
|
|
(char *) valbuf + len - 4 - i);
|
|
else
|
|
regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
|
|
}
|
|
else
|
|
{
|
|
int return_register = DEFAULT_RETURN_REGNUM;
|
|
int offset = 0;
|
|
|
|
if (len <= register_size (gdbarch, return_register))
|
|
{
|
|
/* Pad with zeros. */
|
|
memset (buf, 0, register_size (gdbarch, return_register));
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
offset = 0; /*register_size (gdbarch,
|
|
return_register) - len;*/
|
|
else
|
|
offset = register_size (gdbarch, return_register) - len;
|
|
|
|
memcpy (buf + offset, valbuf, len);
|
|
regcache_raw_write (regcache, return_register, buf);
|
|
}
|
|
else
|
|
regcache_raw_write (regcache, return_register, valbuf);
|
|
}
|
|
}
|
|
|
|
static enum return_value_convention
|
|
sh64_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if (sh64_use_struct_convention (type))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
if (writebuf)
|
|
sh64_store_return_value (type, regcache, writebuf);
|
|
else if (readbuf)
|
|
sh64_extract_return_value (type, regcache, readbuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* *INDENT-OFF* */
|
|
/*
|
|
SH MEDIA MODE (ISA 32)
|
|
general registers (64-bit) 0-63
|
|
0 r0, r1, r2, r3, r4, r5, r6, r7,
|
|
64 r8, r9, r10, r11, r12, r13, r14, r15,
|
|
128 r16, r17, r18, r19, r20, r21, r22, r23,
|
|
192 r24, r25, r26, r27, r28, r29, r30, r31,
|
|
256 r32, r33, r34, r35, r36, r37, r38, r39,
|
|
320 r40, r41, r42, r43, r44, r45, r46, r47,
|
|
384 r48, r49, r50, r51, r52, r53, r54, r55,
|
|
448 r56, r57, r58, r59, r60, r61, r62, r63,
|
|
|
|
pc (64-bit) 64
|
|
512 pc,
|
|
|
|
status reg., saved status reg., saved pc reg. (64-bit) 65-67
|
|
520 sr, ssr, spc,
|
|
|
|
target registers (64-bit) 68-75
|
|
544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
|
|
|
|
floating point state control register (32-bit) 76
|
|
608 fpscr,
|
|
|
|
single precision floating point registers (32-bit) 77-140
|
|
612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
|
|
644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
|
|
676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
|
|
708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
|
|
740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
|
|
772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
|
|
804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
|
|
836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
|
|
|
|
TOTAL SPACE FOR REGISTERS: 868 bytes
|
|
|
|
From here on they are all pseudo registers: no memory allocated.
|
|
REGISTER_BYTE returns the register byte for the base register.
|
|
|
|
double precision registers (pseudo) 141-172
|
|
dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
|
|
dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
|
|
dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
|
|
dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
|
|
|
|
floating point pairs (pseudo) 173-204
|
|
fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
|
|
fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
|
|
fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
|
|
fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
|
|
|
|
floating point vectors (4 floating point regs) (pseudo) 205-220
|
|
fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
|
|
fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
|
|
|
|
SH COMPACT MODE (ISA 16) (all pseudo) 221-272
|
|
r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
|
|
r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
|
|
pc_c,
|
|
gbr_c, mach_c, macl_c, pr_c, t_c,
|
|
fpscr_c, fpul_c,
|
|
fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
|
|
fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
|
|
dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
|
|
fv0_c, fv4_c, fv8_c, fv12_c
|
|
*/
|
|
|
|
static struct type *
|
|
sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
|
|
{
|
|
return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
|
|
0, high);
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register REG_NR. */
|
|
static struct type *
|
|
sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
|
|
&& reg_nr <= FP_LAST_REGNUM)
|
|
|| (reg_nr >= FP0_C_REGNUM
|
|
&& reg_nr <= FP_LAST_C_REGNUM))
|
|
return builtin_type (gdbarch)->builtin_float;
|
|
else if ((reg_nr >= DR0_REGNUM
|
|
&& reg_nr <= DR_LAST_REGNUM)
|
|
|| (reg_nr >= DR0_C_REGNUM
|
|
&& reg_nr <= DR_LAST_C_REGNUM))
|
|
return builtin_type (gdbarch)->builtin_double;
|
|
else if (reg_nr >= FPP0_REGNUM
|
|
&& reg_nr <= FPP_LAST_REGNUM)
|
|
return sh64_build_float_register_type (gdbarch, 1);
|
|
else if ((reg_nr >= FV0_REGNUM
|
|
&& reg_nr <= FV_LAST_REGNUM)
|
|
||(reg_nr >= FV0_C_REGNUM
|
|
&& reg_nr <= FV_LAST_C_REGNUM))
|
|
return sh64_build_float_register_type (gdbarch, 3);
|
|
else if (reg_nr == FPSCR_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_int;
|
|
else if (reg_nr >= R0_C_REGNUM
|
|
&& reg_nr < FP0_C_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_int;
|
|
else
|
|
return builtin_type (gdbarch)->builtin_long_long;
|
|
}
|
|
|
|
static void
|
|
sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
|
|
struct type *type, char *from, char *to)
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* It is a no-op. */
|
|
memcpy (to, from, register_size (gdbarch, regnum));
|
|
return;
|
|
}
|
|
|
|
if ((regnum >= DR0_REGNUM
|
|
&& regnum <= DR_LAST_REGNUM)
|
|
|| (regnum >= DR0_C_REGNUM
|
|
&& regnum <= DR_LAST_C_REGNUM))
|
|
{
|
|
DOUBLEST val;
|
|
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
|
from, &val);
|
|
store_typed_floating (to, type, val);
|
|
}
|
|
else
|
|
error (_("sh64_register_convert_to_virtual "
|
|
"called with non DR register number"));
|
|
}
|
|
|
|
static void
|
|
sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
|
|
int regnum, const void *from, void *to)
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* It is a no-op. */
|
|
memcpy (to, from, register_size (gdbarch, regnum));
|
|
return;
|
|
}
|
|
|
|
if ((regnum >= DR0_REGNUM
|
|
&& regnum <= DR_LAST_REGNUM)
|
|
|| (regnum >= DR0_C_REGNUM
|
|
&& regnum <= DR_LAST_C_REGNUM))
|
|
{
|
|
DOUBLEST val = extract_typed_floating (from, type);
|
|
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
|
&val, to);
|
|
}
|
|
else
|
|
error (_("sh64_register_convert_to_raw called "
|
|
"with non DR register number"));
|
|
}
|
|
|
|
/* Concatenate PORTIONS contiguous raw registers starting at
|
|
BASE_REGNUM into BUFFER. */
|
|
|
|
static enum register_status
|
|
pseudo_register_read_portions (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int portions,
|
|
int base_regnum, gdb_byte *buffer)
|
|
{
|
|
int portion;
|
|
|
|
for (portion = 0; portion < portions; portion++)
|
|
{
|
|
enum register_status status;
|
|
gdb_byte *b;
|
|
|
|
b = buffer + register_size (gdbarch, base_regnum) * portion;
|
|
status = regcache_raw_read (regcache, base_regnum + portion, b);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
}
|
|
|
|
return REG_VALID;
|
|
}
|
|
|
|
static enum register_status
|
|
sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg_nr, gdb_byte *buffer)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int base_regnum;
|
|
int offset = 0;
|
|
char temp_buffer[MAX_REGISTER_SIZE];
|
|
enum register_status status;
|
|
|
|
if (reg_nr >= DR0_REGNUM
|
|
&& reg_nr <= DR_LAST_REGNUM)
|
|
{
|
|
base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* DR regs are double precision registers obtained by
|
|
concatenating 2 single precision floating point registers. */
|
|
status = pseudo_register_read_portions (gdbarch, regcache,
|
|
2, base_regnum, temp_buffer);
|
|
if (status == REG_VALID)
|
|
{
|
|
/* We must pay attention to the endianness. */
|
|
sh64_register_convert_to_virtual (gdbarch, reg_nr,
|
|
register_type (gdbarch, reg_nr),
|
|
temp_buffer, buffer);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
else if (reg_nr >= FPP0_REGNUM
|
|
&& reg_nr <= FPP_LAST_REGNUM)
|
|
{
|
|
base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* FPP regs are pairs of single precision registers obtained by
|
|
concatenating 2 single precision floating point registers. */
|
|
return pseudo_register_read_portions (gdbarch, regcache,
|
|
2, base_regnum, buffer);
|
|
}
|
|
|
|
else if (reg_nr >= FV0_REGNUM
|
|
&& reg_nr <= FV_LAST_REGNUM)
|
|
{
|
|
base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* FV regs are vectors of single precision registers obtained by
|
|
concatenating 4 single precision floating point registers. */
|
|
return pseudo_register_read_portions (gdbarch, regcache,
|
|
4, base_regnum, buffer);
|
|
}
|
|
|
|
/* sh compact pseudo registers. 1-to-1 with a shmedia register. */
|
|
else if (reg_nr >= R0_C_REGNUM
|
|
&& reg_nr <= T_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
status = regcache_raw_read (regcache, base_regnum, temp_buffer);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 4;
|
|
memcpy (buffer,
|
|
temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
|
|
return REG_VALID;
|
|
}
|
|
|
|
else if (reg_nr >= FP0_C_REGNUM
|
|
&& reg_nr <= FP_LAST_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* Floating point registers map 1-1 to the media fp regs,
|
|
they have the same size and endianness. */
|
|
return regcache_raw_read (regcache, base_regnum, buffer);
|
|
}
|
|
|
|
else if (reg_nr >= DR0_C_REGNUM
|
|
&& reg_nr <= DR_LAST_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* DR_C regs are double precision registers obtained by
|
|
concatenating 2 single precision floating point registers. */
|
|
status = pseudo_register_read_portions (gdbarch, regcache,
|
|
2, base_regnum, temp_buffer);
|
|
if (status == REG_VALID)
|
|
{
|
|
/* We must pay attention to the endianness. */
|
|
sh64_register_convert_to_virtual (gdbarch, reg_nr,
|
|
register_type (gdbarch, reg_nr),
|
|
temp_buffer, buffer);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
else if (reg_nr >= FV0_C_REGNUM
|
|
&& reg_nr <= FV_LAST_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* FV_C regs are vectors of single precision registers obtained by
|
|
concatenating 4 single precision floating point registers. */
|
|
return pseudo_register_read_portions (gdbarch, regcache,
|
|
4, base_regnum, buffer);
|
|
}
|
|
|
|
else if (reg_nr == FPSCR_C_REGNUM)
|
|
{
|
|
int fpscr_base_regnum;
|
|
int sr_base_regnum;
|
|
unsigned int fpscr_value;
|
|
unsigned int sr_value;
|
|
unsigned int fpscr_c_value;
|
|
unsigned int fpscr_c_part1_value;
|
|
unsigned int fpscr_c_part2_value;
|
|
|
|
fpscr_base_regnum = FPSCR_REGNUM;
|
|
sr_base_regnum = SR_REGNUM;
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* FPSCR_C is a very weird register that contains sparse bits
|
|
from the FPSCR and the SR architectural registers.
|
|
Specifically: */
|
|
/* *INDENT-OFF* */
|
|
/*
|
|
FPSRC_C bit
|
|
0 Bit 0 of FPSCR
|
|
1 reserved
|
|
2-17 Bit 2-18 of FPSCR
|
|
18-20 Bits 12,13,14 of SR
|
|
21-31 reserved
|
|
*/
|
|
/* *INDENT-ON* */
|
|
/* Get FPSCR into a local buffer. */
|
|
status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
/* Get value as an int. */
|
|
fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
|
|
/* Get SR into a local buffer */
|
|
status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
/* Get value as an int. */
|
|
sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
|
|
/* Build the new value. */
|
|
fpscr_c_part1_value = fpscr_value & 0x3fffd;
|
|
fpscr_c_part2_value = (sr_value & 0x7000) << 6;
|
|
fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
|
|
/* Store that in out buffer!!! */
|
|
store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
|
|
/* FIXME There is surely an endianness gotcha here. */
|
|
|
|
return REG_VALID;
|
|
}
|
|
|
|
else if (reg_nr == FPUL_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* FPUL_C register is floating point register 32,
|
|
same size, same endianness. */
|
|
return regcache_raw_read (regcache, base_regnum, buffer);
|
|
}
|
|
else
|
|
gdb_assert_not_reached ("invalid pseudo register number");
|
|
}
|
|
|
|
static void
|
|
sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg_nr, const gdb_byte *buffer)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int base_regnum, portion;
|
|
int offset;
|
|
char temp_buffer[MAX_REGISTER_SIZE];
|
|
|
|
if (reg_nr >= DR0_REGNUM
|
|
&& reg_nr <= DR_LAST_REGNUM)
|
|
{
|
|
base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
|
|
/* We must pay attention to the endianness. */
|
|
sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
|
|
reg_nr,
|
|
buffer, temp_buffer);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 2; portion++)
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
(temp_buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
|
|
else if (reg_nr >= FPP0_REGNUM
|
|
&& reg_nr <= FPP_LAST_REGNUM)
|
|
{
|
|
base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 2; portion++)
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
((char *) buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
|
|
else if (reg_nr >= FV0_REGNUM
|
|
&& reg_nr <= FV_LAST_REGNUM)
|
|
{
|
|
base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 4; portion++)
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
((char *) buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
|
|
/* sh compact general pseudo registers. 1-to-1 with a shmedia
|
|
register but only 4 bytes of it. */
|
|
else if (reg_nr >= R0_C_REGNUM
|
|
&& reg_nr <= T_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
/* reg_nr is 32 bit here, and base_regnum is 64 bits. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 4;
|
|
else
|
|
offset = 0;
|
|
/* Let's read the value of the base register into a temporary
|
|
buffer, so that overwriting the last four bytes with the new
|
|
value of the pseudo will leave the upper 4 bytes unchanged. */
|
|
regcache_raw_read (regcache, base_regnum, temp_buffer);
|
|
/* Write as an 8 byte quantity. */
|
|
memcpy (temp_buffer + offset, buffer, 4);
|
|
regcache_raw_write (regcache, base_regnum, temp_buffer);
|
|
}
|
|
|
|
/* sh floating point compact pseudo registers. 1-to-1 with a shmedia
|
|
registers. Both are 4 bytes. */
|
|
else if (reg_nr >= FP0_C_REGNUM
|
|
&& reg_nr <= FP_LAST_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
regcache_raw_write (regcache, base_regnum, buffer);
|
|
}
|
|
|
|
else if (reg_nr >= DR0_C_REGNUM
|
|
&& reg_nr <= DR_LAST_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
for (portion = 0; portion < 2; portion++)
|
|
{
|
|
/* We must pay attention to the endianness. */
|
|
sh64_register_convert_to_raw (gdbarch,
|
|
register_type (gdbarch, reg_nr),
|
|
reg_nr,
|
|
buffer, temp_buffer);
|
|
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
(temp_buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
}
|
|
|
|
else if (reg_nr >= FV0_C_REGNUM
|
|
&& reg_nr <= FV_LAST_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
|
|
for (portion = 0; portion < 4; portion++)
|
|
{
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
((char *) buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
}
|
|
|
|
else if (reg_nr == FPSCR_C_REGNUM)
|
|
{
|
|
int fpscr_base_regnum;
|
|
int sr_base_regnum;
|
|
unsigned int fpscr_value;
|
|
unsigned int sr_value;
|
|
unsigned int old_fpscr_value;
|
|
unsigned int old_sr_value;
|
|
unsigned int fpscr_c_value;
|
|
unsigned int fpscr_mask;
|
|
unsigned int sr_mask;
|
|
|
|
fpscr_base_regnum = FPSCR_REGNUM;
|
|
sr_base_regnum = SR_REGNUM;
|
|
|
|
/* FPSCR_C is a very weird register that contains sparse bits
|
|
from the FPSCR and the SR architectural registers.
|
|
Specifically: */
|
|
/* *INDENT-OFF* */
|
|
/*
|
|
FPSRC_C bit
|
|
0 Bit 0 of FPSCR
|
|
1 reserved
|
|
2-17 Bit 2-18 of FPSCR
|
|
18-20 Bits 12,13,14 of SR
|
|
21-31 reserved
|
|
*/
|
|
/* *INDENT-ON* */
|
|
/* Get value as an int. */
|
|
fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
|
|
|
|
/* Build the new values. */
|
|
fpscr_mask = 0x0003fffd;
|
|
sr_mask = 0x001c0000;
|
|
|
|
fpscr_value = fpscr_c_value & fpscr_mask;
|
|
sr_value = (fpscr_value & sr_mask) >> 6;
|
|
|
|
regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
|
|
old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
|
|
old_fpscr_value &= 0xfffc0002;
|
|
fpscr_value |= old_fpscr_value;
|
|
store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
|
|
regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
|
|
|
|
regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
|
|
old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
|
|
old_sr_value &= 0xffff8fff;
|
|
sr_value |= old_sr_value;
|
|
store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
|
|
regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
|
|
}
|
|
|
|
else if (reg_nr == FPUL_C_REGNUM)
|
|
{
|
|
base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
|
|
regcache_raw_write (regcache, base_regnum, buffer);
|
|
}
|
|
}
|
|
|
|
/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
|
|
shmedia REGISTERS. */
|
|
/* Control registers, compact mode. */
|
|
static void
|
|
sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
|
|
int cr_c_regnum)
|
|
{
|
|
switch (cr_c_regnum)
|
|
{
|
|
case PC_C_REGNUM:
|
|
fprintf_filtered (file, "pc_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case GBR_C_REGNUM:
|
|
fprintf_filtered (file, "gbr_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case MACH_C_REGNUM:
|
|
fprintf_filtered (file, "mach_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case MACL_C_REGNUM:
|
|
fprintf_filtered (file, "macl_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case PR_C_REGNUM:
|
|
fprintf_filtered (file, "pr_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case T_C_REGNUM:
|
|
fprintf_filtered (file, "t_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case FPSCR_C_REGNUM:
|
|
fprintf_filtered (file, "fpscr_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
case FPUL_C_REGNUM:
|
|
fprintf_filtered (file, "fpul_c\t0x%08x\n",
|
|
(int) get_frame_register_unsigned (frame, cr_c_regnum));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum)
|
|
{ /* Do values for FP (float) regs. */
|
|
unsigned char *raw_buffer;
|
|
double flt; /* Double extracted from raw hex data. */
|
|
int inv;
|
|
int j;
|
|
|
|
/* Allocate space for the float. */
|
|
raw_buffer = (unsigned char *)
|
|
alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
|
|
|
|
/* Get the data in raw format. */
|
|
if (!frame_register_read (frame, regnum, raw_buffer))
|
|
error (_("can't read register %d (%s)"),
|
|
regnum, gdbarch_register_name (gdbarch, regnum));
|
|
|
|
/* Get the register as a number. */
|
|
flt = unpack_double (builtin_type (gdbarch)->builtin_float,
|
|
raw_buffer, &inv);
|
|
|
|
/* Print the name and some spaces. */
|
|
fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
|
(gdbarch, regnum)), file);
|
|
|
|
/* Print the value. */
|
|
if (inv)
|
|
fprintf_filtered (file, "<invalid float>");
|
|
else
|
|
fprintf_filtered (file, "%-10.9g", flt);
|
|
|
|
/* Print the fp register as hex. */
|
|
fprintf_filtered (file, "\t(raw 0x");
|
|
for (j = 0; j < register_size (gdbarch, regnum); j++)
|
|
{
|
|
int idx = gdbarch_byte_order (gdbarch)
|
|
== BFD_ENDIAN_BIG ? j : register_size
|
|
(gdbarch, regnum) - 1 - j;
|
|
fprintf_filtered (file, "%02x", raw_buffer[idx]);
|
|
}
|
|
fprintf_filtered (file, ")");
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
|
|
static void
|
|
sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum)
|
|
{
|
|
/* All the sh64-compact mode registers are pseudo registers. */
|
|
|
|
if (regnum < gdbarch_num_regs (gdbarch)
|
|
|| regnum >= gdbarch_num_regs (gdbarch)
|
|
+ NUM_PSEUDO_REGS_SH_MEDIA
|
|
+ NUM_PSEUDO_REGS_SH_COMPACT)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("Invalid pseudo register number %d\n"), regnum);
|
|
|
|
else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
|
|
{
|
|
int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
|
|
fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
|
|
}
|
|
|
|
else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
|
|
{
|
|
int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
|
|
fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
|
|
}
|
|
|
|
else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
|
|
{
|
|
int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
|
|
fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
|
regnum - FV0_REGNUM,
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
|
|
}
|
|
|
|
else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
|
|
{
|
|
int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
|
|
fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
|
regnum - FV0_C_REGNUM,
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
|
|
}
|
|
|
|
else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
|
|
{
|
|
int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
|
|
fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum),
|
|
(unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
|
|
}
|
|
|
|
else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
|
|
{
|
|
int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
|
|
fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
|
|
(unsigned) get_frame_register_unsigned (frame, c_regnum));
|
|
}
|
|
else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
|
|
/* This should work also for pseudoregs. */
|
|
sh64_do_fp_register (gdbarch, file, frame, regnum);
|
|
else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
|
|
sh64_do_cr_c_register_info (file, frame, regnum);
|
|
}
|
|
|
|
static void
|
|
sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum)
|
|
{
|
|
unsigned char raw_buffer[MAX_REGISTER_SIZE];
|
|
struct value_print_options opts;
|
|
|
|
fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
|
(gdbarch, regnum)), file);
|
|
|
|
/* Get the data in raw format. */
|
|
if (!frame_register_read (frame, regnum, raw_buffer))
|
|
fprintf_filtered (file, "*value not available*\n");
|
|
|
|
get_formatted_print_options (&opts, 'x');
|
|
opts.deref_ref = 1;
|
|
val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
|
|
file, 0, NULL, &opts, current_language);
|
|
fprintf_filtered (file, "\t");
|
|
get_formatted_print_options (&opts, 0);
|
|
opts.deref_ref = 1;
|
|
val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
|
|
file, 0, NULL, &opts, current_language);
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
|
|
static void
|
|
sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum)
|
|
{
|
|
if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("Invalid register number %d\n"), regnum);
|
|
|
|
else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
|
|
{
|
|
if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
|
|
sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
|
|
else
|
|
sh64_do_register (gdbarch, file, frame, regnum);
|
|
}
|
|
|
|
else if (regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
sh64_do_pseudo_register (gdbarch, file, frame, regnum);
|
|
}
|
|
|
|
static void
|
|
sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum,
|
|
int fpregs)
|
|
{
|
|
if (regnum != -1) /* Do one specified register. */
|
|
{
|
|
if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
|
error (_("Not a valid register for the current processor type"));
|
|
|
|
sh64_print_register (gdbarch, file, frame, regnum);
|
|
}
|
|
else
|
|
/* Do all (or most) registers. */
|
|
{
|
|
regnum = 0;
|
|
while (regnum < gdbarch_num_regs (gdbarch))
|
|
{
|
|
/* If the register name is empty, it is undefined for this
|
|
processor, so don't display anything. */
|
|
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
|
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
|
{
|
|
regnum++;
|
|
continue;
|
|
}
|
|
|
|
if (TYPE_CODE (register_type (gdbarch, regnum))
|
|
== TYPE_CODE_FLT)
|
|
{
|
|
if (fpregs)
|
|
{
|
|
/* true for "INFO ALL-REGISTERS" command. */
|
|
sh64_do_fp_register (gdbarch, file, frame, regnum);
|
|
regnum ++;
|
|
}
|
|
else
|
|
regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
|
|
/* skip FP regs */
|
|
}
|
|
else
|
|
{
|
|
sh64_do_register (gdbarch, file, frame, regnum);
|
|
regnum++;
|
|
}
|
|
}
|
|
|
|
if (fpregs)
|
|
while (regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
{
|
|
sh64_do_pseudo_register (gdbarch, file, frame, regnum);
|
|
regnum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh64_compact_print_registers_info (struct gdbarch *gdbarch,
|
|
struct ui_file *file,
|
|
struct frame_info *frame, int regnum,
|
|
int fpregs)
|
|
{
|
|
if (regnum != -1) /* Do one specified register. */
|
|
{
|
|
if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
|
error (_("Not a valid register for the current processor type"));
|
|
|
|
if (regnum >= 0 && regnum < R0_C_REGNUM)
|
|
error (_("Not a valid register for the current processor mode."));
|
|
|
|
sh64_print_register (gdbarch, file, frame, regnum);
|
|
}
|
|
else
|
|
/* Do all compact registers. */
|
|
{
|
|
regnum = R0_C_REGNUM;
|
|
while (regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
{
|
|
sh64_do_pseudo_register (gdbarch, file, frame, regnum);
|
|
regnum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum, int fpregs)
|
|
{
|
|
if (pc_is_isa32 (get_frame_pc (frame)))
|
|
sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
|
|
else
|
|
sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
|
|
}
|
|
|
|
static struct sh64_frame_cache *
|
|
sh64_alloc_frame_cache (void)
|
|
{
|
|
struct sh64_frame_cache *cache;
|
|
int i;
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
|
|
|
|
/* Base address. */
|
|
cache->base = 0;
|
|
cache->saved_sp = 0;
|
|
cache->sp_offset = 0;
|
|
cache->pc = 0;
|
|
|
|
/* Frameless until proven otherwise. */
|
|
cache->uses_fp = 0;
|
|
|
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
|
offset (that's where fp is supposed to be stored). */
|
|
for (i = 0; i < SIM_SH64_NR_REGS; i++)
|
|
{
|
|
cache->saved_regs[i] = -1;
|
|
}
|
|
|
|
return cache;
|
|
}
|
|
|
|
static struct sh64_frame_cache *
|
|
sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct sh64_frame_cache *cache;
|
|
CORE_ADDR current_pc;
|
|
int i;
|
|
|
|
if (*this_cache)
|
|
return *this_cache;
|
|
|
|
gdbarch = get_frame_arch (this_frame);
|
|
cache = sh64_alloc_frame_cache ();
|
|
*this_cache = cache;
|
|
|
|
current_pc = get_frame_pc (this_frame);
|
|
cache->media_mode = pc_is_isa32 (current_pc);
|
|
|
|
/* In principle, for normal frames, fp holds the frame pointer,
|
|
which holds the base address for the current stack frame.
|
|
However, for functions that don't need it, the frame pointer is
|
|
optional. For these "frameless" functions the frame pointer is
|
|
actually the frame pointer of the calling frame. */
|
|
cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
|
|
if (cache->base == 0)
|
|
return cache;
|
|
|
|
cache->pc = get_frame_func (this_frame);
|
|
if (cache->pc != 0)
|
|
sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
|
|
|
|
if (!cache->uses_fp)
|
|
{
|
|
/* We didn't find a valid frame, which means that CACHE->base
|
|
currently holds the frame pointer for our calling frame. If
|
|
we're at the start of a function, or somewhere half-way its
|
|
prologue, the function's frame probably hasn't been fully
|
|
setup yet. Try to reconstruct the base address for the stack
|
|
frame by looking at the stack pointer. For truly "frameless"
|
|
functions this might work too. */
|
|
cache->base = get_frame_register_unsigned
|
|
(this_frame, gdbarch_sp_regnum (gdbarch));
|
|
}
|
|
|
|
/* Now that we have the base address for the stack frame we can
|
|
calculate the value of sp in the calling frame. */
|
|
cache->saved_sp = cache->base + cache->sp_offset;
|
|
|
|
/* Adjust all the saved registers such that they contain addresses
|
|
instead of offsets. */
|
|
for (i = 0; i < SIM_SH64_NR_REGS; i++)
|
|
if (cache->saved_regs[i] != -1)
|
|
cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
|
|
|
|
return cache;
|
|
}
|
|
|
|
static struct value *
|
|
sh64_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
gdb_assert (regnum >= 0);
|
|
|
|
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
|
|
frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
|
|
|
/* The PC of the previous frame is stored in the PR register of
|
|
the current frame. Frob regnum so that we pull the value from
|
|
the correct place. */
|
|
if (regnum == gdbarch_pc_regnum (gdbarch))
|
|
regnum = PR_REGNUM;
|
|
|
|
if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
|
|
{
|
|
if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
|
|
&& (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
|
|
{
|
|
CORE_ADDR val;
|
|
val = read_memory_unsigned_integer (cache->saved_regs[regnum],
|
|
4, byte_order);
|
|
return frame_unwind_got_constant (this_frame, regnum, val);
|
|
}
|
|
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
|
cache->saved_regs[regnum]);
|
|
}
|
|
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
static void
|
|
sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
|
|
|
|
/* This marks the outermost frame. */
|
|
if (cache->base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (cache->saved_sp, cache->pc);
|
|
}
|
|
|
|
static const struct frame_unwind sh64_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
sh64_frame_this_id,
|
|
sh64_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame,
|
|
gdbarch_pc_regnum (gdbarch));
|
|
}
|
|
|
|
static struct frame_id
|
|
sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
return frame_id_build (sp, get_frame_pc (this_frame));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
|
|
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base sh64_frame_base = {
|
|
&sh64_frame_unwind,
|
|
sh64_frame_base_address,
|
|
sh64_frame_base_address,
|
|
sh64_frame_base_address
|
|
};
|
|
|
|
|
|
struct gdbarch *
|
|
sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
|
|
/* If there is already a candidate, use it. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Determine the ABI */
|
|
if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
|
|
{
|
|
/* If the ABI is the 64-bit one, it can only be sh-media. */
|
|
tdep->sh_abi = SH_ABI_64;
|
|
set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
}
|
|
else
|
|
{
|
|
/* If the ABI is the 32-bit one it could be either media or
|
|
compact. */
|
|
tdep->sh_abi = SH_ABI_32;
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
}
|
|
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
|
|
/* The number of real registers is the same whether we are in
|
|
ISA16(compact) or ISA32(media). */
|
|
set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, 15);
|
|
set_gdbarch_pc_regnum (gdbarch, 64);
|
|
set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
|
|
+ NUM_PSEUDO_REGS_SH_COMPACT);
|
|
|
|
set_gdbarch_register_name (gdbarch, sh64_register_name);
|
|
set_gdbarch_register_type (gdbarch, sh64_register_type);
|
|
|
|
set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
|
|
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_sh);
|
|
set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
|
|
|
|
set_gdbarch_return_value (gdbarch, sh64_return_value);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
|
|
set_gdbarch_frame_align (gdbarch, sh64_frame_align);
|
|
set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
|
|
set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
|
|
set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
|
|
frame_base_set_default (gdbarch, &sh64_frame_base);
|
|
|
|
set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
|
|
|
|
set_gdbarch_elf_make_msymbol_special (gdbarch,
|
|
sh64_elf_make_msymbol_special);
|
|
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
|
|
|
|
return gdbarch;
|
|
}
|