2620 lines
64 KiB
C
2620 lines
64 KiB
C
/* tc-mn10300.c -- Assembler code for the Matsushita 10300
|
||
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
||
2006, 2007 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "as.h"
|
||
#include "safe-ctype.h"
|
||
#include "subsegs.h"
|
||
#include "opcode/mn10300.h"
|
||
#include "dwarf2dbg.h"
|
||
#include "libiberty.h"
|
||
|
||
/* Structure to hold information about predefined registers. */
|
||
struct reg_name
|
||
{
|
||
const char *name;
|
||
int value;
|
||
};
|
||
|
||
/* Generic assembler global variables which must be defined by all
|
||
targets. */
|
||
|
||
/* Characters which always start a comment. */
|
||
const char comment_chars[] = "#";
|
||
|
||
/* Characters which start a comment at the beginning of a line. */
|
||
const char line_comment_chars[] = ";#";
|
||
|
||
/* Characters which may be used to separate multiple commands on a
|
||
single line. */
|
||
const char line_separator_chars[] = ";";
|
||
|
||
/* Characters which are used to indicate an exponent in a floating
|
||
point number. */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Characters which mean that a number is a floating point constant,
|
||
as in 0d1.0. */
|
||
const char FLT_CHARS[] = "dD";
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
/* The plus values for the bCC and fBCC instructions in the table below
|
||
are because the branch instruction is translated into a jump
|
||
instruction that is now +2 or +3 bytes further on in memory, and the
|
||
correct size of jump instruction must be selected. */
|
||
/* bCC relaxing. */
|
||
{0x7f, -0x80, 2, 1},
|
||
{0x7fff + 2, -0x8000 + 2, 5, 2},
|
||
{0x7fffffff, -0x80000000, 7, 0},
|
||
|
||
/* bCC relaxing (uncommon cases for 3byte length instructions) */
|
||
{0x7f, -0x80, 3, 4},
|
||
{0x7fff + 3, -0x8000 + 3, 6, 5},
|
||
{0x7fffffff, -0x80000000, 8, 0},
|
||
|
||
/* call relaxing. */
|
||
{0x7fff, -0x8000, 5, 7},
|
||
{0x7fffffff, -0x80000000, 7, 0},
|
||
|
||
/* calls relaxing. */
|
||
{0x7fff, -0x8000, 4, 9},
|
||
{0x7fffffff, -0x80000000, 6, 0},
|
||
|
||
/* jmp relaxing. */
|
||
{0x7f, -0x80, 2, 11},
|
||
{0x7fff, -0x8000, 3, 12},
|
||
{0x7fffffff, -0x80000000, 5, 0},
|
||
|
||
/* fbCC relaxing. */
|
||
{0x7f, -0x80, 3, 14},
|
||
{0x7fff + 3, -0x8000 + 3, 6, 15},
|
||
{0x7fffffff, -0x80000000, 8, 0},
|
||
|
||
};
|
||
|
||
/* Set linkrelax here to avoid fixups in most sections. */
|
||
int linkrelax = 1;
|
||
|
||
static int current_machine;
|
||
|
||
/* Fixups. */
|
||
#define MAX_INSN_FIXUPS 5
|
||
|
||
struct mn10300_fixup
|
||
{
|
||
expressionS exp;
|
||
int opindex;
|
||
bfd_reloc_code_real_type reloc;
|
||
};
|
||
struct mn10300_fixup fixups[MAX_INSN_FIXUPS];
|
||
static int fc;
|
||
|
||
/* We must store the value of each register operand so that we can
|
||
verify that certain registers do not match. */
|
||
int mn10300_reg_operands[MN10300_MAX_OPERANDS];
|
||
|
||
const char *md_shortopts = "";
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
#define HAVE_AM33_2 (current_machine == AM33_2)
|
||
#define HAVE_AM33 (current_machine == AM33 || HAVE_AM33_2)
|
||
#define HAVE_AM30 (current_machine == AM30)
|
||
|
||
/* Opcode hash table. */
|
||
static struct hash_control *mn10300_hash;
|
||
|
||
/* This table is sorted. Suitable for searching by a binary search. */
|
||
static const struct reg_name data_registers[] =
|
||
{
|
||
{ "d0", 0 },
|
||
{ "d1", 1 },
|
||
{ "d2", 2 },
|
||
{ "d3", 3 },
|
||
};
|
||
|
||
static const struct reg_name address_registers[] =
|
||
{
|
||
{ "a0", 0 },
|
||
{ "a1", 1 },
|
||
{ "a2", 2 },
|
||
{ "a3", 3 },
|
||
};
|
||
|
||
static const struct reg_name r_registers[] =
|
||
{
|
||
{ "a0", 8 },
|
||
{ "a1", 9 },
|
||
{ "a2", 10 },
|
||
{ "a3", 11 },
|
||
{ "d0", 12 },
|
||
{ "d1", 13 },
|
||
{ "d2", 14 },
|
||
{ "d3", 15 },
|
||
{ "e0", 0 },
|
||
{ "e1", 1 },
|
||
{ "e10", 10 },
|
||
{ "e11", 11 },
|
||
{ "e12", 12 },
|
||
{ "e13", 13 },
|
||
{ "e14", 14 },
|
||
{ "e15", 15 },
|
||
{ "e2", 2 },
|
||
{ "e3", 3 },
|
||
{ "e4", 4 },
|
||
{ "e5", 5 },
|
||
{ "e6", 6 },
|
||
{ "e7", 7 },
|
||
{ "e8", 8 },
|
||
{ "e9", 9 },
|
||
{ "r0", 0 },
|
||
{ "r1", 1 },
|
||
{ "r10", 10 },
|
||
{ "r11", 11 },
|
||
{ "r12", 12 },
|
||
{ "r13", 13 },
|
||
{ "r14", 14 },
|
||
{ "r15", 15 },
|
||
{ "r2", 2 },
|
||
{ "r3", 3 },
|
||
{ "r4", 4 },
|
||
{ "r5", 5 },
|
||
{ "r6", 6 },
|
||
{ "r7", 7 },
|
||
{ "r8", 8 },
|
||
{ "r9", 9 },
|
||
};
|
||
|
||
static const struct reg_name xr_registers[] =
|
||
{
|
||
{ "mcrh", 2 },
|
||
{ "mcrl", 3 },
|
||
{ "mcvf", 4 },
|
||
{ "mdrq", 1 },
|
||
{ "sp", 0 },
|
||
{ "xr0", 0 },
|
||
{ "xr1", 1 },
|
||
{ "xr10", 10 },
|
||
{ "xr11", 11 },
|
||
{ "xr12", 12 },
|
||
{ "xr13", 13 },
|
||
{ "xr14", 14 },
|
||
{ "xr15", 15 },
|
||
{ "xr2", 2 },
|
||
{ "xr3", 3 },
|
||
{ "xr4", 4 },
|
||
{ "xr5", 5 },
|
||
{ "xr6", 6 },
|
||
{ "xr7", 7 },
|
||
{ "xr8", 8 },
|
||
{ "xr9", 9 },
|
||
};
|
||
|
||
static const struct reg_name float_registers[] =
|
||
{
|
||
{ "fs0", 0 },
|
||
{ "fs1", 1 },
|
||
{ "fs10", 10 },
|
||
{ "fs11", 11 },
|
||
{ "fs12", 12 },
|
||
{ "fs13", 13 },
|
||
{ "fs14", 14 },
|
||
{ "fs15", 15 },
|
||
{ "fs16", 16 },
|
||
{ "fs17", 17 },
|
||
{ "fs18", 18 },
|
||
{ "fs19", 19 },
|
||
{ "fs2", 2 },
|
||
{ "fs20", 20 },
|
||
{ "fs21", 21 },
|
||
{ "fs22", 22 },
|
||
{ "fs23", 23 },
|
||
{ "fs24", 24 },
|
||
{ "fs25", 25 },
|
||
{ "fs26", 26 },
|
||
{ "fs27", 27 },
|
||
{ "fs28", 28 },
|
||
{ "fs29", 29 },
|
||
{ "fs3", 3 },
|
||
{ "fs30", 30 },
|
||
{ "fs31", 31 },
|
||
{ "fs4", 4 },
|
||
{ "fs5", 5 },
|
||
{ "fs6", 6 },
|
||
{ "fs7", 7 },
|
||
{ "fs8", 8 },
|
||
{ "fs9", 9 },
|
||
};
|
||
|
||
static const struct reg_name double_registers[] =
|
||
{
|
||
{ "fd0", 0 },
|
||
{ "fd10", 10 },
|
||
{ "fd12", 12 },
|
||
{ "fd14", 14 },
|
||
{ "fd16", 16 },
|
||
{ "fd18", 18 },
|
||
{ "fd2", 2 },
|
||
{ "fd20", 20 },
|
||
{ "fd22", 22 },
|
||
{ "fd24", 24 },
|
||
{ "fd26", 26 },
|
||
{ "fd28", 28 },
|
||
{ "fd30", 30 },
|
||
{ "fd4", 4 },
|
||
{ "fd6", 6 },
|
||
{ "fd8", 8 },
|
||
};
|
||
|
||
/* We abuse the `value' field, that would be otherwise unused, to
|
||
encode the architecture on which (access to) the register was
|
||
introduced. FIXME: we should probably warn when we encounter a
|
||
register name when assembling for an architecture that doesn't
|
||
support it, before parsing it as a symbol name. */
|
||
static const struct reg_name other_registers[] =
|
||
{
|
||
{ "epsw", AM33 },
|
||
{ "mdr", 0 },
|
||
{ "pc", AM33 },
|
||
{ "psw", 0 },
|
||
{ "sp", 0 },
|
||
};
|
||
|
||
#define OTHER_REG_NAME_CNT ARRAY_SIZE (other_registers)
|
||
|
||
/* Perform a binary search of the given register table REGS to see
|
||
if NAME is a valid regiter name. Returns the register number from
|
||
the array on success, or -1 on failure. */
|
||
|
||
static int
|
||
reg_name_search (const struct reg_name *regs,
|
||
int regcount,
|
||
const char *name)
|
||
{
|
||
int low, high;
|
||
|
||
low = 0;
|
||
high = regcount - 1;
|
||
|
||
do
|
||
{
|
||
int cmp, middle;
|
||
|
||
middle = (low + high) / 2;
|
||
cmp = strcasecmp (name, regs[middle].name);
|
||
if (cmp < 0)
|
||
high = middle - 1;
|
||
else if (cmp > 0)
|
||
low = middle + 1;
|
||
else
|
||
return regs[middle].value;
|
||
}
|
||
while (low <= high);
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Looks at the current position in the input line to see if it is
|
||
the name of a register in TABLE. If it is, then the name is
|
||
converted into an expression returned in EXPRESSIONP (with X_op
|
||
set to O_register and X_add_number set to the register number), the
|
||
input pointer is left pointing at the first non-blank character after
|
||
the name and the function returns TRUE. Otherwise the input pointer
|
||
is left alone and the function returns FALSE. */
|
||
|
||
static bfd_boolean
|
||
get_register_name (expressionS * expressionP,
|
||
const struct reg_name * table,
|
||
size_t table_length)
|
||
{
|
||
int reg_number;
|
||
char *name;
|
||
char *start;
|
||
char c;
|
||
|
||
/* Find the spelling of the operand. */
|
||
start = name = input_line_pointer;
|
||
|
||
c = get_symbol_end ();
|
||
reg_number = reg_name_search (table, table_length, name);
|
||
|
||
/* Put back the delimiting char. */
|
||
*input_line_pointer = c;
|
||
|
||
/* Look to see if it's in the register table. */
|
||
if (reg_number >= 0)
|
||
{
|
||
expressionP->X_op = O_register;
|
||
expressionP->X_add_number = reg_number;
|
||
|
||
/* Make the rest nice. */
|
||
expressionP->X_add_symbol = NULL;
|
||
expressionP->X_op_symbol = NULL;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Reset the line as if we had not done anything. */
|
||
input_line_pointer = start;
|
||
return FALSE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
r_register_name (expressionS *expressionP)
|
||
{
|
||
return get_register_name (expressionP, r_registers, ARRAY_SIZE (r_registers));
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
xr_register_name (expressionS *expressionP)
|
||
{
|
||
return get_register_name (expressionP, xr_registers, ARRAY_SIZE (xr_registers));
|
||
}
|
||
|
||
static bfd_boolean
|
||
data_register_name (expressionS *expressionP)
|
||
{
|
||
return get_register_name (expressionP, data_registers, ARRAY_SIZE (data_registers));
|
||
}
|
||
|
||
static bfd_boolean
|
||
address_register_name (expressionS *expressionP)
|
||
{
|
||
return get_register_name (expressionP, address_registers, ARRAY_SIZE (address_registers));
|
||
}
|
||
|
||
static bfd_boolean
|
||
float_register_name (expressionS *expressionP)
|
||
{
|
||
return get_register_name (expressionP, float_registers, ARRAY_SIZE (float_registers));
|
||
}
|
||
|
||
static bfd_boolean
|
||
double_register_name (expressionS *expressionP)
|
||
{
|
||
return get_register_name (expressionP, double_registers, ARRAY_SIZE (double_registers));
|
||
}
|
||
|
||
static bfd_boolean
|
||
other_register_name (expressionS *expressionP)
|
||
{
|
||
int reg_number;
|
||
char *name;
|
||
char *start;
|
||
char c;
|
||
|
||
/* Find the spelling of the operand. */
|
||
start = name = input_line_pointer;
|
||
|
||
c = get_symbol_end ();
|
||
reg_number = reg_name_search (other_registers, ARRAY_SIZE (other_registers), name);
|
||
|
||
/* Put back the delimiting char. */
|
||
*input_line_pointer = c;
|
||
|
||
/* Look to see if it's in the register table. */
|
||
if (reg_number == 0
|
||
|| (reg_number == AM33 && HAVE_AM33))
|
||
{
|
||
expressionP->X_op = O_register;
|
||
expressionP->X_add_number = 0;
|
||
|
||
/* Make the rest nice. */
|
||
expressionP->X_add_symbol = NULL;
|
||
expressionP->X_op_symbol = NULL;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Reset the line as if we had not done anything. */
|
||
input_line_pointer = start;
|
||
return FALSE;
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE *stream)
|
||
{
|
||
fprintf (stream, _("MN10300 assembler options:\n\
|
||
none yet\n"));
|
||
}
|
||
|
||
int
|
||
md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
symbolS *
|
||
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
char *
|
||
md_atof (int type, char *litp, int *sizep)
|
||
{
|
||
return ieee_md_atof (type, litp, sizep, FALSE);
|
||
}
|
||
|
||
void
|
||
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec,
|
||
fragS *fragP)
|
||
{
|
||
static unsigned long label_count = 0;
|
||
char buf[40];
|
||
|
||
subseg_change (sec, 0);
|
||
if (fragP->fr_subtype == 0)
|
||
{
|
||
fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 2;
|
||
}
|
||
else if (fragP->fr_subtype == 1)
|
||
{
|
||
/* Reverse the condition of the first branch. */
|
||
int offset = fragP->fr_fix;
|
||
int opcode = fragP->fr_literal[offset] & 0xff;
|
||
|
||
switch (opcode)
|
||
{
|
||
case 0xc8:
|
||
opcode = 0xc9;
|
||
break;
|
||
case 0xc9:
|
||
opcode = 0xc8;
|
||
break;
|
||
case 0xc0:
|
||
opcode = 0xc2;
|
||
break;
|
||
case 0xc2:
|
||
opcode = 0xc0;
|
||
break;
|
||
case 0xc3:
|
||
opcode = 0xc1;
|
||
break;
|
||
case 0xc1:
|
||
opcode = 0xc3;
|
||
break;
|
||
case 0xc4:
|
||
opcode = 0xc6;
|
||
break;
|
||
case 0xc6:
|
||
opcode = 0xc4;
|
||
break;
|
||
case 0xc7:
|
||
opcode = 0xc5;
|
||
break;
|
||
case 0xc5:
|
||
opcode = 0xc7;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
fragP->fr_literal[offset] = opcode;
|
||
|
||
/* Create a fixup for the reversed conditional branch. */
|
||
sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
|
||
fix_new (fragP, fragP->fr_fix + 1, 1,
|
||
symbol_new (buf, sec, 0, fragP->fr_next),
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
|
||
|
||
/* Now create the unconditional branch + fixup to the
|
||
final target. */
|
||
fragP->fr_literal[offset + 2] = 0xcc;
|
||
fix_new (fragP, fragP->fr_fix + 3, 2, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 5;
|
||
}
|
||
else if (fragP->fr_subtype == 2)
|
||
{
|
||
/* Reverse the condition of the first branch. */
|
||
int offset = fragP->fr_fix;
|
||
int opcode = fragP->fr_literal[offset] & 0xff;
|
||
|
||
switch (opcode)
|
||
{
|
||
case 0xc8:
|
||
opcode = 0xc9;
|
||
break;
|
||
case 0xc9:
|
||
opcode = 0xc8;
|
||
break;
|
||
case 0xc0:
|
||
opcode = 0xc2;
|
||
break;
|
||
case 0xc2:
|
||
opcode = 0xc0;
|
||
break;
|
||
case 0xc3:
|
||
opcode = 0xc1;
|
||
break;
|
||
case 0xc1:
|
||
opcode = 0xc3;
|
||
break;
|
||
case 0xc4:
|
||
opcode = 0xc6;
|
||
break;
|
||
case 0xc6:
|
||
opcode = 0xc4;
|
||
break;
|
||
case 0xc7:
|
||
opcode = 0xc5;
|
||
break;
|
||
case 0xc5:
|
||
opcode = 0xc7;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
fragP->fr_literal[offset] = opcode;
|
||
|
||
/* Create a fixup for the reversed conditional branch. */
|
||
sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
|
||
fix_new (fragP, fragP->fr_fix + 1, 1,
|
||
symbol_new (buf, sec, 0, fragP->fr_next),
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
|
||
|
||
/* Now create the unconditional branch + fixup to the
|
||
final target. */
|
||
fragP->fr_literal[offset + 2] = 0xdc;
|
||
fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 7;
|
||
}
|
||
else if (fragP->fr_subtype == 3)
|
||
{
|
||
fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 3;
|
||
}
|
||
else if (fragP->fr_subtype == 4)
|
||
{
|
||
/* Reverse the condition of the first branch. */
|
||
int offset = fragP->fr_fix;
|
||
int opcode = fragP->fr_literal[offset + 1] & 0xff;
|
||
|
||
switch (opcode)
|
||
{
|
||
case 0xe8:
|
||
opcode = 0xe9;
|
||
break;
|
||
case 0xe9:
|
||
opcode = 0xe8;
|
||
break;
|
||
case 0xea:
|
||
opcode = 0xeb;
|
||
break;
|
||
case 0xeb:
|
||
opcode = 0xea;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
fragP->fr_literal[offset + 1] = opcode;
|
||
|
||
/* Create a fixup for the reversed conditional branch. */
|
||
sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
|
||
fix_new (fragP, fragP->fr_fix + 2, 1,
|
||
symbol_new (buf, sec, 0, fragP->fr_next),
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
|
||
|
||
/* Now create the unconditional branch + fixup to the
|
||
final target. */
|
||
fragP->fr_literal[offset + 3] = 0xcc;
|
||
fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 6;
|
||
}
|
||
else if (fragP->fr_subtype == 5)
|
||
{
|
||
/* Reverse the condition of the first branch. */
|
||
int offset = fragP->fr_fix;
|
||
int opcode = fragP->fr_literal[offset + 1] & 0xff;
|
||
|
||
switch (opcode)
|
||
{
|
||
case 0xe8:
|
||
opcode = 0xe9;
|
||
break;
|
||
case 0xea:
|
||
opcode = 0xeb;
|
||
break;
|
||
case 0xeb:
|
||
opcode = 0xea;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
fragP->fr_literal[offset + 1] = opcode;
|
||
|
||
/* Create a fixup for the reversed conditional branch. */
|
||
sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
|
||
fix_new (fragP, fragP->fr_fix + 2, 1,
|
||
symbol_new (buf, sec, 0, fragP->fr_next),
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
|
||
|
||
/* Now create the unconditional branch + fixup to the
|
||
final target. */
|
||
fragP->fr_literal[offset + 3] = 0xdc;
|
||
fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 8;
|
||
}
|
||
else if (fragP->fr_subtype == 6)
|
||
{
|
||
int offset = fragP->fr_fix;
|
||
|
||
fragP->fr_literal[offset] = 0xcd;
|
||
fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 5;
|
||
}
|
||
else if (fragP->fr_subtype == 7)
|
||
{
|
||
int offset = fragP->fr_fix;
|
||
|
||
fragP->fr_literal[offset] = 0xdd;
|
||
fragP->fr_literal[offset + 5] = fragP->fr_literal[offset + 3];
|
||
fragP->fr_literal[offset + 6] = fragP->fr_literal[offset + 4];
|
||
|
||
fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 7;
|
||
}
|
||
else if (fragP->fr_subtype == 8)
|
||
{
|
||
int offset = fragP->fr_fix;
|
||
|
||
fragP->fr_literal[offset] = 0xfa;
|
||
fragP->fr_literal[offset + 1] = 0xff;
|
||
fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_16_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 4;
|
||
}
|
||
else if (fragP->fr_subtype == 9)
|
||
{
|
||
int offset = fragP->fr_fix;
|
||
|
||
fragP->fr_literal[offset] = 0xfc;
|
||
fragP->fr_literal[offset + 1] = 0xff;
|
||
|
||
fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_32_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 6;
|
||
}
|
||
else if (fragP->fr_subtype == 10)
|
||
{
|
||
fragP->fr_literal[fragP->fr_fix] = 0xca;
|
||
fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 2;
|
||
}
|
||
else if (fragP->fr_subtype == 11)
|
||
{
|
||
int offset = fragP->fr_fix;
|
||
|
||
fragP->fr_literal[offset] = 0xcc;
|
||
|
||
fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 3;
|
||
}
|
||
else if (fragP->fr_subtype == 12)
|
||
{
|
||
int offset = fragP->fr_fix;
|
||
|
||
fragP->fr_literal[offset] = 0xdc;
|
||
|
||
fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 5;
|
||
}
|
||
else if (fragP->fr_subtype == 13)
|
||
{
|
||
fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 3;
|
||
}
|
||
else if (fragP->fr_subtype == 14)
|
||
{
|
||
/* Reverse the condition of the first branch. */
|
||
int offset = fragP->fr_fix;
|
||
int opcode = fragP->fr_literal[offset + 1] & 0xff;
|
||
|
||
switch (opcode)
|
||
{
|
||
case 0xd0:
|
||
opcode = 0xd1;
|
||
break;
|
||
case 0xd1:
|
||
opcode = 0xd0;
|
||
break;
|
||
case 0xd2:
|
||
opcode = 0xdc;
|
||
break;
|
||
case 0xd3:
|
||
opcode = 0xdb;
|
||
break;
|
||
case 0xd4:
|
||
opcode = 0xda;
|
||
break;
|
||
case 0xd5:
|
||
opcode = 0xd9;
|
||
break;
|
||
case 0xd6:
|
||
opcode = 0xd8;
|
||
break;
|
||
case 0xd7:
|
||
opcode = 0xdd;
|
||
break;
|
||
case 0xd8:
|
||
opcode = 0xd6;
|
||
break;
|
||
case 0xd9:
|
||
opcode = 0xd5;
|
||
break;
|
||
case 0xda:
|
||
opcode = 0xd4;
|
||
break;
|
||
case 0xdb:
|
||
opcode = 0xd3;
|
||
break;
|
||
case 0xdc:
|
||
opcode = 0xd2;
|
||
break;
|
||
case 0xdd:
|
||
opcode = 0xd7;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
fragP->fr_literal[offset + 1] = opcode;
|
||
|
||
/* Create a fixup for the reversed conditional branch. */
|
||
sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
|
||
fix_new (fragP, fragP->fr_fix + 2, 1,
|
||
symbol_new (buf, sec, 0, fragP->fr_next),
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
|
||
|
||
/* Now create the unconditional branch + fixup to the
|
||
final target. */
|
||
fragP->fr_literal[offset + 3] = 0xcc;
|
||
fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 6;
|
||
}
|
||
else if (fragP->fr_subtype == 15)
|
||
{
|
||
/* Reverse the condition of the first branch. */
|
||
int offset = fragP->fr_fix;
|
||
int opcode = fragP->fr_literal[offset + 1] & 0xff;
|
||
|
||
switch (opcode)
|
||
{
|
||
case 0xd0:
|
||
opcode = 0xd1;
|
||
break;
|
||
case 0xd1:
|
||
opcode = 0xd0;
|
||
break;
|
||
case 0xd2:
|
||
opcode = 0xdc;
|
||
break;
|
||
case 0xd3:
|
||
opcode = 0xdb;
|
||
break;
|
||
case 0xd4:
|
||
opcode = 0xda;
|
||
break;
|
||
case 0xd5:
|
||
opcode = 0xd9;
|
||
break;
|
||
case 0xd6:
|
||
opcode = 0xd8;
|
||
break;
|
||
case 0xd7:
|
||
opcode = 0xdd;
|
||
break;
|
||
case 0xd8:
|
||
opcode = 0xd6;
|
||
break;
|
||
case 0xd9:
|
||
opcode = 0xd5;
|
||
break;
|
||
case 0xda:
|
||
opcode = 0xd4;
|
||
break;
|
||
case 0xdb:
|
||
opcode = 0xd3;
|
||
break;
|
||
case 0xdc:
|
||
opcode = 0xd2;
|
||
break;
|
||
case 0xdd:
|
||
opcode = 0xd7;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
fragP->fr_literal[offset + 1] = opcode;
|
||
|
||
/* Create a fixup for the reversed conditional branch. */
|
||
sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
|
||
fix_new (fragP, fragP->fr_fix + 2, 1,
|
||
symbol_new (buf, sec, 0, fragP->fr_next),
|
||
fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
|
||
|
||
/* Now create the unconditional branch + fixup to the
|
||
final target. */
|
||
fragP->fr_literal[offset + 3] = 0xdc;
|
||
fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
|
||
fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
|
||
fragP->fr_var = 0;
|
||
fragP->fr_fix += 8;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
valueT
|
||
md_section_align (asection *seg, valueT addr)
|
||
{
|
||
int align = bfd_get_section_alignment (stdoutput, seg);
|
||
|
||
return ((addr + (1 << align) - 1) & (-1 << align));
|
||
}
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
char *prev_name = "";
|
||
const struct mn10300_opcode *op;
|
||
|
||
mn10300_hash = hash_new ();
|
||
|
||
/* Insert unique names into hash table. The MN10300 instruction set
|
||
has many identical opcode names that have different opcodes based
|
||
on the operands. This hash table then provides a quick index to
|
||
the first opcode with a particular name in the opcode table. */
|
||
|
||
op = mn10300_opcodes;
|
||
while (op->name)
|
||
{
|
||
if (strcmp (prev_name, op->name))
|
||
{
|
||
prev_name = (char *) op->name;
|
||
hash_insert (mn10300_hash, op->name, (char *) op);
|
||
}
|
||
op++;
|
||
}
|
||
|
||
/* Set the default machine type. */
|
||
#ifdef TE_LINUX
|
||
if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, AM33_2))
|
||
as_warn (_("could not set architecture and machine"));
|
||
|
||
current_machine = AM33_2;
|
||
#else
|
||
if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, MN103))
|
||
as_warn (_("could not set architecture and machine"));
|
||
|
||
current_machine = MN103;
|
||
#endif
|
||
}
|
||
|
||
static symbolS *GOT_symbol;
|
||
|
||
static inline int
|
||
mn10300_PIC_related_p (symbolS *sym)
|
||
{
|
||
expressionS *exp;
|
||
|
||
if (! sym)
|
||
return 0;
|
||
|
||
if (sym == GOT_symbol)
|
||
return 1;
|
||
|
||
exp = symbol_get_value_expression (sym);
|
||
|
||
return (exp->X_op == O_PIC_reloc
|
||
|| mn10300_PIC_related_p (exp->X_add_symbol)
|
||
|| mn10300_PIC_related_p (exp->X_op_symbol));
|
||
}
|
||
|
||
static inline int
|
||
mn10300_check_fixup (struct mn10300_fixup *fixup)
|
||
{
|
||
expressionS *exp = &fixup->exp;
|
||
|
||
repeat:
|
||
switch (exp->X_op)
|
||
{
|
||
case O_add:
|
||
case O_subtract: /* If we're sufficiently unlucky that the label
|
||
and the expression that references it happen
|
||
to end up in different frags, the subtract
|
||
won't be simplified within expression(). */
|
||
/* The PIC-related operand must be the first operand of a sum. */
|
||
if (exp != &fixup->exp || mn10300_PIC_related_p (exp->X_op_symbol))
|
||
return 1;
|
||
|
||
if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
|
||
fixup->reloc = BFD_RELOC_32_GOT_PCREL;
|
||
|
||
exp = symbol_get_value_expression (exp->X_add_symbol);
|
||
goto repeat;
|
||
|
||
case O_symbol:
|
||
if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
|
||
fixup->reloc = BFD_RELOC_32_GOT_PCREL;
|
||
break;
|
||
|
||
case O_PIC_reloc:
|
||
fixup->reloc = exp->X_md;
|
||
exp->X_op = O_symbol;
|
||
if (fixup->reloc == BFD_RELOC_32_PLT_PCREL
|
||
&& fixup->opindex >= 0
|
||
&& (mn10300_operands[fixup->opindex].flags
|
||
& MN10300_OPERAND_RELAX))
|
||
return 1;
|
||
break;
|
||
|
||
default:
|
||
return (mn10300_PIC_related_p (exp->X_add_symbol)
|
||
|| mn10300_PIC_related_p (exp->X_op_symbol));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
mn10300_cons_fix_new (fragS *frag, int off, int size, expressionS *exp)
|
||
{
|
||
struct mn10300_fixup fixup;
|
||
|
||
fixup.opindex = -1;
|
||
fixup.exp = *exp;
|
||
fixup.reloc = BFD_RELOC_UNUSED;
|
||
|
||
mn10300_check_fixup (&fixup);
|
||
|
||
if (fixup.reloc == BFD_RELOC_MN10300_GOT32)
|
||
switch (size)
|
||
{
|
||
case 2:
|
||
fixup.reloc = BFD_RELOC_MN10300_GOT16;
|
||
break;
|
||
|
||
case 3:
|
||
fixup.reloc = BFD_RELOC_MN10300_GOT24;
|
||
break;
|
||
|
||
case 4:
|
||
break;
|
||
|
||
default:
|
||
goto error;
|
||
}
|
||
else if (fixup.reloc == BFD_RELOC_UNUSED)
|
||
switch (size)
|
||
{
|
||
case 1:
|
||
fixup.reloc = BFD_RELOC_8;
|
||
break;
|
||
|
||
case 2:
|
||
fixup.reloc = BFD_RELOC_16;
|
||
break;
|
||
|
||
case 3:
|
||
fixup.reloc = BFD_RELOC_24;
|
||
break;
|
||
|
||
case 4:
|
||
fixup.reloc = BFD_RELOC_32;
|
||
break;
|
||
|
||
default:
|
||
goto error;
|
||
}
|
||
else if (size != 4)
|
||
{
|
||
error:
|
||
as_bad (_("unsupported BFD relocation size %u"), size);
|
||
fixup.reloc = BFD_RELOC_UNUSED;
|
||
}
|
||
|
||
fix_new_exp (frag, off, size, &fixup.exp, 0, fixup.reloc);
|
||
}
|
||
|
||
static bfd_boolean
|
||
check_operand (const struct mn10300_operand *operand,
|
||
offsetT val)
|
||
{
|
||
/* No need to check 32bit operands for a bit. Note that
|
||
MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
|
||
if (operand->bits != 32
|
||
&& (operand->flags & MN10300_OPERAND_SPLIT) == 0)
|
||
{
|
||
long min, max;
|
||
offsetT test;
|
||
int bits;
|
||
|
||
bits = operand->bits;
|
||
if (operand->flags & MN10300_OPERAND_24BIT)
|
||
bits = 24;
|
||
|
||
if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
|
||
{
|
||
max = (1 << (bits - 1)) - 1;
|
||
min = - (1 << (bits - 1));
|
||
}
|
||
else
|
||
{
|
||
max = (1 << bits) - 1;
|
||
min = 0;
|
||
}
|
||
|
||
test = val;
|
||
|
||
if (test < (offsetT) min || test > (offsetT) max)
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Insert an operand value into an instruction. */
|
||
|
||
static void
|
||
mn10300_insert_operand (unsigned long *insnp,
|
||
unsigned long *extensionp,
|
||
const struct mn10300_operand *operand,
|
||
offsetT val,
|
||
char *file,
|
||
unsigned int line,
|
||
unsigned int shift)
|
||
{
|
||
/* No need to check 32bit operands for a bit. Note that
|
||
MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
|
||
if (operand->bits != 32
|
||
&& (operand->flags & MN10300_OPERAND_SPLIT) == 0)
|
||
{
|
||
long min, max;
|
||
offsetT test;
|
||
int bits;
|
||
|
||
bits = operand->bits;
|
||
if (operand->flags & MN10300_OPERAND_24BIT)
|
||
bits = 24;
|
||
|
||
if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
|
||
{
|
||
max = (1 << (bits - 1)) - 1;
|
||
min = - (1 << (bits - 1));
|
||
}
|
||
else
|
||
{
|
||
max = (1 << bits) - 1;
|
||
min = 0;
|
||
}
|
||
|
||
test = val;
|
||
|
||
if (test < (offsetT) min || test > (offsetT) max)
|
||
as_warn_value_out_of_range (_("operand"), test, (offsetT) min, (offsetT) max, file, line);
|
||
}
|
||
|
||
if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
|
||
{
|
||
*insnp |= (val >> (32 - operand->bits)) & ((1 << operand->bits) - 1);
|
||
*extensionp |= ((val & ((1 << (32 - operand->bits)) - 1))
|
||
<< operand->shift);
|
||
}
|
||
else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
|
||
{
|
||
*insnp |= (val >> (24 - operand->bits)) & ((1 << operand->bits) - 1);
|
||
*extensionp |= ((val & ((1 << (24 - operand->bits)) - 1))
|
||
<< operand->shift);
|
||
}
|
||
else if ((operand->flags & (MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG)))
|
||
{
|
||
/* See devo/opcodes/m10300-opc.c just before #define FSM0 for an
|
||
explanation of these variables. Note that FMT-implied shifts
|
||
are not taken into account for FP registers. */
|
||
unsigned long mask_low, mask_high;
|
||
int shl_low, shr_high, shl_high;
|
||
|
||
switch (operand->bits)
|
||
{
|
||
case 5:
|
||
/* Handle regular FP registers. */
|
||
if (operand->shift >= 0)
|
||
{
|
||
/* This is an `m' register. */
|
||
shl_low = operand->shift;
|
||
shl_high = 8 + (8 & shl_low) + (shl_low & 4) / 4;
|
||
}
|
||
else
|
||
{
|
||
/* This is an `n' register. */
|
||
shl_low = -operand->shift;
|
||
shl_high = shl_low / 4;
|
||
}
|
||
|
||
mask_low = 0x0f;
|
||
mask_high = 0x10;
|
||
shr_high = 4;
|
||
break;
|
||
|
||
case 3:
|
||
/* Handle accumulators. */
|
||
shl_low = -operand->shift;
|
||
shl_high = 0;
|
||
mask_low = 0x03;
|
||
mask_high = 0x04;
|
||
shr_high = 2;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
*insnp |= ((((val & mask_high) >> shr_high) << shl_high)
|
||
| ((val & mask_low) << shl_low));
|
||
}
|
||
else if ((operand->flags & MN10300_OPERAND_EXTENDED) == 0)
|
||
{
|
||
*insnp |= (((long) val & ((1 << operand->bits) - 1))
|
||
<< (operand->shift + shift));
|
||
|
||
if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
|
||
*insnp |= (((long) val & ((1 << operand->bits) - 1))
|
||
<< (operand->shift + shift + operand->bits));
|
||
}
|
||
else
|
||
{
|
||
*extensionp |= (((long) val & ((1 << operand->bits) - 1))
|
||
<< (operand->shift + shift));
|
||
|
||
if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
|
||
*extensionp |= (((long) val & ((1 << operand->bits) - 1))
|
||
<< (operand->shift + shift + operand->bits));
|
||
}
|
||
}
|
||
|
||
void
|
||
md_assemble (char *str)
|
||
{
|
||
char *s;
|
||
struct mn10300_opcode *opcode;
|
||
struct mn10300_opcode *next_opcode;
|
||
const unsigned char *opindex_ptr;
|
||
int next_opindex, relaxable;
|
||
unsigned long insn, extension, size = 0;
|
||
char *f;
|
||
int i;
|
||
int match;
|
||
|
||
/* Get the opcode. */
|
||
for (s = str; *s != '\0' && !ISSPACE (*s); s++)
|
||
;
|
||
if (*s != '\0')
|
||
*s++ = '\0';
|
||
|
||
/* Find the first opcode with the proper name. */
|
||
opcode = (struct mn10300_opcode *) hash_find (mn10300_hash, str);
|
||
if (opcode == NULL)
|
||
{
|
||
as_bad (_("Unrecognized opcode: `%s'"), str);
|
||
return;
|
||
}
|
||
|
||
str = s;
|
||
while (ISSPACE (*str))
|
||
++str;
|
||
|
||
input_line_pointer = str;
|
||
|
||
for (;;)
|
||
{
|
||
const char *errmsg;
|
||
int op_idx;
|
||
char *hold;
|
||
int extra_shift = 0;
|
||
|
||
errmsg = _("Invalid opcode/operands");
|
||
|
||
/* Reset the array of register operands. */
|
||
memset (mn10300_reg_operands, -1, sizeof (mn10300_reg_operands));
|
||
|
||
relaxable = 0;
|
||
fc = 0;
|
||
match = 0;
|
||
next_opindex = 0;
|
||
insn = opcode->opcode;
|
||
extension = 0;
|
||
|
||
/* If the instruction is not available on the current machine
|
||
then it can not possibly match. */
|
||
if (opcode->machine
|
||
&& !(opcode->machine == AM33_2 && HAVE_AM33_2)
|
||
&& !(opcode->machine == AM33 && HAVE_AM33)
|
||
&& !(opcode->machine == AM30 && HAVE_AM30))
|
||
goto error;
|
||
|
||
for (op_idx = 1, opindex_ptr = opcode->operands;
|
||
*opindex_ptr != 0;
|
||
opindex_ptr++, op_idx++)
|
||
{
|
||
const struct mn10300_operand *operand;
|
||
expressionS ex;
|
||
|
||
if (next_opindex == 0)
|
||
{
|
||
operand = &mn10300_operands[*opindex_ptr];
|
||
}
|
||
else
|
||
{
|
||
operand = &mn10300_operands[next_opindex];
|
||
next_opindex = 0;
|
||
}
|
||
|
||
while (*str == ' ' || *str == ',')
|
||
++str;
|
||
|
||
if (operand->flags & MN10300_OPERAND_RELAX)
|
||
relaxable = 1;
|
||
|
||
/* Gather the operand. */
|
||
hold = input_line_pointer;
|
||
input_line_pointer = str;
|
||
|
||
if (operand->flags & MN10300_OPERAND_PAREN)
|
||
{
|
||
if (*input_line_pointer != ')' && *input_line_pointer != '(')
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
input_line_pointer++;
|
||
goto keep_going;
|
||
}
|
||
/* See if we can match the operands. */
|
||
else if (operand->flags & MN10300_OPERAND_DREG)
|
||
{
|
||
if (!data_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_AREG)
|
||
{
|
||
if (!address_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_SP)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "sp") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_RREG)
|
||
{
|
||
if (!r_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_XRREG)
|
||
{
|
||
if (!xr_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_FSREG)
|
||
{
|
||
if (!float_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_FDREG)
|
||
{
|
||
if (!double_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_FPCR)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "fpcr") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_USP)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "usp") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_SSP)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "ssp") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_MSP)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "msp") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_PC)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "pc") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_EPSW)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "epsw") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_PLUS)
|
||
{
|
||
if (*input_line_pointer != '+')
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
input_line_pointer++;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_PSW)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "psw") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_MDR)
|
||
{
|
||
char *start = input_line_pointer;
|
||
char c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "mdr") != 0)
|
||
{
|
||
*input_line_pointer = c;
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
*input_line_pointer = c;
|
||
goto keep_going;
|
||
}
|
||
else if (operand->flags & MN10300_OPERAND_REG_LIST)
|
||
{
|
||
unsigned int value = 0;
|
||
if (*input_line_pointer != '[')
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
|
||
/* Eat the '['. */
|
||
input_line_pointer++;
|
||
|
||
/* We used to reject a null register list here; however,
|
||
we accept it now so the compiler can emit "call"
|
||
instructions for all calls to named functions.
|
||
|
||
The linker can then fill in the appropriate bits for the
|
||
register list and stack size or change the instruction
|
||
into a "calls" if using "call" is not profitable. */
|
||
while (*input_line_pointer != ']')
|
||
{
|
||
char *start;
|
||
char c;
|
||
|
||
if (*input_line_pointer == ',')
|
||
input_line_pointer++;
|
||
|
||
start = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
|
||
if (strcasecmp (start, "d2") == 0)
|
||
{
|
||
value |= 0x80;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (strcasecmp (start, "d3") == 0)
|
||
{
|
||
value |= 0x40;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (strcasecmp (start, "a2") == 0)
|
||
{
|
||
value |= 0x20;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (strcasecmp (start, "a3") == 0)
|
||
{
|
||
value |= 0x10;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (strcasecmp (start, "other") == 0)
|
||
{
|
||
value |= 0x08;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (HAVE_AM33
|
||
&& strcasecmp (start, "exreg0") == 0)
|
||
{
|
||
value |= 0x04;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (HAVE_AM33
|
||
&& strcasecmp (start, "exreg1") == 0)
|
||
{
|
||
value |= 0x02;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (HAVE_AM33
|
||
&& strcasecmp (start, "exother") == 0)
|
||
{
|
||
value |= 0x01;
|
||
*input_line_pointer = c;
|
||
}
|
||
else if (HAVE_AM33
|
||
&& strcasecmp (start, "all") == 0)
|
||
{
|
||
value |= 0xff;
|
||
*input_line_pointer = c;
|
||
}
|
||
else
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
}
|
||
input_line_pointer++;
|
||
mn10300_insert_operand (& insn, & extension, operand,
|
||
value, NULL, 0, 0);
|
||
goto keep_going;
|
||
|
||
}
|
||
else if (data_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (address_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (other_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (HAVE_AM33 && r_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (HAVE_AM33 && xr_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (HAVE_AM33_2 && float_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (HAVE_AM33_2 && double_register_name (&ex))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else if (*str == ')' || *str == '(')
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
else
|
||
{
|
||
expression (&ex);
|
||
}
|
||
|
||
switch (ex.X_op)
|
||
{
|
||
case O_illegal:
|
||
errmsg = _("illegal operand");
|
||
goto error;
|
||
case O_absent:
|
||
errmsg = _("missing operand");
|
||
goto error;
|
||
case O_register:
|
||
{
|
||
int mask;
|
||
|
||
mask = MN10300_OPERAND_DREG | MN10300_OPERAND_AREG;
|
||
if (HAVE_AM33)
|
||
mask |= MN10300_OPERAND_RREG | MN10300_OPERAND_XRREG;
|
||
if (HAVE_AM33_2)
|
||
mask |= MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG;
|
||
if ((operand->flags & mask) == 0)
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
|
||
if (opcode->format == FMT_D1 || opcode->format == FMT_S1)
|
||
extra_shift = 8;
|
||
else if (opcode->format == FMT_D2
|
||
|| opcode->format == FMT_D4
|
||
|| opcode->format == FMT_S2
|
||
|| opcode->format == FMT_S4
|
||
|| opcode->format == FMT_S6
|
||
|| opcode->format == FMT_D5)
|
||
extra_shift = 16;
|
||
else if (opcode->format == FMT_D7)
|
||
extra_shift = 8;
|
||
else if (opcode->format == FMT_D8 || opcode->format == FMT_D9)
|
||
extra_shift = 8;
|
||
else
|
||
extra_shift = 0;
|
||
|
||
mn10300_insert_operand (& insn, & extension, operand,
|
||
ex.X_add_number, NULL,
|
||
0, extra_shift);
|
||
|
||
/* And note the register number in the register array. */
|
||
mn10300_reg_operands[op_idx - 1] = ex.X_add_number;
|
||
break;
|
||
}
|
||
|
||
case O_constant:
|
||
/* If this operand can be promoted, and it doesn't
|
||
fit into the allocated bitfield for this insn,
|
||
then promote it (ie this opcode does not match). */
|
||
if (operand->flags
|
||
& (MN10300_OPERAND_PROMOTE | MN10300_OPERAND_RELAX)
|
||
&& !check_operand (operand, ex.X_add_number))
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
|
||
mn10300_insert_operand (& insn, & extension, operand,
|
||
ex.X_add_number, NULL, 0, 0);
|
||
break;
|
||
|
||
default:
|
||
/* If this operand can be promoted, then this opcode didn't
|
||
match since we can't know if it needed promotion! */
|
||
if (operand->flags & MN10300_OPERAND_PROMOTE)
|
||
{
|
||
input_line_pointer = hold;
|
||
str = hold;
|
||
goto error;
|
||
}
|
||
|
||
/* We need to generate a fixup for this expression. */
|
||
if (fc >= MAX_INSN_FIXUPS)
|
||
as_fatal (_("too many fixups"));
|
||
fixups[fc].exp = ex;
|
||
fixups[fc].opindex = *opindex_ptr;
|
||
fixups[fc].reloc = BFD_RELOC_UNUSED;
|
||
if (mn10300_check_fixup (& fixups[fc]))
|
||
goto error;
|
||
++fc;
|
||
break;
|
||
}
|
||
|
||
keep_going:
|
||
str = input_line_pointer;
|
||
input_line_pointer = hold;
|
||
|
||
while (*str == ' ' || *str == ',')
|
||
++str;
|
||
}
|
||
|
||
/* Make sure we used all the operands! */
|
||
if (*str != ',')
|
||
match = 1;
|
||
|
||
/* If this instruction has registers that must not match, verify
|
||
that they do indeed not match. */
|
||
if (opcode->no_match_operands)
|
||
{
|
||
int i;
|
||
|
||
/* Look at each operand to see if it's marked. */
|
||
for (i = 0; i < MN10300_MAX_OPERANDS; i++)
|
||
{
|
||
if ((1 << i) & opcode->no_match_operands)
|
||
{
|
||
int j;
|
||
|
||
/* operand I is marked. Check that it does not match any
|
||
operands > I which are marked. */
|
||
for (j = i + 1; j < MN10300_MAX_OPERANDS; j++)
|
||
{
|
||
if (((1 << j) & opcode->no_match_operands)
|
||
&& mn10300_reg_operands[i] == mn10300_reg_operands[j])
|
||
{
|
||
errmsg = _("Invalid register specification.");
|
||
match = 0;
|
||
goto error;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
error:
|
||
if (match == 0)
|
||
{
|
||
next_opcode = opcode + 1;
|
||
if (!strcmp (next_opcode->name, opcode->name))
|
||
{
|
||
opcode = next_opcode;
|
||
continue;
|
||
}
|
||
|
||
as_bad ("%s", errmsg);
|
||
return;
|
||
}
|
||
break;
|
||
}
|
||
|
||
while (ISSPACE (*str))
|
||
++str;
|
||
|
||
if (*str != '\0')
|
||
as_bad (_("junk at end of line: `%s'"), str);
|
||
|
||
input_line_pointer = str;
|
||
|
||
/* Determine the size of the instruction. */
|
||
if (opcode->format == FMT_S0)
|
||
size = 1;
|
||
|
||
if (opcode->format == FMT_S1 || opcode->format == FMT_D0)
|
||
size = 2;
|
||
|
||
if (opcode->format == FMT_S2 || opcode->format == FMT_D1)
|
||
size = 3;
|
||
|
||
if (opcode->format == FMT_D6)
|
||
size = 3;
|
||
|
||
if (opcode->format == FMT_D7 || opcode->format == FMT_D10)
|
||
size = 4;
|
||
|
||
if (opcode->format == FMT_D8)
|
||
size = 6;
|
||
|
||
if (opcode->format == FMT_D9)
|
||
size = 7;
|
||
|
||
if (opcode->format == FMT_S4)
|
||
size = 5;
|
||
|
||
if (opcode->format == FMT_S6 || opcode->format == FMT_D5)
|
||
size = 7;
|
||
|
||
if (opcode->format == FMT_D2)
|
||
size = 4;
|
||
|
||
if (opcode->format == FMT_D3)
|
||
size = 5;
|
||
|
||
if (opcode->format == FMT_D4)
|
||
size = 6;
|
||
|
||
if (relaxable && fc > 0)
|
||
{
|
||
/* On a 64-bit host the size of an 'int' is not the same
|
||
as the size of a pointer, so we need a union to convert
|
||
the opindex field of the fr_cgen structure into a char *
|
||
so that it can be stored in the frag. We do not have
|
||
to worry about loosing accuracy as we are not going to
|
||
be even close to the 32bit limit of the int. */
|
||
union
|
||
{
|
||
int opindex;
|
||
char * ptr;
|
||
}
|
||
opindex_converter;
|
||
int type;
|
||
|
||
/* We want to anchor the line info to the previous frag (if
|
||
there isn't one, create it), so that, when the insn is
|
||
resized, we still get the right address for the beginning of
|
||
the region. */
|
||
f = frag_more (0);
|
||
dwarf2_emit_insn (0);
|
||
|
||
/* bCC */
|
||
if (size == 2)
|
||
{
|
||
/* Handle bra specially. Basically treat it like jmp so
|
||
that we automatically handle 8, 16 and 32 bit offsets
|
||
correctly as well as jumps to an undefined address.
|
||
|
||
It is also important to not treat it like other bCC
|
||
instructions since the long forms of bra is different
|
||
from other bCC instructions. */
|
||
if (opcode->opcode == 0xca00)
|
||
type = 10;
|
||
else
|
||
type = 0;
|
||
}
|
||
/* call */
|
||
else if (size == 5)
|
||
type = 6;
|
||
/* calls */
|
||
else if (size == 4)
|
||
type = 8;
|
||
/* jmp */
|
||
else if (size == 3 && opcode->opcode == 0xcc0000)
|
||
type = 10;
|
||
else if (size == 3 && (opcode->opcode & 0xfff000) == 0xf8d000)
|
||
type = 13;
|
||
/* bCC (uncommon cases) */
|
||
else
|
||
type = 3;
|
||
|
||
opindex_converter.opindex = fixups[0].opindex;
|
||
f = frag_var (rs_machine_dependent, 8, 8 - size, type,
|
||
fixups[0].exp.X_add_symbol,
|
||
fixups[0].exp.X_add_number,
|
||
opindex_converter.ptr);
|
||
|
||
/* This is pretty hokey. We basically just care about the
|
||
opcode, so we have to write out the first word big endian.
|
||
|
||
The exception is "call", which has two operands that we
|
||
care about.
|
||
|
||
The first operand (the register list) happens to be in the
|
||
first instruction word, and will be in the right place if
|
||
we output the first word in big endian mode.
|
||
|
||
The second operand (stack size) is in the extension word,
|
||
and we want it to appear as the first character in the extension
|
||
word (as it appears in memory). Luckily, writing the extension
|
||
word in big endian format will do what we want. */
|
||
number_to_chars_bigendian (f, insn, size > 4 ? 4 : size);
|
||
if (size > 8)
|
||
{
|
||
number_to_chars_bigendian (f + 4, extension, 4);
|
||
number_to_chars_bigendian (f + 8, 0, size - 8);
|
||
}
|
||
else if (size > 4)
|
||
number_to_chars_bigendian (f + 4, extension, size - 4);
|
||
}
|
||
else
|
||
{
|
||
/* Allocate space for the instruction. */
|
||
f = frag_more (size);
|
||
|
||
/* Fill in bytes for the instruction. Note that opcode fields
|
||
are written big-endian, 16 & 32bit immediates are written
|
||
little endian. Egad. */
|
||
if (opcode->format == FMT_S0
|
||
|| opcode->format == FMT_S1
|
||
|| opcode->format == FMT_D0
|
||
|| opcode->format == FMT_D6
|
||
|| opcode->format == FMT_D7
|
||
|| opcode->format == FMT_D10
|
||
|| opcode->format == FMT_D1)
|
||
{
|
||
number_to_chars_bigendian (f, insn, size);
|
||
}
|
||
else if (opcode->format == FMT_S2
|
||
&& opcode->opcode != 0xdf0000
|
||
&& opcode->opcode != 0xde0000)
|
||
{
|
||
/* A format S2 instruction that is _not_ "ret" and "retf". */
|
||
number_to_chars_bigendian (f, (insn >> 16) & 0xff, 1);
|
||
number_to_chars_littleendian (f + 1, insn & 0xffff, 2);
|
||
}
|
||
else if (opcode->format == FMT_S2)
|
||
{
|
||
/* This must be a ret or retf, which is written entirely in
|
||
big-endian format. */
|
||
number_to_chars_bigendian (f, insn, 3);
|
||
}
|
||
else if (opcode->format == FMT_S4
|
||
&& opcode->opcode != 0xdc000000)
|
||
{
|
||
/* This must be a format S4 "call" instruction. What a pain. */
|
||
unsigned long temp = (insn >> 8) & 0xffff;
|
||
number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
|
||
number_to_chars_littleendian (f + 1, temp, 2);
|
||
number_to_chars_bigendian (f + 3, insn & 0xff, 1);
|
||
number_to_chars_bigendian (f + 4, extension & 0xff, 1);
|
||
}
|
||
else if (opcode->format == FMT_S4)
|
||
{
|
||
/* This must be a format S4 "jmp" instruction. */
|
||
unsigned long temp = ((insn & 0xffffff) << 8) | (extension & 0xff);
|
||
number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
|
||
number_to_chars_littleendian (f + 1, temp, 4);
|
||
}
|
||
else if (opcode->format == FMT_S6)
|
||
{
|
||
unsigned long temp = ((insn & 0xffffff) << 8)
|
||
| ((extension >> 16) & 0xff);
|
||
number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
|
||
number_to_chars_littleendian (f + 1, temp, 4);
|
||
number_to_chars_bigendian (f + 5, (extension >> 8) & 0xff, 1);
|
||
number_to_chars_bigendian (f + 6, extension & 0xff, 1);
|
||
}
|
||
else if (opcode->format == FMT_D2
|
||
&& opcode->opcode != 0xfaf80000
|
||
&& opcode->opcode != 0xfaf00000
|
||
&& opcode->opcode != 0xfaf40000)
|
||
{
|
||
/* A format D2 instruction where the 16bit immediate is
|
||
really a single 16bit value, not two 8bit values. */
|
||
number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
|
||
number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
|
||
}
|
||
else if (opcode->format == FMT_D2)
|
||
{
|
||
/* A format D2 instruction where the 16bit immediate
|
||
is really two 8bit immediates. */
|
||
number_to_chars_bigendian (f, insn, 4);
|
||
}
|
||
else if (opcode->format == FMT_D3)
|
||
{
|
||
number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
|
||
number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
|
||
number_to_chars_bigendian (f + 4, extension & 0xff, 1);
|
||
}
|
||
else if (opcode->format == FMT_D4)
|
||
{
|
||
unsigned long temp = ((insn & 0xffff) << 16) | (extension & 0xffff);
|
||
|
||
number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
|
||
number_to_chars_littleendian (f + 2, temp, 4);
|
||
}
|
||
else if (opcode->format == FMT_D5)
|
||
{
|
||
unsigned long temp = (((insn & 0xffff) << 16)
|
||
| ((extension >> 8) & 0xffff));
|
||
|
||
number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
|
||
number_to_chars_littleendian (f + 2, temp, 4);
|
||
number_to_chars_bigendian (f + 6, extension & 0xff, 1);
|
||
}
|
||
else if (opcode->format == FMT_D8)
|
||
{
|
||
unsigned long temp = ((insn & 0xff) << 16) | (extension & 0xffff);
|
||
|
||
number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
|
||
number_to_chars_bigendian (f + 3, (temp & 0xff), 1);
|
||
number_to_chars_littleendian (f + 4, temp >> 8, 2);
|
||
}
|
||
else if (opcode->format == FMT_D9)
|
||
{
|
||
unsigned long temp = ((insn & 0xff) << 24) | (extension & 0xffffff);
|
||
|
||
number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
|
||
number_to_chars_littleendian (f + 3, temp, 4);
|
||
}
|
||
|
||
/* Create any fixups. */
|
||
for (i = 0; i < fc; i++)
|
||
{
|
||
const struct mn10300_operand *operand;
|
||
|
||
operand = &mn10300_operands[fixups[i].opindex];
|
||
if (fixups[i].reloc != BFD_RELOC_UNUSED
|
||
&& fixups[i].reloc != BFD_RELOC_32_GOT_PCREL
|
||
&& fixups[i].reloc != BFD_RELOC_32_GOTOFF
|
||
&& fixups[i].reloc != BFD_RELOC_32_PLT_PCREL
|
||
&& fixups[i].reloc != BFD_RELOC_MN10300_GOT32)
|
||
{
|
||
reloc_howto_type *reloc_howto;
|
||
int size;
|
||
int offset;
|
||
fixS *fixP;
|
||
|
||
reloc_howto = bfd_reloc_type_lookup (stdoutput,
|
||
fixups[i].reloc);
|
||
|
||
if (!reloc_howto)
|
||
abort ();
|
||
|
||
size = bfd_get_reloc_size (reloc_howto);
|
||
|
||
if (size < 1 || size > 4)
|
||
abort ();
|
||
|
||
offset = 4 - size;
|
||
fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
|
||
size, &fixups[i].exp,
|
||
reloc_howto->pc_relative,
|
||
fixups[i].reloc);
|
||
}
|
||
else
|
||
{
|
||
int reloc, pcrel, reloc_size, offset;
|
||
fixS *fixP;
|
||
|
||
reloc = BFD_RELOC_NONE;
|
||
if (fixups[i].reloc != BFD_RELOC_UNUSED)
|
||
reloc = fixups[i].reloc;
|
||
/* How big is the reloc? Remember SPLIT relocs are
|
||
implicitly 32bits. */
|
||
if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
|
||
reloc_size = 32;
|
||
else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
|
||
reloc_size = 24;
|
||
else
|
||
reloc_size = operand->bits;
|
||
|
||
/* Is the reloc pc-relative? */
|
||
pcrel = (operand->flags & MN10300_OPERAND_PCREL) != 0;
|
||
if (reloc != BFD_RELOC_NONE)
|
||
pcrel = bfd_reloc_type_lookup (stdoutput, reloc)->pc_relative;
|
||
|
||
offset = size - (reloc_size + operand->shift) / 8;
|
||
|
||
/* Choose a proper BFD relocation type. */
|
||
if (reloc != BFD_RELOC_NONE)
|
||
;
|
||
else if (pcrel)
|
||
{
|
||
if (reloc_size == 32)
|
||
reloc = BFD_RELOC_32_PCREL;
|
||
else if (reloc_size == 16)
|
||
reloc = BFD_RELOC_16_PCREL;
|
||
else if (reloc_size == 8)
|
||
reloc = BFD_RELOC_8_PCREL;
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
if (reloc_size == 32)
|
||
reloc = BFD_RELOC_32;
|
||
else if (reloc_size == 16)
|
||
reloc = BFD_RELOC_16;
|
||
else if (reloc_size == 8)
|
||
reloc = BFD_RELOC_8;
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
|
||
reloc_size / 8, &fixups[i].exp, pcrel,
|
||
((bfd_reloc_code_real_type) reloc));
|
||
|
||
if (pcrel)
|
||
fixP->fx_offset += offset;
|
||
}
|
||
}
|
||
|
||
dwarf2_emit_insn (size);
|
||
}
|
||
|
||
/* Label this frag as one that contains instructions. */
|
||
frag_now->tc_frag_data = TRUE;
|
||
}
|
||
|
||
/* If while processing a fixup, a reloc really needs to be created
|
||
then it is done here. */
|
||
|
||
arelent **
|
||
tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp)
|
||
{
|
||
static arelent * no_relocs = NULL;
|
||
static arelent * relocs[MAX_RELOC_EXPANSION + 1];
|
||
arelent *reloc;
|
||
|
||
reloc = xmalloc (sizeof (arelent));
|
||
|
||
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
|
||
if (reloc->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("reloc %d not supported by object file format"),
|
||
(int) fixp->fx_r_type);
|
||
free (reloc);
|
||
return & no_relocs;
|
||
}
|
||
|
||
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
relocs[0] = reloc;
|
||
relocs[1] = NULL;
|
||
|
||
if (fixp->fx_subsy
|
||
&& S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
|
||
{
|
||
fixp->fx_offset -= S_GET_VALUE (fixp->fx_subsy);
|
||
fixp->fx_subsy = NULL;
|
||
}
|
||
|
||
if (fixp->fx_addsy && fixp->fx_subsy)
|
||
{
|
||
asection *asec, *ssec;
|
||
|
||
asec = S_GET_SEGMENT (fixp->fx_addsy);
|
||
ssec = S_GET_SEGMENT (fixp->fx_subsy);
|
||
|
||
reloc->sym_ptr_ptr = NULL;
|
||
|
||
/* If we have a difference between two (non-absolute) symbols we must
|
||
generate two relocs (one for each symbol) and allow the linker to
|
||
resolve them - relaxation may change the distances between symbols,
|
||
even local symbols defined in the same section. */
|
||
if (ssec != absolute_section || asec != absolute_section)
|
||
{
|
||
arelent * reloc2 = xmalloc (sizeof * reloc);
|
||
|
||
relocs[0] = reloc2;
|
||
relocs[1] = reloc;
|
||
|
||
reloc2->address = reloc->address;
|
||
reloc2->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_MN10300_SYM_DIFF);
|
||
reloc2->addend = - S_GET_VALUE (fixp->fx_subsy);
|
||
reloc2->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
|
||
*reloc2->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_subsy);
|
||
|
||
reloc->addend = fixp->fx_offset;
|
||
if (asec == absolute_section)
|
||
reloc->addend += S_GET_VALUE (fixp->fx_addsy);
|
||
|
||
reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
|
||
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
|
||
fixp->fx_pcrel = 0;
|
||
fixp->fx_done = 1;
|
||
return relocs;
|
||
}
|
||
else
|
||
{
|
||
char *fixpos = fixp->fx_where + fixp->fx_frag->fr_literal;
|
||
|
||
reloc->addend = (S_GET_VALUE (fixp->fx_addsy)
|
||
- S_GET_VALUE (fixp->fx_subsy) + fixp->fx_offset);
|
||
|
||
switch (fixp->fx_r_type)
|
||
{
|
||
case BFD_RELOC_8:
|
||
md_number_to_chars (fixpos, reloc->addend, 1);
|
||
break;
|
||
|
||
case BFD_RELOC_16:
|
||
md_number_to_chars (fixpos, reloc->addend, 2);
|
||
break;
|
||
|
||
case BFD_RELOC_24:
|
||
md_number_to_chars (fixpos, reloc->addend, 3);
|
||
break;
|
||
|
||
case BFD_RELOC_32:
|
||
md_number_to_chars (fixpos, reloc->addend, 4);
|
||
break;
|
||
|
||
default:
|
||
reloc->sym_ptr_ptr
|
||
= (asymbol **) bfd_abs_section_ptr->symbol_ptr_ptr;
|
||
return relocs;
|
||
}
|
||
|
||
if (reloc->sym_ptr_ptr)
|
||
free (reloc->sym_ptr_ptr);
|
||
free (reloc);
|
||
return & no_relocs;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
|
||
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
reloc->addend = fixp->fx_offset;
|
||
}
|
||
return relocs;
|
||
}
|
||
|
||
/* Returns true iff the symbol attached to the frag is at a known location
|
||
in the given section, (and hence the relocation to it can be relaxed by
|
||
the assembler). */
|
||
static inline bfd_boolean
|
||
has_known_symbol_location (fragS * fragp, asection * sec)
|
||
{
|
||
symbolS * sym = fragp->fr_symbol;
|
||
|
||
return sym != NULL
|
||
&& S_IS_DEFINED (sym)
|
||
&& ! S_IS_WEAK (sym)
|
||
&& S_GET_SEGMENT (sym) == sec;
|
||
}
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragS *fragp, asection *seg)
|
||
{
|
||
if (fragp->fr_subtype == 6
|
||
&& ! has_known_symbol_location (fragp, seg))
|
||
fragp->fr_subtype = 7;
|
||
else if (fragp->fr_subtype == 8
|
||
&& ! has_known_symbol_location (fragp, seg))
|
||
fragp->fr_subtype = 9;
|
||
else if (fragp->fr_subtype == 10
|
||
&& ! has_known_symbol_location (fragp, seg))
|
||
fragp->fr_subtype = 12;
|
||
|
||
if (fragp->fr_subtype == 13)
|
||
return 3;
|
||
|
||
if (fragp->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
|
||
abort ();
|
||
|
||
return md_relax_table[fragp->fr_subtype].rlx_length;
|
||
}
|
||
|
||
long
|
||
md_pcrel_from (fixS *fixp)
|
||
{
|
||
if (fixp->fx_addsy != (symbolS *) NULL
|
||
&& (!S_IS_DEFINED (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
|
||
/* The symbol is undefined or weak. Let the linker figure it out. */
|
||
return 0;
|
||
|
||
return fixp->fx_frag->fr_address + fixp->fx_where;
|
||
}
|
||
|
||
void
|
||
md_apply_fix (fixS * fixP, valueT * valP, segT seg)
|
||
{
|
||
char * fixpos = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
int size = 0;
|
||
int value = (int) * valP;
|
||
|
||
assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
|
||
|
||
/* This should never happen. */
|
||
if (seg->flags & SEC_ALLOC)
|
||
abort ();
|
||
|
||
/* The value we are passed in *valuep includes the symbol values.
|
||
If we are doing this relocation the code in write.c is going to
|
||
call bfd_install_relocation, which is also going to use the symbol
|
||
value. That means that if the reloc is fully resolved we want to
|
||
use *valuep since bfd_install_relocation is not being used.
|
||
|
||
However, if the reloc is not fully resolved we do not want to use
|
||
*valuep, and must use fx_offset instead. However, if the reloc
|
||
is PC relative, we do want to use *valuep since it includes the
|
||
result of md_pcrel_from. */
|
||
if (fixP->fx_addsy != NULL && ! fixP->fx_pcrel)
|
||
value = fixP->fx_offset;
|
||
|
||
/* If the fix is relative to a symbol which is not defined, or not
|
||
in the same segment as the fix, we cannot resolve it here. */
|
||
if (fixP->fx_addsy != NULL
|
||
&& (! S_IS_DEFINED (fixP->fx_addsy)
|
||
|| (S_GET_SEGMENT (fixP->fx_addsy) != seg)))
|
||
{
|
||
fixP->fx_done = 0;
|
||
return;
|
||
}
|
||
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_8:
|
||
case BFD_RELOC_8_PCREL:
|
||
size = 1;
|
||
break;
|
||
|
||
case BFD_RELOC_16:
|
||
case BFD_RELOC_16_PCREL:
|
||
size = 2;
|
||
break;
|
||
|
||
case BFD_RELOC_32:
|
||
case BFD_RELOC_32_PCREL:
|
||
size = 4;
|
||
break;
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
return;
|
||
|
||
case BFD_RELOC_MN10300_ALIGN:
|
||
fixP->fx_done = 1;
|
||
return;
|
||
|
||
case BFD_RELOC_NONE:
|
||
default:
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("Bad relocation fixup type (%d)"), fixP->fx_r_type);
|
||
}
|
||
|
||
md_number_to_chars (fixpos, value, size);
|
||
|
||
/* If a symbol remains, pass the fixup, as a reloc, onto the linker. */
|
||
if (fixP->fx_addsy == NULL)
|
||
fixP->fx_done = 1;
|
||
}
|
||
|
||
/* Return zero if the fixup in fixp should be left alone and not
|
||
adjusted. */
|
||
|
||
bfd_boolean
|
||
mn10300_fix_adjustable (struct fix *fixp)
|
||
{
|
||
if (fixp->fx_pcrel)
|
||
{
|
||
if (TC_FORCE_RELOCATION_LOCAL (fixp))
|
||
return FALSE;
|
||
}
|
||
/* Non-relative relocs can (and must) be adjusted if they do
|
||
not meet the criteria below, or the generic criteria. */
|
||
else if (TC_FORCE_RELOCATION (fixp))
|
||
return FALSE;
|
||
|
||
/* Do not adjust relocations involving symbols in code sections,
|
||
because it breaks linker relaxations. This could be fixed in the
|
||
linker, but this fix is simpler, and it pretty much only affects
|
||
object size a little bit. */
|
||
if (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_CODE)
|
||
return FALSE;
|
||
|
||
/* Likewise, do not adjust symbols that won't be merged, or debug
|
||
symbols, because they too break relaxation. We do want to adjust
|
||
other mergable symbols, like .rodata, because code relaxations
|
||
need section-relative symbols to properly relax them. */
|
||
if (! (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE))
|
||
return FALSE;
|
||
|
||
if (strncmp (S_GET_SEGMENT (fixp->fx_addsy)->name, ".debug", 6) == 0)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static void
|
||
set_arch_mach (int mach)
|
||
{
|
||
if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, mach))
|
||
as_warn (_("could not set architecture and machine"));
|
||
|
||
current_machine = mach;
|
||
}
|
||
|
||
static inline char *
|
||
mn10300_end_of_match (char *cont, char *what)
|
||
{
|
||
int len = strlen (what);
|
||
|
||
if (strncmp (cont, what, strlen (what)) == 0
|
||
&& ! is_part_of_name (cont[len]))
|
||
return cont + len;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
int
|
||
mn10300_parse_name (char const *name,
|
||
expressionS *exprP,
|
||
enum expr_mode mode,
|
||
char *nextcharP)
|
||
{
|
||
char *next = input_line_pointer;
|
||
char *next_end;
|
||
int reloc_type;
|
||
segT segment;
|
||
|
||
exprP->X_op_symbol = NULL;
|
||
|
||
if (strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
|
||
{
|
||
if (! GOT_symbol)
|
||
GOT_symbol = symbol_find_or_make (name);
|
||
|
||
exprP->X_add_symbol = GOT_symbol;
|
||
no_suffix:
|
||
/* If we have an absolute symbol or a reg,
|
||
then we know its value now. */
|
||
segment = S_GET_SEGMENT (exprP->X_add_symbol);
|
||
if (mode != expr_defer && segment == absolute_section)
|
||
{
|
||
exprP->X_op = O_constant;
|
||
exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
|
||
exprP->X_add_symbol = NULL;
|
||
}
|
||
else if (mode != expr_defer && segment == reg_section)
|
||
{
|
||
exprP->X_op = O_register;
|
||
exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
|
||
exprP->X_add_symbol = NULL;
|
||
}
|
||
else
|
||
{
|
||
exprP->X_op = O_symbol;
|
||
exprP->X_add_number = 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
exprP->X_add_symbol = symbol_find_or_make (name);
|
||
|
||
if (*nextcharP != '@')
|
||
goto no_suffix;
|
||
else if ((next_end = mn10300_end_of_match (next + 1, "GOTOFF")))
|
||
reloc_type = BFD_RELOC_32_GOTOFF;
|
||
else if ((next_end = mn10300_end_of_match (next + 1, "GOT")))
|
||
reloc_type = BFD_RELOC_MN10300_GOT32;
|
||
else if ((next_end = mn10300_end_of_match (next + 1, "PLT")))
|
||
reloc_type = BFD_RELOC_32_PLT_PCREL;
|
||
else
|
||
goto no_suffix;
|
||
|
||
*input_line_pointer = *nextcharP;
|
||
input_line_pointer = next_end;
|
||
*nextcharP = *input_line_pointer;
|
||
*input_line_pointer = '\0';
|
||
|
||
exprP->X_op = O_PIC_reloc;
|
||
exprP->X_add_number = 0;
|
||
exprP->X_md = reloc_type;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* The target specific pseudo-ops which we support. */
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
{ "am30", set_arch_mach, AM30 },
|
||
{ "am33", set_arch_mach, AM33 },
|
||
{ "am33_2", set_arch_mach, AM33_2 },
|
||
{ "mn10300", set_arch_mach, MN103 },
|
||
{NULL, 0, 0}
|
||
};
|
||
|
||
/* Returns FALSE if there is some mn10300 specific reason why the
|
||
subtraction of two same-section symbols cannot be computed by
|
||
the assembler. */
|
||
|
||
bfd_boolean
|
||
mn10300_allow_local_subtract (expressionS * left, expressionS * right, segT section)
|
||
{
|
||
bfd_boolean result;
|
||
fragS * left_frag;
|
||
fragS * right_frag;
|
||
fragS * frag;
|
||
|
||
/* If we are not performing linker relaxation then we have nothing
|
||
to worry about. */
|
||
if (linkrelax == 0)
|
||
return TRUE;
|
||
|
||
/* If the symbols are not in a code section then they are OK. */
|
||
if ((section->flags & SEC_CODE) == 0)
|
||
return TRUE;
|
||
|
||
/* Otherwise we have to scan the fragments between the two symbols.
|
||
If any instructions are found then we have to assume that linker
|
||
relaxation may change their size and so we must delay resolving
|
||
the subtraction until the final link. */
|
||
left_frag = symbol_get_frag (left->X_add_symbol);
|
||
right_frag = symbol_get_frag (right->X_add_symbol);
|
||
|
||
if (left_frag == right_frag)
|
||
return ! left_frag->tc_frag_data;
|
||
|
||
result = TRUE;
|
||
for (frag = left_frag; frag != NULL; frag = frag->fr_next)
|
||
{
|
||
if (frag->tc_frag_data)
|
||
result = FALSE;
|
||
if (frag == right_frag)
|
||
break;
|
||
}
|
||
|
||
if (frag == NULL)
|
||
for (frag = right_frag; frag != NULL; frag = frag->fr_next)
|
||
{
|
||
if (frag->tc_frag_data)
|
||
result = FALSE;
|
||
if (frag == left_frag)
|
||
break;
|
||
}
|
||
|
||
if (frag == NULL)
|
||
/* The two symbols are on disjoint fragment chains
|
||
- we cannot possibly compute their difference. */
|
||
return FALSE;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* When relaxing, we need to output a reloc for any .align directive
|
||
that requests alignment to a two byte boundary or larger. */
|
||
|
||
void
|
||
mn10300_handle_align (fragS *frag)
|
||
{
|
||
if (linkrelax
|
||
&& (frag->fr_type == rs_align
|
||
|| frag->fr_type == rs_align_code)
|
||
&& frag->fr_address + frag->fr_fix > 0
|
||
&& frag->fr_offset > 1
|
||
&& now_seg != bss_section
|
||
/* Do not create relocs for the merging sections - such
|
||
relocs will prevent the contents from being merged. */
|
||
&& (bfd_get_section_flags (now_seg->owner, now_seg) & SEC_MERGE) == 0)
|
||
/* Create a new fixup to record the alignment request. The symbol is
|
||
irrelevent but must be present so we use the absolute section symbol.
|
||
The offset from the symbol is used to record the power-of-two alignment
|
||
value. The size is set to 0 because the frag may already be aligned,
|
||
thus causing cvt_frag_to_fill to reduce the size of the frag to zero. */
|
||
fix_new (frag, frag->fr_fix, 0, & abs_symbol, frag->fr_offset, FALSE,
|
||
BFD_RELOC_MN10300_ALIGN);
|
||
}
|
||
|
||
bfd_boolean
|
||
mn10300_force_relocation (struct fix * fixp)
|
||
{
|
||
if (linkrelax
|
||
&& (fixp->fx_pcrel
|
||
|| fixp->fx_r_type == BFD_RELOC_MN10300_ALIGN))
|
||
return TRUE;
|
||
|
||
return generic_force_reloc (fixp);
|
||
}
|