binutils-gdb/gas/config/tc-ns32k.c

2160 lines
56 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ns32k.c -- Assemble on the National Semiconductor 32k series
Copyright (C) 1987, 1992 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/*#define SHOW_NUM 1*//* uncomment for debugging */
#include <stdio.h>
#include <ctype.h>
#include "opcode/ns32k.h"
#include "as.h"
#include "obstack.h"
/* Macros */
#define IIF_ENTRIES 13 /* number of entries in iif */
#define PRIVATE_SIZE 256 /* size of my garbage memory */
#define MAX_ARGS 4
#define DEFAULT -1 /* addr_mode returns this value when plain constant or label is encountered */
#define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
iif.iifP[ptr].type= a1; \
iif.iifP[ptr].size= c1; \
iif.iifP[ptr].object= e1; \
iif.iifP[ptr].object_adjust= g1; \
iif.iifP[ptr].pcrel= i1; \
iif.iifP[ptr].pcrel_adjust= k1; \
iif.iifP[ptr].im_disp= m1; \
iif.iifP[ptr].relax_substate= o1; \
iif.iifP[ptr].bit_fixP= q1; \
iif.iifP[ptr].addr_mode= s1; \
iif.iifP[ptr].bsr= u1;
#ifdef SEQUENT_COMPATABILITY
#define LINE_COMMENT_CHARS "|"
#define ABSOLUTE_PREFIX '@'
#define IMMEDIATE_PREFIX '#'
#endif
#ifndef LINE_COMMENT_CHARS
#define LINE_COMMENT_CHARS "#"
#endif
const char comment_chars[] = "#";
const char line_comment_chars[] = LINE_COMMENT_CHARS;
const char line_separator_chars[] = "";
#if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
#define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined */
#endif
struct addr_mode
{
char mode; /* addressing mode of operand (0-31) */
char scaled_mode; /* mode combined with scaled mode */
char scaled_reg; /* register used in scaled+1 (1-8) */
char float_flag; /* set if R0..R7 was F0..F7 ie a floating-point-register */
char am_size; /* estimated max size of general addr-mode parts*/
char im_disp; /* if im_disp==1 we have a displacement */
char pcrel; /* 1 if pcrel, this is really redundant info */
char disp_suffix[2]; /* length of displacement(s), 0=undefined */
char *disp[2]; /* pointer(s) at displacement(s)
or immediates(s) (ascii) */
char index_byte; /* index byte */
};
typedef struct addr_mode addr_modeS;
char *freeptr, *freeptr_static; /* points at some number of free bytes */
struct hash_control *inst_hash_handle;
struct ns32k_opcode *desc; /* pointer at description of instruction */
addr_modeS addr_modeP;
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "fd"; /* we don't want to support lowercase, do we */
/* UPPERCASE denotes live names
* when an instruction is built, IIF is used as an intermidiate form to store
* the actual parts of the instruction. A ns32k machine instruction can
* be divided into a couple of sub PARTs. When an instruction is assembled
* the appropriate PART get an assignment. When an IIF has been completed it's
* converted to a FRAGment as specified in AS.H */
/* internal structs */
struct option
{
char *pattern;
unsigned long or;
unsigned long and;
};
typedef struct
{
int type; /* how to interpret object */
int size; /* Estimated max size of object */
unsigned long object; /* binary data */
int object_adjust; /* number added to object */
int pcrel; /* True if object is pcrel */
int pcrel_adjust; /* length in bytes from the
instruction start to the
displacement */
int im_disp; /* True if the object is a displacement */
relax_substateT relax_substate; /* Initial relaxsubstate */
bit_fixS *bit_fixP; /* Pointer at bit_fix struct */
int addr_mode; /* What addrmode do we associate with this iif-entry */
char bsr; /* Sequent hack */
}
iif_entryT; /* Internal Instruction Format */
struct int_ins_form
{
int instr_size; /* Max size of instruction in bytes. */
iif_entryT iifP[IIF_ENTRIES + 1];
};
struct int_ins_form iif;
expressionS exprP;
char *input_line_pointer;
/* description of the PARTs in IIF
*object[n]:
* 0 total length in bytes of entries in iif
* 1 opcode
* 2 index_byte_a
* 3 index_byte_b
* 4 disp_a_1
* 5 disp_a_2
* 6 disp_b_1
* 7 disp_b_2
* 8 imm_a
* 9 imm_b
* 10 implied1
* 11 implied2
*
* For every entry there is a datalength in bytes. This is stored in size[n].
* 0, the objectlength is not explicitly given by the instruction
* and the operand is undefined. This is a case for relaxation.
* Reserve 4 bytes for the final object.
*
* 1, the entry contains one byte
* 2, the entry contains two bytes
* 3, the entry contains three bytes
* 4, the entry contains four bytes
* etc
*
* Furthermore, every entry has a data type identifier in type[n].
*
* 0, the entry is void, ignore it.
* 1, the entry is a binary number.
* 2, the entry is a pointer at an expression.
* Where expression may be as simple as a single '1',
* and as complicated as foo-bar+12,
* foo and bar may be undefined but suffixed by :{b|w|d} to
* control the length of the object.
*
* 3, the entry is a pointer at a bignum struct
*
*
* The low-order-byte coresponds to low physical memory.
* Obviously a FRAGment must be created for each valid disp in PART whose
* datalength is undefined (to bad) .
* The case where just the expression is undefined is less severe and is
* handled by fix. Here the number of bytes in the objectfile is known.
* With this representation we simplify the assembly and separates the
* machine dependent/independent parts in a more clean way (said OE)
*/
struct option opt1[] = /* restore, exit */
{
{"r0", 0x80, 0xff},
{"r1", 0x40, 0xff},
{"r2", 0x20, 0xff},
{"r3", 0x10, 0xff},
{"r4", 0x08, 0xff},
{"r5", 0x04, 0xff},
{"r6", 0x02, 0xff},
{"r7", 0x01, 0xff},
{0, 0x00, 0xff}
};
struct option opt2[] = /* save, enter */
{
{"r0", 0x01, 0xff},
{"r1", 0x02, 0xff},
{"r2", 0x04, 0xff},
{"r3", 0x08, 0xff},
{"r4", 0x10, 0xff},
{"r5", 0x20, 0xff},
{"r6", 0x40, 0xff},
{"r7", 0x80, 0xff},
{0, 0x00, 0xff}
};
struct option opt3[] = /* setcfg */
{
{"c", 0x8, 0xff},
{"m", 0x4, 0xff},
{"f", 0x2, 0xff},
{"i", 0x1, 0xff},
{0, 0x0, 0xff}
};
struct option opt4[] = /* cinv */
{
{"a", 0x4, 0xff},
{"i", 0x2, 0xff},
{"d", 0x1, 0xff},
{0, 0x0, 0xff}
};
struct option opt5[] = /* string inst */
{
{"b", 0x2, 0xff},
{"u", 0xc, 0xff},
{"w", 0x4, 0xff},
{0, 0x0, 0xff}
};
struct option opt6[] = /* plain reg ext,cvtp etc */
{
{"r0", 0x00, 0xff},
{"r1", 0x01, 0xff},
{"r2", 0x02, 0xff},
{"r3", 0x03, 0xff},
{"r4", 0x04, 0xff},
{"r5", 0x05, 0xff},
{"r6", 0x06, 0xff},
{"r7", 0x07, 0xff},
{0, 0x00, 0xff}
};
#if !defined(NS32032) && !defined(NS32532)
#define NS32032
#endif
struct option cpureg_532[] = /* lpr spr */
{
{"us", 0x0, 0xff},
{"dcr", 0x1, 0xff},
{"bpc", 0x2, 0xff},
{"dsr", 0x3, 0xff},
{"car", 0x4, 0xff},
{"fp", 0x8, 0xff},
{"sp", 0x9, 0xff},
{"sb", 0xa, 0xff},
{"usp", 0xb, 0xff},
{"cfg", 0xc, 0xff},
{"psr", 0xd, 0xff},
{"intbase", 0xe, 0xff},
{"mod", 0xf, 0xff},
{0, 0x00, 0xff}
};
struct option mmureg_532[] = /* lmr smr */
{
{"mcr", 0x9, 0xff},
{"msr", 0xa, 0xff},
{"tear", 0xb, 0xff},
{"ptb0", 0xc, 0xff},
{"ptb1", 0xd, 0xff},
{"ivar0", 0xe, 0xff},
{"ivar1", 0xf, 0xff},
{0, 0x0, 0xff}
};
struct option cpureg_032[] = /* lpr spr */
{
{"upsr", 0x0, 0xff},
{"fp", 0x8, 0xff},
{"sp", 0x9, 0xff},
{"sb", 0xa, 0xff},
{"psr", 0xd, 0xff},
{"intbase", 0xe, 0xff},
{"mod", 0xf, 0xff},
{0, 0x0, 0xff}
};
struct option mmureg_032[] = /* lmr smr */
{
{"bpr0", 0x0, 0xff},
{"bpr1", 0x1, 0xff},
{"pf0", 0x4, 0xff},
{"pf1", 0x5, 0xff},
{"sc", 0x8, 0xff},
{"msr", 0xa, 0xff},
{"bcnt", 0xb, 0xff},
{"ptb0", 0xc, 0xff},
{"ptb1", 0xd, 0xff},
{"eia", 0xf, 0xff},
{0, 0x0, 0xff}
};
#if defined(NS32532)
struct option *cpureg = cpureg_532;
struct option *mmureg = mmureg_532;
#else
struct option *cpureg = cpureg_032;
struct option *mmureg = mmureg_032;
#endif
const pseudo_typeS md_pseudo_table[] =
{ /* so far empty */
{0, 0, 0}
};
#define IND(x,y) (((x)<<2)+(y))
/* those are index's to relax groups in md_relax_table
ie it must be multiplied by 4 to point at a group start. Viz IND(x,y)
Se function relax_segment in write.c for more info */
#define BRANCH 1
#define PCREL 2
/* those are index's to entries in a relax group */
#define BYTE 0
#define WORD 1
#define DOUBLE 2
#define UNDEF 3
/* Those limits are calculated from the displacement start in memory.
The ns32k uses the begining of the instruction as displacement base.
This type of displacements could be handled here by moving the limit window
up or down. I choose to use an internal displacement base-adjust as there
are other routines that must consider this. Also, as we have two various
offset-adjusts in the ns32k (acb versus br/brs/jsr/bcond), two set of limits
would have had to be used.
Now we dont have to think about that. */
const relax_typeS md_relax_table[] =
{
{1, 1, 0, 0},
{1, 1, 0, 0},
{1, 1, 0, 0},
{1, 1, 0, 0},
{(63), (-64), 1, IND (BRANCH, WORD)},
{(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
{0, 0, 4, 0},
{1, 1, 0, 0}
};
/* Array used to test if mode contains displacements.
Value is true if mode contains displacement. */
char disp_test[] =
{0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1};
/* Array used to calculate max size of displacements */
char disp_size[] =
{4, 1, 2, 0, 4};
#if __STDC__ == 1
static segT evaluate_expr (expressionS * resultP, char *ptr);
static void md_number_to_disp (char *buf, long val, int n);
static void md_number_to_imm (char *buf, long val, int n);
#else /* not __STDC__ */
static segT evaluate_expr ();
static void md_number_to_disp ();
static void md_number_to_imm ();
#endif /* not __STDC__ */
/* Parses a general operand into an addressingmode struct
in: pointer at operand in ascii form
pointer at addr_mode struct for result
the level of recursion. (always 0 or 1)
out: data in addr_mode struct
*/
int
addr_mode (operand, addr_modeP, recursive_level)
char *operand;
register addr_modeS *addr_modeP;
int recursive_level;
{
register char *str;
register int i;
register int strl;
register int mode;
int j;
mode = DEFAULT; /* default */
addr_modeP->scaled_mode = 0; /* why not */
addr_modeP->scaled_reg = 0; /* if 0, not scaled index */
addr_modeP->float_flag = 0;
addr_modeP->am_size = 0;
addr_modeP->im_disp = 0;
addr_modeP->pcrel = 0; /* not set in this function */
addr_modeP->disp_suffix[0] = 0;
addr_modeP->disp_suffix[1] = 0;
addr_modeP->disp[0] = NULL;
addr_modeP->disp[1] = NULL;
str = operand;
if (str[0] == 0)
{
return (0);
} /* we don't want this */
strl = strlen (str);
switch (str[0])
{
/* the following three case statements controls the mode-chars
this is the place to ed if you want to change them */
#ifdef ABSOLUTE_PREFIX
case ABSOLUTE_PREFIX:
if (str[strl - 1] == ']')
break;
addr_modeP->mode = 21; /* absolute */
addr_modeP->disp[0] = str + 1;
return (-1);
#endif
#ifdef IMMEDIATE_PREFIX
case IMMEDIATE_PREFIX:
if (str[strl - 1] == ']')
break;
addr_modeP->mode = 20; /* immediate */
addr_modeP->disp[0] = str + 1;
return (-1);
#endif
case '.':
if (str[strl - 1] != ']')
{
switch (str[1])
{
case '-':
case '+':
if (str[2] != '\000')
{
addr_modeP->mode = 27; /* pc-relativ */
addr_modeP->disp[0] = str + 2;
return (-1);
}
default:
as_warn ("Invalid syntax in PC-relative addressing mode");
return (0);
}
}
break;
case 'e':
if (str[strl - 1] != ']')
{
if ((!strncmp (str, "ext(", 4)) && strl > 7)
{ /* external */
addr_modeP->disp[0] = str + 4;
i = 0;
j = 2;
do
{ /* disp[0]'s termination point */
j += 1;
if (str[j] == '(')
i++;
if (str[j] == ')')
i--;
}
while (j < strl && i != 0);
if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
{
as_warn ("Invalid syntax in External addressing mode");
return (0);
}
str[j] = '\000'; /* null terminate disp[0] */
addr_modeP->disp[1] = str + j + 2;
addr_modeP->mode = 22;
return (-1);
}
}
break;
default:;
}
strl = strlen (str);
switch (strl)
{
case 2:
switch (str[0])
{
case 'f':
addr_modeP->float_flag = 1;
case 'r':
if (str[1] >= '0' && str[1] < '8')
{
addr_modeP->mode = str[1] - '0';
return (-1);
}
}
case 3:
if (!strncmp (str, "tos", 3))
{
addr_modeP->mode = 23;/* TopOfStack */
return (-1);
}
default:;
}
if (strl > 4)
{
if (str[strl - 1] == ')')
{
if (str[strl - 2] == ')')
{
if (!strncmp (&str[strl - 5], "(fp", 3))
{
mode = 16; /* Memory Relative */
}
if (!strncmp (&str[strl - 5], "(sp", 3))
{
mode = 17;
}
if (!strncmp (&str[strl - 5], "(sb", 3))
{
mode = 18;
}
if (mode != DEFAULT)
{ /* memory relative */
addr_modeP->mode = mode;
j = strl - 5; /* temp for end of disp[0] */
i = 0;
do
{
strl -= 1;
if (str[strl] == ')')
i++;
if (str[strl] == '(')
i--;
}
while (strl > -1 && i != 0);
if (i != 0)
{
as_warn ("Invalid syntax in Memory Relative addressing mode");
return (0);
}
addr_modeP->disp[1] = str;
addr_modeP->disp[0] = str + strl + 1;
str[j] = '\000'; /* null terminate disp[0] */
str[strl] = '\000'; /* null terminate disp[1] */
return (-1);
}
}
switch (str[strl - 3])
{
case 'r':
case 'R':
if (str[strl - 2] >= '0' && str[strl - 2] < '8' && str[strl - 4] == '(')
{
addr_modeP->mode = str[strl - 2] - '0' + 8;
addr_modeP->disp[0] = str;
str[strl - 4] = 0;
return (-1); /* reg rel */
}
default:
if (!strncmp (&str[strl - 4], "(fp", 3))
{
mode = 24;
}
if (!strncmp (&str[strl - 4], "(sp", 3))
{
mode = 25;
}
if (!strncmp (&str[strl - 4], "(sb", 3))
{
mode = 26;
}
if (!strncmp (&str[strl - 4], "(pc", 3))
{
mode = 27;
}
if (mode != DEFAULT)
{
addr_modeP->mode = mode;
addr_modeP->disp[0] = str;
str[strl - 4] = '\0';
return (-1); /* memory space */
}
}
}
/* no trailing ')' do we have a ']' ? */
if (str[strl - 1] == ']')
{
switch (str[strl - 2])
{
case 'b':
mode = 28;
break;
case 'w':
mode = 29;
break;
case 'd':
mode = 30;
break;
case 'q':
mode = 31;
break;
default:;
as_warn ("Invalid scaled-indexed mode, use (b,w,d,q)");
if (str[strl - 3] != ':' || str[strl - 6] != '[' ||
str[strl - 5] == 'r' || str[strl - 4] < '0' || str[strl - 4] > '7')
{
as_warn ("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}");
}
} /* scaled index */
{
if (recursive_level > 0)
{
as_warn ("Scaled-indexed addressing mode combined with scaled-index");
return (0);
}
addr_modeP->am_size += 1; /* scaled index byte */
j = str[strl - 4] - '0'; /* store temporary */
str[strl - 6] = '\000'; /* nullterminate for recursive call */
i = addr_mode (str, addr_modeP, 1);
if (!i || addr_modeP->mode == 20)
{
as_warn ("Invalid or illegal addressing mode combined with scaled-index");
return (0);
}
addr_modeP->scaled_mode = addr_modeP->mode; /* store the inferior mode */
addr_modeP->mode = mode;
addr_modeP->scaled_reg = j + 1;
return (-1);
}
}
}
addr_modeP->mode = DEFAULT; /* default to whatever */
addr_modeP->disp[0] = str;
return (-1);
}
/* ptr points at string
addr_modeP points at struct with result
This routine calls addr_mode to determine the general addr.mode of
the operand. When this is ready it parses the displacements for size
specifying suffixes and determines size of immediate mode via ns32k-opcode.
Also builds index bytes if needed.
*/
int
get_addr_mode (ptr, addr_modeP)
char *ptr;
addr_modeS *addr_modeP;
{
int tmp;
addr_mode (ptr, addr_modeP, 0);
if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1)
{
/* resolve ambigious operands, this shouldn't
be necessary if one uses standard NSC operand
syntax. But the sequent compiler doesn't!!!
This finds a proper addressinging mode if it
is implicitly stated. See ns32k-opcode.h */
(void) evaluate_expr (&exprP, ptr); /* this call takes time Sigh! */
if (addr_modeP->mode == DEFAULT)
{
if (exprP.X_add_symbol || exprP.X_subtract_symbol)
{
addr_modeP->mode = desc->default_model; /* we have a label */
}
else
{
addr_modeP->mode = desc->default_modec; /* we have a constant */
}
}
else
{
if (exprP.X_add_symbol || exprP.X_subtract_symbol)
{
addr_modeP->scaled_mode = desc->default_model;
}
else
{
addr_modeP->scaled_mode = desc->default_modec;
}
}
/* must put this mess down in addr_mode to handle the scaled case better */
}
/* It appears as the sequent compiler wants an absolute when we have a
label without @. Constants becomes immediates besides the addr case.
Think it does so with local labels too, not optimum, pcrel is better.
When I have time I will make gas check this and select pcrel when possible
Actually that is trivial.
*/
if (tmp = addr_modeP->scaled_reg)
{ /* build indexbyte */
tmp--; /* remember regnumber comes incremented for flagpurpose */
tmp |= addr_modeP->scaled_mode << 3;
addr_modeP->index_byte = (char) tmp;
addr_modeP->am_size += 1;
}
if (disp_test[addr_modeP->mode])
{ /* there was a displacement, probe for length specifying suffix*/
{
register char c;
register char suffix;
register char suffix_sub;
register int i;
register char *toP;
register char *fromP;
addr_modeP->pcrel = 0;
if (disp_test[addr_modeP->mode])
{ /* there is a displacement */
if (addr_modeP->mode == 27 || addr_modeP->scaled_mode == 27)
{ /* do we have pcrel. mode */
addr_modeP->pcrel = 1;
}
addr_modeP->im_disp = 1;
for (i = 0; i < 2; i++)
{
suffix_sub = suffix = 0;
if (toP = addr_modeP->disp[i])
{ /* suffix of expression, the largest size rules */
fromP = toP;
while (c = *fromP++)
{
*toP++ = c;
if (c == ':')
{
switch (*fromP)
{
case '\0':
as_warn ("Premature end of suffix--Defaulting to d");
suffix = 4;
continue;
case 'b':
suffix_sub = 1;
break;
case 'w':
suffix_sub = 2;
break;
case 'd':
suffix_sub = 4;
break;
default:
as_warn ("Bad suffix after ':' use {b|w|d} Defaulting to d");
suffix = 4;
}
fromP++;
toP--; /* So we write over the ':' */
if (suffix < suffix_sub)
suffix = suffix_sub;
}
}
*toP = '\0';/* terminate properly */
addr_modeP->disp_suffix[i] = suffix;
addr_modeP->am_size += suffix ? suffix : 4;
}
}
}
}
}
else
{
if (addr_modeP->mode == 20)
{ /* look in ns32k_opcode for size */
addr_modeP->disp_suffix[0] = addr_modeP->am_size = desc->im_size;
addr_modeP->im_disp = 0;
}
}
return addr_modeP->mode;
}
/* read an optionlist */
void
optlist (str, optionP, default_map)
char *str; /* the string to extract options from */
struct option *optionP; /* how to search the string */
unsigned long *default_map;/* default pattern and output */
{
register int i, j, k, strlen1, strlen2;
register char *patternP, *strP;
strlen1 = strlen (str);
if (strlen1 < 1)
{
as_fatal ("Very short instr to option, ie you can't do it on a NULLstr");
}
for (i = 0; optionP[i].pattern != 0; i++)
{
strlen2 = strlen (optionP[i].pattern);
for (j = 0; j < strlen1; j++)
{
patternP = optionP[i].pattern;
strP = &str[j];
for (k = 0; k < strlen2; k++)
{
if (*(strP++) != *(patternP++))
break;
}
if (k == strlen2)
{ /* match */
*default_map |= optionP[i].or;
*default_map &= optionP[i].and;
}
}
}
}
/* search struct for symbols
This function is used to get the short integer form of reg names
in the instructions lmr, smr, lpr, spr
return true if str is found in list */
int
list_search (str, optionP, default_map)
char *str; /* the string to match */
struct option *optionP; /* list to search */
unsigned long *default_map;/* default pattern and output */
{
register int i;
for (i = 0; optionP[i].pattern != 0; i++)
{
if (!strncmp (optionP[i].pattern, str, 20))
{ /* use strncmp to be safe */
*default_map |= optionP[i].or;
*default_map &= optionP[i].and;
return -1;
}
}
as_warn ("No such entry in list. (cpu/mmu register)");
return 0;
}
static segT
evaluate_expr (resultP, ptr)
expressionS *resultP;
char *ptr;
{
register char *tmp_line;
register segT segment;
tmp_line = input_line_pointer;
input_line_pointer = ptr;
segment = expression (&exprP);
input_line_pointer = tmp_line;
return (segment);
}
/* Convert operands to iif-format and adds bitfields to the opcode.
Operands are parsed in such an order that the opcode is updated from
its most significant bit, that is when the operand need to alter the
opcode.
Be carefull not to put to objects in the same iif-slot.
*/
void
encode_operand (argc, argv, operandsP, suffixP, im_size, opcode_bit_ptr)
int argc;
char **argv;
char *operandsP;
char *suffixP;
char im_size;
char opcode_bit_ptr;
{
register int i, j;
int pcrel, tmp, b, loop, pcrel_adjust;
for (loop = 0; loop < argc; loop++)
{
i = operandsP[loop << 1] - '1'; /* what operand are we supposed to work on */
if (i > 3)
as_fatal ("Internal consistency error. check ns32k-opcode.h");
pcrel = 0;
pcrel_adjust = 0;
tmp = 0;
switch (operandsP[(loop << 1) + 1])
{
case 'f': /* operand of sfsr turns out to be a nasty specialcase */
opcode_bit_ptr -= 5;
case 'F': /* 32 bit float general form */
case 'L': /* 64 bit float */
case 'Q': /* quad-word */
case 'B': /* byte */
case 'W': /* word */
case 'D': /* double-word */
case 'A': /* double-word gen-address-form ie no regs allowed */
get_addr_mode (argv[i], &addr_modeP);
iif.instr_size += addr_modeP.am_size;
if (opcode_bit_ptr == desc->opcode_size)
b = 4;
else
b = 6;
for (j = b; j < (b + 2); j++)
{
if (addr_modeP.disp[j - b])
{
IIF (j,
2,
addr_modeP.disp_suffix[j - b],
(unsigned long) addr_modeP.disp[j - b],
0,
addr_modeP.pcrel,
iif.instr_size - addr_modeP.am_size, /* this aint used (now) */
addr_modeP.im_disp,
IND (BRANCH, BYTE),
NULL,
addr_modeP.scaled_reg ? addr_modeP.scaled_mode : addr_modeP.mode,
0);
}
}
opcode_bit_ptr -= 5;
iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
if (addr_modeP.scaled_reg)
{
j = b / 2;
IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte, 0, 0, 0, 0, 0, NULL, -1, 0);
}
break;
case 'b': /* multiple instruction disp */
freeptr++; /* OVE:this is an useful hack */
tmp = (int) sprintf (freeptr,
"((%s-1)*%d)\000",
argv[i], desc->im_size);
argv[i] = freeptr;
freeptr = (char *) tmp;
pcrel -= 1; /* make pcrel 0 inspite of what case 'p': wants */
/* fall thru */
case 'p': /* displacement - pc relative addressing */
pcrel += 1;
/* fall thru */
case 'd': /* displacement */
iif.instr_size += suffixP[i] ? suffixP[i] : 4;
IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
break;
case 'H': /* sequent-hack: the linker wants a bit set when bsr */
pcrel = 1;
iif.instr_size += suffixP[i] ? suffixP[i] : 4;
IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
break;
case 'q': /* quick */
opcode_bit_ptr -= 4;
IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
break;
case 'r': /* register number (3 bits) */
list_search (argv[i], opt6, &tmp);
opcode_bit_ptr -= 3;
iif.iifP[1].object |= tmp << opcode_bit_ptr;
break;
case 'O': /* setcfg instruction optionslist */
optlist (argv[i], opt3, &tmp);
opcode_bit_ptr -= 4;
iif.iifP[1].object |= tmp << 15;
break;
case 'C': /* cinv instruction optionslist */
optlist (argv[i], opt4, &tmp);
opcode_bit_ptr -= 4;
iif.iifP[1].object |= tmp << 15; /*insert the regtype in opcode */
break;
case 'S': /* stringinstruction optionslist */
optlist (argv[i], opt5, &tmp);
opcode_bit_ptr -= 4;
iif.iifP[1].object |= tmp << 15;
break;
case 'u':
case 'U': /* registerlist */
IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
switch (operandsP[(i << 1) + 1])
{
case 'u': /* restore, exit */
optlist (argv[i], opt1, &iif.iifP[10].object);
break;
case 'U': /* save,enter */
optlist (argv[i], opt2, &iif.iifP[10].object);
break;
}
iif.instr_size += 1;
break;
case 'M': /* mmu register */
list_search (argv[i], mmureg, &tmp);
opcode_bit_ptr -= 4;
iif.iifP[1].object |= tmp << opcode_bit_ptr;
break;
case 'P': /* cpu register */
list_search (argv[i], cpureg, &tmp);
opcode_bit_ptr -= 4;
iif.iifP[1].object |= tmp << opcode_bit_ptr;
break;
case 'g': /* inss exts */
iif.instr_size += 1; /* 1 byte is allocated after the opcode */
IIF (10, 2, 1,
(unsigned long) argv[i], /* i always 2 here */
0, 0, 0, 0, 0,
bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* a bit_fix is targeted to the byte */
-1, 0);
case 'G':
IIF (11, 2, 42,
(unsigned long) argv[i], /* i always 3 here */
0, 0, 0, 0, 0,
bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
break;
case 'i':
iif.instr_size += 1;
b = 2 + i; /* put the extension byte after opcode */
IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
default:
as_fatal ("Bad opcode-table-option, check in file ns32k-opcode.h");
}
}
}
/* in: instruction line
out: internal structure of instruction
that has been prepared for direct conversion to fragment(s) and
fixes in a systematical fashion
Return-value = recursive_level
*/
/* build iif of one assembly text line */
int
parse (line, recursive_level)
char *line;
int recursive_level;
{
register char *lineptr, c, suffix_separator;
register int i;
int argc, arg_type;
char sqr, sep;
char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* no more than 4 operands */
if (recursive_level <= 0)
{ /* called from md_assemble */
for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++);
c = *lineptr;
*lineptr = '\0';
if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
{
as_fatal ("No such opcode");
}
*lineptr = c;
}
else
{
lineptr = line;
}
argc = 0;
if (*desc->operands)
{
if (*lineptr++ != '\0')
{
sqr = '[';
sep = ',';
while (*lineptr != '\0')
{
if (desc->operands[argc << 1])
{
suffix[argc] = 0;
arg_type = desc->operands[(argc << 1) + 1];
switch (arg_type)
{
case 'd':
case 'b':
case 'p':
case 'H': /* the operand is supposed to be a displacement */
/* Hackwarning: do not forget to update the 4 cases above when editing ns32k-opcode.h */
suffix_separator = ':';
break;
default:
suffix_separator = '\255'; /* if this char occurs we loose */
}
suffix[argc] = 0; /* 0 when no ':' is encountered */
argv[argc] = freeptr;
*freeptr = '\0';
while ((c = *lineptr) != '\0' && c != sep)
{
if (c == sqr)
{
if (sqr == '[')
{
sqr = ']';
sep = '\0';
}
else
{
sqr = '[';
sep = ',';
}
}
if (c == suffix_separator)
{ /* ':' - label/suffix separator */
switch (lineptr[1])
{
case 'b':
suffix[argc] = 1;
break;
case 'w':
suffix[argc] = 2;
break;
case 'd':
suffix[argc] = 4;
break;
default:
as_warn ("Bad suffix, defaulting to d");
suffix[argc] = 4;
if (lineptr[1] == '\0' || lineptr[1] == sep)
{
lineptr += 1;
continue;
}
}
lineptr += 2;
continue;
}
*freeptr++ = c;
lineptr++;
}
*freeptr++ = '\0';
argc += 1;
if (*lineptr == '\0')
continue;
lineptr += 1;
}
else
{
as_fatal ("Too many operands passed to instruction");
}
}
}
}
if (argc != strlen (desc->operands) / 2)
{
if (strlen (desc->default_args))
{ /* we can apply default, dont goof */
if (parse (desc->default_args, 1) != 1)
{ /* check error in default */
as_fatal ("Wrong numbers of operands in default, check ns32k-opcodes.h");
}
}
else
{
as_fatal ("Wrong number of operands");
}
}
for (i = 0; i < IIF_ENTRIES; i++)
{
iif.iifP[i].type = 0; /* mark all entries as void*/
}
/* build opcode iif-entry */
iif.instr_size = desc->opcode_size / 8;
IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
/* this call encodes operands to iif format */
if (argc)
{
encode_operand (argc,
argv,
&desc->operands[0],
&suffix[0],
desc->im_size,
desc->opcode_size);
}
return recursive_level;
}
/* Convert iif to fragments.
From this point we start to dribble with functions in other files than
this one.(Except hash.c) So, if it's possible to make an iif for an other
CPU, you don't need to know what frags, relax, obstacks, etc is in order
to port this assembler. You only need to know if it's possible to reduce
your cpu-instruction to iif-format (takes some work) and adopt the other
md_? parts according to given instructions
Note that iif was invented for the clean ns32k`s architecure.
*/
void
convert_iif ()
{
int i;
int j;
fragS *inst_frag;
char *inst_offset;
char **inst_opcode;
char *memP;
segT segment;
int l;
int k;
int rem_size; /* count the remaining bytes of instruction */
char type;
char size = 0;
int size_so_far = 0; /* used to calculate pcrel_adjust */
rem_size = iif.instr_size;
memP = frag_more (iif.instr_size); /* make sure we have enough bytes for instruction */
inst_opcode = memP;
inst_offset = (char *) (memP - frag_now->fr_literal);
inst_frag = frag_now;
for (i = 0; i < IIF_ENTRIES; i++)
{
if (type = iif.iifP[i].type)
{ /* the object exist, so handle it */
switch (size = iif.iifP[i].size)
{
case 42:
size = 0; /* it's a bitfix that operates on an existing object*/
if (iif.iifP[i].bit_fixP->fx_bit_base)
{ /* expand fx_bit_base to point at opcode */
iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
}
case 8: /* bignum or doublefloat */
memset (memP, '\0', 8);
case 1:
case 2:
case 3:
case 4: /* the final size in objectmemory is known */
j = (unsigned long) iif.iifP[i].bit_fixP;
switch (type)
{
case 1: /* the object is pure binary */
if (j || iif.iifP[i].pcrel)
{
fix_new_ns32k (frag_now,
(long) (memP - frag_now->fr_literal),
size,
0,
0,
iif.iifP[i].object,
iif.iifP[i].pcrel,
(char) size_so_far, /*iif.iifP[i].pcrel_adjust,*/
iif.iifP[i].im_disp,
j,
iif.iifP[i].bsr); /* sequent hack */
}
else
{ /* good, just put them bytes out */
switch (iif.iifP[i].im_disp)
{
case 0:
md_number_to_chars (memP, iif.iifP[i].object, size);
break;
case 1:
md_number_to_disp (memP, iif.iifP[i].object, size);
break;
default:
as_fatal ("iif convert internal pcrel/binary");
}
}
memP += size;
rem_size -= size;
break;
case 2: /* the object is a pointer at an expression, so unpack
it, note that bignums may result from the expression
*/
if ((segment = evaluate_expr (&exprP, (char *) iif.iifP[i].object)) == SEG_BIG || size == 8)
{
if ((k = exprP.X_add_number) > 0)
{ /* we have a bignum ie a quad */
/* this can only happens in a long suffixed instruction */
memset (memP, '\0', size); /* size normally is 8 */
if (k * 2 > size)
as_warn ("Bignum too big for long");
if (k == 3)
memP += 2;
for (l = 0; k > 0; k--, l += 2)
{
md_number_to_chars (memP + l, generic_bignum[l >> 1], sizeof (LITTLENUM_TYPE));
}
}
else
{ /* flonum */
LITTLENUM_TYPE words[4];
switch (size)
{
case 4:
gen_to_words (words, 2, 8);
md_number_to_imm (memP, (long) words[0], sizeof (LITTLENUM_TYPE));
md_number_to_imm (memP + sizeof (LITTLENUM_TYPE), (long) words[1], sizeof (LITTLENUM_TYPE));
break;
case 8:
gen_to_words (words, 4, 11);
md_number_to_imm (memP, (long) words[0], sizeof (LITTLENUM_TYPE));
md_number_to_imm (memP + sizeof (LITTLENUM_TYPE), (long) words[1], sizeof (LITTLENUM_TYPE));
md_number_to_imm (memP + 2 * sizeof (LITTLENUM_TYPE), (long) words[2], sizeof (LITTLENUM_TYPE));
md_number_to_imm (memP + 3 * sizeof (LITTLENUM_TYPE), (long) words[3], sizeof (LITTLENUM_TYPE));
break;
}
}
memP += size;
rem_size -= size;
break;
}
if (j ||
exprP.X_add_symbol ||
exprP.X_subtract_symbol ||
iif.iifP[i].pcrel)
{ /* fixit */
/* the expression was undefined due to an undefined label */
/* create a fix so we can fix the object later */
exprP.X_add_number += iif.iifP[i].object_adjust;
fix_new_ns32k (frag_now,
(long) (memP - frag_now->fr_literal),
size,
exprP.X_add_symbol,
exprP.X_subtract_symbol,
exprP.X_add_number,
iif.iifP[i].pcrel,
(char) size_so_far, /*iif.iifP[i].pcrel_adjust,*/
iif.iifP[i].im_disp,
j,
iif.iifP[i].bsr); /* sequent hack */
}
else
{ /* good, just put them bytes out */
switch (iif.iifP[i].im_disp)
{
case 0:
md_number_to_imm (memP, exprP.X_add_number, size);
break;
case 1:
md_number_to_disp (memP, exprP.X_add_number, size);
break;
default:
as_fatal ("iif convert internal pcrel/pointer");
}
}
memP += size;
rem_size -= size;
break;
default:
as_fatal ("Internal logic error in iif.iifP[n].type");
}
break;
case 0: /* To bad, the object may be undefined as far as its final
nsize in object memory is concerned. The size of the object
in objectmemory is not explicitly given.
If the object is defined its length can be determined and
a fix can replace the frag.
*/
{
int temp;
segment = evaluate_expr (&exprP, (char *) iif.iifP[i].object);
if ((exprP.X_add_symbol || exprP.X_subtract_symbol) &&
!iif.iifP[i].pcrel)
{ /* OVE: hack, clamp to 4 bytes */
size = 4; /* we dont wan't to frag this, use 4 so it reaches */
fix_new_ns32k (frag_now,
(long) (memP - frag_now->fr_literal),
size,
exprP.X_add_symbol,
exprP.X_subtract_symbol,
exprP.X_add_number,
0, /* never iif.iifP[i].pcrel, */
(char) size_so_far, /*iif.iifP[i].pcrel_adjust,*/
1, /* always iif.iifP[i].im_disp, */
0, 0);
memP += size;
rem_size -= 4;
break; /* exit this absolute hack */
}
if (exprP.X_add_symbol || exprP.X_subtract_symbol)
{ /* frag it */
if (exprP.X_subtract_symbol)
{ /* We cant relax this case */
as_fatal ("Can't relax difference");
}
else
{
/* at this stage we must undo some of the effect caused
by frag_more, ie we must make sure that frag_var causes
frag_new to creat a valid fix-size in the frag it`s closing
*/
temp = -(rem_size - 4);
obstack_blank_fast (&frags, temp);
/* we rewind none, some or all of the requested size we
requested by the first frag_more for this iif chunk.
Note: that we allocate 4 bytes to an object we NOT YET
know the size of, thus rem_size-4.
*/
(void) frag_variant (rs_machine_dependent,
4,
0,
IND (BRANCH, UNDEF), /* expecting the worst */
exprP.X_add_symbol,
exprP.X_add_number,
(char *) inst_opcode,
(char) size_so_far, /*iif.iifP[i].pcrel_adjust);*/
iif.iifP[i].bsr); /* sequent linker hack */
rem_size -= 4;
if (rem_size > 0)
{
memP = frag_more (rem_size);
}
}
}
else
{ /* Double work, this is done in md_number_to_disp */
/* exprP.X_add_number; what was this supposed to be?
xoxorich. */
if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
{
size = 1;
}
else
{
if (-8192 <= exprP.X_add_number && exprP.X_add_number <= 8191)
{
size = 2;
}
else
{
if (-0x1f000000 <= exprP.X_add_number &&
exprP.X_add_number <= 0x1fffffff)
/* if (-0x40000000<=exprP.X_add_number &&
exprP.X_add_number<=0x3fffffff) */
{
size = 4;
}
else
{
as_warn ("Displacement to large for :d");
size = 4;
}
}
}
/* rewind the bytes not used */
temp = -(4 - size);
md_number_to_disp (memP, exprP.X_add_number, size);
obstack_blank_fast (&frags, temp);
memP += size;
rem_size -= 4; /* we allocated this amount */
}
}
break;
default:
as_fatal ("Internal logic error in iif.iifP[].type");
}
size_so_far += size;
size = 0;
}
}
}
void
md_assemble (line)
char *line;
{
freeptr = freeptr_static;
parse (line, 0); /* explode line to more fix form in iif */
convert_iif (); /* convert iif to frags, fix's etc */
#ifdef SHOW_NUM
printf (" \t\t\t%s\n", line);
#endif
}
void
md_begin ()
{
/* build a hashtable of the instructions */
register const struct ns32k_opcode *ptr;
register char *stat;
inst_hash_handle = hash_new ();
for (ptr = ns32k_opcodes; ptr < endop; ptr++)
{
if (*(stat = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
{
as_fatal ("Can't hash %s: %s", ptr->name, stat); /*fatal*/
exit (0);
}
}
freeptr_static = (char *) malloc (PRIVATE_SIZE); /* some private space please! */
}
void
md_end ()
{
free (freeptr_static);
}
/* Must be equal to MAX_PRECISON in atof-ieee.c */
#define MAX_LITTLENUMS 6
/* Turn the string pointed to by litP into a floating point constant of type
type, and emit the appropriate bytes. The number of LITTLENUMS emitted
is stored in *sizeP . An error message is returned, or NULL on OK.
*/
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return "Bad call to MD_ATOF()";
}
t = atof_ns32k (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
for (wordP = words + prec; prec--;)
{
md_number_to_chars (litP, (long) (*--wordP), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return ""; /* Someone should teach Dean about null pointers */
}
/* Convert number to chars in correct order */
void
md_number_to_chars (buf, value, nbytes)
char *buf;
valueT value;
int nbytes;
{
while (nbytes--)
{
#ifdef SHOW_NUM
printf ("%x ", value & 0xff);
#endif
*buf++ = value; /* Lint wants & MASK_CHAR. */
value >>= BITS_PER_CHAR;
}
} /* md_number_to_chars() */
/* This is a variant of md_numbers_to_chars. The reason for its' existence
is the fact that ns32k uses Huffman coded displacements. This implies
that the bit order is reversed in displacements and that they are prefixed
with a size-tag.
binary: msb -> lsb
0xxxxxxx byte
10xxxxxx xxxxxxxx word
11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
This must be taken care of and we do it here!
*/
static void
md_number_to_disp (buf, val, n)
char *buf;
long val;
char n;
{
switch (n)
{
case 1:
if (val < -64 || val > 63)
as_warn ("Byte displacement out of range. line number not valid");
val &= 0x7f;
#ifdef SHOW_NUM
printf ("%x ", val & 0xff);
#endif
*buf++ = val;
break;
case 2:
if (val < -8192 || val > 8191)
as_warn ("Word displacement out of range. line number not valid");
val &= 0x3fff;
val |= 0x8000;
#ifdef SHOW_NUM
printf ("%x ", val >> 8 & 0xff);
#endif
*buf++ = (val >> 8);
#ifdef SHOW_NUM
printf ("%x ", val & 0xff);
#endif
*buf++ = val;
break;
case 4:
if (val < -0x1f000000 || val >= 0x20000000)
/* if (val < -0x20000000 || val >= 0x20000000) */
as_warn ("Double word displacement out of range");
val |= 0xc0000000;
#ifdef SHOW_NUM
printf ("%x ", val >> 24 & 0xff);
#endif
*buf++ = (val >> 24);
#ifdef SHOW_NUM
printf ("%x ", val >> 16 & 0xff);
#endif
*buf++ = (val >> 16);
#ifdef SHOW_NUM
printf ("%x ", val >> 8 & 0xff);
#endif
*buf++ = (val >> 8);
#ifdef SHOW_NUM
printf ("%x ", val & 0xff);
#endif
*buf++ = val;
break;
default:
as_fatal ("Internal logic error. line %s, file \"%s\"", __LINE__, __FILE__);
}
}
static void
md_number_to_imm (buf, val, n)
char *buf;
long val;
char n;
{
switch (n)
{
case 1:
#ifdef SHOW_NUM
printf ("%x ", val & 0xff);
#endif
*buf++ = val;
break;
case 2:
#ifdef SHOW_NUM
printf ("%x ", val >> 8 & 0xff);
#endif
*buf++ = (val >> 8);
#ifdef SHOW_NUM
printf ("%x ", val & 0xff);
#endif
*buf++ = val;
break;
case 4:
#ifdef SHOW_NUM
printf ("%x ", val >> 24 & 0xff);
#endif
*buf++ = (val >> 24);
#ifdef SHOW_NUM
printf ("%x ", val >> 16 & 0xff);
#endif
*buf++ = (val >> 16);
#ifdef SHOW_NUM
printf ("%x ", val >> 8 & 0xff);
#endif
*buf++ = (val >> 8);
#ifdef SHOW_NUM
printf ("%x ", val & 0xff);
#endif
*buf++ = val;
break;
default:
as_fatal ("Internal logic error. line %s, file \"%s\"", __LINE__, __FILE__);
}
}
/* Translate internal representation of relocation info into target format.
OVE: on a ns32k the twiddling continues at an even deeper level
here we have to distinguish between displacements and immediates.
The sequent has a bit for this. It also has a bit for relocobjects that
points at the target for a bsr (BranchSubRoutine) !?!?!?!
This md_ri.... is tailored for sequent.
*/
#ifdef comment
void
md_ri_to_chars (the_bytes, ri)
char *the_bytes;
struct reloc_info_generic *ri;
{
if (ri->r_bsr)
{
ri->r_pcrel = 0;
} /* sequent seems to want this */
md_number_to_chars (the_bytes, ri->r_address, sizeof (ri->r_address));
md_number_to_chars (the_bytes + 4, ((long) (ri->r_symbolnum)
| (long) (ri->r_pcrel << 24)
| (long) (ri->r_length << 25)
| (long) (ri->r_extern << 27)
| (long) (ri->r_bsr << 28)
| (long) (ri->r_disp << 29)),
4);
/* the first and second md_number_to_chars never overlaps (32bit cpu case) */
}
#endif /* comment */
#ifdef OBJ_AOUT
void
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
char *where;
struct fix *fixP;
relax_addressT segment_address_in_file;
{
/*
* In: length of relocation (or of address) in chars: 1, 2 or 4.
* Out: GNU LD relocation length code: 0, 1, or 2.
*/
static unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
long r_symbolnum;
know (fixP->fx_addsy != NULL);
md_number_to_chars (where,
fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
4);
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
? S_GET_TYPE (fixP->fx_addsy)
: fixP->fx_addsy->sy_number);
md_number_to_chars (where,
((long) (r_symbolnum)
| (long) (fixP->fx_pcrel << 24)
| (long) (nbytes_r_length[fixP->fx_size] << 25)
| (long) ((!S_IS_DEFINED (fixP->fx_addsy)) << 27)
| (long) (fixP->fx_bsr << 28)
| (long) (fixP->fx_im_disp << 29)),
4);
}
#endif /* OBJ_AOUT */
/* fast bitfiddling support */
/* mask used to zero bitfield before oring in the true field */
static unsigned long l_mask[] =
{
0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
};
static unsigned long r_mask[] =
{
0x00000000, 0x00000001, 0x00000003, 0x00000007,
0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
};
#define MASK_BITS 31
/* Insert bitfield described by field_ptr and val at buf
This routine is written for modification of the first 4 bytes pointed
to by buf, to yield speed.
The ifdef stuff is for selection between a ns32k-dependent routine
and a general version. (My advice: use the general version!)
*/
static void
md_number_to_field (buf, val, field_ptr)
register char *buf;
register long val;
register bit_fixS *field_ptr;
{
register unsigned long object;
register unsigned long mask;
/* define ENDIAN on a ns32k machine */
#ifdef ENDIAN
register unsigned long *mem_ptr;
#else
register char *mem_ptr;
#endif
if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
{
#ifdef ENDIAN
if (field_ptr->fx_bit_base)
{ /* override buf */
mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
}
else
{
mem_ptr = (unsigned long *) buf;
}
#else
if (field_ptr->fx_bit_base)
{ /* override buf */
mem_ptr = (char *) field_ptr->fx_bit_base;
}
else
{
mem_ptr = buf;
}
#endif
mem_ptr += field_ptr->fx_bit_base_adj;
#ifdef ENDIAN /* we have a nice ns32k machine with lowbyte at low-physical mem */
object = *mem_ptr; /* get some bytes */
#else /* OVE Goof! the machine is a m68k or dito */
/* That takes more byte fiddling */
object = 0;
object |= mem_ptr[3] & 0xff;
object <<= 8;
object |= mem_ptr[2] & 0xff;
object <<= 8;
object |= mem_ptr[1] & 0xff;
object <<= 8;
object |= mem_ptr[0] & 0xff;
#endif
mask = 0;
mask |= (r_mask[field_ptr->fx_bit_offset]);
mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
object &= mask;
val += field_ptr->fx_bit_add;
object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
#ifdef ENDIAN
*mem_ptr = object;
#else
mem_ptr[0] = (char) object;
object >>= 8;
mem_ptr[1] = (char) object;
object >>= 8;
mem_ptr[2] = (char) object;
object >>= 8;
mem_ptr[3] = (char) object;
#endif
}
else
{
as_warn ("Bit field out of range");
}
}
/* Apply a fixS (fixup of an instruction or data that we didn't have
enough info to complete immediately) to the data in a frag.
On the ns32k, everything is in a different format, so we have broken
out separate functions for each kind of thing we could be fixing.
They all get called from here. */
void
md_apply_fix (fixP, val)
fixS *fixP;
long val;
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
if (fixP->fx_bit_fixP)
{ /* Bitfields to fix, sigh */
md_number_to_field (buf, val, fixP->fx_bit_fixP);
}
else
switch (fixP->fx_im_disp)
{
case 0: /* Immediate field */
md_number_to_imm (buf, val, fixP->fx_size);
break;
case 1: /* Displacement field */
md_number_to_disp (buf,
fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
fixP->fx_size);
break;
case 2: /* Pointer in a data object */
md_number_to_chars (buf, val, fixP->fx_size);
break;
}
}
/* Convert a relaxed displacement to ditto in final output */
void
md_convert_frag (headers, fragP)
object_headers *headers;
register fragS *fragP;
{
long disp;
long ext = 0;
/* Address in gas core of the place to store the displacement. */
register char *buffer_address = fragP->fr_fix + fragP->fr_literal;
/* Address in object code of the displacement. */
register int object_address = fragP->fr_fix + fragP->fr_address;
know (fragP->fr_symbol);
/* The displacement of the address, from current location. */
disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
disp += fragP->fr_pcrel_adjust;
switch (fragP->fr_subtype)
{
case IND (BRANCH, BYTE):
ext = 1;
break;
case IND (BRANCH, WORD):
ext = 2;
break;
case IND (BRANCH, DOUBLE):
ext = 4;
break;
}
if (ext)
{
md_number_to_disp (buffer_address, (long) disp, (int) ext);
fragP->fr_fix += ext;
}
}
/* This function returns the estimated size a variable object will occupy,
one can say that we tries to guess the size of the objects before we
actually know it */
int
md_estimate_size_before_relax (fragP, segment)
register fragS *fragP;
segT segment;
{
int old_fix;
old_fix = fragP->fr_fix;
switch (fragP->fr_subtype)
{
case IND (BRANCH, UNDEF):
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
{
/* the symbol has been assigned a value */
fragP->fr_subtype = IND (BRANCH, BYTE);
}
else
{
/* we don't relax symbols defined in an other segment
the thing to do is to assume the object will occupy 4 bytes */
fix_new_ns32k (fragP,
(int) (fragP->fr_fix),
4,
fragP->fr_symbol,
(symbolS *) 0,
fragP->fr_offset,
1,
fragP->fr_pcrel_adjust,
1,
0,
fragP->fr_bsr); /*sequent hack */
fragP->fr_fix += 4;
/* fragP->fr_opcode[1]=0xff; */
frag_wane (fragP);
break;
}
case IND (BRANCH, BYTE):
fragP->fr_var += 1;
break;
default:
break;
}
return fragP->fr_var + fragP->fr_fix - old_fix;
}
int md_short_jump_size = 3;
int md_long_jump_size = 5;
const int md_reloc_size = 8; /* Size of relocation record */
void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
valueT offset;
offset = to_addr - from_addr;
md_number_to_chars (ptr, (valueT) 0xEA, 1);
md_number_to_disp (ptr + 1, (valueT) offset, 2);
}
void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
valueT offset;
offset = to_addr - from_addr;
md_number_to_chars (ptr, (valueT) 0xEA, 2);
md_number_to_disp (ptr + 2, (valueT) offset, 4);
}
/* JF this is a new function to parse machine-dep options */
int
md_parse_option (argP, cntP, vecP)
char **argP;
int *cntP;
char ***vecP;
{
switch (**argP)
{
case 'm':
(*argP)++;
if (!strcmp (*argP, "32032"))
{
cpureg = cpureg_032;
mmureg = mmureg_032;
}
else if (!strcmp (*argP, "32532"))
{
cpureg = cpureg_532;
mmureg = mmureg_532;
}
else
as_warn ("Unknown -m option ignored");
while (**argP)
(*argP)++;
break;
default:
return 0;
}
return 1;
}
/*
* bit_fix_new()
*
* Create a bit_fixS in obstack 'notes'.
* This struct is used to profile the normal fix. If the bit_fixP is a
* valid pointer (not NULL) the bit_fix data will be used to format the fix.
*/
bit_fixS *
bit_fix_new (size, offset, min, max, add, base_type, base_adj)
char size; /* Length of bitfield */
char offset; /* Bit offset to bitfield */
long base_type; /* 0 or 1, if 1 it's exploded to opcode ptr */
long base_adj;
long min; /* Signextended min for bitfield */
long max; /* Signextended max for bitfield */
long add; /* Add mask, used for huffman prefix */
{
register bit_fixS *bit_fixP;
bit_fixP = (bit_fixS *) obstack_alloc (&notes, sizeof (bit_fixS));
bit_fixP->fx_bit_size = size;
bit_fixP->fx_bit_offset = offset;
bit_fixP->fx_bit_base = base_type;
bit_fixP->fx_bit_base_adj = base_adj;
bit_fixP->fx_bit_max = max;
bit_fixP->fx_bit_min = min;
bit_fixP->fx_bit_add = add;
return (bit_fixP);
}
void
fix_new_ns32k (frag, where, size, add_symbol, sub_symbol, offset, pcrel,
pcrel_adjust, im_disp, bit_fixP, bsr)
fragS *frag; /* Which frag? */
int where; /* Where in that frag? */
int size; /* 1, 2 or 4 usually. */
symbolS *add_symbol; /* X_add_symbol. */
symbolS *sub_symbol; /* X_subtract_symbol. */
long offset; /* X_add_number. */
int pcrel; /* TRUE if PC-relative relocation. */
char pcrel_adjust; /* not zero if adjustment of pcrel offset is needed */
char im_disp; /* true if the value to write is a displacement */
bit_fixS *bit_fixP; /* pointer at struct of bit_fix's, ignored if NULL */
char bsr; /* sequent-linker-hack: 1 when relocobject is a bsr */
{
fixS *fixP = fix_new (frag, where, size, add_symbol, sub_symbol,
offset, pcrel, NO_RELOC);
fixP->fx_pcrel_adjust = pcrel_adjust;
fixP->fx_im_disp = im_disp;
fixP->fx_bit_fixP = bit_fixP;
fixP->fx_bsr = bsr;
} /* fix_new_ns32k() */
/* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
void
cons_fix_new_ns32k (frag, where, size, exp)
fragS *frag; /* Which frag? */
int where; /* Where in that frag? */
int size; /* 1, 2 or 4 usually. */
expressionS *exp; /* Expression. */
{
fix_new_ns32k (frag, where, size, exp->X_add_symbol,
exp->X_subtract_symbol, exp->X_add_number,
0, 0, 2, 0, 0);
}
/* We have no need to default values of symbols. */
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
/* Parse an operand that is machine-specific.
We just return without modifying the expression if we have nothing
to do. */
/* ARGSUSED */
void
md_operand (expressionP)
expressionS *expressionP;
{
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment;
valueT size;
{
return size; /* Byte alignment is fine */
}
/* Exactly what point is a PC-relative offset relative TO?
On the National warts, they're relative to the address of the offset,
with some funny adjustments in some circumstances during blue moons.
(??? Is this right? FIXME-SOON) */
long
md_pcrel_from (fixP)
fixS *fixP;
{
long res;
res = fixP->fx_where + fixP->fx_frag->fr_address;
#ifdef SEQUENT_COMPATABILITY
if (fixP->fx_frag->fr_bsr)
res += 0x12 /* FOO Kludge alert! */
#endif
return res;
}
/*
* Local Variables:
* comment-column: 0
* End:
*/
/* end of tc-ns32k.c */