38dc5e123f
* defs.h (memcmp): Add decl for memcmp to #ifndef MEM_FNS_DECLARED. * findvar.c (write_register): See if we are writing back the same value that's already in the register. If so, don't bother. * remote.c (putpkt, getpkt): Improve handling of communication problems. * ser-go32.c: Prototype it to death. Update serial_ops and add dummy routines where appropriate. * ser-tcp.c: New module to implement serial I/O via TCP connections. * ser-unix.c: Clean up getting/setting of tty state. Get rid of SERIAL_RESTORE, add SERIAL_{GET|SET}_TTY_STATE interfaces. * serial.c: Add start of support for connect command. (serial_open): Distinguish between tcp and local devices. * serial.h (struct serial_ops): Get rid of restore, add get_tty_state and set_tty_state. Define protoypes and macros for this mess. * gdbserver/remote-utils.c: Add tcp support. (readchar): Do some real buffering. Handle error conditions gracefully. * gdbserver/remote-inflow-sparc.c: Update to remote-inflow.c (Lynx), remove lots of cruft.
339 lines
9.3 KiB
C
339 lines
9.3 KiB
C
/* Low level interface to ptrace, for the remote server for GDB.
|
||
Copyright (C) 1986, 1987, 1993 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "/usr/include/sys/wait.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
/***************************
|
||
#include "initialize.h"
|
||
****************************/
|
||
|
||
#include <stdio.h>
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/user.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
#include <sgtty.h>
|
||
#include <fcntl.h>
|
||
|
||
/***************Begin MY defs*********************/
|
||
int quit_flag = 0;
|
||
char registers[REGISTER_BYTES];
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
|
||
char buf2[MAX_REGISTER_RAW_SIZE];
|
||
/***************End MY defs*********************/
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <machine/reg.h>
|
||
|
||
extern char **environ;
|
||
extern int errno;
|
||
extern int inferior_pid;
|
||
void error (), quit (), perror_with_name ();
|
||
int query ();
|
||
|
||
/* Start an inferior process and returns its pid.
|
||
ALLARGS is a vector of program-name and args.
|
||
ENV is the environment vector to pass. */
|
||
|
||
int
|
||
create_inferior (allargs, env)
|
||
char **allargs;
|
||
char **env;
|
||
{
|
||
int pid;
|
||
extern int sys_nerr;
|
||
extern char *sys_errlist[];
|
||
extern int errno;
|
||
char status;
|
||
char execbuf[1024];
|
||
|
||
/* exec is said to fail if the executable is open. */
|
||
/****************close_exec_file ();*****************/
|
||
|
||
sprintf (execbuf, "exec %s", allargs);
|
||
|
||
pid = vfork ();
|
||
if (pid < 0)
|
||
perror_with_name ("vfork");
|
||
|
||
if (pid == 0)
|
||
{
|
||
/* Run inferior in a separate process group. */
|
||
setpgrp (getpid (), getpid ());
|
||
|
||
errno = 0;
|
||
ptrace (PTRACE_TRACEME);
|
||
|
||
execle ("/bin/sh", "sh", "-c", execbuf, 0, env);
|
||
|
||
fprintf (stderr, "Cannot exec /bin/sh: %s.\n",
|
||
errno < sys_nerr ? sys_errlist[errno] : "unknown error");
|
||
fflush (stderr);
|
||
_exit (0177);
|
||
}
|
||
|
||
return pid;
|
||
}
|
||
|
||
/* Kill the inferior process. Make us have no inferior. */
|
||
|
||
void
|
||
kill_inferior ()
|
||
{
|
||
if (inferior_pid == 0)
|
||
return;
|
||
ptrace (8, inferior_pid, 0, 0);
|
||
wait (0);
|
||
/*************inferior_died ();****VK**************/
|
||
}
|
||
|
||
/* Wait for process, returns status */
|
||
|
||
unsigned char
|
||
mywait (status)
|
||
char *status;
|
||
{
|
||
int pid;
|
||
union wait w;
|
||
|
||
pid = wait (&w);
|
||
if (pid != inferior_pid)
|
||
perror_with_name ("wait");
|
||
|
||
if (WIFEXITED (w))
|
||
{
|
||
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
|
||
*status = 'E';
|
||
return ((unsigned char) WEXITSTATUS (w));
|
||
}
|
||
else if (!WIFSTOPPED (w))
|
||
{
|
||
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
|
||
*status = 'T';
|
||
return ((unsigned char) WTERMSIG (w));
|
||
}
|
||
|
||
fetch_inferior_registers (0);
|
||
|
||
*status = 'S';
|
||
return ((unsigned char) WSTOPSIG (w));
|
||
}
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
myresume (step, signal)
|
||
int step;
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (ignored)
|
||
int ignored;
|
||
{
|
||
struct regs inferior_registers;
|
||
struct fp_status inferior_fp_registers;
|
||
int i;
|
||
|
||
/* Global and Out regs are fetched directly, as well as the control
|
||
registers. If we're getting one of the in or local regs,
|
||
and the stack pointer has not yet been fetched,
|
||
we have to do that first, since they're found in memory relative
|
||
to the stack pointer. */
|
||
|
||
if (ptrace (PTRACE_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0))
|
||
perror("ptrace_getregs");
|
||
|
||
registers[REGISTER_BYTE (0)] = 0;
|
||
memcpy (®isters[REGISTER_BYTE (1)], &inferior_registers.r_g1,
|
||
15 * REGISTER_RAW_SIZE (G0_REGNUM));
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
|
||
|
||
/* Floating point registers */
|
||
|
||
if (ptrace (PTRACE_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers,
|
||
0))
|
||
perror("ptrace_getfpregs");
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
|
||
sizeof inferior_fp_registers.fpu_fr);
|
||
|
||
/* These regs are saved on the stack by the kernel. Only read them
|
||
all (16 ptrace calls!) if we really need them. */
|
||
|
||
read_inferior_memory (*(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)],
|
||
®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16*REGISTER_RAW_SIZE (L0_REGNUM));
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (ignored)
|
||
int ignored;
|
||
{
|
||
struct regs inferior_registers;
|
||
struct fp_status inferior_fp_registers;
|
||
CORE_ADDR sp = *(CORE_ADDR *)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
|
||
write_inferior_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16*REGISTER_RAW_SIZE (L0_REGNUM));
|
||
|
||
memcpy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)],
|
||
15 * REGISTER_RAW_SIZE (G1_REGNUM));
|
||
|
||
inferior_registers.r_ps =
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)];
|
||
inferior_registers.r_pc =
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
inferior_registers.r_npc =
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)];
|
||
inferior_registers.r_y =
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)];
|
||
|
||
if (ptrace (PTRACE_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0))
|
||
perror("ptrace_setregs");
|
||
|
||
memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
sizeof inferior_fp_registers.fpu_fr);
|
||
|
||
if (ptrace (PTRACE_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
|
||
perror("ptrace_setfpregs");
|
||
}
|
||
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. */
|
||
|
||
read_inferior_memory (memaddr, myaddr, len)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & -sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
buffer[i] = ptrace (1, inferior_pid, addr, 0);
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
|
||
}
|
||
|
||
/* Copy LEN bytes of data from debugger memory at MYADDR
|
||
to inferior's memory at MEMADDR.
|
||
On failure (cannot write the inferior)
|
||
returns the value of errno. */
|
||
|
||
int
|
||
write_inferior_memory (memaddr, myaddr, len)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & -sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
extern int errno;
|
||
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
buffer[0] = ptrace (1, inferior_pid, addr, 0);
|
||
|
||
if (count > 1)
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (1, inferior_pid,
|
||
addr + (count - 1) * sizeof (int), 0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
ptrace (4, inferior_pid, addr, buffer[i]);
|
||
if (errno)
|
||
return errno;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
initialize ()
|
||
{
|
||
inferior_pid = 0;
|
||
}
|
||
|
||
int
|
||
have_inferior_p ()
|
||
{
|
||
return inferior_pid != 0;
|
||
}
|