binutils-gdb/gas/config/tc-v850.c

2487 lines
61 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-v850.c -- Assembler code for the NEC V850
Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <ctype.h>
#include "as.h"
#include "subsegs.h"
#include "opcode/v850.h"
#define AREA_ZDA 0
#define AREA_SDA 1
#define AREA_TDA 2
/* sign-extend a 16-bit number */
#define SEXT16(x) ((((x) & 0xffff) ^ (~ 0x7fff)) + 0x8000)
/* Temporarily holds the reloc in a cons expression. */
static bfd_reloc_code_real_type hold_cons_reloc;
/* Set to TRUE if we want to be pedantic about signed overflows. */
static boolean warn_signed_overflows = FALSE;
static boolean warn_unsigned_overflows = FALSE;
/* Indicates the target BFD machine number. */
static int machine = -1;
/* Indicates the target processor(s) for the assemble. */
static int processor_mask = -1;
/* Structure to hold information about predefined registers. */
struct reg_name
{
const char * name;
int value;
};
/* Generic assembler global variables which must be defined by all targets. */
/* Characters which always start a comment. */
const char comment_chars[] = "#";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = ";#";
/* Characters which may be used to separate multiple commands on a
single line. */
const char line_separator_chars[] = ";";
/* Characters which are used to indicate an exponent in a floating
point number. */
const char EXP_CHARS[] = "eE";
/* Characters which mean that a number is a floating point constant,
as in 0d1.0. */
const char FLT_CHARS[] = "dD";
const relax_typeS md_relax_table[] =
{
/* Conditional branches. */
{0xff, -0x100, 2, 1},
{0x1fffff, -0x200000, 6, 0},
/* Unconditional branches. */
{0xff, -0x100, 2, 3},
{0x1fffff, -0x200000, 4, 0},
};
static segT sdata_section = NULL;
static segT tdata_section = NULL;
static segT zdata_section = NULL;
static segT sbss_section = NULL;
static segT tbss_section = NULL;
static segT zbss_section = NULL;
static segT rosdata_section = NULL;
static segT rozdata_section = NULL;
static segT scommon_section = NULL;
static segT tcommon_section = NULL;
static segT zcommon_section = NULL;
static segT call_table_data_section = NULL;
static segT call_table_text_section = NULL;
/* fixups */
#define MAX_INSN_FIXUPS (5)
struct v850_fixup
{
expressionS exp;
int opindex;
bfd_reloc_code_real_type reloc;
};
struct v850_fixup fixups [MAX_INSN_FIXUPS];
static int fc;
void
v850_sdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (sdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_tdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (tdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_zdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (zdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_sbss (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (sbss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_tbss (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (tbss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_zbss (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (zbss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_rosdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (rosdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_rozdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (rozdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_call_table_data (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (call_table_data_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_call_table_text (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook();
subseg_set (call_table_text_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_bss (int ignore ATTRIBUTE_UNUSED)
{
register int temp = get_absolute_expression ();
obj_elf_section_change_hook();
subseg_set (bss_section, (subsegT) temp);
demand_empty_rest_of_line ();
}
void
v850_offset (int ignore ATTRIBUTE_UNUSED)
{
int temp = get_absolute_expression ();
temp -= frag_now_fix();
if (temp > 0)
(void) frag_more (temp);
demand_empty_rest_of_line ();
}
/* Copied from obj_elf_common() in gas/config/obj-elf.c */
static void
v850_comm (area)
int area;
{
char * name;
char c;
char * p;
int temp;
unsigned int size;
symbolS * symbolP;
int have_align;
name = input_line_pointer;
c = get_symbol_end ();
/* just after name is now '\0' */
p = input_line_pointer;
*p = c;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad (_("Expected comma after symbol-name"));
ignore_rest_of_line ();
return;
}
input_line_pointer ++; /* skip ',' */
if ((temp = get_absolute_expression ()) < 0)
{
/* xgettext:c-format */
as_bad (_(".COMMon length (%d.) < 0! Ignored."), temp);
ignore_rest_of_line ();
return;
}
size = temp;
*p = 0;
symbolP = symbol_find_or_make (name);
*p = c;
if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
{
as_bad (_("Ignoring attempt to re-define symbol"));
ignore_rest_of_line ();
return;
}
if (S_GET_VALUE (symbolP) != 0)
{
if (S_GET_VALUE (symbolP) != size)
{
/* xgettext:c-format */
as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %d."),
S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), size);
}
}
know (symbol_get_frag (symbolP) == & zero_address_frag);
if (*input_line_pointer != ',')
have_align = 0;
else
{
have_align = 1;
input_line_pointer++;
SKIP_WHITESPACE ();
}
if (! have_align || *input_line_pointer != '"')
{
if (! have_align)
temp = 0;
else
{
temp = get_absolute_expression ();
if (temp < 0)
{
temp = 0;
as_warn (_("Common alignment negative; 0 assumed"));
}
}
if (symbol_get_obj (symbolP)->local)
{
segT old_sec;
int old_subsec;
char * pfrag;
int align;
flagword applicable;
old_sec = now_seg;
old_subsec = now_subseg;
applicable = bfd_applicable_section_flags (stdoutput);
applicable &= SEC_ALLOC;
switch (area)
{
case AREA_SDA:
if (sbss_section == NULL)
{
sbss_section = subseg_new (".sbss", 0);
bfd_set_section_flags (stdoutput, sbss_section, applicable);
seg_info (sbss_section)->bss = 1;
}
break;
case AREA_ZDA:
if (zbss_section == NULL)
{
zbss_section = subseg_new (".zbss", 0);
bfd_set_section_flags (stdoutput, sbss_section, applicable);
seg_info (zbss_section)->bss = 1;
}
break;
case AREA_TDA:
if (tbss_section == NULL)
{
tbss_section = subseg_new (".tbss", 0);
bfd_set_section_flags (stdoutput, tbss_section, applicable);
seg_info (tbss_section)->bss = 1;
}
break;
}
if (temp)
{
/* convert to a power of 2 alignment */
for (align = 0; (temp & 1) == 0; temp >>= 1, ++align)
;
if (temp != 1)
{
as_bad (_("Common alignment not a power of 2"));
ignore_rest_of_line ();
return;
}
}
else
align = 0;
switch (area)
{
case AREA_SDA:
record_alignment (sbss_section, align);
obj_elf_section_change_hook();
subseg_set (sbss_section, 0);
break;
case AREA_ZDA:
record_alignment (zbss_section, align);
obj_elf_section_change_hook();
subseg_set (zbss_section, 0);
break;
case AREA_TDA:
record_alignment (tbss_section, align);
obj_elf_section_change_hook();
subseg_set (tbss_section, 0);
break;
default:
abort();
}
if (align)
frag_align (align, 0, 0);
switch (area)
{
case AREA_SDA:
if (S_GET_SEGMENT (symbolP) == sbss_section)
symbol_get_frag (symbolP)->fr_symbol = 0;
break;
case AREA_ZDA:
if (S_GET_SEGMENT (symbolP) == zbss_section)
symbol_get_frag (symbolP)->fr_symbol = 0;
break;
case AREA_TDA:
if (S_GET_SEGMENT (symbolP) == tbss_section)
symbol_get_frag (symbolP)->fr_symbol = 0;
break;
default:
abort ();
}
symbol_set_frag (symbolP, frag_now);
pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
(offsetT) size, (char *) 0);
*pfrag = 0;
S_SET_SIZE (symbolP, size);
switch (area)
{
case AREA_SDA:
S_SET_SEGMENT (symbolP, sbss_section);
break;
case AREA_ZDA:
S_SET_SEGMENT (symbolP, zbss_section);
break;
case AREA_TDA:
S_SET_SEGMENT (symbolP, tbss_section);
break;
default:
abort();
}
S_CLEAR_EXTERNAL (symbolP);
obj_elf_section_change_hook();
subseg_set (old_sec, old_subsec);
}
else
{
allocate_common:
S_SET_VALUE (symbolP, (valueT) size);
S_SET_ALIGN (symbolP, temp);
S_SET_EXTERNAL (symbolP);
switch (area)
{
case AREA_SDA:
if (scommon_section == NULL)
{
flagword applicable;
applicable = bfd_applicable_section_flags (stdoutput);
scommon_section = subseg_new (".scommon", 0);
bfd_set_section_flags (stdoutput, scommon_section,
(applicable
& (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA
| SEC_HAS_CONTENTS)) | SEC_IS_COMMON);
}
S_SET_SEGMENT (symbolP, scommon_section);
break;
case AREA_ZDA:
if (zcommon_section == NULL)
{
flagword applicable;
applicable = bfd_applicable_section_flags (stdoutput);
zcommon_section = subseg_new (".zcommon", 0);
bfd_set_section_flags (stdoutput, zcommon_section,
(applicable
& (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA
| SEC_HAS_CONTENTS)) | SEC_IS_COMMON);
}
S_SET_SEGMENT (symbolP, zcommon_section);
break;
case AREA_TDA:
if (tcommon_section == NULL)
{
flagword applicable;
applicable = bfd_applicable_section_flags (stdoutput);
tcommon_section = subseg_new (".tcommon", 0);
bfd_set_section_flags (stdoutput, tcommon_section,
(applicable
& (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA
| SEC_HAS_CONTENTS)) | SEC_IS_COMMON);
}
S_SET_SEGMENT (symbolP, tcommon_section);
break;
default:
abort();
}
}
}
else
{
input_line_pointer++;
/* @@ Some use the dot, some don't. Can we get some consistency?? */
if (*input_line_pointer == '.')
input_line_pointer++;
/* @@ Some say data, some say bss. */
if (strncmp (input_line_pointer, "bss\"", 4)
&& strncmp (input_line_pointer, "data\"", 5))
{
while (*--input_line_pointer != '"')
;
input_line_pointer--;
goto bad_common_segment;
}
while (*input_line_pointer++ != '"')
;
goto allocate_common;
}
symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
demand_empty_rest_of_line ();
return;
{
bad_common_segment:
p = input_line_pointer;
while (*p && *p != '\n')
p++;
c = *p;
*p = '\0';
as_bad (_("bad .common segment %s"), input_line_pointer + 1);
*p = c;
input_line_pointer = p;
ignore_rest_of_line ();
return;
}
}
void
set_machine (int number)
{
machine = number;
bfd_set_arch_mach (stdoutput, TARGET_ARCH, machine);
switch (machine)
{
case 0: processor_mask = PROCESSOR_V850; break;
case bfd_mach_v850e: processor_mask = PROCESSOR_V850E; break;
case bfd_mach_v850ea: processor_mask = PROCESSOR_V850EA; break;
}
}
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{"sdata", v850_sdata, 0},
{"tdata", v850_tdata, 0},
{"zdata", v850_zdata, 0},
{"sbss", v850_sbss, 0},
{"tbss", v850_tbss, 0},
{"zbss", v850_zbss, 0},
{"rosdata", v850_rosdata, 0},
{"rozdata", v850_rozdata, 0},
{"bss", v850_bss, 0},
{"offset", v850_offset, 0},
{"word", cons, 4},
{"zcomm", v850_comm, AREA_ZDA},
{"scomm", v850_comm, AREA_SDA},
{"tcomm", v850_comm, AREA_TDA},
{"v850", set_machine, 0},
{"call_table_data", v850_call_table_data, 0},
{"call_table_text", v850_call_table_text, 0},
{"v850e", set_machine, bfd_mach_v850e},
{"v850ea", set_machine, bfd_mach_v850ea},
{ NULL, NULL, 0}
};
/* Opcode hash table. */
static struct hash_control *v850_hash;
/* This table is sorted. Suitable for searching by a binary search. */
static const struct reg_name pre_defined_registers[] =
{
{ "ep", 30 }, /* ep - element ptr */
{ "gp", 4 }, /* gp - global ptr */
{ "hp", 2 }, /* hp - handler stack ptr */
{ "lp", 31 }, /* lp - link ptr */
{ "r0", 0 },
{ "r1", 1 },
{ "r10", 10 },
{ "r11", 11 },
{ "r12", 12 },
{ "r13", 13 },
{ "r14", 14 },
{ "r15", 15 },
{ "r16", 16 },
{ "r17", 17 },
{ "r18", 18 },
{ "r19", 19 },
{ "r2", 2 },
{ "r20", 20 },
{ "r21", 21 },
{ "r22", 22 },
{ "r23", 23 },
{ "r24", 24 },
{ "r25", 25 },
{ "r26", 26 },
{ "r27", 27 },
{ "r28", 28 },
{ "r29", 29 },
{ "r3", 3 },
{ "r30", 30 },
{ "r31", 31 },
{ "r4", 4 },
{ "r5", 5 },
{ "r6", 6 },
{ "r7", 7 },
{ "r8", 8 },
{ "r9", 9 },
{ "sp", 3 }, /* sp - stack ptr */
{ "tp", 5 }, /* tp - text ptr */
{ "zero", 0 },
};
#define REG_NAME_CNT (sizeof (pre_defined_registers) / sizeof (struct reg_name))
static const struct reg_name system_registers[] =
{
{ "ctbp", 20 },
{ "ctpc", 16 },
{ "ctpsw", 17 },
{ "dbpc", 18 },
{ "dbpsw", 19 },
{ "ecr", 4 },
{ "eipc", 0 },
{ "eipsw", 1 },
{ "fepc", 2 },
{ "fepsw", 3 },
{ "psw", 5 },
};
#define SYSREG_NAME_CNT (sizeof (system_registers) / sizeof (struct reg_name))
static const struct reg_name system_list_registers[] =
{
{"PS", 5 },
{"SR", 0 + 1}
};
#define SYSREGLIST_NAME_CNT (sizeof (system_list_registers) / sizeof (struct reg_name))
static const struct reg_name cc_names[] =
{
{ "c", 0x1 },
{ "e", 0x2 },
{ "ge", 0xe },
{ "gt", 0xf },
{ "h", 0xb },
{ "l", 0x1 },
{ "le", 0x7 },
{ "lt", 0x6 },
{ "n", 0x4 },
{ "nc", 0x9 },
{ "ne", 0xa },
{ "nh", 0x3 },
{ "nl", 0x9 },
{ "ns", 0xc },
{ "nv", 0x8 },
{ "nz", 0xa },
{ "p", 0xc },
{ "s", 0x4 },
{ "sa", 0xd },
{ "t", 0x5 },
{ "v", 0x0 },
{ "z", 0x2 },
};
#define CC_NAME_CNT (sizeof (cc_names) / sizeof (struct reg_name))
/* reg_name_search does a binary search of the given register table
to see if "name" is a valid regiter name. Returns the register
number from the array on success, or -1 on failure. */
static int
reg_name_search (regs, regcount, name, accept_numbers)
const struct reg_name * regs;
int regcount;
const char * name;
boolean accept_numbers;
{
int middle, low, high;
int cmp;
symbolS * symbolP;
/* If the register name is a symbol, then evaluate it. */
if ((symbolP = symbol_find (name)) != NULL)
{
/* If the symbol is an alias for another name then use that.
If the symbol is an alias for a number, then return the number. */
if (symbol_equated_p (symbolP))
{
name = S_GET_NAME (symbol_get_value_expression (symbolP)->X_add_symbol);
}
else if (accept_numbers)
{
int reg = S_GET_VALUE (symbolP);
if (reg >= 0 && reg <= 31)
return reg;
}
/* Otherwise drop through and try parsing name normally. */
}
low = 0;
high = regcount - 1;
do
{
middle = (low + high) / 2;
cmp = strcasecmp (name, regs[middle].name);
if (cmp < 0)
high = middle - 1;
else if (cmp > 0)
low = middle + 1;
else
return regs[middle].value;
}
while (low <= high);
return -1;
}
/* Summary of register_name().
*
* in: Input_line_pointer points to 1st char of operand.
*
* out: A expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state.
*/
static boolean
register_name (expressionP)
expressionS * expressionP;
{
int reg_number;
char * name;
char * start;
char c;
/* Find the spelling of the operand */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT,
name, FALSE);
* input_line_pointer = c; /* put back the delimiting char */
/* look to see if it's in the register table */
if (reg_number >= 0)
{
expressionP->X_op = O_register;
expressionP->X_add_number = reg_number;
/* make the rest nice */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* reset the line as if we had not done anything */
input_line_pointer = start;
return false;
}
}
/* Summary of system_register_name().
*
* in: Input_line_pointer points to 1st char of operand.
* expressionP points to an expression structure to be filled in.
* accept_numbers is true iff numerical register names may be used.
* accept_list_names is true iff the special names PS and SR may be
* accepted.
*
* out: A expressionS structure in expressionP.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state.
*/
static boolean
system_register_name (expressionP, accept_numbers, accept_list_names)
expressionS * expressionP;
boolean accept_numbers;
boolean accept_list_names;
{
int reg_number;
char * name;
char * start;
char c;
/* Find the spelling of the operand */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (system_registers, SYSREG_NAME_CNT, name,
accept_numbers);
* input_line_pointer = c; /* put back the delimiting char */
if (reg_number < 0
&& accept_numbers)
{
input_line_pointer = start; /* reset input_line pointer */
if (isdigit (* input_line_pointer))
{
reg_number = strtol (input_line_pointer, & input_line_pointer, 10);
/* Make sure that the register number is allowable. */
if ( reg_number < 0
|| (reg_number > 5 && reg_number < 16)
|| reg_number > 20
)
{
reg_number = -1;
}
}
else if (accept_list_names)
{
c = get_symbol_end ();
reg_number = reg_name_search (system_list_registers,
SYSREGLIST_NAME_CNT, name, FALSE);
* input_line_pointer = c; /* put back the delimiting char */
}
}
/* look to see if it's in the register table */
if (reg_number >= 0)
{
expressionP->X_op = O_register;
expressionP->X_add_number = reg_number;
/* make the rest nice */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* reset the line as if we had not done anything */
input_line_pointer = start;
return false;
}
}
/* Summary of cc_name().
*
* in: Input_line_pointer points to 1st char of operand.
*
* out: A expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state.
*/
static boolean
cc_name (expressionP)
expressionS * expressionP;
{
int reg_number;
char * name;
char * start;
char c;
/* Find the spelling of the operand */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (cc_names, CC_NAME_CNT, name, FALSE);
* input_line_pointer = c; /* put back the delimiting char */
/* look to see if it's in the register table */
if (reg_number >= 0)
{
expressionP->X_op = O_constant;
expressionP->X_add_number = reg_number;
/* make the rest nice */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* reset the line as if we had not done anything */
input_line_pointer = start;
return false;
}
}
static void
skip_white_space (void)
{
while ( * input_line_pointer == ' '
|| * input_line_pointer == '\t')
++ input_line_pointer;
}
/* Summary of parse_register_list ().
*
* in: Input_line_pointer points to 1st char of a list of registers.
* insn is the partially constructed instruction.
* operand is the operand being inserted.
*
* out: NULL if the parse completed successfully, otherwise a
* pointer to an error message is returned. If the parse
* completes the correct bit fields in the instruction
* will be filled in.
*
* Parses register lists with the syntax:
*
* { rX }
* { rX, rY }
* { rX - rY }
* { rX - rY, rZ }
* etc
*
* and also parses constant epxressions whoes bits indicate the
* registers in the lists. The LSB in the expression refers to
* the lowest numbered permissable register in the register list,
* and so on upwards. System registers are considered to be very
* high numbers.
*
*/
static char *
parse_register_list
(
unsigned long * insn,
const struct v850_operand * operand
)
{
static int type1_regs[ 32 ] = { 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 };
static int type2_regs[ 32 ] = { 19, 18, 17, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 };
static int type3_regs[ 32 ] = { 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 15, 13, 12, 7, 6, 5, 4, 11, 10, 9, 8 };
int * regs;
expressionS exp;
/* Select a register array to parse. */
switch (operand->shift)
{
case 0xffe00001: regs = type1_regs; break;
case 0xfff8000f: regs = type2_regs; break;
case 0xfff8001f: regs = type3_regs; break;
default:
as_bad (_("unknown operand shift: %x\n"), operand->shift);
return _("internal failure in parse_register_list");
}
skip_white_space ();
/* If the expression starts with a curly brace it is a register list.
Otherwise it is a constant expression, whoes bits indicate which
registers are to be included in the list. */
if (* input_line_pointer != '{')
{
int reg;
int i;
expression (& exp);
if (exp.X_op != O_constant)
return _("constant expression or register list expected");
if (regs == type1_regs)
{
if (exp.X_add_number & 0xFFFFF000)
return _("high bits set in register list expression");
for (reg = 20; reg < 32; reg ++)
if (exp.X_add_number & (1 << (reg - 20)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
* insn |= (1 << i);
}
}
else if (regs == type2_regs)
{
if (exp.X_add_number & 0xFFFE0000)
return _("high bits set in register list expression");
for (reg = 1; reg < 16; reg ++)
if (exp.X_add_number & (1 << (reg - 1)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
* insn |= (1 << i);
}
if (exp.X_add_number & (1 << 15))
* insn |= (1 << 3);
if (exp.X_add_number & (1 << 16))
* insn |= (1 << 19);
}
else /* regs == type3_regs */
{
if (exp.X_add_number & 0xFFFE0000)
return _("high bits set in register list expression");
for (reg = 16; reg < 32; reg ++)
if (exp.X_add_number & (1 << (reg - 16)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
* insn |= (1 << i);
}
if (exp.X_add_number & (1 << 16))
* insn |= (1 << 19);
}
return NULL;
}
input_line_pointer ++;
/* Parse the register list until a terminator (closing curly brace or
new-line) is found. */
for (;;)
{
if (register_name (& exp))
{
int i;
/* Locate the given register in the list, and if it is there,
insert the corresponding bit into the instruction. */
for (i = 0; i < 32; i++)
{
if (regs[ i ] == exp.X_add_number)
{
* insn |= (1 << i);
break;
}
}
if (i == 32)
{
return _("illegal register included in list");
}
}
else if (system_register_name (& exp, true, true))
{
if (regs == type1_regs)
{
return _("system registers cannot be included in list");
}
else if (exp.X_add_number == 5)
{
if (regs == type2_regs)
return _("PSW cannot be included in list");
else
* insn |= 0x8;
}
else if (exp.X_add_number < 4)
* insn |= 0x80000;
else
return _("High value system registers cannot be included in list");
}
else if (* input_line_pointer == '}')
{
input_line_pointer ++;
break;
}
else if (* input_line_pointer == ',')
{
input_line_pointer ++;
continue;
}
else if (* input_line_pointer == '-')
{
/* We have encountered a range of registers: rX - rY */
int j;
expressionS exp2;
/* Skip the dash. */
++ input_line_pointer;
/* Get the second register in the range. */
if (! register_name (& exp2))
{
return _("second register should follow dash in register list");
exp2.X_add_number = exp.X_add_number;
}
/* Add the rest of the registers in the range. */
for (j = exp.X_add_number + 1; j <= exp2.X_add_number; j++)
{
int i;
/* Locate the given register in the list, and if it is there,
insert the corresponding bit into the instruction. */
for (i = 0; i < 32; i++)
{
if (regs[ i ] == j)
{
* insn |= (1 << i);
break;
}
}
if (i == 32)
return _("illegal register included in list");
}
}
else
{
break;
}
skip_white_space ();
}
return NULL;
}
CONST char * md_shortopts = "m:";
struct option md_longopts[] =
{
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof md_longopts;
void
md_show_usage (stream)
FILE * stream;
{
fprintf (stream, _(" V850 options:\n"));
fprintf (stream, _(" -mwarn-signed-overflow Warn if signed immediate values overflow\n"));
fprintf (stream, _(" -mwarn-unsigned-overflow Warn if unsigned immediate values overflow\n"));
fprintf (stream, _(" -mv850 The code is targeted at the v850\n"));
fprintf (stream, _(" -mv850e The code is targeted at the v850e\n"));
fprintf (stream, _(" -mv850ea The code is targeted at the v850ea\n"));
fprintf (stream, _(" -mv850any The code is generic, despite any processor specific instructions\n"));
}
int
md_parse_option (c, arg)
int c;
char * arg;
{
if (c != 'm')
{
if (c != 'a')
/* xgettext:c-format */
fprintf (stderr, _("unknown command line option: -%c%s\n"), c, arg);
return 0;
}
if (strcmp (arg, "warn-signed-overflow") == 0)
{
warn_signed_overflows = TRUE;
}
else if (strcmp (arg, "warn-unsigned-overflow") == 0)
{
warn_unsigned_overflows = TRUE;
}
else if (strcmp (arg, "v850") == 0)
{
machine = 0;
processor_mask = PROCESSOR_V850;
}
else if (strcmp (arg, "v850e") == 0)
{
machine = bfd_mach_v850e;
processor_mask = PROCESSOR_V850E;
}
else if (strcmp (arg, "v850ea") == 0)
{
machine = bfd_mach_v850ea;
processor_mask = PROCESSOR_V850EA;
}
else if (strcmp (arg, "v850any") == 0)
{
machine = 0; /* Tell the world that this is for any v850 chip. */
processor_mask = PROCESSOR_V850EA; /* But support instructions for the extended versions. */
}
else
{
/* xgettext:c-format */
fprintf (stderr, _("unknown command line option: -%c%s\n"), c, arg);
return 0;
}
return 1;
}
symbolS *
md_undefined_symbol (name)
char * name ATTRIBUTE_UNUSED;
{
return 0;
}
char *
md_atof (type, litp, sizep)
int type;
char * litp;
int * sizep;
{
int prec;
LITTLENUM_TYPE words[4];
char * t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizep = 0;
return _("bad call to md_atof");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizep = prec * 2;
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litp, (valueT) words[i], 2);
litp += 2;
}
return NULL;
}
/* Very gross. */
void
md_convert_frag (abfd, sec, fragP)
bfd * abfd ATTRIBUTE_UNUSED;
asection * sec;
fragS * fragP;
{
subseg_change (sec, 0);
/* In range conditional or unconditional branch. */
if (fragP->fr_subtype == 0 || fragP->fr_subtype == 2)
{
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode);
fragP->fr_var = 0;
fragP->fr_fix += 2;
}
/* Out of range conditional branch. Emit a branch around a jump. */
else if (fragP->fr_subtype == 1)
{
unsigned char *buffer =
(unsigned char *) (fragP->fr_fix + fragP->fr_literal);
/* Reverse the condition of the first branch. */
buffer[0] ^= 0x08;
/* Mask off all the displacement bits. */
buffer[0] &= 0x8f;
buffer[1] &= 0x07;
/* Now set the displacement bits so that we branch
around the unconditional branch. */
buffer[0] |= 0x30;
/* Now create the unconditional branch + fixup to the final
target. */
md_number_to_chars (buffer + 2, 0x00000780, 4);
fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED +
(int) fragP->fr_opcode + 1);
fragP->fr_var = 0;
fragP->fr_fix += 6;
}
/* Out of range unconditional branch. Emit a jump. */
else if (fragP->fr_subtype == 3)
{
md_number_to_chars (fragP->fr_fix + fragP->fr_literal, 0x00000780, 4);
fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED +
(int) fragP->fr_opcode + 1);
fragP->fr_var = 0;
fragP->fr_fix += 4;
}
else
abort ();
}
valueT
md_section_align (seg, addr)
asection * seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
void
md_begin ()
{
char * prev_name = "";
register const struct v850_opcode * op;
flagword applicable;
if (strncmp (TARGET_CPU, "v850ea", 6) == 0)
{
if (machine == -1)
machine = bfd_mach_v850ea;
if (processor_mask == -1)
processor_mask = PROCESSOR_V850EA;
}
else if (strncmp (TARGET_CPU, "v850e", 5) == 0)
{
if (machine == -1)
machine = bfd_mach_v850e;
if (processor_mask == -1)
processor_mask = PROCESSOR_V850E;
}
else
if (strncmp (TARGET_CPU, "v850", 4) == 0)
{
if (machine == -1)
machine = 0;
if (processor_mask == -1)
processor_mask = PROCESSOR_V850;
}
else
/* xgettext:c-format */
as_bad (_("Unable to determine default target processor from string: %s"),
TARGET_CPU);
v850_hash = hash_new();
/* Insert unique names into hash table. The V850 instruction set
has many identical opcode names that have different opcodes based
on the operands. This hash table then provides a quick index to
the first opcode with a particular name in the opcode table. */
op = v850_opcodes;
while (op->name)
{
if (strcmp (prev_name, op->name))
{
prev_name = (char *) op->name;
hash_insert (v850_hash, op->name, (char *) op);
}
op++;
}
bfd_set_arch_mach (stdoutput, TARGET_ARCH, machine);
applicable = bfd_applicable_section_flags (stdoutput);
call_table_data_section = subseg_new (".call_table_data", 0);
bfd_set_section_flags (stdoutput, call_table_data_section,
applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC
| SEC_DATA | SEC_HAS_CONTENTS));
call_table_text_section = subseg_new (".call_table_text", 0);
bfd_set_section_flags (stdoutput, call_table_text_section,
applicable & (SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_CODE));
/* Restore text section as the current default. */
subseg_set (text_section, 0);
}
static bfd_reloc_code_real_type
handle_ctoff (const struct v850_operand * operand)
{
if (operand == NULL)
return BFD_RELOC_V850_CALLT_16_16_OFFSET;
if ( operand->bits != 6
|| operand->shift != 0)
{
as_bad (_("ctoff() relocation used on an instruction which does not support it"));
return BFD_RELOC_64; /* Used to indicate an error condition. */
}
return BFD_RELOC_V850_CALLT_6_7_OFFSET;
}
static bfd_reloc_code_real_type
handle_sdaoff (const struct v850_operand * operand)
{
if (operand == NULL) return BFD_RELOC_V850_SDA_16_16_OFFSET;
if (operand->bits == 15 && operand->shift == 17) return BFD_RELOC_V850_SDA_15_16_OFFSET;
if (operand->bits == -1) return BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET;
if ( operand->bits != 16
|| operand->shift != 16)
{
as_bad (_("sdaoff() relocation used on an instruction which does not support it"));
return BFD_RELOC_64; /* Used to indicate an error condition. */
}
return BFD_RELOC_V850_SDA_16_16_OFFSET;
}
static bfd_reloc_code_real_type
handle_zdaoff (const struct v850_operand * operand)
{
if (operand == NULL) return BFD_RELOC_V850_ZDA_16_16_OFFSET;
if (operand->bits == 15 && operand->shift == 17) return BFD_RELOC_V850_ZDA_15_16_OFFSET;
if (operand->bits == -1) return BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET;
if ( operand->bits != 16
|| operand->shift != 16)
{
as_bad (_("zdaoff() relocation used on an instruction which does not support it"));
return BFD_RELOC_64; /* Used to indicate an error condition. */
}
return BFD_RELOC_V850_ZDA_16_16_OFFSET;
}
static bfd_reloc_code_real_type
handle_tdaoff (const struct v850_operand * operand)
{
if (operand == NULL) return BFD_RELOC_V850_TDA_7_7_OFFSET; /* data item, not an instruction. */
if (operand->bits == 6 && operand->shift == 1) return BFD_RELOC_V850_TDA_6_8_OFFSET; /* sld.w/sst.w, operand: D8_6 */
if (operand->bits == 4 && operand->insert != NULL) return BFD_RELOC_V850_TDA_4_5_OFFSET; /* sld.hu, operand: D5-4 */
if (operand->bits == 4 && operand->insert == NULL) return BFD_RELOC_V850_TDA_4_4_OFFSET; /* sld.bu, operand: D4 */
if (operand->bits == 16 && operand->shift == 16) return BFD_RELOC_V850_TDA_16_16_OFFSET; /* set1 & chums, operands: D16 */
if (operand->bits != 7)
{
as_bad (_("tdaoff() relocation used on an instruction which does not support it"));
return BFD_RELOC_64; /* Used to indicate an error condition. */
}
return operand->insert != NULL
? BFD_RELOC_V850_TDA_7_8_OFFSET /* sld.h/sst.h, operand: D8_7 */
: BFD_RELOC_V850_TDA_7_7_OFFSET; /* sld.b/sst.b, opreand: D7 */
}
/* Warning: The code in this function relies upon the definitions
in the v850_operands[] array (defined in opcodes/v850-opc.c)
matching the hard coded values contained herein. */
static bfd_reloc_code_real_type
v850_reloc_prefix (const struct v850_operand * operand)
{
boolean paren_skipped = false;
/* Skip leading opening parenthesis. */
if (* input_line_pointer == '(')
{
++ input_line_pointer;
paren_skipped = true;
}
#define CHECK_(name, reloc) \
if (strncmp (input_line_pointer, name##"(", strlen (name) + 1) == 0) \
{ \
input_line_pointer += strlen (name); \
return reloc; \
}
CHECK_ ("hi0", BFD_RELOC_HI16);
CHECK_ ("hi", BFD_RELOC_HI16_S);
CHECK_ ("lo", BFD_RELOC_LO16);
CHECK_ ("sdaoff", handle_sdaoff (operand));
CHECK_ ("zdaoff", handle_zdaoff (operand));
CHECK_ ("tdaoff", handle_tdaoff (operand));
CHECK_ ("hilo", BFD_RELOC_32);
CHECK_ ("ctoff", handle_ctoff (operand));
/* Restore skipped parenthesis. */
if (paren_skipped)
-- input_line_pointer;
return BFD_RELOC_UNUSED;
}
/* Insert an operand value into an instruction. */
static unsigned long
v850_insert_operand (insn, operand, val, file, line, str)
unsigned long insn;
const struct v850_operand * operand;
offsetT val;
char * file;
unsigned int line;
char * str;
{
if (operand->insert)
{
const char * message = NULL;
insn = operand->insert (insn, val, & message);
if (message != NULL)
{
if ((operand->flags & V850_OPERAND_SIGNED)
&& ! warn_signed_overflows
&& strstr (message, "out of range") != NULL)
{
/* skip warning... */
}
else if ((operand->flags & V850_OPERAND_SIGNED) == 0
&& ! warn_unsigned_overflows
&& strstr (message, "out of range") != NULL)
{
/* skip warning... */
}
else if (str)
{
if (file == (char *) NULL)
as_warn ("%s: %s", str, message);
else
as_warn_where (file, line, "%s: %s", str, message);
}
else
{
if (file == (char *) NULL)
as_warn (message);
else
as_warn_where (file, line, message);
}
}
}
else
{
if (operand->bits != 32)
{
long min, max;
if ((operand->flags & V850_OPERAND_SIGNED) != 0)
{
if (! warn_signed_overflows)
max = (1 << operand->bits) - 1;
else
max = (1 << (operand->bits - 1)) - 1;
min = - (1 << (operand->bits - 1));
}
else
{
max = (1 << operand->bits) - 1;
if (! warn_unsigned_overflows)
min = - (1 << (operand->bits - 1));
else
min = 0;
}
if (val < (offsetT) min || val > (offsetT) max)
{
/* xgettext:c-format */
const char * err = _("operand out of range (%s not between %ld and %ld)");
char buf[100];
/* Restore min and mix to expected values for decimal ranges. */
if ((operand->flags & V850_OPERAND_SIGNED)
&& ! warn_signed_overflows)
max = (1 << (operand->bits - 1)) - 1;
if (! (operand->flags & V850_OPERAND_SIGNED)
&& ! warn_unsigned_overflows)
min = 0;
if (str)
{
sprintf (buf, "%s: ", str);
sprint_value (buf + strlen (buf), val);
}
else
sprint_value (buf, val);
if (file == (char *) NULL)
as_warn (err, buf, min, max);
else
as_warn_where (file, line, err, buf, min, max);
}
}
insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift);
}
return insn;
}
static char copy_of_instruction [128];
void
md_assemble (str)
char * str;
{
char * s;
char * start_of_operands;
struct v850_opcode * opcode;
struct v850_opcode * next_opcode;
const unsigned char * opindex_ptr;
int next_opindex;
int relaxable = 0;
unsigned long insn;
unsigned long insn_size;
char * f;
int i;
int match;
boolean extra_data_after_insn = false;
unsigned extra_data_len = 0;
unsigned long extra_data = 0;
char * saved_input_line_pointer;
strncpy (copy_of_instruction, str, sizeof (copy_of_instruction) - 1);
/* Get the opcode. */
for (s = str; *s != '\0' && ! isspace (*s); s++)
continue;
if (*s != '\0')
*s++ = '\0';
/* find the first opcode with the proper name */
opcode = (struct v850_opcode *) hash_find (v850_hash, str);
if (opcode == NULL)
{
/* xgettext:c-format */
as_bad (_("Unrecognized opcode: `%s'"), str);
ignore_rest_of_line ();
return;
}
str = s;
while (isspace (* str))
++ str;
start_of_operands = str;
saved_input_line_pointer = input_line_pointer;
for (;;)
{
const char * errmsg = NULL;
match = 0;
if ((opcode->processors & processor_mask) == 0)
{
errmsg = _("Target processor does not support this instruction.");
goto error;
}
relaxable = 0;
fc = 0;
next_opindex = 0;
insn = opcode->opcode;
extra_data_after_insn = false;
input_line_pointer = str = start_of_operands;
for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr ++)
{
const struct v850_operand * operand;
char * hold;
expressionS ex;
bfd_reloc_code_real_type reloc;
if (next_opindex == 0)
{
operand = & v850_operands[ * opindex_ptr ];
}
else
{
operand = & v850_operands[ next_opindex ];
next_opindex = 0;
}
errmsg = NULL;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']')
++ str;
if (operand->flags & V850_OPERAND_RELAX)
relaxable = 1;
/* Gather the operand. */
hold = input_line_pointer;
input_line_pointer = str;
/* lo(), hi(), hi0(), etc... */
if ((reloc = v850_reloc_prefix (operand)) != BFD_RELOC_UNUSED)
{
/* This is a fake reloc, used to indicate an error condition. */
if (reloc == BFD_RELOC_64)
{
match = 1;
goto error;
}
expression (& ex);
if (ex.X_op == O_constant)
{
switch (reloc)
{
case BFD_RELOC_V850_ZDA_16_16_OFFSET:
/* To cope with "not1 7, zdaoff(0xfffff006)[r0]"
and the like. */
/* Fall through. */
case BFD_RELOC_LO16:
{
/* Truncate, then sign extend the value. */
ex.X_add_number = SEXT16 (ex.X_add_number);
break;
}
case BFD_RELOC_HI16:
{
/* Truncate, then sign extend the value. */
ex.X_add_number = SEXT16 (ex.X_add_number >> 16);
break;
}
case BFD_RELOC_HI16_S:
{
/* Truncate, then sign extend the value. */
int temp = (ex.X_add_number >> 16) & 0xffff;
temp += (ex.X_add_number >> 15) & 1;
ex.X_add_number = SEXT16 (temp);
break;
}
case BFD_RELOC_32:
if ((operand->flags & V850E_IMMEDIATE32) == 0)
{
errmsg = _("immediate operand is too large");
goto error;
}
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
break;
default:
fprintf (stderr, "reloc: %d\n", reloc);
as_bad (_("AAARG -> unhandled constant reloc"));
break;
}
if (fc > MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixups[ fc ].exp = ex;
fixups[ fc ].opindex = * opindex_ptr;
fixups[ fc ].reloc = reloc;
fc++;
}
else
{
if (reloc == BFD_RELOC_32)
{
if ((operand->flags & V850E_IMMEDIATE32) == 0)
{
errmsg = _("immediate operand is too large");
goto error;
}
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
}
if (fc > MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixups[ fc ].exp = ex;
fixups[ fc ].opindex = * opindex_ptr;
fixups[ fc ].reloc = reloc;
fc++;
}
}
else
{
errmsg = NULL;
if ((operand->flags & V850_OPERAND_REG) != 0)
{
if (!register_name (& ex))
{
errmsg = _("invalid register name");
}
else if ((operand->flags & V850_NOT_R0)
&& ex.X_add_number == 0)
{
errmsg = _("register r0 cannot be used here");
/* Force an error message to be generated by
skipping over any following potential matches
for this opcode. */
opcode += 3;
}
}
else if ((operand->flags & V850_OPERAND_SRG) != 0)
{
if (!system_register_name (& ex, true, false))
{
errmsg = _("invalid system register name");
}
}
else if ((operand->flags & V850_OPERAND_EP) != 0)
{
char * start = input_line_pointer;
char c = get_symbol_end ();
if (strcmp (start, "ep") != 0 && strcmp (start, "r30") != 0)
{
/* Put things back the way we found them. */
*input_line_pointer = c;
input_line_pointer = start;
errmsg = _("expected EP register");
goto error;
}
*input_line_pointer = c;
str = input_line_pointer;
input_line_pointer = hold;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']')
++ str;
continue;
}
else if ((operand->flags & V850_OPERAND_CC) != 0)
{
if (!cc_name (& ex))
{
errmsg = _("invalid condition code name");
}
}
else if (operand->flags & V850E_PUSH_POP)
{
errmsg = parse_register_list (& insn, operand);
/* The parse_register_list() function has already done
everything, so fake a dummy expression. */
ex.X_op = O_constant;
ex.X_add_number = 0;
}
else if (operand->flags & V850E_IMMEDIATE16)
{
expression (& ex);
if (ex.X_op != O_constant)
errmsg = _("constant expression expected");
else if (ex.X_add_number & 0xffff0000)
{
if (ex.X_add_number & 0xffff)
errmsg = _("constant too big to fit into instruction");
else if ((insn & 0x001fffc0) == 0x00130780)
ex.X_add_number >>= 16;
else
errmsg = _("constant too big to fit into instruction");
}
extra_data_after_insn = true;
extra_data_len = 2;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
}
else if (operand->flags & V850E_IMMEDIATE32)
{
expression (& ex);
if (ex.X_op != O_constant)
errmsg = _("constant expression expected");
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
}
else if (register_name (& ex)
&& (operand->flags & V850_OPERAND_REG) == 0)
{
char c;
int exists = 0;
/* It is possible that an alias has been defined that
matches a register name. For example the code may
include a ".set ZERO, 0" directive, which matches
the register name "zero". Attempt to reparse the
field as an expression, and only complain if we
cannot generate a constant. */
input_line_pointer = str;
c = get_symbol_end ();
if (symbol_find (str) != NULL)
exists = 1;
* input_line_pointer = c;
input_line_pointer = str;
expression (& ex);
if (ex.X_op != O_constant)
{
/* If this register is actually occuring too early on
the parsing of the instruction, (because another
field is missing) then report this. */
if (opindex_ptr[1] != 0
&& (v850_operands [opindex_ptr [1]].flags & V850_OPERAND_REG))
errmsg = _("syntax error: value is missing before the register name");
else
errmsg = _("syntax error: register not expected");
/* If we created a symbol in the process of this test then
delete it now, so that it will not be output with the real
symbols... */
if (exists == 0
&& ex.X_op == O_symbol)
symbol_remove (ex.X_add_symbol,
& symbol_rootP, & symbol_lastP);
}
}
else if (system_register_name (& ex, false, false)
&& (operand->flags & V850_OPERAND_SRG) == 0)
{
errmsg = _("syntax error: system register not expected");
}
else if (cc_name (&ex)
&& (operand->flags & V850_OPERAND_CC) == 0)
{
errmsg = _("syntax error: condition code not expected");
}
else
{
expression (& ex);
/* Special case:
If we are assembling a MOV instruction (or a CALLT.... :-)
and the immediate value does not fit into the bits
available then create a fake error so that the next MOV
instruction will be selected. This one has a 32 bit
immediate field. */
if (((insn & 0x07e0) == 0x0200)
&& ex.X_op == O_constant
&& (ex.X_add_number < (- (1 << (operand->bits - 1)))
|| ex.X_add_number > ((1 << operand->bits) - 1)))
errmsg = _("immediate operand is too large");
}
if (errmsg)
goto error;
/* fprintf (stderr, " insn: %x, operand %d, op: %d, add_number: %d\n",
insn, opindex_ptr - opcode->operands, ex.X_op, ex.X_add_number); */
switch (ex.X_op)
{
case O_illegal:
errmsg = _("illegal operand");
goto error;
case O_absent:
errmsg = _("missing operand");
goto error;
case O_register:
if ((operand->flags & (V850_OPERAND_REG | V850_OPERAND_SRG)) == 0)
{
errmsg = _("invalid operand");
goto error;
}
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0,
copy_of_instruction);
break;
case O_constant:
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0,
copy_of_instruction);
break;
default:
/* We need to generate a fixup for this expression. */
if (fc >= MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixups[ fc ].exp = ex;
fixups[ fc ].opindex = * opindex_ptr;
fixups[ fc ].reloc = BFD_RELOC_UNUSED;
++fc;
break;
}
}
str = input_line_pointer;
input_line_pointer = hold;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']'
|| *str == ')')
++str;
}
match = 1;
error:
if (match == 0)
{
next_opcode = opcode + 1;
if (next_opcode->name != NULL
&& strcmp (next_opcode->name, opcode->name) == 0)
{
opcode = next_opcode;
/* Skip versions that are not supported by the target
processor. */
if ((opcode->processors & processor_mask) == 0)
goto error;
continue;
}
as_bad ("%s: %s", copy_of_instruction, errmsg);
if (* input_line_pointer == ']')
++ input_line_pointer;
ignore_rest_of_line ();
input_line_pointer = saved_input_line_pointer;
return;
}
break;
}
while (isspace (*str))
++str;
if (*str != '\0')
/* xgettext:c-format */
as_bad (_("junk at end of line: `%s'"), str);
input_line_pointer = str;
/* Write out the instruction. */
if (relaxable && fc > 0)
{
insn_size = 2;
fc = 0;
if (!strcmp (opcode->name, "br"))
{
f = frag_var (rs_machine_dependent, 4, 2, 2,
fixups[0].exp.X_add_symbol,
fixups[0].exp.X_add_number,
(char *)fixups[0].opindex);
md_number_to_chars (f, insn, insn_size);
md_number_to_chars (f + 2, 0, 2);
}
else
{
f = frag_var (rs_machine_dependent, 6, 4, 0,
fixups[0].exp.X_add_symbol,
fixups[0].exp.X_add_number,
(char *)fixups[0].opindex);
md_number_to_chars (f, insn, insn_size);
md_number_to_chars (f + 2, 0, 4);
}
}
else
{
/* Four byte insns have an opcode with the two high bits on. */
if ((insn & 0x0600) == 0x0600)
insn_size = 4;
else
insn_size = 2;
/* Special case: 32 bit MOV */
if ((insn & 0xffe0) == 0x0620)
insn_size = 2;
f = frag_more (insn_size);
md_number_to_chars (f, insn, insn_size);
if (extra_data_after_insn)
{
f = frag_more (extra_data_len);
md_number_to_chars (f, extra_data, extra_data_len);
extra_data_after_insn = false;
}
}
/* Create any fixups. At this point we do not use a
bfd_reloc_code_real_type, but instead just use the
BFD_RELOC_UNUSED plus the operand index. This lets us easily
handle fixups for any operand type, although that is admittedly
not a very exciting feature. We pick a BFD reloc type in
md_apply_fix. */
for (i = 0; i < fc; i++)
{
const struct v850_operand * operand;
bfd_reloc_code_real_type reloc;
operand = & v850_operands[ fixups[i].opindex ];
reloc = fixups[i].reloc;
if (reloc != BFD_RELOC_UNUSED)
{
reloc_howto_type * reloc_howto = bfd_reloc_type_lookup (stdoutput,
reloc);
int size;
int address;
fixS * fixP;
if (!reloc_howto)
abort();
size = bfd_get_reloc_size (reloc_howto);
/* XXX This will abort on an R_V850_8 reloc -
is this reloc actually used ? */
if (size != 2 && size != 4)
abort ();
address = (f - frag_now->fr_literal) + insn_size - size;
if (reloc == BFD_RELOC_32)
{
address += 2;
}
fixP = fix_new_exp (frag_now, address, size,
& fixups[i].exp,
reloc_howto->pc_relative,
reloc);
switch (reloc)
{
case BFD_RELOC_LO16:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
fixP->fx_no_overflow = 1;
break;
default:
break;
}
}
else
{
fix_new_exp (
frag_now,
f - frag_now->fr_literal, 4,
& fixups[i].exp,
1 /* FIXME: V850_OPERAND_RELATIVE ??? */,
(bfd_reloc_code_real_type) (fixups[i].opindex
+ (int) BFD_RELOC_UNUSED)
);
}
}
input_line_pointer = saved_input_line_pointer;
}
/* If while processing a fixup, a reloc really needs to be created */
/* then it is done here. */
arelent *
tc_gen_reloc (seg, fixp)
asection * seg ATTRIBUTE_UNUSED;
fixS * fixp;
{
arelent * reloc;
reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr= symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
/* xgettext:c-format */
_("reloc %d not supported by object file format"),
(int) fixp->fx_r_type);
xfree (reloc);
return NULL;
}
if ( fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|| fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
reloc->addend = fixp->fx_offset;
else
reloc->addend = fixp->fx_addnumber;
return reloc;
}
/* Assume everything will fit in two bytes, then expand as necessary. */
int
md_estimate_size_before_relax (fragp, seg)
fragS * fragp;
asection * seg ATTRIBUTE_UNUSED;
{
if (fragp->fr_subtype == 0)
fragp->fr_var = 4;
else if (fragp->fr_subtype == 2)
fragp->fr_var = 2;
else
abort ();
return 2;
}
long
v850_pcrel_from_section (fixp, section)
fixS * fixp;
segT section;
{
/* If the symbol is undefined, or in a section other than our own,
or it is weak (in which case it may well be in another section,
then let the linker figure it out. */
if (fixp->fx_addsy != (symbolS *) NULL
&& (! S_IS_DEFINED (fixp->fx_addsy)
|| S_IS_WEAK (fixp->fx_addsy)
|| (S_GET_SEGMENT (fixp->fx_addsy) != section)))
return 0;
return fixp->fx_frag->fr_address + fixp->fx_where;
}
int
md_apply_fix3 (fixp, valuep, seg)
fixS * fixp;
valueT * valuep;
segT seg ATTRIBUTE_UNUSED;
{
valueT value;
char * where;
if ( fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
{
fixp->fx_done = 0;
return 1;
}
if (fixp->fx_addsy == (symbolS *) NULL)
{
value = * valuep;
fixp->fx_done = 1;
}
else if (fixp->fx_pcrel)
value = * valuep;
else
{
value = fixp->fx_offset;
if (fixp->fx_subsy != (symbolS *) NULL)
{
if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
value -= S_GET_VALUE (fixp->fx_subsy);
else
{
/* We don't actually support subtracting a symbol. */
as_bad_where (fixp->fx_file, fixp->fx_line,
_("expression too complex"));
}
}
}
if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED)
{
int opindex;
const struct v850_operand * operand;
unsigned long insn;
opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED;
operand = & v850_operands[ opindex ];
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again.
Note the instruction has been stored in little endian
format! */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
insn = bfd_getl32 ((unsigned char *) where);
insn = v850_insert_operand (insn, operand, (offsetT) value,
fixp->fx_file, fixp->fx_line, NULL);
bfd_putl32 ((bfd_vma) insn, (unsigned char *) where);
if (fixp->fx_done)
{
/* Nothing else to do here. */
return 1;
}
/* Determine a BFD reloc value based on the operand information.
We are only prepared to turn a few of the operands into relocs. */
if (operand->bits == 22)
fixp->fx_r_type = BFD_RELOC_V850_22_PCREL;
else if (operand->bits == 9)
fixp->fx_r_type = BFD_RELOC_V850_9_PCREL;
else
{
/* fprintf (stderr, "bits: %d, insn: %x\n", operand->bits, insn); */
as_bad_where (fixp->fx_file, fixp->fx_line,
_("unresolved expression that must be resolved"));
fixp->fx_done = 1;
return 1;
}
}
else if (fixp->fx_done)
{
/* We still have to insert the value into memory! */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
if (fixp->fx_size == 1)
* where = value & 0xff;
else if (fixp->fx_size == 2)
bfd_putl16 (value & 0xffff, (unsigned char *) where);
else if (fixp->fx_size == 4)
bfd_putl32 (value, (unsigned char *) where);
}
fixp->fx_addnumber = value;
return 1;
}
/* Parse a cons expression. We have to handle hi(), lo(), etc
on the v850. */
void
parse_cons_expression_v850 (exp)
expressionS * exp;
{
/* See if there's a reloc prefix like hi() we have to handle. */
hold_cons_reloc = v850_reloc_prefix (NULL);
/* Do normal expression parsing. */
expression (exp);
}
/* Create a fixup for a cons expression. If parse_cons_expression_v850
found a reloc prefix, then we use that reloc, else we choose an
appropriate one based on the size of the expression. */
void
cons_fix_new_v850 (frag, where, size, exp)
fragS * frag;
int where;
int size;
expressionS *exp;
{
if (hold_cons_reloc == BFD_RELOC_UNUSED)
{
if (size == 4)
hold_cons_reloc = BFD_RELOC_32;
if (size == 2)
hold_cons_reloc = BFD_RELOC_16;
if (size == 1)
hold_cons_reloc = BFD_RELOC_8;
}
if (exp != NULL)
fix_new_exp (frag, where, size, exp, 0, hold_cons_reloc);
else
fix_new (frag, where, size, NULL, 0, 0, hold_cons_reloc);
}
boolean
v850_fix_adjustable (fixP)
fixS * fixP;
{
if (fixP->fx_addsy == NULL)
return 1;
/* Prevent all adjustments to global symbols. */
if (S_IS_EXTERN (fixP->fx_addsy))
return 0;
/* Similarly for weak symbols. */
if (S_IS_WEAK (fixP->fx_addsy))
return 0;
/* Don't adjust function names */
if (S_IS_FUNCTION (fixP->fx_addsy))
return 0;
/* We need the symbol name for the VTABLE entries */
if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
return 1;
}
int
v850_force_relocation (fixP)
struct fix * fixP;
{
if (fixP->fx_addsy && S_IS_WEAK (fixP->fx_addsy))
return 1;
if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 1;
return 0;
}