binutils-gdb/bfd/elf32-ppc.c
Alan Modra bf57746745 ELF SEC_SMALL_DATA
For those ELF targets that have .sdata or .sbss sections, or similar
sections, arrange to mark the sections with the SEC_SMALL_DATA flag.
This fixes regressions in nm symbol type caused by removing .sdata
and .sbss from coff_section_type with commit 49d9fd42ac.

	* elf32-m32r.c (m32r_elf_section_flags): New function.
	(elf_backend_section_flags): Define.
	* elf32-nds32.c (nds32_elf_section_flags): New function.
	(elf_backend_section_flags): Define.
	* elf32-ppc.c (ppc_elf_section_from_shdr): Set SEC_SMALL_DATA for
	.sbss and .sdata sections.
	* elf32-v850.c (v850_elf_section_from_shdr): Set SEC_SMALL_DATA
	for SHF_V850_GPREL sections.
	* elf64-alpha.c (elf64_alpha_section_from_shdr): Delete outdated
	FIXME.
	* elf64-hppa.c (elf64_hppa_section_from_shdr): Set SEC_SMALL_DATA
	for SHF_PARISC_SHORT sections.
	* elf64-ppc.c (ppc64_elf_section_flags): New function.
	(elf_backend_section_flags): Define.
	* elfxx-mips.c (_bfd_mips_elf_section_from_shdr): Set SEC_SMALL_DATA
	for SHF_MIPS_GPREL sections.  Delete FIXME.
2020-03-02 11:36:19 +10:30

10523 lines
302 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* PowerPC-specific support for 32-bit ELF
Copyright (C) 1994-2020 Free Software Foundation, Inc.
Written by Ian Lance Taylor, Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA. */
/* This file is based on a preliminary PowerPC ELF ABI. The
information may not match the final PowerPC ELF ABI. It includes
suggestions from the in-progress Embedded PowerPC ABI, and that
information may also not match. */
#include "sysdep.h"
#include <stdarg.h>
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/ppc.h"
#include "elf32-ppc.h"
#include "elf-vxworks.h"
#include "dwarf2.h"
#include "opcode/ppc.h"
/* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
#define OCTETS_PER_BYTE(ABFD, SEC) 1
typedef enum split16_format_type
{
split16a_type = 0,
split16d_type
}
split16_format_type;
/* RELA relocations are used here. */
static bfd_reloc_status_type ppc_elf_addr16_ha_reloc
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bfd_reloc_status_type ppc_elf_unhandled_reloc
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
/* Branch prediction bit for branch taken relocs. */
#define BRANCH_PREDICT_BIT 0x200000
/* Mask to set RA in memory instructions. */
#define RA_REGISTER_MASK 0x001f0000
/* Value to shift register by to insert RA. */
#define RA_REGISTER_SHIFT 16
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
/* For old-style PLT. */
/* The number of single-slot PLT entries (the rest use two slots). */
#define PLT_NUM_SINGLE_ENTRIES 8192
/* For new-style .glink and .plt. */
#define GLINK_PLTRESOLVE 16*4
#define GLINK_ENTRY_SIZE(htab, h) \
((4*4 \
+ (h != NULL \
&& h == htab->tls_get_addr \
&& !htab->params->no_tls_get_addr_opt ? 8*4 : 0) \
+ (1u << htab->params->plt_stub_align) - 1) \
& -(1u << htab->params->plt_stub_align))
/* VxWorks uses its own plt layout, filled in by the static linker. */
/* The standard VxWorks PLT entry. */
#define VXWORKS_PLT_ENTRY_SIZE 32
static const bfd_vma ppc_elf_vxworks_plt_entry
[VXWORKS_PLT_ENTRY_SIZE / 4] =
{
0x3d800000, /* lis r12,0 */
0x818c0000, /* lwz r12,0(r12) */
0x7d8903a6, /* mtctr r12 */
0x4e800420, /* bctr */
0x39600000, /* li r11,0 */
0x48000000, /* b 14 <.PLT0resolve+0x4> */
0x60000000, /* nop */
0x60000000, /* nop */
};
static const bfd_vma ppc_elf_vxworks_pic_plt_entry
[VXWORKS_PLT_ENTRY_SIZE / 4] =
{
0x3d9e0000, /* addis r12,r30,0 */
0x818c0000, /* lwz r12,0(r12) */
0x7d8903a6, /* mtctr r12 */
0x4e800420, /* bctr */
0x39600000, /* li r11,0 */
0x48000000, /* b 14 <.PLT0resolve+0x4> 14: R_PPC_REL24 .PLTresolve */
0x60000000, /* nop */
0x60000000, /* nop */
};
/* The initial VxWorks PLT entry. */
#define VXWORKS_PLT_INITIAL_ENTRY_SIZE 32
static const bfd_vma ppc_elf_vxworks_plt0_entry
[VXWORKS_PLT_INITIAL_ENTRY_SIZE / 4] =
{
0x3d800000, /* lis r12,0 */
0x398c0000, /* addi r12,r12,0 */
0x800c0008, /* lwz r0,8(r12) */
0x7c0903a6, /* mtctr r0 */
0x818c0004, /* lwz r12,4(r12) */
0x4e800420, /* bctr */
0x60000000, /* nop */
0x60000000, /* nop */
};
static const bfd_vma ppc_elf_vxworks_pic_plt0_entry
[VXWORKS_PLT_INITIAL_ENTRY_SIZE / 4] =
{
0x819e0008, /* lwz r12,8(r30) */
0x7d8903a6, /* mtctr r12 */
0x819e0004, /* lwz r12,4(r30) */
0x4e800420, /* bctr */
0x60000000, /* nop */
0x60000000, /* nop */
0x60000000, /* nop */
0x60000000, /* nop */
};
/* For executables, we have some additional relocations in
.rela.plt.unloaded, for the kernel loader. */
/* The number of non-JMP_SLOT relocations per PLT0 slot. */
#define VXWORKS_PLT_NON_JMP_SLOT_RELOCS 3
/* The number of relocations in the PLTResolve slot. */
#define VXWORKS_PLTRESOLVE_RELOCS 2
/* The number of relocations in the PLTResolve slot when creating
a shared library. */
#define VXWORKS_PLTRESOLVE_RELOCS_SHLIB 0
/* Some instructions. */
#define ADDIS_11_11 0x3d6b0000
#define ADDIS_11_30 0x3d7e0000
#define ADDIS_12_12 0x3d8c0000
#define ADDI_11_11 0x396b0000
#define ADD_0_11_11 0x7c0b5a14
#define ADD_3_12_2 0x7c6c1214
#define ADD_11_0_11 0x7d605a14
#define B 0x48000000
#define BA 0x48000002
#define BCL_20_31 0x429f0005
#define BCTR 0x4e800420
#define BEQLR 0x4d820020
#define CMPWI_11_0 0x2c0b0000
#define LIS_11 0x3d600000
#define LIS_12 0x3d800000
#define LWZU_0_12 0x840c0000
#define LWZ_0_12 0x800c0000
#define LWZ_11_3 0x81630000
#define LWZ_11_11 0x816b0000
#define LWZ_11_30 0x817e0000
#define LWZ_12_3 0x81830000
#define LWZ_12_12 0x818c0000
#define MR_0_3 0x7c601b78
#define MR_3_0 0x7c030378
#define MFLR_0 0x7c0802a6
#define MFLR_12 0x7d8802a6
#define MTCTR_0 0x7c0903a6
#define MTCTR_11 0x7d6903a6
#define MTLR_0 0x7c0803a6
#define NOP 0x60000000
#define SUB_11_11_12 0x7d6c5850
/* Offset of tp and dtp pointers from start of TLS block. */
#define TP_OFFSET 0x7000
#define DTP_OFFSET 0x8000
/* The value of a defined global symbol. */
#define SYM_VAL(SYM) \
((SYM)->root.u.def.section->output_section->vma \
+ (SYM)->root.u.def.section->output_offset \
+ (SYM)->root.u.def.value)
/* Relocation HOWTO's. */
/* Like other ELF RELA targets that don't apply multiple
field-altering relocations to the same localation, src_mask is
always zero and pcrel_offset is the same as pc_relative.
PowerPC can always use a zero bitpos, even when the field is not at
the LSB. For example, a REL24 could use rightshift=2, bisize=24
and bitpos=2 which matches the ABI description, or as we do here,
rightshift=0, bitsize=26 and bitpos=0. */
#define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
complain, special_func) \
HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
complain_overflow_ ## complain, special_func, \
#type, FALSE, 0, mask, pc_relative)
static reloc_howto_type *ppc_elf_howto_table[R_PPC_max];
static reloc_howto_type ppc_elf_howto_raw[] = {
/* This reloc does nothing. */
HOW (R_PPC_NONE, 3, 0, 0, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* A standard 32 bit relocation. */
HOW (R_PPC_ADDR32, 2, 32, 0xffffffff, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* An absolute 26 bit branch; the lower two bits must be zero.
FIXME: we don't check that, we just clear them. */
HOW (R_PPC_ADDR24, 2, 26, 0x3fffffc, 0, FALSE, signed,
bfd_elf_generic_reloc),
/* A standard 16 bit relocation. */
HOW (R_PPC_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
bfd_elf_generic_reloc),
/* A 16 bit relocation without overflow. */
HOW (R_PPC_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* The high order 16 bits of an address. */
HOW (R_PPC_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, dont,
bfd_elf_generic_reloc),
/* The high order 16 bits of an address, plus 1 if the contents of
the low 16 bits, treated as a signed number, is negative. */
HOW (R_PPC_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_addr16_ha_reloc),
/* An absolute 16 bit branch; the lower two bits must be zero.
FIXME: we don't check that, we just clear them. */
HOW (R_PPC_ADDR14, 2, 16, 0xfffc, 0, FALSE, signed,
bfd_elf_generic_reloc),
/* An absolute 16 bit branch, for which bit 10 should be set to
indicate that the branch is expected to be taken. The lower two
bits must be zero. */
HOW (R_PPC_ADDR14_BRTAKEN, 2, 16, 0xfffc, 0, FALSE, signed,
bfd_elf_generic_reloc),
/* An absolute 16 bit branch, for which bit 10 should be set to
indicate that the branch is not expected to be taken. The lower
two bits must be zero. */
HOW (R_PPC_ADDR14_BRNTAKEN, 2, 16, 0xfffc, 0, FALSE, signed,
bfd_elf_generic_reloc),
/* A relative 26 bit branch; the lower two bits must be zero. */
HOW (R_PPC_REL24, 2, 26, 0x3fffffc, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* A relative 16 bit branch; the lower two bits must be zero. */
HOW (R_PPC_REL14, 2, 16, 0xfffc, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* A relative 16 bit branch. Bit 10 should be set to indicate that
the branch is expected to be taken. The lower two bits must be
zero. */
HOW (R_PPC_REL14_BRTAKEN, 2, 16, 0xfffc, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* A relative 16 bit branch. Bit 10 should be set to indicate that
the branch is not expected to be taken. The lower two bits must
be zero. */
HOW (R_PPC_REL14_BRNTAKEN, 2, 16, 0xfffc, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* Like R_PPC_ADDR16, but referring to the GOT table entry for the
symbol. */
HOW (R_PPC_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR16_LO, but referring to the GOT table entry for
the symbol. */
HOW (R_PPC_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR16_HI, but referring to the GOT table entry for
the symbol. */
HOW (R_PPC_GOT16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR16_HA, but referring to the GOT table entry for
the symbol. */
HOW (R_PPC_GOT16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_REL24, but referring to the procedure linkage table
entry for the symbol. */
HOW (R_PPC_PLTREL24, 2, 26, 0x3fffffc, 0, TRUE, signed,
ppc_elf_unhandled_reloc),
/* This is used only by the dynamic linker. The symbol should exist
both in the object being run and in some shared library. The
dynamic linker copies the data addressed by the symbol from the
shared library into the object, because the object being
run has to have the data at some particular address. */
HOW (R_PPC_COPY, 2, 32, 0, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR32, but used when setting global offset table
entries. */
HOW (R_PPC_GLOB_DAT, 2, 32, 0xffffffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Marks a procedure linkage table entry for a symbol. */
HOW (R_PPC_JMP_SLOT, 2, 32, 0, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Used only by the dynamic linker. When the object is run, this
longword is set to the load address of the object, plus the
addend. */
HOW (R_PPC_RELATIVE, 2, 32, 0xffffffff, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* Like R_PPC_REL24, but uses the value of the symbol within the
object rather than the final value. Normally used for
_GLOBAL_OFFSET_TABLE_. */
HOW (R_PPC_LOCAL24PC, 2, 26, 0x3fffffc, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* Like R_PPC_ADDR32, but may be unaligned. */
HOW (R_PPC_UADDR32, 2, 32, 0xffffffff, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* Like R_PPC_ADDR16, but may be unaligned. */
HOW (R_PPC_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
bfd_elf_generic_reloc),
/* 32-bit PC relative */
HOW (R_PPC_REL32, 2, 32, 0xffffffff, 0, TRUE, dont,
bfd_elf_generic_reloc),
/* 32-bit relocation to the symbol's procedure linkage table.
FIXME: not supported. */
HOW (R_PPC_PLT32, 2, 32, 0, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* 32-bit PC relative relocation to the symbol's procedure linkage table.
FIXME: not supported. */
HOW (R_PPC_PLTREL32, 2, 32, 0, 0, TRUE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR16_LO, but referring to the PLT table entry for
the symbol. */
HOW (R_PPC_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR16_HI, but referring to the PLT table entry for
the symbol. */
HOW (R_PPC_PLT16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like R_PPC_ADDR16_HA, but referring to the PLT table entry for
the symbol. */
HOW (R_PPC_PLT16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* A sign-extended 16 bit value relative to _SDA_BASE_, for use with
small data items. */
HOW (R_PPC_SDAREL16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* 16-bit section relative relocation. */
HOW (R_PPC_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* 16-bit lower half section relative relocation. */
HOW (R_PPC_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* 16-bit upper half section relative relocation. */
HOW (R_PPC_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* 16-bit upper half adjusted section relative relocation. */
HOW (R_PPC_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Marker relocs for TLS. */
HOW (R_PPC_TLS, 2, 32, 0, 0, FALSE, dont,
bfd_elf_generic_reloc),
HOW (R_PPC_TLSGD, 2, 32, 0, 0, FALSE, dont,
bfd_elf_generic_reloc),
HOW (R_PPC_TLSLD, 2, 32, 0, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* Marker relocs on inline plt call instructions. */
HOW (R_PPC_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
bfd_elf_generic_reloc),
HOW (R_PPC_PLTCALL, 2, 32, 0, 0, FALSE, dont,
bfd_elf_generic_reloc),
/* Computes the load module index of the load module that contains the
definition of its TLS sym. */
HOW (R_PPC_DTPMOD32, 2, 32, 0xffffffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Computes a dtv-relative displacement, the difference between the value
of sym+add and the base address of the thread-local storage block that
contains the definition of sym, minus 0x8000. */
HOW (R_PPC_DTPREL32, 2, 32, 0xffffffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* A 16 bit dtprel reloc. */
HOW (R_PPC_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like DTPREL16, but no overflow. */
HOW (R_PPC_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like DTPREL16_LO, but next higher group of 16 bits. */
HOW (R_PPC_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like DTPREL16_HI, but adjust for low 16 bits. */
HOW (R_PPC_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Computes a tp-relative displacement, the difference between the value of
sym+add and the value of the thread pointer (r13). */
HOW (R_PPC_TPREL32, 2, 32, 0xffffffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* A 16 bit tprel reloc. */
HOW (R_PPC_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like TPREL16, but no overflow. */
HOW (R_PPC_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like TPREL16_LO, but next higher group of 16 bits. */
HOW (R_PPC_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like TPREL16_HI, but adjust for low 16 bits. */
HOW (R_PPC_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Allocates two contiguous entries in the GOT to hold a tls_index structure,
with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
to the first entry. */
HOW (R_PPC_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like GOT_TLSGD16, but no overflow. */
HOW (R_PPC_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
HOW (R_PPC_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
HOW (R_PPC_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Allocates two contiguous entries in the GOT to hold a tls_index structure,
with values (sym+add)@dtpmod and zero, and computes the offset to the
first entry. */
HOW (R_PPC_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like GOT_TLSLD16, but no overflow. */
HOW (R_PPC_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
HOW (R_PPC_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
HOW (R_PPC_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
the offset to the entry. */
HOW (R_PPC_GOT_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like GOT_DTPREL16, but no overflow. */
HOW (R_PPC_GOT_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_DTPREL16_LO, but next higher group of 16 bits. */
HOW (R_PPC_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
HOW (R_PPC_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
offset to the entry. */
HOW (R_PPC_GOT_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like GOT_TPREL16, but no overflow. */
HOW (R_PPC_GOT_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_TPREL16_LO, but next higher group of 16 bits. */
HOW (R_PPC_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
HOW (R_PPC_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* The remaining relocs are from the Embedded ELF ABI, and are not
in the SVR4 ELF ABI. */
/* 32 bit value resulting from the addend minus the symbol. */
HOW (R_PPC_EMB_NADDR32, 2, 32, 0xffffffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* 16 bit value resulting from the addend minus the symbol. */
HOW (R_PPC_EMB_NADDR16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* 16 bit value resulting from the addend minus the symbol. */
HOW (R_PPC_EMB_NADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* The high order 16 bits of the addend minus the symbol. */
HOW (R_PPC_EMB_NADDR16_HI, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* The high order 16 bits of the result of the addend minus the address,
plus 1 if the contents of the low 16 bits, treated as a signed number,
is negative. */
HOW (R_PPC_EMB_NADDR16_HA, 1, 16, 0xffff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* 16 bit value resulting from allocating a 4 byte word to hold an
address in the .sdata section, and returning the offset from
_SDA_BASE_ for that relocation. */
HOW (R_PPC_EMB_SDAI16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* 16 bit value resulting from allocating a 4 byte word to hold an
address in the .sdata2 section, and returning the offset from
_SDA2_BASE_ for that relocation. */
HOW (R_PPC_EMB_SDA2I16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* A sign-extended 16 bit value relative to _SDA2_BASE_, for use with
small data items. */
HOW (R_PPC_EMB_SDA2REL, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Relocate against either _SDA_BASE_ or _SDA2_BASE_, filling in the 16 bit
signed offset from the appropriate base, and filling in the register
field with the appropriate register (0, 2, or 13). */
HOW (R_PPC_EMB_SDA21, 2, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Relocation not handled: R_PPC_EMB_MRKREF */
/* Relocation not handled: R_PPC_EMB_RELSEC16 */
/* Relocation not handled: R_PPC_EMB_RELST_LO */
/* Relocation not handled: R_PPC_EMB_RELST_HI */
/* Relocation not handled: R_PPC_EMB_RELST_HA */
/* Relocation not handled: R_PPC_EMB_BIT_FLD */
/* PC relative relocation against either _SDA_BASE_ or _SDA2_BASE_, filling
in the 16 bit signed offset from the appropriate base, and filling in the
register field with the appropriate register (0, 2, or 13). */
HOW (R_PPC_EMB_RELSDA, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* A relative 8 bit branch. */
HOW (R_PPC_VLE_REL8, 1, 8, 0xff, 1, TRUE, signed,
bfd_elf_generic_reloc),
/* A relative 15 bit branch. */
HOW (R_PPC_VLE_REL15, 2, 16, 0xfffe, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* A relative 24 bit branch. */
HOW (R_PPC_VLE_REL24, 2, 25, 0x1fffffe, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* The 16 LSBS in split16a format. */
HOW (R_PPC_VLE_LO16A, 2, 16, 0x1f07ff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* The 16 LSBS in split16d format. */
HOW (R_PPC_VLE_LO16D, 2, 16, 0x3e007ff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 split16a format. */
HOW (R_PPC_VLE_HI16A, 2, 16, 0x1f07ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 split16d format. */
HOW (R_PPC_VLE_HI16D, 2, 16, 0x3e007ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 (High Adjusted) in split16a format. */
HOW (R_PPC_VLE_HA16A, 2, 16, 0x1f07ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 (High Adjusted) in split16d format. */
HOW (R_PPC_VLE_HA16D, 2, 16, 0x3e007ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* This reloc is like R_PPC_EMB_SDA21 but only applies to e_add16i
instructions. If the register base is 0 then the linker changes
the e_add16i to an e_li instruction. */
HOW (R_PPC_VLE_SDA21, 2, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
/* Like R_PPC_VLE_SDA21 but ignore overflow. */
HOW (R_PPC_VLE_SDA21_LO, 2, 16, 0xffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* The 16 LSBS relative to _SDA_BASE_ in split16a format. */
HOW (R_PPC_VLE_SDAREL_LO16A, 2, 16, 0x1f07ff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* The 16 LSBS relative to _SDA_BASE_ in split16d format. */
HOW (R_PPC_VLE_SDAREL_LO16D, 2, 16, 0x3e007ff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 relative to _SDA_BASE_ in split16a format. */
HOW (R_PPC_VLE_SDAREL_HI16A, 2, 16, 0x1f07ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 relative to _SDA_BASE_ in split16d format. */
HOW (R_PPC_VLE_SDAREL_HI16D, 2, 16, 0x3e007ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 (HA) relative to _SDA_BASE split16a format. */
HOW (R_PPC_VLE_SDAREL_HA16A, 2, 16, 0x1f07ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* Bits 16-31 (HA) relative to _SDA_BASE split16d format. */
HOW (R_PPC_VLE_SDAREL_HA16D, 2, 16, 0x3e007ff, 16, FALSE, dont,
ppc_elf_unhandled_reloc),
/* e_li split20 format. */
HOW (R_PPC_VLE_ADDR20, 2, 20, 0x1f7fff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
HOW (R_PPC_IRELATIVE, 2, 32, 0xffffffff, 0, FALSE, dont,
ppc_elf_unhandled_reloc),
/* A 16 bit relative relocation. */
HOW (R_PPC_REL16, 1, 16, 0xffff, 0, TRUE, signed,
bfd_elf_generic_reloc),
/* A 16 bit relative relocation without overflow. */
HOW (R_PPC_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
bfd_elf_generic_reloc),
/* The high order 16 bits of a relative address. */
HOW (R_PPC_REL16_HI, 1, 16, 0xffff, 16, TRUE, dont,
bfd_elf_generic_reloc),
/* The high order 16 bits of a relative address, plus 1 if the contents of
the low 16 bits, treated as a signed number, is negative. */
HOW (R_PPC_REL16_HA, 1, 16, 0xffff, 16, TRUE, dont,
ppc_elf_addr16_ha_reloc),
/* Like R_PPC_REL16_HA but for split field in addpcis. */
HOW (R_PPC_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
ppc_elf_addr16_ha_reloc),
/* A split-field reloc for addpcis, non-relative (gas internal use only). */
HOW (R_PPC_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
ppc_elf_addr16_ha_reloc),
/* GNU extension to record C++ vtable hierarchy. */
HOW (R_PPC_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
NULL),
/* GNU extension to record C++ vtable member usage. */
HOW (R_PPC_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
NULL),
/* Phony reloc to handle AIX style TOC entries. */
HOW (R_PPC_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
ppc_elf_unhandled_reloc),
};
/* Initialize the ppc_elf_howto_table, so that linear accesses can be done. */
static void
ppc_elf_howto_init (void)
{
unsigned int i, type;
for (i = 0;
i < sizeof (ppc_elf_howto_raw) / sizeof (ppc_elf_howto_raw[0]);
i++)
{
type = ppc_elf_howto_raw[i].type;
if (type >= (sizeof (ppc_elf_howto_table)
/ sizeof (ppc_elf_howto_table[0])))
abort ();
ppc_elf_howto_table[type] = &ppc_elf_howto_raw[i];
}
}
static reloc_howto_type *
ppc_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
enum elf_ppc_reloc_type r;
/* Initialize howto table if not already done. */
if (!ppc_elf_howto_table[R_PPC_ADDR32])
ppc_elf_howto_init ();
switch (code)
{
default:
return NULL;
case BFD_RELOC_NONE: r = R_PPC_NONE; break;
case BFD_RELOC_32: r = R_PPC_ADDR32; break;
case BFD_RELOC_PPC_BA26: r = R_PPC_ADDR24; break;
case BFD_RELOC_PPC64_ADDR16_DS:
case BFD_RELOC_16: r = R_PPC_ADDR16; break;
case BFD_RELOC_PPC64_ADDR16_LO_DS:
case BFD_RELOC_LO16: r = R_PPC_ADDR16_LO; break;
case BFD_RELOC_HI16: r = R_PPC_ADDR16_HI; break;
case BFD_RELOC_HI16_S: r = R_PPC_ADDR16_HA; break;
case BFD_RELOC_PPC_BA16: r = R_PPC_ADDR14; break;
case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC_ADDR14_BRTAKEN; break;
case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC_ADDR14_BRNTAKEN; break;
case BFD_RELOC_PPC_B26: r = R_PPC_REL24; break;
case BFD_RELOC_PPC_B16: r = R_PPC_REL14; break;
case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC_REL14_BRTAKEN; break;
case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC_REL14_BRNTAKEN; break;
case BFD_RELOC_PPC64_GOT16_DS:
case BFD_RELOC_16_GOTOFF: r = R_PPC_GOT16; break;
case BFD_RELOC_PPC64_GOT16_LO_DS:
case BFD_RELOC_LO16_GOTOFF: r = R_PPC_GOT16_LO; break;
case BFD_RELOC_HI16_GOTOFF: r = R_PPC_GOT16_HI; break;
case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC_GOT16_HA; break;
case BFD_RELOC_24_PLT_PCREL: r = R_PPC_PLTREL24; break;
case BFD_RELOC_PPC_COPY: r = R_PPC_COPY; break;
case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC_GLOB_DAT; break;
case BFD_RELOC_PPC_LOCAL24PC: r = R_PPC_LOCAL24PC; break;
case BFD_RELOC_32_PCREL: r = R_PPC_REL32; break;
case BFD_RELOC_32_PLTOFF: r = R_PPC_PLT32; break;
case BFD_RELOC_32_PLT_PCREL: r = R_PPC_PLTREL32; break;
case BFD_RELOC_PPC64_PLT16_LO_DS:
case BFD_RELOC_LO16_PLTOFF: r = R_PPC_PLT16_LO; break;
case BFD_RELOC_HI16_PLTOFF: r = R_PPC_PLT16_HI; break;
case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC_PLT16_HA; break;
case BFD_RELOC_GPREL16: r = R_PPC_SDAREL16; break;
case BFD_RELOC_PPC64_SECTOFF_DS:
case BFD_RELOC_16_BASEREL: r = R_PPC_SECTOFF; break;
case BFD_RELOC_PPC64_SECTOFF_LO_DS:
case BFD_RELOC_LO16_BASEREL: r = R_PPC_SECTOFF_LO; break;
case BFD_RELOC_HI16_BASEREL: r = R_PPC_SECTOFF_HI; break;
case BFD_RELOC_HI16_S_BASEREL: r = R_PPC_SECTOFF_HA; break;
case BFD_RELOC_CTOR: r = R_PPC_ADDR32; break;
case BFD_RELOC_PPC64_TOC16_DS:
case BFD_RELOC_PPC_TOC16: r = R_PPC_TOC16; break;
case BFD_RELOC_PPC_TLS: r = R_PPC_TLS; break;
case BFD_RELOC_PPC_TLSGD: r = R_PPC_TLSGD; break;
case BFD_RELOC_PPC_TLSLD: r = R_PPC_TLSLD; break;
case BFD_RELOC_PPC_DTPMOD: r = R_PPC_DTPMOD32; break;
case BFD_RELOC_PPC64_TPREL16_DS:
case BFD_RELOC_PPC_TPREL16: r = R_PPC_TPREL16; break;
case BFD_RELOC_PPC64_TPREL16_LO_DS:
case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC_TPREL16_LO; break;
case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC_TPREL16_HI; break;
case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC_TPREL16_HA; break;
case BFD_RELOC_PPC_TPREL: r = R_PPC_TPREL32; break;
case BFD_RELOC_PPC64_DTPREL16_DS:
case BFD_RELOC_PPC_DTPREL16: r = R_PPC_DTPREL16; break;
case BFD_RELOC_PPC64_DTPREL16_LO_DS:
case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC_DTPREL16_LO; break;
case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC_DTPREL16_HI; break;
case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC_DTPREL16_HA; break;
case BFD_RELOC_PPC_DTPREL: r = R_PPC_DTPREL32; break;
case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC_GOT_TLSGD16; break;
case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC_GOT_TLSGD16_LO; break;
case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC_GOT_TLSGD16_HI; break;
case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC_GOT_TLSGD16_HA; break;
case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC_GOT_TLSLD16; break;
case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC_GOT_TLSLD16_LO; break;
case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC_GOT_TLSLD16_HI; break;
case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC_GOT_TLSLD16_HA; break;
case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC_GOT_TPREL16; break;
case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC_GOT_TPREL16_LO; break;
case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC_GOT_TPREL16_HI; break;
case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC_GOT_TPREL16_HA; break;
case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC_GOT_DTPREL16; break;
case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC_GOT_DTPREL16_LO; break;
case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC_GOT_DTPREL16_HI; break;
case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC_GOT_DTPREL16_HA; break;
case BFD_RELOC_PPC_EMB_NADDR32: r = R_PPC_EMB_NADDR32; break;
case BFD_RELOC_PPC_EMB_NADDR16: r = R_PPC_EMB_NADDR16; break;
case BFD_RELOC_PPC_EMB_NADDR16_LO: r = R_PPC_EMB_NADDR16_LO; break;
case BFD_RELOC_PPC_EMB_NADDR16_HI: r = R_PPC_EMB_NADDR16_HI; break;
case BFD_RELOC_PPC_EMB_NADDR16_HA: r = R_PPC_EMB_NADDR16_HA; break;
case BFD_RELOC_PPC_EMB_SDAI16: r = R_PPC_EMB_SDAI16; break;
case BFD_RELOC_PPC_EMB_SDA2I16: r = R_PPC_EMB_SDA2I16; break;
case BFD_RELOC_PPC_EMB_SDA2REL: r = R_PPC_EMB_SDA2REL; break;
case BFD_RELOC_PPC_EMB_SDA21: r = R_PPC_EMB_SDA21; break;
case BFD_RELOC_PPC_EMB_MRKREF: r = R_PPC_EMB_MRKREF; break;
case BFD_RELOC_PPC_EMB_RELSEC16: r = R_PPC_EMB_RELSEC16; break;
case BFD_RELOC_PPC_EMB_RELST_LO: r = R_PPC_EMB_RELST_LO; break;
case BFD_RELOC_PPC_EMB_RELST_HI: r = R_PPC_EMB_RELST_HI; break;
case BFD_RELOC_PPC_EMB_RELST_HA: r = R_PPC_EMB_RELST_HA; break;
case BFD_RELOC_PPC_EMB_BIT_FLD: r = R_PPC_EMB_BIT_FLD; break;
case BFD_RELOC_PPC_EMB_RELSDA: r = R_PPC_EMB_RELSDA; break;
case BFD_RELOC_PPC_VLE_REL8: r = R_PPC_VLE_REL8; break;
case BFD_RELOC_PPC_VLE_REL15: r = R_PPC_VLE_REL15; break;
case BFD_RELOC_PPC_VLE_REL24: r = R_PPC_VLE_REL24; break;
case BFD_RELOC_PPC_VLE_LO16A: r = R_PPC_VLE_LO16A; break;
case BFD_RELOC_PPC_VLE_LO16D: r = R_PPC_VLE_LO16D; break;
case BFD_RELOC_PPC_VLE_HI16A: r = R_PPC_VLE_HI16A; break;
case BFD_RELOC_PPC_VLE_HI16D: r = R_PPC_VLE_HI16D; break;
case BFD_RELOC_PPC_VLE_HA16A: r = R_PPC_VLE_HA16A; break;
case BFD_RELOC_PPC_VLE_HA16D: r = R_PPC_VLE_HA16D; break;
case BFD_RELOC_PPC_VLE_SDA21: r = R_PPC_VLE_SDA21; break;
case BFD_RELOC_PPC_VLE_SDA21_LO: r = R_PPC_VLE_SDA21_LO; break;
case BFD_RELOC_PPC_VLE_SDAREL_LO16A:
r = R_PPC_VLE_SDAREL_LO16A;
break;
case BFD_RELOC_PPC_VLE_SDAREL_LO16D:
r = R_PPC_VLE_SDAREL_LO16D;
break;
case BFD_RELOC_PPC_VLE_SDAREL_HI16A:
r = R_PPC_VLE_SDAREL_HI16A;
break;
case BFD_RELOC_PPC_VLE_SDAREL_HI16D:
r = R_PPC_VLE_SDAREL_HI16D;
break;
case BFD_RELOC_PPC_VLE_SDAREL_HA16A:
r = R_PPC_VLE_SDAREL_HA16A;
break;
case BFD_RELOC_PPC_VLE_SDAREL_HA16D:
r = R_PPC_VLE_SDAREL_HA16D;
break;
case BFD_RELOC_16_PCREL: r = R_PPC_REL16; break;
case BFD_RELOC_LO16_PCREL: r = R_PPC_REL16_LO; break;
case BFD_RELOC_HI16_PCREL: r = R_PPC_REL16_HI; break;
case BFD_RELOC_HI16_S_PCREL: r = R_PPC_REL16_HA; break;
case BFD_RELOC_PPC_16DX_HA: r = R_PPC_16DX_HA; break;
case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC_REL16DX_HA; break;
case BFD_RELOC_VTABLE_INHERIT: r = R_PPC_GNU_VTINHERIT; break;
case BFD_RELOC_VTABLE_ENTRY: r = R_PPC_GNU_VTENTRY; break;
}
return ppc_elf_howto_table[r];
};
static reloc_howto_type *
ppc_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (ppc_elf_howto_raw) / sizeof (ppc_elf_howto_raw[0]);
i++)
if (ppc_elf_howto_raw[i].name != NULL
&& strcasecmp (ppc_elf_howto_raw[i].name, r_name) == 0)
return &ppc_elf_howto_raw[i];
return NULL;
}
/* Set the howto pointer for a PowerPC ELF reloc. */
static bfd_boolean
ppc_elf_info_to_howto (bfd *abfd,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned int r_type;
/* Initialize howto table if not already done. */
if (!ppc_elf_howto_table[R_PPC_ADDR32])
ppc_elf_howto_init ();
r_type = ELF32_R_TYPE (dst->r_info);
if (r_type >= R_PPC_max)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
cache_ptr->howto = ppc_elf_howto_table[r_type];
/* Just because the above assert didn't trigger doesn't mean that
ELF32_R_TYPE (dst->r_info) is necessarily a valid relocation. */
if (cache_ptr->howto == NULL)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
return TRUE;
}
/* Handle the R_PPC_ADDR16_HA and R_PPC_REL16_HA relocs. */
static bfd_reloc_status_type
ppc_elf_addr16_ha_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void *data,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
enum elf_ppc_reloc_type r_type;
long insn;
bfd_size_type octets;
bfd_vma value;
if (output_bfd != NULL)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
reloc_entry->addend += 0x8000;
r_type = reloc_entry->howto->type;
if (r_type != R_PPC_REL16DX_HA)
return bfd_reloc_continue;
value = 0;
if (!bfd_is_com_section (symbol->section))
value = symbol->value;
value += (reloc_entry->addend
+ symbol->section->output_offset
+ symbol->section->output_section->vma);
value -= (reloc_entry->address
+ input_section->output_offset
+ input_section->output_section->vma);
value >>= 16;
octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
insn &= ~0x1fffc1;
insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
return bfd_reloc_ok;
}
static bfd_reloc_status_type
ppc_elf_unhandled_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void *data,
asection *input_section,
bfd *output_bfd,
char **error_message)
{
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
if (error_message != NULL)
{
static char buf[60];
sprintf (buf, _("generic linker can't handle %s"),
reloc_entry->howto->name);
*error_message = buf;
}
return bfd_reloc_dangerous;
}
/* Sections created by the linker. */
typedef struct elf_linker_section
{
/* Pointer to the bfd section. */
asection *section;
/* Section name. */
const char *name;
/* Associated bss section name. */
const char *bss_name;
/* Associated symbol name. */
const char *sym_name;
/* Associated symbol. */
struct elf_link_hash_entry *sym;
} elf_linker_section_t;
/* Linked list of allocated pointer entries. This hangs off of the
symbol lists, and provides allows us to return different pointers,
based on different addend's. */
typedef struct elf_linker_section_pointers
{
/* next allocated pointer for this symbol */
struct elf_linker_section_pointers *next;
/* offset of pointer from beginning of section */
bfd_vma offset;
/* addend used */
bfd_vma addend;
/* which linker section this is */
elf_linker_section_t *lsect;
} elf_linker_section_pointers_t;
struct ppc_elf_obj_tdata
{
struct elf_obj_tdata elf;
/* A mapping from local symbols to offsets into the various linker
sections added. This is index by the symbol index. */
elf_linker_section_pointers_t **linker_section_pointers;
/* Flags used to auto-detect plt type. */
unsigned int makes_plt_call : 1;
unsigned int has_rel16 : 1;
};
#define ppc_elf_tdata(bfd) \
((struct ppc_elf_obj_tdata *) (bfd)->tdata.any)
#define elf_local_ptr_offsets(bfd) \
(ppc_elf_tdata (bfd)->linker_section_pointers)
#define is_ppc_elf(bfd) \
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
&& elf_object_id (bfd) == PPC32_ELF_DATA)
/* Override the generic function because we store some extras. */
static bfd_boolean
ppc_elf_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct ppc_elf_obj_tdata),
PPC32_ELF_DATA);
}
/* When defaulting arch/mach, decode apuinfo to find a better match. */
bfd_boolean
_bfd_elf_ppc_set_arch (bfd *abfd)
{
unsigned long mach = 0;
asection *s;
unsigned char *contents;
if (abfd->arch_info->bits_per_word == 32
&& bfd_big_endian (abfd))
{
for (s = abfd->sections; s != NULL; s = s->next)
if ((elf_section_data (s)->this_hdr.sh_flags & SHF_PPC_VLE) != 0)
break;
if (s != NULL)
mach = bfd_mach_ppc_vle;
}
if (mach == 0)
{
s = bfd_get_section_by_name (abfd, APUINFO_SECTION_NAME);
if (s != NULL
&& s->size >= 24
&& bfd_malloc_and_get_section (abfd, s, &contents))
{
unsigned int apuinfo_size = bfd_get_32 (abfd, contents + 4);
unsigned int i;
for (i = 20; i < apuinfo_size + 20 && i + 4 <= s->size; i += 4)
{
unsigned int val = bfd_get_32 (abfd, contents + i);
switch (val >> 16)
{
case PPC_APUINFO_PMR:
case PPC_APUINFO_RFMCI:
if (mach == 0)
mach = bfd_mach_ppc_titan;
break;
case PPC_APUINFO_ISEL:
case PPC_APUINFO_CACHELCK:
if (mach == bfd_mach_ppc_titan)
mach = bfd_mach_ppc_e500mc;
break;
case PPC_APUINFO_SPE:
case PPC_APUINFO_EFS:
case PPC_APUINFO_BRLOCK:
if (mach != bfd_mach_ppc_vle)
mach = bfd_mach_ppc_e500;
break;
case PPC_APUINFO_VLE:
mach = bfd_mach_ppc_vle;
break;
default:
mach = -1ul;
}
}
free (contents);
}
}
if (mach != 0 && mach != -1ul)
{
const bfd_arch_info_type *arch;
for (arch = abfd->arch_info->next; arch; arch = arch->next)
if (arch->mach == mach)
{
abfd->arch_info = arch;
break;
}
}
return TRUE;
}
/* Fix bad default arch selected for a 32 bit input bfd when the
default is 64 bit. Also select arch based on apuinfo. */
static bfd_boolean
ppc_elf_object_p (bfd *abfd)
{
if (!abfd->arch_info->the_default)
return TRUE;
if (abfd->arch_info->bits_per_word == 64)
{
Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS32)
{
/* Relies on arch after 64 bit default being 32 bit default. */
abfd->arch_info = abfd->arch_info->next;
BFD_ASSERT (abfd->arch_info->bits_per_word == 32);
}
}
return _bfd_elf_ppc_set_arch (abfd);
}
/* Function to set whether a module needs the -mrelocatable bit set. */
static bfd_boolean
ppc_elf_set_private_flags (bfd *abfd, flagword flags)
{
BFD_ASSERT (!elf_flags_init (abfd)
|| elf_elfheader (abfd)->e_flags == flags);
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
/* Support for core dump NOTE sections. */
static bfd_boolean
ppc_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
unsigned int size;
switch (note->descsz)
{
default:
return FALSE;
case 268: /* Linux/PPC. */
/* pr_cursig */
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
/* pr_reg */
offset = 72;
size = 192;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
static bfd_boolean
ppc_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->descsz)
{
default:
return FALSE;
case 128: /* Linux/PPC elf_prpsinfo. */
elf_tdata (abfd)->core->pid
= bfd_get_32 (abfd, note->descdata + 16);
elf_tdata (abfd)->core->program
= _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
elf_tdata (abfd)->core->command
= _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core->command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return TRUE;
}
static char *
ppc_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type, ...)
{
switch (note_type)
{
default:
return NULL;
case NT_PRPSINFO:
{
char data[128] ATTRIBUTE_NONSTRING;
va_list ap;
va_start (ap, note_type);
memset (data, 0, sizeof (data));
strncpy (data + 32, va_arg (ap, const char *), 16);
#if GCC_VERSION == 8000 || GCC_VERSION == 8001
DIAGNOSTIC_PUSH;
/* GCC 8.0 and 8.1 warn about 80 equals destination size with
-Wstringop-truncation:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
*/
DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
#endif
strncpy (data + 48, va_arg (ap, const char *), 80);
#if GCC_VERSION == 8000 || GCC_VERSION == 8001
DIAGNOSTIC_POP;
#endif
va_end (ap);
return elfcore_write_note (abfd, buf, bufsiz,
"CORE", note_type, data, sizeof (data));
}
case NT_PRSTATUS:
{
char data[268];
va_list ap;
long pid;
int cursig;
const void *greg;
va_start (ap, note_type);
memset (data, 0, 72);
pid = va_arg (ap, long);
bfd_put_32 (abfd, pid, data + 24);
cursig = va_arg (ap, int);
bfd_put_16 (abfd, cursig, data + 12);
greg = va_arg (ap, const void *);
memcpy (data + 72, greg, 192);
memset (data + 264, 0, 4);
va_end (ap);
return elfcore_write_note (abfd, buf, bufsiz,
"CORE", note_type, data, sizeof (data));
}
}
}
static flagword
ppc_elf_lookup_section_flags (char *flag_name)
{
if (!strcmp (flag_name, "SHF_PPC_VLE"))
return SHF_PPC_VLE;
return 0;
}
/* Return address for Ith PLT stub in section PLT, for relocation REL
or (bfd_vma) -1 if it should not be included. */
static bfd_vma
ppc_elf_plt_sym_val (bfd_vma i ATTRIBUTE_UNUSED,
const asection *plt ATTRIBUTE_UNUSED,
const arelent *rel)
{
return rel->address;
}
/* Handle a PowerPC specific section when reading an object file. This
is called when bfd_section_from_shdr finds a section with an unknown
type. */
static bfd_boolean
ppc_elf_section_from_shdr (bfd *abfd,
Elf_Internal_Shdr *hdr,
const char *name,
int shindex)
{
asection *newsect;
flagword flags;
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
newsect = hdr->bfd_section;
flags = 0;
if (hdr->sh_flags & SHF_EXCLUDE)
flags |= SEC_EXCLUDE;
if (hdr->sh_type == SHT_ORDERED)
flags |= SEC_SORT_ENTRIES;
if (strncmp (name, ".PPC.EMB", 8) == 0)
name += 8;
if (strncmp (name, ".sbss", 5) == 0
|| strncmp (name, ".sdata", 6) == 0)
flags |= SEC_SMALL_DATA;
return (flags == 0
|| bfd_set_section_flags (newsect, newsect->flags | flags));
}
/* Set up any other section flags and such that may be necessary. */
static bfd_boolean
ppc_elf_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
Elf_Internal_Shdr *shdr,
asection *asect)
{
if ((asect->flags & SEC_SORT_ENTRIES) != 0)
shdr->sh_type = SHT_ORDERED;
return TRUE;
}
/* If we have .sbss2 or .PPC.EMB.sbss0 output sections, we
need to bump up the number of section headers. */
static int
ppc_elf_additional_program_headers (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
asection *s;
int ret = 0;
s = bfd_get_section_by_name (abfd, ".sbss2");
if (s != NULL && (s->flags & SEC_ALLOC) != 0)
++ret;
s = bfd_get_section_by_name (abfd, ".PPC.EMB.sbss0");
if (s != NULL && (s->flags & SEC_ALLOC) != 0)
++ret;
return ret;
}
/* Modify the segment map for VLE executables. */
bfd_boolean
ppc_elf_modify_segment_map (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
struct elf_segment_map *m;
/* At this point in the link, output sections have already been sorted by
LMA and assigned to segments. All that is left to do is to ensure
there is no mixing of VLE & non-VLE sections in a text segment.
If we find that case, we split the segment.
We maintain the original output section order. */
for (m = elf_seg_map (abfd); m != NULL; m = m->next)
{
struct elf_segment_map *n;
size_t amt;
unsigned int j, k;
unsigned int p_flags;
if (m->p_type != PT_LOAD || m->count == 0)
continue;
for (p_flags = PF_R, j = 0; j != m->count; ++j)
{
if ((m->sections[j]->flags & SEC_READONLY) == 0)
p_flags |= PF_W;
if ((m->sections[j]->flags & SEC_CODE) != 0)
{
p_flags |= PF_X;
if ((elf_section_flags (m->sections[j]) & SHF_PPC_VLE) != 0)
p_flags |= PF_PPC_VLE;
break;
}
}
if (j != m->count)
while (++j != m->count)
{
unsigned int p_flags1 = PF_R;
if ((m->sections[j]->flags & SEC_READONLY) == 0)
p_flags1 |= PF_W;
if ((m->sections[j]->flags & SEC_CODE) != 0)
{
p_flags1 |= PF_X;
if ((elf_section_flags (m->sections[j]) & SHF_PPC_VLE) != 0)
p_flags1 |= PF_PPC_VLE;
if (((p_flags1 ^ p_flags) & PF_PPC_VLE) != 0)
break;
}
p_flags |= p_flags1;
}
/* If we're splitting a segment which originally contained rw
sections then those sections might now only be in one of the
two parts. So always set p_flags if splitting, even if we
are being called for objcopy with p_flags_valid set. */
if (j != m->count || !m->p_flags_valid)
{
m->p_flags_valid = 1;
m->p_flags = p_flags;
}
if (j == m->count)
continue;
/* Sections 0..j-1 stay in this (current) segment,
the remainder are put in a new segment.
The scan resumes with the new segment. */
amt = sizeof (struct elf_segment_map);
amt += (m->count - j - 1) * sizeof (asection *);
n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
if (n == NULL)
return FALSE;
n->p_type = PT_LOAD;
n->count = m->count - j;
for (k = 0; k < n->count; ++k)
n->sections[k] = m->sections[j + k];
m->count = j;
m->p_size_valid = 0;
n->next = m->next;
m->next = n;
}
return TRUE;
}
/* Add extra PPC sections -- Note, for now, make .sbss2 and
.PPC.EMB.sbss0 a normal section, and not a bss section so
that the linker doesn't crater when trying to make more than
2 sections. */
static const struct bfd_elf_special_section ppc_elf_special_sections[] =
{
{ STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, SHF_ALLOC + SHF_EXECINSTR },
{ STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".sbss2"), -2, SHT_PROGBITS, SHF_ALLOC },
{ STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".sdata2"), -2, SHT_PROGBITS, SHF_ALLOC },
{ STRING_COMMA_LEN (".tags"), 0, SHT_ORDERED, SHF_ALLOC },
{ STRING_COMMA_LEN (APUINFO_SECTION_NAME), 0, SHT_NOTE, 0 },
{ STRING_COMMA_LEN (".PPC.EMB.sbss0"), 0, SHT_PROGBITS, SHF_ALLOC },
{ STRING_COMMA_LEN (".PPC.EMB.sdata0"), 0, SHT_PROGBITS, SHF_ALLOC },
{ NULL, 0, 0, 0, 0 }
};
/* This is what we want for new plt/got. */
static struct bfd_elf_special_section ppc_alt_plt =
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC };
static const struct bfd_elf_special_section *
ppc_elf_get_sec_type_attr (bfd *abfd, asection *sec)
{
const struct bfd_elf_special_section *ssect;
/* See if this is one of the special sections. */
if (sec->name == NULL)
return NULL;
ssect = _bfd_elf_get_special_section (sec->name, ppc_elf_special_sections,
sec->use_rela_p);
if (ssect != NULL)
{
if (ssect == ppc_elf_special_sections && (sec->flags & SEC_LOAD) != 0)
ssect = &ppc_alt_plt;
return ssect;
}
return _bfd_elf_get_sec_type_attr (abfd, sec);
}
/* Very simple linked list structure for recording apuinfo values. */
typedef struct apuinfo_list
{
struct apuinfo_list *next;
unsigned long value;
}
apuinfo_list;
static apuinfo_list *head;
static bfd_boolean apuinfo_set;
static void
apuinfo_list_init (void)
{
head = NULL;
apuinfo_set = FALSE;
}
static void
apuinfo_list_add (unsigned long value)
{
apuinfo_list *entry = head;
while (entry != NULL)
{
if (entry->value == value)
return;
entry = entry->next;
}
entry = bfd_malloc (sizeof (* entry));
if (entry == NULL)
return;
entry->value = value;
entry->next = head;
head = entry;
}
static unsigned
apuinfo_list_length (void)
{
apuinfo_list *entry;
unsigned long count;
for (entry = head, count = 0;
entry;
entry = entry->next)
++ count;
return count;
}
static inline unsigned long
apuinfo_list_element (unsigned long number)
{
apuinfo_list * entry;
for (entry = head;
entry && number --;
entry = entry->next)
;
return entry ? entry->value : 0;
}
static void
apuinfo_list_finish (void)
{
apuinfo_list *entry;
for (entry = head; entry;)
{
apuinfo_list *next = entry->next;
free (entry);
entry = next;
}
head = NULL;
}
/* Scan the input BFDs and create a linked list of
the APUinfo values that will need to be emitted. */
static void
ppc_elf_begin_write_processing (bfd *abfd, struct bfd_link_info *link_info)
{
bfd *ibfd;
asection *asec;
char *buffer = NULL;
bfd_size_type largest_input_size = 0;
unsigned i;
unsigned long length;
const char *error_message = NULL;
if (link_info == NULL)
return;
apuinfo_list_init ();
/* Read in the input sections contents. */
for (ibfd = link_info->input_bfds; ibfd; ibfd = ibfd->link.next)
{
unsigned long datum;
asec = bfd_get_section_by_name (ibfd, APUINFO_SECTION_NAME);
if (asec == NULL)
continue;
/* xgettext:c-format */
error_message = _("corrupt %s section in %pB");
length = asec->size;
if (length < 20)
goto fail;
apuinfo_set = TRUE;
if (largest_input_size < asec->size)
{
if (buffer)
free (buffer);
largest_input_size = asec->size;
buffer = bfd_malloc (largest_input_size);
if (!buffer)
return;
}
if (bfd_seek (ibfd, asec->filepos, SEEK_SET) != 0
|| (bfd_bread (buffer, length, ibfd) != length))
{
/* xgettext:c-format */
error_message = _("unable to read in %s section from %pB");
goto fail;
}
/* Verify the contents of the header. Note - we have to
extract the values this way in order to allow for a
host whose endian-ness is different from the target. */
datum = bfd_get_32 (ibfd, buffer);
if (datum != sizeof APUINFO_LABEL)
goto fail;
datum = bfd_get_32 (ibfd, buffer + 8);
if (datum != 0x2)
goto fail;
if (strcmp (buffer + 12, APUINFO_LABEL) != 0)
goto fail;
/* Get the number of bytes used for apuinfo entries. */
datum = bfd_get_32 (ibfd, buffer + 4);
if (datum + 20 != length)
goto fail;
/* Scan the apuinfo section, building a list of apuinfo numbers. */
for (i = 0; i < datum; i += 4)
apuinfo_list_add (bfd_get_32 (ibfd, buffer + 20 + i));
}
error_message = NULL;
if (apuinfo_set)
{
/* Compute the size of the output section. */
unsigned num_entries = apuinfo_list_length ();
/* Set the output section size, if it exists. */
asec = bfd_get_section_by_name (abfd, APUINFO_SECTION_NAME);
if (asec && !bfd_set_section_size (asec, 20 + num_entries * 4))
{
ibfd = abfd;
/* xgettext:c-format */
error_message = _("warning: unable to set size of %s section in %pB");
}
}
fail:
if (buffer)
free (buffer);
if (error_message)
_bfd_error_handler (error_message, APUINFO_SECTION_NAME, ibfd);
}
/* Prevent the output section from accumulating the input sections'
contents. We have already stored this in our linked list structure. */
static bfd_boolean
ppc_elf_write_section (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
asection *asec,
bfd_byte *contents ATTRIBUTE_UNUSED)
{
return apuinfo_set && strcmp (asec->name, APUINFO_SECTION_NAME) == 0;
}
/* Finally we can generate the output section. */
static void
ppc_final_write_processing (bfd *abfd)
{
bfd_byte *buffer;
asection *asec;
unsigned i;
unsigned num_entries;
bfd_size_type length;
asec = bfd_get_section_by_name (abfd, APUINFO_SECTION_NAME);
if (asec == NULL)
return;
if (!apuinfo_set)
return;
length = asec->size;
if (length < 20)
return;
buffer = bfd_malloc (length);
if (buffer == NULL)
{
_bfd_error_handler
(_("failed to allocate space for new APUinfo section"));
return;
}
/* Create the apuinfo header. */
num_entries = apuinfo_list_length ();
bfd_put_32 (abfd, sizeof APUINFO_LABEL, buffer);
bfd_put_32 (abfd, num_entries * 4, buffer + 4);
bfd_put_32 (abfd, 0x2, buffer + 8);
strcpy ((char *) buffer + 12, APUINFO_LABEL);
length = 20;
for (i = 0; i < num_entries; i++)
{
bfd_put_32 (abfd, apuinfo_list_element (i), buffer + length);
length += 4;
}
if (length != asec->size)
_bfd_error_handler (_("failed to compute new APUinfo section"));
if (! bfd_set_section_contents (abfd, asec, buffer, (file_ptr) 0, length))
_bfd_error_handler (_("failed to install new APUinfo section"));
free (buffer);
apuinfo_list_finish ();
}
static bfd_boolean
ppc_elf_final_write_processing (bfd *abfd)
{
ppc_final_write_processing (abfd);
return _bfd_elf_final_write_processing (abfd);
}
static bfd_boolean
is_nonpic_glink_stub (bfd *abfd, asection *glink, bfd_vma off)
{
bfd_byte buf[4 * 4];
if (!bfd_get_section_contents (abfd, glink, buf, off, sizeof buf))
return FALSE;
return ((bfd_get_32 (abfd, buf + 0) & 0xffff0000) == LIS_11
&& (bfd_get_32 (abfd, buf + 4) & 0xffff0000) == LWZ_11_11
&& bfd_get_32 (abfd, buf + 8) == MTCTR_11
&& bfd_get_32 (abfd, buf + 12) == BCTR);
}
static bfd_boolean
section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
{
bfd_vma vma = *(bfd_vma *) ptr;
return ((section->flags & SEC_ALLOC) != 0
&& section->vma <= vma
&& vma < section->vma + section->size);
}
static long
ppc_elf_get_synthetic_symtab (bfd *abfd, long symcount, asymbol **syms,
long dynsymcount, asymbol **dynsyms,
asymbol **ret)
{
bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
asection *plt, *relplt, *dynamic, *glink;
bfd_vma glink_vma = 0;
bfd_vma resolv_vma = 0;
bfd_vma stub_off;
asymbol *s;
arelent *p;
size_t count, i, stub_delta;
size_t size;
char *names;
bfd_byte buf[4];
*ret = NULL;
if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
return 0;
if (dynsymcount <= 0)
return 0;
relplt = bfd_get_section_by_name (abfd, ".rela.plt");
if (relplt == NULL)
return 0;
plt = bfd_get_section_by_name (abfd, ".plt");
if (plt == NULL)
return 0;
/* Call common code to handle old-style executable PLTs. */
if (elf_section_flags (plt) & SHF_EXECINSTR)
return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
dynsymcount, dynsyms, ret);
/* If this object was prelinked, the prelinker stored the address
of .glink at got[1]. If it wasn't prelinked, got[1] will be zero. */
dynamic = bfd_get_section_by_name (abfd, ".dynamic");
if (dynamic != NULL)
{
bfd_byte *dynbuf, *extdyn, *extdynend;
size_t extdynsize;
void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
return -1;
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
extdyn = dynbuf;
extdynend = extdyn + dynamic->size;
for (; extdyn < extdynend; extdyn += extdynsize)
{
Elf_Internal_Dyn dyn;
(*swap_dyn_in) (abfd, extdyn, &dyn);
if (dyn.d_tag == DT_NULL)
break;
if (dyn.d_tag == DT_PPC_GOT)
{
unsigned int g_o_t = dyn.d_un.d_val;
asection *got = bfd_get_section_by_name (abfd, ".got");
if (got != NULL
&& bfd_get_section_contents (abfd, got, buf,
g_o_t - got->vma + 4, 4))
glink_vma = bfd_get_32 (abfd, buf);
break;
}
}
free (dynbuf);
}
/* Otherwise we read the first plt entry. */
if (glink_vma == 0)
{
if (bfd_get_section_contents (abfd, plt, buf, 0, 4))
glink_vma = bfd_get_32 (abfd, buf);
}
if (glink_vma == 0)
return 0;
/* The .glink section usually does not survive the final
link; search for the section (usually .text) where the
glink stubs now reside. */
glink = bfd_sections_find_if (abfd, section_covers_vma, &glink_vma);
if (glink == NULL)
return 0;
/* Determine glink PLT resolver by reading the relative branch
from the first glink stub. */
if (bfd_get_section_contents (abfd, glink, buf,
glink_vma - glink->vma, 4))
{
unsigned int insn = bfd_get_32 (abfd, buf);
/* The first glink stub may either branch to the resolver ... */
insn ^= B;
if ((insn & ~0x3fffffc) == 0)
resolv_vma = glink_vma + (insn ^ 0x2000000) - 0x2000000;
/* ... or fall through a bunch of NOPs. */
else if ((insn ^ B ^ NOP) == 0)
for (i = 4;
bfd_get_section_contents (abfd, glink, buf,
glink_vma - glink->vma + i, 4);
i += 4)
if (bfd_get_32 (abfd, buf) != NOP)
{
resolv_vma = glink_vma + i;
break;
}
}
count = relplt->size / sizeof (Elf32_External_Rela);
/* If the stubs are those for -shared/-pie then we might have
multiple stubs for each plt entry. If that is the case then
there is no way to associate stubs with their plt entries short
of figuring out the GOT pointer value used in the stub.
The offsets tested here need to cover all possible values of
GLINK_ENTRY_SIZE for other than __tls_get_addr_opt. */
stub_off = glink_vma - glink->vma;
for (stub_delta = 16; stub_delta <= 32; stub_delta += 8)
if (is_nonpic_glink_stub (abfd, glink, stub_off - stub_delta))
break;
if (stub_delta > 32)
return 0;
slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
return -1;
size = count * sizeof (asymbol);
p = relplt->relocation;
for (i = 0; i < count; i++, p++)
{
size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
if (p->addend != 0)
size += sizeof ("+0x") - 1 + 8;
}
size += sizeof (asymbol) + sizeof ("__glink");
if (resolv_vma)
size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
s = *ret = bfd_malloc (size);
if (s == NULL)
return -1;
stub_off = glink_vma - glink->vma;
names = (char *) (s + count + 1 + (resolv_vma != 0));
p = relplt->relocation + count - 1;
for (i = 0; i < count; i++)
{
size_t len;
stub_off -= stub_delta;
if (strcmp ((*p->sym_ptr_ptr)->name, "__tls_get_addr_opt") == 0)
stub_off -= 32;
*s = **p->sym_ptr_ptr;
/* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
we are defining a symbol, ensure one of them is set. */
if ((s->flags & BSF_LOCAL) == 0)
s->flags |= BSF_GLOBAL;
s->flags |= BSF_SYNTHETIC;
s->section = glink;
s->value = stub_off;
s->name = names;
s->udata.p = NULL;
len = strlen ((*p->sym_ptr_ptr)->name);
memcpy (names, (*p->sym_ptr_ptr)->name, len);
names += len;
if (p->addend != 0)
{
memcpy (names, "+0x", sizeof ("+0x") - 1);
names += sizeof ("+0x") - 1;
bfd_sprintf_vma (abfd, names, p->addend);
names += strlen (names);
}
memcpy (names, "@plt", sizeof ("@plt"));
names += sizeof ("@plt");
++s;
--p;
}
/* Add a symbol at the start of the glink branch table. */
memset (s, 0, sizeof *s);
s->the_bfd = abfd;
s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
s->section = glink;
s->value = glink_vma - glink->vma;
s->name = names;
memcpy (names, "__glink", sizeof ("__glink"));
names += sizeof ("__glink");
s++;
count++;
if (resolv_vma)
{
/* Add a symbol for the glink PLT resolver. */
memset (s, 0, sizeof *s);
s->the_bfd = abfd;
s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
s->section = glink;
s->value = resolv_vma - glink->vma;
s->name = names;
memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
names += sizeof ("__glink_PLTresolve");
s++;
count++;
}
return count;
}
/* The following functions are specific to the ELF linker, while
functions above are used generally. They appear in this file more
or less in the order in which they are called. eg.
ppc_elf_check_relocs is called early in the link process,
ppc_elf_finish_dynamic_sections is one of the last functions
called. */
/* Track PLT entries needed for a given symbol. We might need more
than one glink entry per symbol when generating a pic binary. */
struct plt_entry
{
struct plt_entry *next;
/* -fPIC uses multiple GOT sections, one per file, called ".got2".
This field stores the offset into .got2 used to initialise the
GOT pointer reg. It will always be at least 32768. (Current
gcc always uses an offset of 32768, but ld -r will pack .got2
sections together resulting in larger offsets). */
bfd_vma addend;
/* The .got2 section. */
asection *sec;
/* PLT refcount or offset. */
union
{
bfd_signed_vma refcount;
bfd_vma offset;
} plt;
/* .glink stub offset. */
bfd_vma glink_offset;
};
/* Of those relocs that might be copied as dynamic relocs, this
function selects those that must be copied when linking a shared
library or PIE, even when the symbol is local. */
static int
must_be_dyn_reloc (struct bfd_link_info *info,
enum elf_ppc_reloc_type r_type)
{
switch (r_type)
{
default:
/* Only relative relocs can be resolved when the object load
address isn't fixed. DTPREL32 is excluded because the
dynamic linker needs to differentiate global dynamic from
local dynamic __tls_index pairs when PPC_OPT_TLS is set. */
return 1;
case R_PPC_REL24:
case R_PPC_REL14:
case R_PPC_REL14_BRTAKEN:
case R_PPC_REL14_BRNTAKEN:
case R_PPC_REL32:
return 0;
case R_PPC_TPREL32:
case R_PPC_TPREL16:
case R_PPC_TPREL16_LO:
case R_PPC_TPREL16_HI:
case R_PPC_TPREL16_HA:
/* These relocations are relative but in a shared library the
linker doesn't know the thread pointer base. */
return bfd_link_dll (info);
}
}
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
copying dynamic variables from a shared lib into an app's dynbss
section, and instead use a dynamic relocation to point into the
shared lib. */
#define ELIMINATE_COPY_RELOCS 1
/* Used to track dynamic relocations for local symbols. */
struct ppc_dyn_relocs
{
struct ppc_dyn_relocs *next;
/* The input section of the reloc. */
asection *sec;
/* Total number of relocs copied for the input section. */
unsigned int count : 31;
/* Whether this entry is for STT_GNU_IFUNC symbols. */
unsigned int ifunc : 1;
};
/* PPC ELF linker hash entry. */
struct ppc_elf_link_hash_entry
{
struct elf_link_hash_entry elf;
/* If this symbol is used in the linker created sections, the processor
specific backend uses this field to map the field into the offset
from the beginning of the section. */
elf_linker_section_pointers_t *linker_section_pointer;
/* Track dynamic relocs copied for this symbol. */
struct elf_dyn_relocs *dyn_relocs;
/* Contexts in which symbol is used in the GOT.
Bits are or'd into the mask as the corresponding relocs are
encountered during check_relocs, with TLS_TLS being set when any
of the other TLS bits are set. tls_optimize clears bits when
optimizing to indicate the corresponding GOT entry type is not
needed. If set, TLS_TLS is never cleared. tls_optimize may also
set TLS_GDIE when a GD reloc turns into an IE one.
These flags are also kept for local symbols. */
#define TLS_TLS 1 /* Any TLS reloc. */
#define TLS_GD 2 /* GD reloc. */
#define TLS_LD 4 /* LD reloc. */
#define TLS_TPREL 8 /* TPREL reloc, => IE. */
#define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
#define TLS_MARK 32 /* __tls_get_addr call marked. */
#define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
unsigned char tls_mask;
/* The above field is also used to mark function symbols. In which
case TLS_TLS will be 0. */
#define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
#define PLT_KEEP 4 /* inline plt call requires plt entry. */
#define NON_GOT 256 /* local symbol plt, not stored. */
/* Nonzero if we have seen a small data relocation referring to this
symbol. */
unsigned char has_sda_refs : 1;
/* Flag use of given relocations. */
unsigned char has_addr16_ha : 1;
unsigned char has_addr16_lo : 1;
};
#define ppc_elf_hash_entry(ent) ((struct ppc_elf_link_hash_entry *) (ent))
/* PPC ELF linker hash table. */
struct ppc_elf_link_hash_table
{
struct elf_link_hash_table elf;
/* Various options passed from the linker. */
struct ppc_elf_params *params;
/* Short-cuts to get to dynamic linker sections. */
asection *glink;
asection *dynsbss;
asection *relsbss;
elf_linker_section_t sdata[2];
asection *sbss;
asection *glink_eh_frame;
asection *pltlocal;
asection *relpltlocal;
/* The (unloaded but important) .rela.plt.unloaded on VxWorks. */
asection *srelplt2;
/* Shortcut to __tls_get_addr. */
struct elf_link_hash_entry *tls_get_addr;
/* The bfd that forced an old-style PLT. */
bfd *old_bfd;
/* TLS local dynamic got entry handling. */
union {
bfd_signed_vma refcount;
bfd_vma offset;
} tlsld_got;
/* Offset of branch table to PltResolve function in glink. */
bfd_vma glink_pltresolve;
/* Size of reserved GOT entries. */
unsigned int got_header_size;
/* Non-zero if allocating the header left a gap. */
unsigned int got_gap;
/* The type of PLT we have chosen to use. */
enum ppc_elf_plt_type plt_type;
/* True if the target system is VxWorks. */
unsigned int is_vxworks:1;
/* Whether there exist local gnu indirect function resolvers,
referenced by dynamic relocations. */
unsigned int local_ifunc_resolver:1;
unsigned int maybe_local_ifunc_resolver:1;
/* Set if tls optimization is enabled. */
unsigned int do_tls_opt:1;
/* Set if inline plt calls should be converted to direct calls. */
unsigned int can_convert_all_inline_plt:1;
/* The size of PLT entries. */
int plt_entry_size;
/* The distance between adjacent PLT slots. */
int plt_slot_size;
/* The size of the first PLT entry. */
int plt_initial_entry_size;
/* Small local sym cache. */
struct sym_cache sym_cache;
};
/* Rename some of the generic section flags to better document how they
are used for ppc32. The flags are only valid for ppc32 elf objects. */
/* Nonzero if this section has TLS related relocations. */
#define has_tls_reloc sec_flg0
/* Nonzero if this section has a call to __tls_get_addr lacking marker
relocs. */
#define nomark_tls_get_addr sec_flg1
/* Flag set when PLTCALL relocs are detected. */
#define has_pltcall sec_flg2
/* Get the PPC ELF linker hash table from a link_info structure. */
#define ppc_elf_hash_table(p) \
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
== PPC32_ELF_DATA ? ((struct ppc_elf_link_hash_table *) ((p)->hash)) : NULL)
/* Create an entry in a PPC ELF linker hash table. */
static struct bfd_hash_entry *
ppc_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct ppc_elf_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
ppc_elf_hash_entry (entry)->linker_section_pointer = NULL;
ppc_elf_hash_entry (entry)->dyn_relocs = NULL;
ppc_elf_hash_entry (entry)->tls_mask = 0;
ppc_elf_hash_entry (entry)->has_sda_refs = 0;
}
return entry;
}
/* Create a PPC ELF linker hash table. */
static struct bfd_link_hash_table *
ppc_elf_link_hash_table_create (bfd *abfd)
{
struct ppc_elf_link_hash_table *ret;
static struct ppc_elf_params default_params
= { PLT_OLD, 0, 0, 1, 0, 0, 12, 0, 0, 0 };
ret = bfd_zmalloc (sizeof (struct ppc_elf_link_hash_table));
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
ppc_elf_link_hash_newfunc,
sizeof (struct ppc_elf_link_hash_entry),
PPC32_ELF_DATA))
{
free (ret);
return NULL;
}
ret->elf.init_plt_refcount.refcount = 0;
ret->elf.init_plt_refcount.glist = NULL;
ret->elf.init_plt_offset.offset = 0;
ret->elf.init_plt_offset.glist = NULL;
ret->params = &default_params;
ret->sdata[0].name = ".sdata";
ret->sdata[0].sym_name = "_SDA_BASE_";
ret->sdata[0].bss_name = ".sbss";
ret->sdata[1].name = ".sdata2";
ret->sdata[1].sym_name = "_SDA2_BASE_";
ret->sdata[1].bss_name = ".sbss2";
ret->plt_entry_size = 12;
ret->plt_slot_size = 8;
ret->plt_initial_entry_size = 72;
return &ret->elf.root;
}
/* Hook linker params into hash table. */
void
ppc_elf_link_params (struct bfd_link_info *info, struct ppc_elf_params *params)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
if (htab)
htab->params = params;
params->pagesize_p2 = bfd_log2 (params->pagesize);
}
/* Create .got and the related sections. */
static bfd_boolean
ppc_elf_create_got (bfd *abfd, struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab;
if (!_bfd_elf_create_got_section (abfd, info))
return FALSE;
htab = ppc_elf_hash_table (info);
if (!htab->is_vxworks)
{
/* The powerpc .got has a blrl instruction in it. Mark it
executable. */
flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
if (!bfd_set_section_flags (htab->elf.sgot, flags))
return FALSE;
}
return TRUE;
}
/* Create a special linker section, used for R_PPC_EMB_SDAI16 and
R_PPC_EMB_SDA2I16 pointers. These sections become part of .sdata
and .sdata2. Create _SDA_BASE_ and _SDA2_BASE too. */
static bfd_boolean
ppc_elf_create_linker_section (bfd *abfd,
struct bfd_link_info *info,
flagword flags,
elf_linker_section_t *lsect)
{
asection *s;
flags |= (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (abfd, lsect->name, flags);
if (s == NULL)
return FALSE;
lsect->section = s;
/* Define the sym on the first section of this name. */
s = bfd_get_section_by_name (abfd, lsect->name);
lsect->sym = _bfd_elf_define_linkage_sym (abfd, info, s, lsect->sym_name);
if (lsect->sym == NULL)
return FALSE;
lsect->sym->root.u.def.value = 0x8000;
return TRUE;
}
static bfd_boolean
ppc_elf_create_glink (bfd *abfd, struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
asection *s;
flagword flags;
int p2align;
flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (abfd, ".glink", flags);
htab->glink = s;
p2align = htab->params->ppc476_workaround ? 6 : 4;
if (p2align < htab->params->plt_stub_align)
p2align = htab->params->plt_stub_align;
if (s == NULL
|| !bfd_set_section_alignment (s, p2align))
return FALSE;
if (!info->no_ld_generated_unwind_info)
{
flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (abfd, ".eh_frame", flags);
htab->glink_eh_frame = s;
if (s == NULL
|| !bfd_set_section_alignment (s, 2))
return FALSE;
}
flags = SEC_ALLOC | SEC_LINKER_CREATED;
s = bfd_make_section_anyway_with_flags (abfd, ".iplt", flags);
htab->elf.iplt = s;
if (s == NULL
|| !bfd_set_section_alignment (s, 4))
return FALSE;
flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (abfd, ".rela.iplt", flags);
htab->elf.irelplt = s;
if (s == NULL
|| ! bfd_set_section_alignment (s, 2))
return FALSE;
/* Local plt entries. */
flags = (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
htab->pltlocal = bfd_make_section_anyway_with_flags (abfd, ".branch_lt",
flags);
if (htab->pltlocal == NULL
|| !bfd_set_section_alignment (htab->pltlocal, 2))
return FALSE;
if (bfd_link_pic (info))
{
flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
htab->relpltlocal
= bfd_make_section_anyway_with_flags (abfd, ".rela.branch_lt", flags);
if (htab->relpltlocal == NULL
|| !bfd_set_section_alignment (htab->relpltlocal, 2))
return FALSE;
}
if (!ppc_elf_create_linker_section (abfd, info, 0,
&htab->sdata[0]))
return FALSE;
if (!ppc_elf_create_linker_section (abfd, info, SEC_READONLY,
&htab->sdata[1]))
return FALSE;
return TRUE;
}
/* We have to create .dynsbss and .rela.sbss here so that they get mapped
to output sections (just like _bfd_elf_create_dynamic_sections has
to create .dynbss and .rela.bss). */
static bfd_boolean
ppc_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab;
asection *s;
flagword flags;
htab = ppc_elf_hash_table (info);
if (htab->elf.sgot == NULL
&& !ppc_elf_create_got (abfd, info))
return FALSE;
if (!_bfd_elf_create_dynamic_sections (abfd, info))
return FALSE;
if (htab->glink == NULL
&& !ppc_elf_create_glink (abfd, info))
return FALSE;
s = bfd_make_section_anyway_with_flags (abfd, ".dynsbss",
SEC_ALLOC | SEC_LINKER_CREATED);
htab->dynsbss = s;
if (s == NULL)
return FALSE;
if (! bfd_link_pic (info))
{
flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (abfd, ".rela.sbss", flags);
htab->relsbss = s;
if (s == NULL
|| !bfd_set_section_alignment (s, 2))
return FALSE;
}
if (htab->is_vxworks
&& !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
return FALSE;
s = htab->elf.splt;
flags = SEC_ALLOC | SEC_CODE | SEC_LINKER_CREATED;
if (htab->plt_type == PLT_VXWORKS)
/* The VxWorks PLT is a loaded section with contents. */
flags |= SEC_HAS_CONTENTS | SEC_LOAD | SEC_READONLY;
return bfd_set_section_flags (s, flags);
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
ppc_elf_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *dir,
struct elf_link_hash_entry *ind)
{
struct ppc_elf_link_hash_entry *edir, *eind;
edir = (struct ppc_elf_link_hash_entry *) dir;
eind = (struct ppc_elf_link_hash_entry *) ind;
edir->tls_mask |= eind->tls_mask;
edir->has_sda_refs |= eind->has_sda_refs;
if (edir->elf.versioned != versioned_hidden)
edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
edir->elf.ref_regular |= eind->elf.ref_regular;
edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
edir->elf.non_got_ref |= eind->elf.non_got_ref;
edir->elf.needs_plt |= eind->elf.needs_plt;
edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
/* If we were called to copy over info for a weak sym, that's all. */
if (eind->elf.root.type != bfd_link_hash_indirect)
return;
if (eind->dyn_relocs != NULL)
{
if (edir->dyn_relocs != NULL)
{
struct elf_dyn_relocs **pp;
struct elf_dyn_relocs *p;
/* Add reloc counts against the indirect sym to the direct sym
list. Merge any entries against the same section. */
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
{
struct elf_dyn_relocs *q;
for (q = edir->dyn_relocs; q != NULL; q = q->next)
if (q->sec == p->sec)
{
q->pc_count += p->pc_count;
q->count += p->count;
*pp = p->next;
break;
}
if (q == NULL)
pp = &p->next;
}
*pp = edir->dyn_relocs;
}
edir->dyn_relocs = eind->dyn_relocs;
eind->dyn_relocs = NULL;
}
/* Copy over the GOT refcount entries that we may have already seen to
the symbol which just became indirect. */
edir->elf.got.refcount += eind->elf.got.refcount;
eind->elf.got.refcount = 0;
/* And plt entries. */
if (eind->elf.plt.plist != NULL)
{
if (edir->elf.plt.plist != NULL)
{
struct plt_entry **entp;
struct plt_entry *ent;
for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; )
{
struct plt_entry *dent;
for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next)
if (dent->sec == ent->sec && dent->addend == ent->addend)
{
dent->plt.refcount += ent->plt.refcount;
*entp = ent->next;
break;
}
if (dent == NULL)
entp = &ent->next;
}
*entp = edir->elf.plt.plist;
}
edir->elf.plt.plist = eind->elf.plt.plist;
eind->elf.plt.plist = NULL;
}
if (eind->elf.dynindx != -1)
{
if (edir->elf.dynindx != -1)
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
edir->elf.dynstr_index);
edir->elf.dynindx = eind->elf.dynindx;
edir->elf.dynstr_index = eind->elf.dynstr_index;
eind->elf.dynindx = -1;
eind->elf.dynstr_index = 0;
}
}
/* Hook called by the linker routine which adds symbols from an object
file. We use it to put .comm items in .sbss, and not .bss. */
static bfd_boolean
ppc_elf_add_symbol_hook (bfd *abfd,
struct bfd_link_info *info,
Elf_Internal_Sym *sym,
const char **namep ATTRIBUTE_UNUSED,
flagword *flagsp ATTRIBUTE_UNUSED,
asection **secp,
bfd_vma *valp)
{
if (sym->st_shndx == SHN_COMMON
&& !bfd_link_relocatable (info)
&& is_ppc_elf (info->output_bfd)
&& sym->st_size <= elf_gp_size (abfd))
{
/* Common symbols less than or equal to -G nn bytes are automatically
put into .sbss. */
struct ppc_elf_link_hash_table *htab;
htab = ppc_elf_hash_table (info);
if (htab->sbss == NULL)
{
flagword flags = SEC_IS_COMMON | SEC_LINKER_CREATED;
if (!htab->elf.dynobj)
htab->elf.dynobj = abfd;
htab->sbss = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
".sbss",
flags);
if (htab->sbss == NULL)
return FALSE;
}
*secp = htab->sbss;
*valp = sym->st_size;
}
return TRUE;
}
/* Find a linker generated pointer with a given addend and type. */
static elf_linker_section_pointers_t *
elf_find_pointer_linker_section
(elf_linker_section_pointers_t *linker_pointers,
bfd_vma addend,
elf_linker_section_t *lsect)
{
for ( ; linker_pointers != NULL; linker_pointers = linker_pointers->next)
if (lsect == linker_pointers->lsect && addend == linker_pointers->addend)
return linker_pointers;
return NULL;
}
/* Allocate a pointer to live in a linker created section. */
static bfd_boolean
elf_allocate_pointer_linker_section (bfd *abfd,
elf_linker_section_t *lsect,
struct elf_link_hash_entry *h,
const Elf_Internal_Rela *rel)
{
elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
elf_linker_section_pointers_t *linker_section_ptr;
unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
bfd_size_type amt;
BFD_ASSERT (lsect != NULL);
/* Is this a global symbol? */
if (h != NULL)
{
struct ppc_elf_link_hash_entry *eh;
/* Has this symbol already been allocated? If so, our work is done. */
eh = (struct ppc_elf_link_hash_entry *) h;
if (elf_find_pointer_linker_section (eh->linker_section_pointer,
rel->r_addend,
lsect))
return TRUE;
ptr_linker_section_ptr = &eh->linker_section_pointer;
}
else
{
BFD_ASSERT (is_ppc_elf (abfd));
/* Allocation of a pointer to a local symbol. */
elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
/* Allocate a table to hold the local symbols if first time. */
if (!ptr)
{
unsigned int num_symbols = elf_symtab_hdr (abfd).sh_info;
amt = num_symbols;
amt *= sizeof (elf_linker_section_pointers_t *);
ptr = bfd_zalloc (abfd, amt);
if (!ptr)
return FALSE;
elf_local_ptr_offsets (abfd) = ptr;
}
/* Has this symbol already been allocated? If so, our work is done. */
if (elf_find_pointer_linker_section (ptr[r_symndx],
rel->r_addend,
lsect))
return TRUE;
ptr_linker_section_ptr = &ptr[r_symndx];
}
/* Allocate space for a pointer in the linker section, and allocate
a new pointer record from internal memory. */
BFD_ASSERT (ptr_linker_section_ptr != NULL);
amt = sizeof (elf_linker_section_pointers_t);
linker_section_ptr = bfd_alloc (abfd, amt);
if (!linker_section_ptr)
return FALSE;
linker_section_ptr->next = *ptr_linker_section_ptr;
linker_section_ptr->addend = rel->r_addend;
linker_section_ptr->lsect = lsect;
*ptr_linker_section_ptr = linker_section_ptr;
if (!bfd_set_section_alignment (lsect->section, 2))
return FALSE;
linker_section_ptr->offset = lsect->section->size;
lsect->section->size += 4;
#ifdef DEBUG
fprintf (stderr,
"Create pointer in linker section %s, offset = %ld, section size = %ld\n",
lsect->name, (long) linker_section_ptr->offset,
(long) lsect->section->size);
#endif
return TRUE;
}
static struct plt_entry **
update_local_sym_info (bfd *abfd,
Elf_Internal_Shdr *symtab_hdr,
unsigned long r_symndx,
int tls_type)
{
bfd_signed_vma *local_got_refcounts = elf_local_got_refcounts (abfd);
struct plt_entry **local_plt;
unsigned char *local_got_tls_masks;
if (local_got_refcounts == NULL)
{
bfd_size_type size = symtab_hdr->sh_info;
size *= (sizeof (*local_got_refcounts)
+ sizeof (*local_plt)
+ sizeof (*local_got_tls_masks));
local_got_refcounts = bfd_zalloc (abfd, size);
if (local_got_refcounts == NULL)
return NULL;
elf_local_got_refcounts (abfd) = local_got_refcounts;
}
local_plt = (struct plt_entry **) (local_got_refcounts + symtab_hdr->sh_info);
local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
local_got_tls_masks[r_symndx] |= tls_type & 0xff;
if ((tls_type & NON_GOT) == 0)
local_got_refcounts[r_symndx] += 1;
return local_plt + r_symndx;
}
static bfd_boolean
update_plt_info (bfd *abfd, struct plt_entry **plist,
asection *sec, bfd_vma addend)
{
struct plt_entry *ent;
if (addend < 32768)
sec = NULL;
for (ent = *plist; ent != NULL; ent = ent->next)
if (ent->sec == sec && ent->addend == addend)
break;
if (ent == NULL)
{
size_t amt = sizeof (*ent);
ent = bfd_alloc (abfd, amt);
if (ent == NULL)
return FALSE;
ent->next = *plist;
ent->sec = sec;
ent->addend = addend;
ent->plt.refcount = 0;
*plist = ent;
}
ent->plt.refcount += 1;
return TRUE;
}
static struct plt_entry *
find_plt_ent (struct plt_entry **plist, asection *sec, bfd_vma addend)
{
struct plt_entry *ent;
if (addend < 32768)
sec = NULL;
for (ent = *plist; ent != NULL; ent = ent->next)
if (ent->sec == sec && ent->addend == addend)
break;
return ent;
}
static bfd_boolean
is_branch_reloc (enum elf_ppc_reloc_type r_type)
{
return (r_type == R_PPC_PLTREL24
|| r_type == R_PPC_LOCAL24PC
|| r_type == R_PPC_REL24
|| r_type == R_PPC_REL14
|| r_type == R_PPC_REL14_BRTAKEN
|| r_type == R_PPC_REL14_BRNTAKEN
|| r_type == R_PPC_ADDR24
|| r_type == R_PPC_ADDR14
|| r_type == R_PPC_ADDR14_BRTAKEN
|| r_type == R_PPC_ADDR14_BRNTAKEN
|| r_type == R_PPC_VLE_REL24);
}
/* Relocs on inline plt call sequence insns prior to the call. */
static bfd_boolean
is_plt_seq_reloc (enum elf_ppc_reloc_type r_type)
{
return (r_type == R_PPC_PLT16_HA
|| r_type == R_PPC_PLT16_HI
|| r_type == R_PPC_PLT16_LO
|| r_type == R_PPC_PLTSEQ);
}
static void
bad_shared_reloc (bfd *abfd, enum elf_ppc_reloc_type r_type)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: relocation %s cannot be used when making a shared object"),
abfd,
ppc_elf_howto_table[r_type]->name);
bfd_set_error (bfd_error_bad_value);
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
static bfd_boolean
ppc_elf_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
struct ppc_elf_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *got2, *sreloc;
struct elf_link_hash_entry *tga;
if (bfd_link_relocatable (info))
return TRUE;
/* Don't do anything special with non-loaded, non-alloced sections.
In particular, any relocs in such sections should not affect GOT
and PLT reference counting (ie. we don't allow them to create GOT
or PLT entries), there's no possibility or desire to optimize TLS
relocs, and there's not much point in propagating relocs to shared
libs that the dynamic linker won't relocate. */
if ((sec->flags & SEC_ALLOC) == 0)
return TRUE;
#ifdef DEBUG
_bfd_error_handler ("ppc_elf_check_relocs called for section %pA in %pB",
sec, abfd);
#endif
BFD_ASSERT (is_ppc_elf (abfd));
/* Initialize howto table if not already done. */
if (!ppc_elf_howto_table[R_PPC_ADDR32])
ppc_elf_howto_init ();
htab = ppc_elf_hash_table (info);
if (htab->glink == NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!ppc_elf_create_glink (htab->elf.dynobj, info))
return FALSE;
}
tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
FALSE, FALSE, TRUE);
symtab_hdr = &elf_symtab_hdr (abfd);
sym_hashes = elf_sym_hashes (abfd);
got2 = bfd_get_section_by_name (abfd, ".got2");
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned long r_symndx;
enum elf_ppc_reloc_type r_type;
struct elf_link_hash_entry *h;
int tls_type;
struct plt_entry **ifunc;
struct plt_entry **pltent;
bfd_vma addend;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
/* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
This shows up in particular in an R_PPC_ADDR32 in the eabi
startup code. */
if (h != NULL
&& htab->elf.sgot == NULL
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!ppc_elf_create_got (htab->elf.dynobj, info))
return FALSE;
BFD_ASSERT (h == htab->elf.hgot);
}
tls_type = 0;
r_type = ELF32_R_TYPE (rel->r_info);
ifunc = NULL;
if (h == NULL && !htab->is_vxworks)
{
Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
return FALSE;
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
{
/* Set PLT_IFUNC flag for this sym, no GOT entry yet. */
ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
NON_GOT | PLT_IFUNC);
if (ifunc == NULL)
return FALSE;
/* STT_GNU_IFUNC symbols must have a PLT entry;
In a non-pie executable even when there are
no plt calls. */
if (!bfd_link_pic (info)
|| is_branch_reloc (r_type)
|| r_type == R_PPC_PLT16_LO
|| r_type == R_PPC_PLT16_HI
|| r_type == R_PPC_PLT16_HA)
{
addend = 0;
if (r_type == R_PPC_PLTREL24)
ppc_elf_tdata (abfd)->makes_plt_call = 1;
if (bfd_link_pic (info)
&& (r_type == R_PPC_PLTREL24
|| r_type == R_PPC_PLT16_LO
|| r_type == R_PPC_PLT16_HI
|| r_type == R_PPC_PLT16_HA))
addend = rel->r_addend;
if (!update_plt_info (abfd, ifunc, got2, addend))
return FALSE;
}
}
}
if (!htab->is_vxworks
&& is_branch_reloc (r_type)
&& h != NULL
&& h == tga)
{
if (rel != relocs
&& (ELF32_R_TYPE (rel[-1].r_info) == R_PPC_TLSGD
|| ELF32_R_TYPE (rel[-1].r_info) == R_PPC_TLSLD))
/* We have a new-style __tls_get_addr call with a marker
reloc. */
;
else
/* Mark this section as having an old-style call. */
sec->nomark_tls_get_addr = 1;
}
switch (r_type)
{
case R_PPC_TLSGD:
case R_PPC_TLSLD:
/* These special tls relocs tie a call to __tls_get_addr with
its parameter symbol. */
if (h != NULL)
ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
else
if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
NON_GOT | TLS_TLS | TLS_MARK))
return FALSE;
break;
case R_PPC_PLTSEQ:
break;
case R_PPC_GOT_TLSLD16:
case R_PPC_GOT_TLSLD16_LO:
case R_PPC_GOT_TLSLD16_HI:
case R_PPC_GOT_TLSLD16_HA:
tls_type = TLS_TLS | TLS_LD;
goto dogottls;
case R_PPC_GOT_TLSGD16:
case R_PPC_GOT_TLSGD16_LO:
case R_PPC_GOT_TLSGD16_HI:
case R_PPC_GOT_TLSGD16_HA:
tls_type = TLS_TLS | TLS_GD;
goto dogottls;
case R_PPC_GOT_TPREL16:
case R_PPC_GOT_TPREL16_LO:
case R_PPC_GOT_TPREL16_HI:
case R_PPC_GOT_TPREL16_HA:
if (bfd_link_dll (info))
info->flags |= DF_STATIC_TLS;
tls_type = TLS_TLS | TLS_TPREL;
goto dogottls;
case R_PPC_GOT_DTPREL16:
case R_PPC_GOT_DTPREL16_LO:
case R_PPC_GOT_DTPREL16_HI:
case R_PPC_GOT_DTPREL16_HA:
tls_type = TLS_TLS | TLS_DTPREL;
dogottls:
sec->has_tls_reloc = 1;
/* Fall through. */
/* GOT16 relocations */
case R_PPC_GOT16:
case R_PPC_GOT16_LO:
case R_PPC_GOT16_HI:
case R_PPC_GOT16_HA:
/* This symbol requires a global offset table entry. */
if (htab->elf.sgot == NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!ppc_elf_create_got (htab->elf.dynobj, info))
return FALSE;
}
if (h != NULL)
{
h->got.refcount += 1;
ppc_elf_hash_entry (h)->tls_mask |= tls_type;
}
else
/* This is a global offset table entry for a local symbol. */
if (!update_local_sym_info (abfd, symtab_hdr, r_symndx, tls_type))
return FALSE;
/* We may also need a plt entry if the symbol turns out to be
an ifunc. */
if (h != NULL && !bfd_link_pic (info))
{
if (!update_plt_info (abfd, &h->plt.plist, NULL, 0))
return FALSE;
}
break;
/* Indirect .sdata relocation. */
case R_PPC_EMB_SDAI16:
htab->sdata[0].sym->ref_regular = 1;
if (!elf_allocate_pointer_linker_section (abfd, &htab->sdata[0],
h, rel))
return FALSE;
if (h != NULL)
{
ppc_elf_hash_entry (h)->has_sda_refs = TRUE;
h->non_got_ref = TRUE;
}
break;
/* Indirect .sdata2 relocation. */
case R_PPC_EMB_SDA2I16:
if (!bfd_link_executable (info))
{
bad_shared_reloc (abfd, r_type);
return FALSE;
}
htab->sdata[1].sym->ref_regular = 1;
if (!elf_allocate_pointer_linker_section (abfd, &htab->sdata[1],
h, rel))
return FALSE;
if (h != NULL)
{
ppc_elf_hash_entry (h)->has_sda_refs = TRUE;
h->non_got_ref = TRUE;
}
break;
case R_PPC_SDAREL16:
htab->sdata[0].sym->ref_regular = 1;
/* Fall through. */
case R_PPC_VLE_SDAREL_LO16A:
case R_PPC_VLE_SDAREL_LO16D:
case R_PPC_VLE_SDAREL_HI16A:
case R_PPC_VLE_SDAREL_HI16D:
case R_PPC_VLE_SDAREL_HA16A:
case R_PPC_VLE_SDAREL_HA16D:
if (h != NULL)
{
ppc_elf_hash_entry (h)->has_sda_refs = TRUE;
h->non_got_ref = TRUE;
}
break;
case R_PPC_VLE_REL8:
case R_PPC_VLE_REL15:
case R_PPC_VLE_REL24:
case R_PPC_VLE_LO16A:
case R_PPC_VLE_LO16D:
case R_PPC_VLE_HI16A:
case R_PPC_VLE_HI16D:
case R_PPC_VLE_HA16A:
case R_PPC_VLE_HA16D:
case R_PPC_VLE_ADDR20:
break;
case R_PPC_EMB_SDA2REL:
if (!bfd_link_executable (info))
{
bad_shared_reloc (abfd, r_type);
return FALSE;
}
htab->sdata[1].sym->ref_regular = 1;
if (h != NULL)
{
ppc_elf_hash_entry (h)->has_sda_refs = TRUE;
h->non_got_ref = TRUE;
}
break;
case R_PPC_VLE_SDA21_LO:
case R_PPC_VLE_SDA21:
case R_PPC_EMB_SDA21:
case R_PPC_EMB_RELSDA:
if (h != NULL)
{
ppc_elf_hash_entry (h)->has_sda_refs = TRUE;
h->non_got_ref = TRUE;
}
break;
case R_PPC_EMB_NADDR32:
case R_PPC_EMB_NADDR16:
case R_PPC_EMB_NADDR16_LO:
case R_PPC_EMB_NADDR16_HI:
case R_PPC_EMB_NADDR16_HA:
if (h != NULL)
h->non_got_ref = TRUE;
break;
case R_PPC_PLTREL24:
if (h == NULL)
break;
ppc_elf_tdata (abfd)->makes_plt_call = 1;
goto pltentry;
case R_PPC_PLTCALL:
sec->has_pltcall = 1;
/* Fall through. */
case R_PPC_PLT32:
case R_PPC_PLTREL32:
case R_PPC_PLT16_LO:
case R_PPC_PLT16_HI:
case R_PPC_PLT16_HA:
pltentry:
#ifdef DEBUG
fprintf (stderr, "Reloc requires a PLT entry\n");
#endif
/* This symbol requires a procedure linkage table entry. */
if (h == NULL)
{
pltent = update_local_sym_info (abfd, symtab_hdr, r_symndx,
NON_GOT | PLT_KEEP);
if (pltent == NULL)
return FALSE;
}
else
{
if (r_type != R_PPC_PLTREL24)
ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
h->needs_plt = 1;
pltent = &h->plt.plist;
}
addend = 0;
if (bfd_link_pic (info)
&& (r_type == R_PPC_PLTREL24
|| r_type == R_PPC_PLT16_LO
|| r_type == R_PPC_PLT16_HI
|| r_type == R_PPC_PLT16_HA))
addend = rel->r_addend;
if (!update_plt_info (abfd, pltent, got2, addend))
return FALSE;
break;
/* The following relocations don't need to propagate the
relocation if linking a shared object since they are
section relative. */
case R_PPC_SECTOFF:
case R_PPC_SECTOFF_LO:
case R_PPC_SECTOFF_HI:
case R_PPC_SECTOFF_HA:
case R_PPC_DTPREL16:
case R_PPC_DTPREL16_LO:
case R_PPC_DTPREL16_HI:
case R_PPC_DTPREL16_HA:
case R_PPC_TOC16:
break;
case R_PPC_REL16:
case R_PPC_REL16_LO:
case R_PPC_REL16_HI:
case R_PPC_REL16_HA:
case R_PPC_REL16DX_HA:
ppc_elf_tdata (abfd)->has_rel16 = 1;
break;
/* These are just markers. */
case R_PPC_TLS:
case R_PPC_EMB_MRKREF:
case R_PPC_NONE:
case R_PPC_max:
case R_PPC_RELAX:
case R_PPC_RELAX_PLT:
case R_PPC_RELAX_PLTREL24:
case R_PPC_16DX_HA:
break;
/* These should only appear in dynamic objects. */
case R_PPC_COPY:
case R_PPC_GLOB_DAT:
case R_PPC_JMP_SLOT:
case R_PPC_RELATIVE:
case R_PPC_IRELATIVE:
break;
/* These aren't handled yet. We'll report an error later. */
case R_PPC_ADDR30:
case R_PPC_EMB_RELSEC16:
case R_PPC_EMB_RELST_LO:
case R_PPC_EMB_RELST_HI:
case R_PPC_EMB_RELST_HA:
case R_PPC_EMB_BIT_FLD:
break;
/* This refers only to functions defined in the shared library. */
case R_PPC_LOCAL24PC:
if (h != NULL && h == htab->elf.hgot && htab->plt_type == PLT_UNSET)
{
htab->plt_type = PLT_OLD;
htab->old_bfd = abfd;
}
if (h != NULL && h->type == STT_GNU_IFUNC)
{
h->needs_plt = 1;
if (!update_plt_info (abfd, &h->plt.plist, NULL, 0))
return FALSE;
}
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_PPC_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return FALSE;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_PPC_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return FALSE;
break;
/* We shouldn't really be seeing TPREL32. */
case R_PPC_TPREL32:
case R_PPC_TPREL16:
case R_PPC_TPREL16_LO:
case R_PPC_TPREL16_HI:
case R_PPC_TPREL16_HA:
if (bfd_link_dll (info))
info->flags |= DF_STATIC_TLS;
goto dodyn;
/* Nor these. */
case R_PPC_DTPMOD32:
case R_PPC_DTPREL32:
goto dodyn;
case R_PPC_REL32:
if (h == NULL
&& got2 != NULL
&& (sec->flags & SEC_CODE) != 0
&& bfd_link_pic (info)
&& htab->plt_type == PLT_UNSET)
{
/* Old -fPIC gcc code has .long LCTOC1-LCFx just before
the start of a function, which assembles to a REL32
reference to .got2. If we detect one of these, then
force the old PLT layout because the linker cannot
reliably deduce the GOT pointer value needed for
PLT call stubs. */
asection *s;
Elf_Internal_Sym *isym;
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
return FALSE;
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (s == got2)
{
htab->plt_type = PLT_OLD;
htab->old_bfd = abfd;
}
}
if (h == NULL || h == htab->elf.hgot)
break;
/* fall through */
case R_PPC_ADDR32:
case R_PPC_ADDR16:
case R_PPC_ADDR16_LO:
case R_PPC_ADDR16_HI:
case R_PPC_ADDR16_HA:
case R_PPC_UADDR32:
case R_PPC_UADDR16:
if (h != NULL && !bfd_link_pic (info))
{
/* We may need a plt entry if the symbol turns out to be
a function defined in a dynamic object. */
if (!update_plt_info (abfd, &h->plt.plist, NULL, 0))
return FALSE;
/* We may need a copy reloc too. */
h->non_got_ref = 1;
h->pointer_equality_needed = 1;
if (r_type == R_PPC_ADDR16_HA)
ppc_elf_hash_entry (h)->has_addr16_ha = 1;
if (r_type == R_PPC_ADDR16_LO)
ppc_elf_hash_entry (h)->has_addr16_lo = 1;
}
goto dodyn;
case R_PPC_REL24:
case R_PPC_REL14:
case R_PPC_REL14_BRTAKEN:
case R_PPC_REL14_BRNTAKEN:
if (h == NULL)
break;
if (h == htab->elf.hgot)
{
if (htab->plt_type == PLT_UNSET)
{
htab->plt_type = PLT_OLD;
htab->old_bfd = abfd;
}
break;
}
/* fall through */
case R_PPC_ADDR24:
case R_PPC_ADDR14:
case R_PPC_ADDR14_BRTAKEN:
case R_PPC_ADDR14_BRNTAKEN:
if (h != NULL && !bfd_link_pic (info))
{
/* We may need a plt entry if the symbol turns out to be
a function defined in a dynamic object. */
h->needs_plt = 1;
if (!update_plt_info (abfd, &h->plt.plist, NULL, 0))
return FALSE;
break;
}
dodyn:
/* If we are creating a shared library, and this is a reloc
against a global symbol, or a non PC relative reloc
against a local symbol, then we need to copy the reloc
into the shared library. However, if we are linking with
-Bsymbolic, we do not need to copy a reloc against a
global symbol which is defined in an object we are
including in the link (i.e., DEF_REGULAR is set). At
this point we have not seen all the input files, so it is
possible that DEF_REGULAR is not set now but will be set
later (it is never cleared). In case of a weak definition,
DEF_REGULAR may be cleared later by a strong definition in
a shared library. We account for that possibility below by
storing information in the dyn_relocs field of the hash
table entry. A similar situation occurs when creating
shared libraries and symbol visibility changes render the
symbol local.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((bfd_link_pic (info)
&& (must_be_dyn_reloc (info, r_type)
|| (h != NULL
&& (!SYMBOLIC_BIND (info, h)
|| h->root.type == bfd_link_hash_defweak
|| !h->def_regular))))
|| (ELIMINATE_COPY_RELOCS
&& !bfd_link_pic (info)
&& h != NULL
&& (h->root.type == bfd_link_hash_defweak
|| !h->def_regular)))
{
#ifdef DEBUG
fprintf (stderr,
"ppc_elf_check_relocs needs to "
"create relocation for %s\n",
(h && h->root.root.string
? h->root.root.string : "<unknown>"));
#endif
if (sreloc == NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, htab->elf.dynobj, 2, abfd, /*rela?*/ TRUE);
if (sreloc == NULL)
return FALSE;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
{
struct elf_dyn_relocs *p;
struct elf_dyn_relocs **rel_head;
rel_head = &ppc_elf_hash_entry (h)->dyn_relocs;
p = *rel_head;
if (p == NULL || p->sec != sec)
{
p = bfd_alloc (htab->elf.dynobj, sizeof *p);
if (p == NULL)
return FALSE;
p->next = *rel_head;
*rel_head = p;
p->sec = sec;
p->count = 0;
p->pc_count = 0;
}
p->count += 1;
if (!must_be_dyn_reloc (info, r_type))
p->pc_count += 1;
}
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
struct ppc_dyn_relocs *p;
struct ppc_dyn_relocs **rel_head;
bfd_boolean is_ifunc;
asection *s;
void *vpp;
Elf_Internal_Sym *isym;
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
return FALSE;
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (s == NULL)
s = sec;
vpp = &elf_section_data (s)->local_dynrel;
rel_head = (struct ppc_dyn_relocs **) vpp;
is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
p = *rel_head;
if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
p = p->next;
if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
{
p = bfd_alloc (htab->elf.dynobj, sizeof *p);
if (p == NULL)
return FALSE;
p->next = *rel_head;
*rel_head = p;
p->sec = sec;
p->ifunc = is_ifunc;
p->count = 0;
}
p->count += 1;
}
}
break;
}
}
return TRUE;
}
/* Warn for conflicting Tag_GNU_Power_ABI_FP attributes between IBFD
and OBFD, and merge non-conflicting ones. */
bfd_boolean
_bfd_elf_ppc_merge_fp_attributes (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd = info->output_bfd;
obj_attribute *in_attr, *in_attrs;
obj_attribute *out_attr, *out_attrs;
bfd_boolean ret = TRUE;
in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
in_attr = &in_attrs[Tag_GNU_Power_ABI_FP];
out_attr = &out_attrs[Tag_GNU_Power_ABI_FP];
if (in_attr->i != out_attr->i)
{
int in_fp = in_attr->i & 3;
int out_fp = out_attr->i & 3;
static bfd *last_fp, *last_ld;
if (in_fp == 0)
;
else if (out_fp == 0)
{
out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
out_attr->i ^= in_fp;
last_fp = ibfd;
}
else if (out_fp != 2 && in_fp == 2)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses hard float, %pB uses soft float"),
last_fp, ibfd);
ret = FALSE;
}
else if (out_fp == 2 && in_fp != 2)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses hard float, %pB uses soft float"),
ibfd, last_fp);
ret = FALSE;
}
else if (out_fp == 1 && in_fp == 3)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses double-precision hard float, "
"%pB uses single-precision hard float"), last_fp, ibfd);
ret = FALSE;
}
else if (out_fp == 3 && in_fp == 1)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses double-precision hard float, "
"%pB uses single-precision hard float"), ibfd, last_fp);
ret = FALSE;
}
in_fp = in_attr->i & 0xc;
out_fp = out_attr->i & 0xc;
if (in_fp == 0)
;
else if (out_fp == 0)
{
out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
out_attr->i ^= in_fp;
last_ld = ibfd;
}
else if (out_fp != 2 * 4 && in_fp == 2 * 4)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses 64-bit long double, "
"%pB uses 128-bit long double"), ibfd, last_ld);
ret = FALSE;
}
else if (in_fp != 2 * 4 && out_fp == 2 * 4)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses 64-bit long double, "
"%pB uses 128-bit long double"), last_ld, ibfd);
ret = FALSE;
}
else if (out_fp == 1 * 4 && in_fp == 3 * 4)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses IBM long double, "
"%pB uses IEEE long double"), last_ld, ibfd);
ret = FALSE;
}
else if (out_fp == 3 * 4 && in_fp == 1 * 4)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses IBM long double, "
"%pB uses IEEE long double"), ibfd, last_ld);
ret = FALSE;
}
}
if (!ret)
{
out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
bfd_set_error (bfd_error_bad_value);
}
return ret;
}
/* Merge object attributes from IBFD into OBFD. Warn if
there are conflicting attributes. */
static bfd_boolean
ppc_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd;
obj_attribute *in_attr, *in_attrs;
obj_attribute *out_attr, *out_attrs;
bfd_boolean ret;
if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
return FALSE;
obfd = info->output_bfd;
in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
/* Check for conflicting Tag_GNU_Power_ABI_Vector attributes and
merge non-conflicting ones. */
in_attr = &in_attrs[Tag_GNU_Power_ABI_Vector];
out_attr = &out_attrs[Tag_GNU_Power_ABI_Vector];
ret = TRUE;
if (in_attr->i != out_attr->i)
{
int in_vec = in_attr->i & 3;
int out_vec = out_attr->i & 3;
static bfd *last_vec;
if (in_vec == 0)
;
else if (out_vec == 0)
{
out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
out_attr->i = in_vec;
last_vec = ibfd;
}
/* For now, allow generic to transition to AltiVec or SPE
without a warning. If GCC marked files with their stack
alignment and used don't-care markings for files which are
not affected by the vector ABI, we could warn about this
case too. */
else if (in_vec == 1)
;
else if (out_vec == 1)
{
out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
out_attr->i = in_vec;
last_vec = ibfd;
}
else if (out_vec < in_vec)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses AltiVec vector ABI, %pB uses SPE vector ABI"),
last_vec, ibfd);
out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
ret = FALSE;
}
else if (out_vec > in_vec)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses AltiVec vector ABI, %pB uses SPE vector ABI"),
ibfd, last_vec);
out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
ret = FALSE;
}
}
/* Check for conflicting Tag_GNU_Power_ABI_Struct_Return attributes
and merge non-conflicting ones. */
in_attr = &in_attrs[Tag_GNU_Power_ABI_Struct_Return];
out_attr = &out_attrs[Tag_GNU_Power_ABI_Struct_Return];
if (in_attr->i != out_attr->i)
{
int in_struct = in_attr->i & 3;
int out_struct = out_attr->i & 3;
static bfd *last_struct;
if (in_struct == 0 || in_struct == 3)
;
else if (out_struct == 0)
{
out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
out_attr->i = in_struct;
last_struct = ibfd;
}
else if (out_struct < in_struct)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses r3/r4 for small structure returns, "
"%pB uses memory"), last_struct, ibfd);
out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
ret = FALSE;
}
else if (out_struct > in_struct)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB uses r3/r4 for small structure returns, "
"%pB uses memory"), ibfd, last_struct);
out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
ret = FALSE;
}
}
if (!ret)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
/* Merge Tag_compatibility attributes and any common GNU ones. */
return _bfd_elf_merge_object_attributes (ibfd, info);
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bfd_boolean
ppc_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd = info->output_bfd;
flagword old_flags;
flagword new_flags;
bfd_boolean error;
if (!is_ppc_elf (ibfd) || !is_ppc_elf (obfd))
return TRUE;
/* Check if we have the same endianness. */
if (! _bfd_generic_verify_endian_match (ibfd, info))
return FALSE;
if (!ppc_elf_merge_obj_attributes (ibfd, info))
return FALSE;
new_flags = elf_elfheader (ibfd)->e_flags;
old_flags = elf_elfheader (obfd)->e_flags;
if (!elf_flags_init (obfd))
{
/* First call, no flags set. */
elf_flags_init (obfd) = TRUE;
elf_elfheader (obfd)->e_flags = new_flags;
}
/* Compatible flags are ok. */
else if (new_flags == old_flags)
;
/* Incompatible flags. */
else
{
/* Warn about -mrelocatable mismatch. Allow -mrelocatable-lib
to be linked with either. */
error = FALSE;
if ((new_flags & EF_PPC_RELOCATABLE) != 0
&& (old_flags & (EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB)) == 0)
{
error = TRUE;
_bfd_error_handler
(_("%pB: compiled with -mrelocatable and linked with "
"modules compiled normally"), ibfd);
}
else if ((new_flags & (EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB)) == 0
&& (old_flags & EF_PPC_RELOCATABLE) != 0)
{
error = TRUE;
_bfd_error_handler
(_("%pB: compiled normally and linked with "
"modules compiled with -mrelocatable"), ibfd);
}
/* The output is -mrelocatable-lib iff both the input files are. */
if (! (new_flags & EF_PPC_RELOCATABLE_LIB))
elf_elfheader (obfd)->e_flags &= ~EF_PPC_RELOCATABLE_LIB;
/* The output is -mrelocatable iff it can't be -mrelocatable-lib,
but each input file is either -mrelocatable or -mrelocatable-lib. */
if (! (elf_elfheader (obfd)->e_flags & EF_PPC_RELOCATABLE_LIB)
&& (new_flags & (EF_PPC_RELOCATABLE_LIB | EF_PPC_RELOCATABLE))
&& (old_flags & (EF_PPC_RELOCATABLE_LIB | EF_PPC_RELOCATABLE)))
elf_elfheader (obfd)->e_flags |= EF_PPC_RELOCATABLE;
/* Do not warn about eabi vs. V.4 mismatch, just or in the bit if
any module uses it. */
elf_elfheader (obfd)->e_flags |= (new_flags & EF_PPC_EMB);
new_flags &= ~(EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB | EF_PPC_EMB);
old_flags &= ~(EF_PPC_RELOCATABLE | EF_PPC_RELOCATABLE_LIB | EF_PPC_EMB);
/* Warn about any other mismatches. */
if (new_flags != old_flags)
{
error = TRUE;
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: uses different e_flags (%#x) fields "
"than previous modules (%#x)"),
ibfd, new_flags, old_flags);
}
if (error)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
return TRUE;
}
static void
ppc_elf_vle_split16 (bfd *input_bfd,
asection *input_section,
unsigned long offset,
bfd_byte *loc,
bfd_vma value,
split16_format_type split16_format,
bfd_boolean fixup)
{
unsigned int insn, opcode;
insn = bfd_get_32 (input_bfd, loc);
opcode = insn & E_OPCODE_MASK;
if (opcode == E_OR2I_INSN
|| opcode == E_AND2I_DOT_INSN
|| opcode == E_OR2IS_INSN
|| opcode == E_LIS_INSN
|| opcode == E_AND2IS_DOT_INSN)
{
if (split16_format != split16a_type)
{
if (fixup)
split16_format = split16a_type;
else
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+0x%lx): expected 16A style relocation on 0x%08x insn"),
input_bfd, input_section, offset, opcode);
}
}
else if (opcode == E_ADD2I_DOT_INSN
|| opcode == E_ADD2IS_INSN
|| opcode == E_CMP16I_INSN
|| opcode == E_MULL2I_INSN
|| opcode == E_CMPL16I_INSN
|| opcode == E_CMPH16I_INSN
|| opcode == E_CMPHL16I_INSN)
{
if (split16_format != split16d_type)
{
if (fixup)
split16_format = split16d_type;
else
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+0x%lx): expected 16D style relocation on 0x%08x insn"),
input_bfd, input_section, offset, opcode);
}
}
if (split16_format == split16a_type)
{
insn &= ~((0xf800 << 5) | 0x7ff);
insn |= (value & 0xf800) << 5;
if ((insn & E_LI_MASK) == E_LI_INSN)
{
/* Hack for e_li. Extend sign. */
insn &= ~(0xf0000 >> 5);
insn |= (-(value & 0x8000) & 0xf0000) >> 5;
}
}
else
{
insn &= ~((0xf800 << 10) | 0x7ff);
insn |= (value & 0xf800) << 10;
}
insn |= value & 0x7ff;
bfd_put_32 (input_bfd, insn, loc);
}
static void
ppc_elf_vle_split20 (bfd *output_bfd, bfd_byte *loc, bfd_vma value)
{
unsigned int insn;
insn = bfd_get_32 (output_bfd, loc);
/* We have an li20 field, bits 17..20, 11..15, 21..31. */
/* Top 4 bits of value to 17..20. */
insn |= (value & 0xf0000) >> 5;
/* Next 5 bits of the value to 11..15. */
insn |= (value & 0xf800) << 5;
/* And the final 11 bits of the value to bits 21 to 31. */
insn |= value & 0x7ff;
bfd_put_32 (output_bfd, insn, loc);
}
/* Choose which PLT scheme to use, and set .plt flags appropriately.
Returns -1 on error, 0 for old PLT, 1 for new PLT. */
int
ppc_elf_select_plt_layout (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab;
flagword flags;
htab = ppc_elf_hash_table (info);
if (htab->plt_type == PLT_UNSET)
{
struct elf_link_hash_entry *h;
if (htab->params->plt_style == PLT_OLD)
htab->plt_type = PLT_OLD;
else if (bfd_link_pic (info)
&& htab->elf.dynamic_sections_created
&& (h = elf_link_hash_lookup (&htab->elf, "_mcount",
FALSE, FALSE, TRUE)) != NULL
&& (h->type == STT_FUNC
|| h->needs_plt)
&& h->ref_regular
&& !(SYMBOL_CALLS_LOCAL (info, h)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
{
/* Profiling of shared libs (and pies) is not supported with
secure plt, because ppc32 does profiling before a
function prologue and a secure plt pic call stubs needs
r30 to be set up. */
htab->plt_type = PLT_OLD;
}
else
{
bfd *ibfd;
enum ppc_elf_plt_type plt_type = htab->params->plt_style;
/* Look through the reloc flags left by ppc_elf_check_relocs.
Use the old style bss plt if a file makes plt calls
without using the new relocs, and if ld isn't given
--secure-plt and we never see REL16 relocs. */
if (plt_type == PLT_UNSET)
plt_type = PLT_OLD;
for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
if (is_ppc_elf (ibfd))
{
if (ppc_elf_tdata (ibfd)->has_rel16)
plt_type = PLT_NEW;
else if (ppc_elf_tdata (ibfd)->makes_plt_call)
{
plt_type = PLT_OLD;
htab->old_bfd = ibfd;
break;
}
}
htab->plt_type = plt_type;
}
}
if (htab->plt_type == PLT_OLD && htab->params->plt_style == PLT_NEW)
{
if (htab->old_bfd != NULL)
_bfd_error_handler (_("bss-plt forced due to %pB"), htab->old_bfd);
else
_bfd_error_handler (_("bss-plt forced by profiling"));
}
BFD_ASSERT (htab->plt_type != PLT_VXWORKS);
if (htab->plt_type == PLT_NEW)
{
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
/* The new PLT is a loaded section. */
if (htab->elf.splt != NULL
&& !bfd_set_section_flags (htab->elf.splt, flags))
return -1;
/* The new GOT is not executable. */
if (htab->elf.sgot != NULL
&& !bfd_set_section_flags (htab->elf.sgot, flags))
return -1;
}
else
{
/* Stop an unused .glink section from affecting .text alignment. */
if (htab->glink != NULL
&& !bfd_set_section_alignment (htab->glink, 0))
return -1;
}
return htab->plt_type == PLT_NEW;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
ppc_elf_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
switch (ELF32_R_TYPE (rel->r_info))
{
case R_PPC_GNU_VTINHERIT:
case R_PPC_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
static bfd_boolean
get_sym_h (struct elf_link_hash_entry **hp,
Elf_Internal_Sym **symp,
asection **symsecp,
unsigned char **tls_maskp,
Elf_Internal_Sym **locsymsp,
unsigned long r_symndx,
bfd *ibfd)
{
Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
struct elf_link_hash_entry *h;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (hp != NULL)
*hp = h;
if (symp != NULL)
*symp = NULL;
if (symsecp != NULL)
{
asection *symsec = NULL;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
symsec = h->root.u.def.section;
*symsecp = symsec;
}
if (tls_maskp != NULL)
*tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
}
else
{
Elf_Internal_Sym *sym;
Elf_Internal_Sym *locsyms = *locsymsp;
if (locsyms == NULL)
{
locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (locsyms == NULL)
locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
symtab_hdr->sh_info,
0, NULL, NULL, NULL);
if (locsyms == NULL)
return FALSE;
*locsymsp = locsyms;
}
sym = locsyms + r_symndx;
if (hp != NULL)
*hp = NULL;
if (symp != NULL)
*symp = sym;
if (symsecp != NULL)
*symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
if (tls_maskp != NULL)
{
bfd_signed_vma *local_got;
unsigned char *tls_mask;
tls_mask = NULL;
local_got = elf_local_got_refcounts (ibfd);
if (local_got != NULL)
{
struct plt_entry **local_plt = (struct plt_entry **)
(local_got + symtab_hdr->sh_info);
unsigned char *lgot_masks = (unsigned char *)
(local_plt + symtab_hdr->sh_info);
tls_mask = &lgot_masks[r_symndx];
}
*tls_maskp = tls_mask;
}
}
return TRUE;
}
/* Analyze inline PLT call relocations to see whether calls to locally
defined functions can be converted to direct calls. */
bfd_boolean
ppc_elf_inline_plt (struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab;
bfd *ibfd;
asection *sec;
bfd_vma low_vma, high_vma, limit;
htab = ppc_elf_hash_table (info);
if (htab == NULL)
return FALSE;
/* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
reduced somewhat to cater for possible stubs that might be added
between the call and its destination. */
limit = 0x1e00000;
low_vma = -1;
high_vma = 0;
for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
{
if (low_vma > sec->vma)
low_vma = sec->vma;
if (high_vma < sec->vma + sec->size)
high_vma = sec->vma + sec->size;
}
/* If a "bl" can reach anywhere in local code sections, then we can
convert all inline PLT sequences to direct calls when the symbol
is local. */
if (high_vma - low_vma < limit)
{
htab->can_convert_all_inline_plt = 1;
return TRUE;
}
/* Otherwise, go looking through relocs for cases where a direct
call won't reach. Mark the symbol on any such reloc to disable
the optimization and keep the PLT entry as it seems likely that
this will be better than creating trampolines. Note that this
will disable the optimization for all inline PLT calls to a
particular symbol, not just those that won't reach. The
difficulty in doing a more precise optimization is that the
linker needs to make a decision depending on whether a
particular R_PPC_PLTCALL insn can be turned into a direct
call, for each of the R_PPC_PLTSEQ and R_PPC_PLT16* insns in
the sequence, and there is nothing that ties those relocs
together except their symbol. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym *local_syms;
if (!is_ppc_elf (ibfd))
continue;
local_syms = NULL;
symtab_hdr = &elf_symtab_hdr (ibfd);
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
if (sec->has_pltcall
&& !bfd_is_abs_section (sec->output_section))
{
Elf_Internal_Rela *relstart, *rel, *relend;
/* Read the relocations. */
relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
info->keep_memory);
if (relstart == NULL)
return FALSE;
relend = relstart + sec->reloc_count;
for (rel = relstart; rel < relend; )
{
enum elf_ppc_reloc_type r_type;
unsigned long r_symndx;
asection *sym_sec;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
unsigned char *tls_maskp;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type != R_PPC_PLTCALL)
continue;
r_symndx = ELF32_R_SYM (rel->r_info);
if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
r_symndx, ibfd))
{
if (elf_section_data (sec)->relocs != relstart)
free (relstart);
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
free (local_syms);
return FALSE;
}
if (sym_sec != NULL && sym_sec->output_section != NULL)
{
bfd_vma from, to;
if (h != NULL)
to = h->root.u.def.value;
else
to = sym->st_value;
to += (rel->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
from = (rel->r_offset
+ sec->output_offset
+ sec->output_section->vma);
if (to - from + limit < 2 * limit)
*tls_maskp &= ~PLT_KEEP;
}
}
if (elf_section_data (sec)->relocs != relstart)
free (relstart);
}
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
{
if (!info->keep_memory)
free (local_syms);
else
symtab_hdr->contents = (unsigned char *) local_syms;
}
}
return TRUE;
}
/* Set plt output section type, htab->tls_get_addr, and call the
generic ELF tls_setup function. */
asection *
ppc_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab;
htab = ppc_elf_hash_table (info);
htab->tls_get_addr = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
FALSE, FALSE, TRUE);
if (htab->plt_type != PLT_NEW)
htab->params->no_tls_get_addr_opt = TRUE;
if (!htab->params->no_tls_get_addr_opt)
{
struct elf_link_hash_entry *opt, *tga;
opt = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
FALSE, FALSE, TRUE);
if (opt != NULL
&& (opt->root.type == bfd_link_hash_defined
|| opt->root.type == bfd_link_hash_defweak))
{
/* If glibc supports an optimized __tls_get_addr call stub,
signalled by the presence of __tls_get_addr_opt, and we'll
be calling __tls_get_addr via a plt call stub, then
make __tls_get_addr point to __tls_get_addr_opt. */
tga = htab->tls_get_addr;
if (htab->elf.dynamic_sections_created
&& tga != NULL
&& (tga->type == STT_FUNC
|| tga->needs_plt)
&& !(SYMBOL_CALLS_LOCAL (info, tga)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga)))
{
struct plt_entry *ent;
for (ent = tga->plt.plist; ent != NULL; ent = ent->next)
if (ent->plt.refcount > 0)
break;
if (ent != NULL)
{
tga->root.type = bfd_link_hash_indirect;
tga->root.u.i.link = &opt->root;
ppc_elf_copy_indirect_symbol (info, opt, tga);
opt->mark = 1;
if (opt->dynindx != -1)
{
/* Use __tls_get_addr_opt in dynamic relocations. */
opt->dynindx = -1;
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
opt->dynstr_index);
if (!bfd_elf_link_record_dynamic_symbol (info, opt))
return FALSE;
}
htab->tls_get_addr = opt;
}
}
}
else
htab->params->no_tls_get_addr_opt = TRUE;
}
if (htab->plt_type == PLT_NEW
&& htab->elf.splt != NULL
&& htab->elf.splt->output_section != NULL)
{
elf_section_type (htab->elf.splt->output_section) = SHT_PROGBITS;
elf_section_flags (htab->elf.splt->output_section) = SHF_ALLOC + SHF_WRITE;
}
return _bfd_elf_tls_setup (obfd, info);
}
/* Return TRUE iff REL is a branch reloc with a global symbol matching
HASH. */
static bfd_boolean
branch_reloc_hash_match (const bfd *ibfd,
const Elf_Internal_Rela *rel,
const struct elf_link_hash_entry *hash)
{
Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
enum elf_ppc_reloc_type r_type = ELF32_R_TYPE (rel->r_info);
unsigned int r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
{
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
struct elf_link_hash_entry *h;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h == hash)
return TRUE;
}
return FALSE;
}
/* Run through all the TLS relocs looking for optimization
opportunities. */
bfd_boolean
ppc_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd *ibfd;
asection *sec;
struct ppc_elf_link_hash_table *htab;
int pass;
if (!bfd_link_executable (info))
return TRUE;
htab = ppc_elf_hash_table (info);
if (htab == NULL)
return FALSE;
/* Make two passes through the relocs. First time check that tls
relocs involved in setting up a tls_get_addr call are indeed
followed by such a call. If they are not, don't do any tls
optimization. On the second pass twiddle tls_mask flags to
notify relocate_section that optimization can be done, and
adjust got and plt refcounts. */
for (pass = 0; pass < 2; ++pass)
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
asection *got2 = bfd_get_section_by_name (ibfd, ".got2");
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
{
Elf_Internal_Rela *relstart, *rel, *relend;
int expecting_tls_get_addr = 0;
/* Read the relocations. */
relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
info->keep_memory);
if (relstart == NULL)
return FALSE;
relend = relstart + sec->reloc_count;
for (rel = relstart; rel < relend; rel++)
{
enum elf_ppc_reloc_type r_type;
unsigned long r_symndx;
struct elf_link_hash_entry *h = NULL;
unsigned char *tls_mask;
unsigned char tls_set, tls_clear;
bfd_boolean is_local;
bfd_signed_vma *got_count;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf_link_hash_entry **sym_hashes;
sym_hashes = elf_sym_hashes (ibfd);
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
is_local = SYMBOL_REFERENCES_LOCAL (info, h);
r_type = ELF32_R_TYPE (rel->r_info);
/* If this section has old-style __tls_get_addr calls
without marker relocs, then check that each
__tls_get_addr call reloc is preceded by a reloc
that conceivably belongs to the __tls_get_addr arg
setup insn. If we don't find matching arg setup
relocs, don't do any tls optimization. */
if (pass == 0
&& sec->nomark_tls_get_addr
&& h != NULL
&& h == htab->tls_get_addr
&& !expecting_tls_get_addr
&& is_branch_reloc (r_type))
{
info->callbacks->minfo ("%H __tls_get_addr lost arg, "
"TLS optimization disabled\n",
ibfd, sec, rel->r_offset);
if (elf_section_data (sec)->relocs != relstart)
free (relstart);
return TRUE;
}
expecting_tls_get_addr = 0;
switch (r_type)
{
case R_PPC_GOT_TLSLD16:
case R_PPC_GOT_TLSLD16_LO:
expecting_tls_get_addr = 1;
/* Fall through. */
case R_PPC_GOT_TLSLD16_HI:
case R_PPC_GOT_TLSLD16_HA:
/* These relocs should never be against a symbol
defined in a shared lib. Leave them alone if
that turns out to be the case. */
if (!is_local)
continue;
/* LD -> LE */
tls_set = 0;
tls_clear = TLS_LD;
break;
case R_PPC_GOT_TLSGD16:
case R_PPC_GOT_TLSGD16_LO:
expecting_tls_get_addr = 1;
/* Fall through. */
case R_PPC_GOT_TLSGD16_HI:
case R_PPC_GOT_TLSGD16_HA:
if (is_local)
/* GD -> LE */
tls_set = 0;
else
/* GD -> IE */
tls_set = TLS_TLS | TLS_GDIE;
tls_clear = TLS_GD;
break;
case R_PPC_GOT_TPREL16:
case R_PPC_GOT_TPREL16_LO:
case R_PPC_GOT_TPREL16_HI:
case R_PPC_GOT_TPREL16_HA:
if (is_local)
{
/* IE -> LE */
tls_set = 0;
tls_clear = TLS_TPREL;
break;
}
else
continue;
case R_PPC_TLSLD:
if (!is_local)
continue;
/* Fall through. */
case R_PPC_TLSGD:
if (rel + 1 < relend
&& is_plt_seq_reloc (ELF32_R_TYPE (rel[1].r_info)))
{
if (pass != 0
&& ELF32_R_TYPE (rel[1].r_info) != R_PPC_PLTSEQ)
{
r_type = ELF32_R_TYPE (rel[1].r_info);
r_symndx = ELF32_R_SYM (rel[1].r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf_link_hash_entry **sym_hashes;
sym_hashes = elf_sym_hashes (ibfd);
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h != NULL)
{
struct plt_entry *ent = NULL;
bfd_vma addend = 0;
if (bfd_link_pic (info))
addend = rel->r_addend;
ent = find_plt_ent (&h->plt.plist,
got2, addend);
if (ent != NULL
&& ent->plt.refcount > 0)
ent->plt.refcount -= 1;
}
}
}
continue;
}
expecting_tls_get_addr = 2;
tls_set = 0;
tls_clear = 0;
break;
default:
continue;
}
if (pass == 0)
{
if (!expecting_tls_get_addr
|| !sec->nomark_tls_get_addr)
continue;
if (rel + 1 < relend
&& branch_reloc_hash_match (ibfd, rel + 1,
htab->tls_get_addr))
continue;
/* Uh oh, we didn't find the expected call. We
could just mark this symbol to exclude it
from tls optimization but it's safer to skip
the entire optimization. */
info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
"TLS optimization disabled\n"),
ibfd, sec, rel->r_offset);
if (elf_section_data (sec)->relocs != relstart)
free (relstart);
return TRUE;
}
if (h != NULL)
{
tls_mask = &ppc_elf_hash_entry (h)->tls_mask;
got_count = &h->got.refcount;
}
else
{
bfd_signed_vma *lgot_refs;
struct plt_entry **local_plt;
unsigned char *lgot_masks;
lgot_refs = elf_local_got_refcounts (ibfd);
if (lgot_refs == NULL)
abort ();
local_plt = (struct plt_entry **)
(lgot_refs + symtab_hdr->sh_info);
lgot_masks = (unsigned char *)
(local_plt + symtab_hdr->sh_info);
tls_mask = &lgot_masks[r_symndx];
got_count = &lgot_refs[r_symndx];
}
/* If we don't have old-style __tls_get_addr calls
without TLSGD/TLSLD marker relocs, and we haven't
found a new-style __tls_get_addr call with a
marker for this symbol, then we either have a
broken object file or an -mlongcall style
indirect call to __tls_get_addr without a marker.
Disable optimization in this case. */
if ((tls_clear & (TLS_GD | TLS_LD)) != 0
&& !sec->nomark_tls_get_addr
&& ((*tls_mask & (TLS_TLS | TLS_MARK))
!= (TLS_TLS | TLS_MARK)))
continue;
if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
{
struct plt_entry *ent;
bfd_vma addend = 0;
if (bfd_link_pic (info)
&& (ELF32_R_TYPE (rel[1].r_info) == R_PPC_PLTREL24
|| ELF32_R_TYPE (rel[1].r_info) == R_PPC_PLTCALL))
addend = rel[1].r_addend;
ent = find_plt_ent (&htab->tls_get_addr->plt.plist,
got2, addend);
if (ent != NULL && ent->plt.refcount > 0)
ent->plt.refcount -= 1;
}
if (tls_clear == 0)
continue;
if (tls_set == 0)
{
/* We managed to get rid of a got entry. */
if (*got_count > 0)
*got_count -= 1;
}
*tls_mask |= tls_set;
*tls_mask &= ~tls_clear;
}
if (elf_section_data (sec)->relocs != relstart)
free (relstart);
}
}
htab->do_tls_opt = 1;
return TRUE;
}
/* Find dynamic relocs for H that apply to read-only sections. */
static asection *
readonly_dynrelocs (struct elf_link_hash_entry *h)
{
struct elf_dyn_relocs *p;
for (p = ppc_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
{
asection *s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
return p->sec;
}
return NULL;
}
/* Return true if we have dynamic relocs against H or any of its weak
aliases, that apply to read-only sections. Cannot be used after
size_dynamic_sections. */
static bfd_boolean
alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
{
struct ppc_elf_link_hash_entry *eh = ppc_elf_hash_entry (h);
do
{
if (readonly_dynrelocs (&eh->elf))
return TRUE;
eh = ppc_elf_hash_entry (eh->elf.u.alias);
} while (eh != NULL && &eh->elf != h);
return FALSE;
}
/* Return whether H has pc-relative dynamic relocs. */
static bfd_boolean
pc_dynrelocs (struct elf_link_hash_entry *h)
{
struct elf_dyn_relocs *p;
for (p = ppc_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
if (p->pc_count != 0)
return TRUE;
return FALSE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
ppc_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
struct ppc_elf_link_hash_table *htab;
asection *s;
#ifdef DEBUG
fprintf (stderr, "ppc_elf_adjust_dynamic_symbol called for %s\n",
h->root.root.string);
#endif
/* Make sure we know what is going on here. */
htab = ppc_elf_hash_table (info);
BFD_ASSERT (htab->elf.dynobj != NULL
&& (h->needs_plt
|| h->type == STT_GNU_IFUNC
|| h->is_weakalias
|| (h->def_dynamic
&& h->ref_regular
&& !h->def_regular)));
/* Deal with function syms. */
if (h->type == STT_FUNC
|| h->type == STT_GNU_IFUNC
|| h->needs_plt)
{
bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, h)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
/* Discard dyn_relocs when non-pic if we've decided that a
function symbol is local. */
if (!bfd_link_pic (info) && local)
ppc_elf_hash_entry (h)->dyn_relocs = NULL;
/* Clear procedure linkage table information for any symbol that
won't need a .plt entry. */
struct plt_entry *ent;
for (ent = h->plt.plist; ent != NULL; ent = ent->next)
if (ent->plt.refcount > 0)
break;
if (ent == NULL
|| (h->type != STT_GNU_IFUNC
&& local
&& (htab->can_convert_all_inline_plt
|| (ppc_elf_hash_entry (h)->tls_mask
& (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
{
/* A PLT entry is not required/allowed when:
1. We are not using ld.so; because then the PLT entry
can't be set up, so we can't use one. In this case,
ppc_elf_adjust_dynamic_symbol won't even be called.
2. GC has rendered the entry unused.
3. We know for certain that a call to this symbol
will go to this object, or will remain undefined. */
h->plt.plist = NULL;
h->needs_plt = 0;
h->pointer_equality_needed = 0;
}
else
{
/* Taking a function's address in a read/write section
doesn't require us to define the function symbol in the
executable on a plt call stub. A dynamic reloc can
be used instead, giving better runtime performance.
(Calls via that function pointer don't need to bounce
through the plt call stub.) Similarly, use a dynamic
reloc for a weak reference when possible, allowing the
resolution of the symbol to be set at load time rather
than link time. */
if ((h->pointer_equality_needed
|| (h->non_got_ref
&& !h->ref_regular_nonweak
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
&& !htab->is_vxworks
&& !ppc_elf_hash_entry (h)->has_sda_refs
&& !readonly_dynrelocs (h))
{
h->pointer_equality_needed = 0;
/* If we haven't seen a branch reloc and the symbol
isn't an ifunc then we don't need a plt entry. */
if (!h->needs_plt && h->type != STT_GNU_IFUNC)
h->plt.plist = NULL;
}
else if (!bfd_link_pic (info))
/* We are going to be defining the function symbol on the
plt stub, so no dyn_relocs needed when non-pic. */
ppc_elf_hash_entry (h)->dyn_relocs = NULL;
}
h->protected_def = 0;
/* Function symbols can't have copy relocs. */
return TRUE;
}
else
h->plt.plist = NULL;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (h);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
h->root.u.def.section = def->root.u.def.section;
h->root.u.def.value = def->root.u.def.value;
if (def->root.u.def.section == htab->elf.sdynbss
|| def->root.u.def.section == htab->elf.sdynrelro
|| def->root.u.def.section == htab->dynsbss)
ppc_elf_hash_entry (h)->dyn_relocs = NULL;
return TRUE;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (bfd_link_pic (info))
{
h->protected_def = 0;
return TRUE;
}
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!h->non_got_ref)
{
h->protected_def = 0;
return TRUE;
}
/* Protected variables do not work with .dynbss. The copy in
.dynbss won't be used by the shared library with the protected
definition for the variable. Editing to PIC, or text relocations
are preferable to an incorrect program. */
if (h->protected_def)
{
if (ELIMINATE_COPY_RELOCS
&& ppc_elf_hash_entry (h)->has_addr16_ha
&& ppc_elf_hash_entry (h)->has_addr16_lo
&& htab->params->pic_fixup == 0
&& info->disable_target_specific_optimizations <= 1)
htab->params->pic_fixup = 1;
return TRUE;
}
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
return TRUE;
/* If we don't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc.
We can't do this if there are any small data relocations. This
doesn't work on VxWorks, where we can not have dynamic
relocations (other than copy and jump slot relocations) in an
executable. */
if (ELIMINATE_COPY_RELOCS
&& !ppc_elf_hash_entry (h)->has_sda_refs
&& !htab->is_vxworks
&& !h->def_regular
&& !alias_readonly_dynrelocs (h))
return TRUE;
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable.
Of course, if the symbol is referenced using SDAREL relocs, we
must instead allocate it in .sbss. */
if (ppc_elf_hash_entry (h)->has_sda_refs)
s = htab->dynsbss;
else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
s = htab->elf.sdynrelro;
else
s = htab->elf.sdynbss;
BFD_ASSERT (s != NULL);
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
{
asection *srel;
/* We must generate a R_PPC_COPY reloc to tell the dynamic
linker to copy the initial value out of the dynamic object
and into the runtime process image. */
if (ppc_elf_hash_entry (h)->has_sda_refs)
srel = htab->relsbss;
else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
srel = htab->elf.sreldynrelro;
else
srel = htab->elf.srelbss;
BFD_ASSERT (srel != NULL);
srel->size += sizeof (Elf32_External_Rela);
h->needs_copy = 1;
}
/* We no longer want dyn_relocs. */
ppc_elf_hash_entry (h)->dyn_relocs = NULL;
return _bfd_elf_adjust_dynamic_copy (info, h, s);
}
/* Generate a symbol to mark plt call stubs. For non-PIC code the sym is
xxxxxxxx.plt_call32.<callee> where xxxxxxxx is a hex number, usually 0,
specifying the addend on the plt relocation. For -fpic code, the sym
is xxxxxxxx.plt_pic32.<callee>, and for -fPIC
xxxxxxxx.got2.plt_pic32.<callee>. */
static bfd_boolean
add_stub_sym (struct plt_entry *ent,
struct elf_link_hash_entry *h,
struct bfd_link_info *info)
{
struct elf_link_hash_entry *sh;
size_t len1, len2, len3;
char *name;
const char *stub;
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
if (bfd_link_pic (info))
stub = ".plt_pic32.";
else
stub = ".plt_call32.";
len1 = strlen (h->root.root.string);
len2 = strlen (stub);
len3 = 0;
if (ent->sec)
len3 = strlen (ent->sec->name);
name = bfd_malloc (len1 + len2 + len3 + 9);
if (name == NULL)
return FALSE;
sprintf (name, "%08x", (unsigned) ent->addend & 0xffffffff);
if (ent->sec)
memcpy (name + 8, ent->sec->name, len3);
memcpy (name + 8 + len3, stub, len2);
memcpy (name + 8 + len3 + len2, h->root.root.string, len1 + 1);
sh = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
if (sh == NULL)
return FALSE;
if (sh->root.type == bfd_link_hash_new)
{
sh->root.type = bfd_link_hash_defined;
sh->root.u.def.section = htab->glink;
sh->root.u.def.value = ent->glink_offset;
sh->ref_regular = 1;
sh->def_regular = 1;
sh->ref_regular_nonweak = 1;
sh->forced_local = 1;
sh->non_elf = 0;
sh->root.linker_def = 1;
}
return TRUE;
}
/* Allocate NEED contiguous space in .got, and return the offset.
Handles allocation of the got header when crossing 32k. */
static bfd_vma
allocate_got (struct ppc_elf_link_hash_table *htab, unsigned int need)
{
bfd_vma where;
unsigned int max_before_header;
if (htab->plt_type == PLT_VXWORKS)
{
where = htab->elf.sgot->size;
htab->elf.sgot->size += need;
}
else
{
max_before_header = htab->plt_type == PLT_NEW ? 32768 : 32764;
if (need <= htab->got_gap)
{
where = max_before_header - htab->got_gap;
htab->got_gap -= need;
}
else
{
if (htab->elf.sgot->size + need > max_before_header
&& htab->elf.sgot->size <= max_before_header)
{
htab->got_gap = max_before_header - htab->elf.sgot->size;
htab->elf.sgot->size = max_before_header + htab->got_header_size;
}
where = htab->elf.sgot->size;
htab->elf.sgot->size += need;
}
}
return where;
}
/* Calculate size of GOT entries for symbol given its TLS_MASK.
TLS_LD is excluded because those go in a special GOT slot. */
static inline unsigned int
got_entries_needed (int tls_mask)
{
unsigned int need;
if ((tls_mask & TLS_TLS) == 0)
need = 4;
else
{
need = 0;
if ((tls_mask & TLS_GD) != 0)
need += 8;
if ((tls_mask & (TLS_TPREL | TLS_GDIE)) != 0)
need += 4;
if ((tls_mask & TLS_DTPREL) != 0)
need += 4;
}
return need;
}
/* If H is undefined, make it dynamic if that makes sense. */
static bfd_boolean
ensure_undef_dynamic (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
if (htab->dynamic_sections_created
&& ((info->dynamic_undefined_weak != 0
&& h->root.type == bfd_link_hash_undefweak)
|| h->root.type == bfd_link_hash_undefined)
&& h->dynindx == -1
&& !h->forced_local
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
return bfd_elf_link_record_dynamic_symbol (info, h);
return TRUE;
}
/* Allocate space in associated reloc sections for dynamic relocs. */
static bfd_boolean
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
{
struct bfd_link_info *info = inf;
struct ppc_elf_link_hash_entry *eh;
struct ppc_elf_link_hash_table *htab;
struct elf_dyn_relocs *p;
bfd_boolean dyn;
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
htab = ppc_elf_hash_table (info);
eh = (struct ppc_elf_link_hash_entry *) h;
if (eh->elf.got.refcount > 0
|| (ELIMINATE_COPY_RELOCS
&& !eh->elf.def_regular
&& eh->elf.protected_def
&& eh->has_addr16_ha
&& eh->has_addr16_lo
&& htab->params->pic_fixup > 0))
{
unsigned int need;
/* Make sure this symbol is output as a dynamic symbol. */
if (!ensure_undef_dynamic (info, &eh->elf))
return FALSE;
need = 0;
if ((eh->tls_mask & (TLS_TLS | TLS_LD)) == (TLS_TLS | TLS_LD))
{
if (SYMBOL_REFERENCES_LOCAL (info, &eh->elf))
/* We'll just use htab->tlsld_got.offset. This should
always be the case. It's a little odd if we have
a local dynamic reloc against a non-local symbol. */
htab->tlsld_got.refcount += 1;
else
need += 8;
}
need += got_entries_needed (eh->tls_mask);
if (need == 0)
eh->elf.got.offset = (bfd_vma) -1;
else
{
eh->elf.got.offset = allocate_got (htab, need);
if (((bfd_link_pic (info)
&& !((eh->tls_mask & TLS_TLS) != 0
&& bfd_link_executable (info)
&& SYMBOL_REFERENCES_LOCAL (info, &eh->elf)))
|| (htab->elf.dynamic_sections_created
&& eh->elf.dynindx != -1
&& !SYMBOL_REFERENCES_LOCAL (info, &eh->elf)))
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &eh->elf))
{
asection *rsec;
need *= sizeof (Elf32_External_Rela) / 4;
if ((eh->tls_mask & (TLS_TLS | TLS_LD)) == (TLS_TLS | TLS_LD))
need -= sizeof (Elf32_External_Rela);
rsec = htab->elf.srelgot;
if (eh->elf.type == STT_GNU_IFUNC)
rsec = htab->elf.irelplt;
rsec->size += need;
}
}
}
else
eh->elf.got.offset = (bfd_vma) -1;
/* If no dynamic sections we can't have dynamic relocs, except for
IFUNCs which are handled even in static executables. */
if (!htab->elf.dynamic_sections_created
&& h->type != STT_GNU_IFUNC)
eh->dyn_relocs = NULL;
/* Discard relocs on undefined symbols that must be local. */
else if (h->root.type == bfd_link_hash_undefined
&& ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
eh->dyn_relocs = NULL;
/* Also discard relocs on undefined weak syms with non-default
visibility, or when dynamic_undefined_weak says so. */
else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
eh->dyn_relocs = NULL;
if (eh->dyn_relocs == NULL)
;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for relocs that have become local due to symbol visibility
changes. */
else if (bfd_link_pic (info))
{
/* Relocs that use pc_count are those that appear on a call insn,
or certain REL relocs (see must_be_dyn_reloc) that can be
generated via assembly. We want calls to protected symbols to
resolve directly to the function rather than going via the plt.
If people want function pointer comparisons to work as expected
then they should avoid writing weird assembly. */
if (SYMBOL_CALLS_LOCAL (info, h))
{
struct elf_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
if (htab->is_vxworks)
{
struct elf_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
*pp = p->next;
else
pp = &p->next;
}
}
if (eh->dyn_relocs != NULL)
{
/* Make sure this symbol is output as a dynamic symbol. */
if (!ensure_undef_dynamic (info, h))
return FALSE;
}
}
else if (ELIMINATE_COPY_RELOCS)
{
/* For the non-pic case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if (h->dynamic_adjusted
&& !h->def_regular
&& !ELF_COMMON_DEF_P (h)
&& !(h->protected_def
&& eh->has_addr16_ha
&& eh->has_addr16_lo
&& htab->params->pic_fixup > 0))
{
/* Make sure this symbol is output as a dynamic symbol. */
if (!ensure_undef_dynamic (info, h))
return FALSE;
if (h->dynindx == -1)
eh->dyn_relocs = NULL;
}
else
eh->dyn_relocs = NULL;
}
/* Allocate space. */
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *sreloc = elf_section_data (p->sec)->sreloc;
if (eh->elf.type == STT_GNU_IFUNC)
sreloc = htab->elf.irelplt;
sreloc->size += p->count * sizeof (Elf32_External_Rela);
}
/* Handle PLT relocs. Done last, after dynindx has settled.
We might need a PLT entry when the symbol
a) is dynamic, or
b) is an ifunc, or
c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
d) has plt16 relocs and we are linking statically. */
dyn = htab->elf.dynamic_sections_created && h->dynindx != -1;
if (dyn
|| h->type == STT_GNU_IFUNC
|| (h->needs_plt && h->dynamic_adjusted)
|| (h->needs_plt
&& h->def_regular
&& !htab->elf.dynamic_sections_created
&& !htab->can_convert_all_inline_plt
&& (ppc_elf_hash_entry (h)->tls_mask
& (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
{
struct plt_entry *ent;
bfd_boolean doneone = FALSE;
bfd_vma plt_offset = 0, glink_offset = (bfd_vma) -1;
for (ent = h->plt.plist; ent != NULL; ent = ent->next)
if (ent->plt.refcount > 0)
{
asection *s = htab->elf.splt;
if (!dyn)
{
if (h->type == STT_GNU_IFUNC)
s = htab->elf.iplt;
else
s = htab->pltlocal;
}
if (htab->plt_type == PLT_NEW || !dyn)
{
if (!doneone)
{
plt_offset = s->size;
s->size += 4;
}
ent->plt.offset = plt_offset;
if (s == htab->pltlocal)
ent->glink_offset = glink_offset;
else
{
s = htab->glink;
if (!doneone || bfd_link_pic (info))
{
glink_offset = s->size;
s->size += GLINK_ENTRY_SIZE (htab, h);
}
if (!doneone
&& !bfd_link_pic (info)
&& h->def_dynamic
&& !h->def_regular)
{
h->root.u.def.section = s;
h->root.u.def.value = glink_offset;
}
ent->glink_offset = glink_offset;
if (htab->params->emit_stub_syms
&& !add_stub_sym (ent, h, info))
return FALSE;
}
}
else
{
if (!doneone)
{
/* If this is the first .plt entry, make room
for the special first entry. */
if (s->size == 0)
s->size += htab->plt_initial_entry_size;
/* The PowerPC PLT is actually composed of two
parts, the first part is 2 words (for a load
and a jump), and then there is a remaining
word available at the end. */
plt_offset = (htab->plt_initial_entry_size
+ (htab->plt_slot_size
* ((s->size
- htab->plt_initial_entry_size)
/ htab->plt_entry_size)));
/* If this symbol is not defined in a regular
file, and we are not generating a shared
library, then set the symbol to this location
in the .plt. This is to avoid text
relocations, and is required to make
function pointers compare as equal between
the normal executable and the shared library. */
if (! bfd_link_pic (info)
&& h->def_dynamic
&& !h->def_regular)
{
h->root.u.def.section = s;
h->root.u.def.value = plt_offset;
}
/* Make room for this entry. */
s->size += htab->plt_entry_size;
/* After the 8192nd entry, room for two entries
is allocated. */
if (htab->plt_type == PLT_OLD
&& (s->size - htab->plt_initial_entry_size)
/ htab->plt_entry_size
> PLT_NUM_SINGLE_ENTRIES)
s->size += htab->plt_entry_size;
}
ent->plt.offset = plt_offset;
}
/* We also need to make an entry in the .rela.plt section. */
if (!doneone)
{
if (!dyn)
{
if (h->type == STT_GNU_IFUNC)
{
s = htab->elf.irelplt;
s->size += sizeof (Elf32_External_Rela);
}
else if (bfd_link_pic (info))
{
s = htab->relpltlocal;
s->size += sizeof (Elf32_External_Rela);
}
}
else
{
htab->elf.srelplt->size += sizeof (Elf32_External_Rela);
if (htab->plt_type == PLT_VXWORKS)
{
/* Allocate space for the unloaded relocations. */
if (!bfd_link_pic (info)
&& htab->elf.dynamic_sections_created)
{
if (ent->plt.offset
== (bfd_vma) htab->plt_initial_entry_size)
{
htab->srelplt2->size
+= (sizeof (Elf32_External_Rela)
* VXWORKS_PLTRESOLVE_RELOCS);
}
htab->srelplt2->size
+= (sizeof (Elf32_External_Rela)
* VXWORKS_PLT_NON_JMP_SLOT_RELOCS);
}
/* Every PLT entry has an associated GOT entry in
.got.plt. */
htab->elf.sgotplt->size += 4;
}
}
doneone = TRUE;
}
}
else
ent->plt.offset = (bfd_vma) -1;
if (!doneone)
{
h->plt.plist = NULL;
h->needs_plt = 0;
}
}
else
{
h->plt.plist = NULL;
h->needs_plt = 0;
}
return TRUE;
}
/* Set DF_TEXTREL if we find any dynamic relocs that apply to
read-only sections. */
static bfd_boolean
maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
{
asection *sec;
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
sec = readonly_dynrelocs (h);
if (sec != NULL)
{
struct bfd_link_info *info = (struct bfd_link_info *) info_p;
info->flags |= DF_TEXTREL;
info->callbacks->minfo
(_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
sec->owner, h->root.root.string, sec);
/* Not an error, just cut short the traversal. */
return FALSE;
}
return TRUE;
}
static const unsigned char glink_eh_frame_cie[] =
{
0, 0, 0, 16, /* length. */
0, 0, 0, 0, /* id. */
1, /* CIE version. */
'z', 'R', 0, /* Augmentation string. */
4, /* Code alignment. */
0x7c, /* Data alignment. */
65, /* RA reg. */
1, /* Augmentation size. */
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
};
/* Set the sizes of the dynamic sections. */
static bfd_boolean
ppc_elf_size_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab;
asection *s;
bfd_boolean relocs;
bfd *ibfd;
#ifdef DEBUG
fprintf (stderr, "ppc_elf_size_dynamic_sections called\n");
#endif
htab = ppc_elf_hash_table (info);
BFD_ASSERT (htab->elf.dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
s = bfd_get_linker_section (htab->elf.dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
if (htab->plt_type == PLT_OLD)
htab->got_header_size = 16;
else if (htab->plt_type == PLT_NEW)
htab->got_header_size = 12;
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
struct plt_entry **local_plt;
struct plt_entry **end_local_plt;
char *lgot_masks;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
if (!is_ppc_elf (ibfd))
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct ppc_dyn_relocs *p;
for (p = ((struct ppc_dyn_relocs *)
elf_section_data (s)->local_dynrel);
p != NULL;
p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (htab->is_vxworks
&& strcmp (p->sec->output_section->name,
".tls_vars") == 0)
{
/* Relocations in vxworks .tls_vars sections are
handled specially by the loader. */
}
else if (p->count != 0)
{
asection *sreloc = elf_section_data (p->sec)->sreloc;
if (p->ifunc)
sreloc = htab->elf.irelplt;
sreloc->size += p->count * sizeof (Elf32_External_Rela);
if ((p->sec->output_section->flags
& (SEC_READONLY | SEC_ALLOC))
== (SEC_READONLY | SEC_ALLOC))
{
info->flags |= DF_TEXTREL;
info->callbacks->minfo (_("%pB: dynamic relocation in read-only section `%pA'\n"),
p->sec->owner, p->sec);
}
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_symtab_hdr (ibfd);
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_plt = (struct plt_entry **) end_local_got;
end_local_plt = local_plt + locsymcount;
lgot_masks = (char *) end_local_plt;
for (; local_got < end_local_got; ++local_got, ++lgot_masks)
if (*local_got > 0)
{
unsigned int need;
if ((*lgot_masks & (TLS_TLS | TLS_LD)) == (TLS_TLS | TLS_LD))
htab->tlsld_got.refcount += 1;
need = got_entries_needed (*lgot_masks);
if (need == 0)
*local_got = (bfd_vma) -1;
else
{
*local_got = allocate_got (htab, need);
if (bfd_link_pic (info)
&& !((*lgot_masks & TLS_TLS) != 0
&& bfd_link_executable (info)))
{
asection *srel;
need *= sizeof (Elf32_External_Rela) / 4;
srel = htab->elf.srelgot;
if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
srel = htab->elf.irelplt;
srel->size += need;
}
}
}
else
*local_got = (bfd_vma) -1;
if (htab->is_vxworks)
continue;
/* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
lgot_masks = (char *) end_local_plt;
for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
{
struct plt_entry *ent;
bfd_boolean doneone = FALSE;
bfd_vma plt_offset = 0, glink_offset = (bfd_vma) -1;
for (ent = *local_plt; ent != NULL; ent = ent->next)
if (ent->plt.refcount > 0)
{
if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
s = htab->elf.iplt;
else if (htab->can_convert_all_inline_plt
|| (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
{
ent->plt.offset = (bfd_vma) -1;
continue;
}
else
s = htab->pltlocal;
if (!doneone)
{
plt_offset = s->size;
s->size += 4;
}
ent->plt.offset = plt_offset;
if (s != htab->pltlocal && (!doneone || bfd_link_pic (info)))
{
s = htab->glink;
glink_offset = s->size;
s->size += GLINK_ENTRY_SIZE (htab, NULL);
}
ent->glink_offset = glink_offset;
if (!doneone)
{
if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
{
s = htab->elf.irelplt;
s->size += sizeof (Elf32_External_Rela);
}
else if (bfd_link_pic (info))
{
s = htab->relpltlocal;
s->size += sizeof (Elf32_External_Rela);
}
doneone = TRUE;
}
}
else
ent->plt.offset = (bfd_vma) -1;
}
}
/* Allocate space for global sym dynamic relocs. */
elf_link_hash_traverse (elf_hash_table (info), allocate_dynrelocs, info);
if (htab->tlsld_got.refcount > 0)
{
htab->tlsld_got.offset = allocate_got (htab, 8);
if (bfd_link_dll (info))
htab->elf.srelgot->size += sizeof (Elf32_External_Rela);
}
else
htab->tlsld_got.offset = (bfd_vma) -1;
if (htab->elf.sgot != NULL && htab->plt_type != PLT_VXWORKS)
{
unsigned int g_o_t = 32768;
/* If we haven't allocated the header, do so now. When we get here,
for old plt/got the got size will be 0 to 32764 (not allocated),
or 32780 to 65536 (header allocated). For new plt/got, the
corresponding ranges are 0 to 32768 and 32780 to 65536. */
if (htab->elf.sgot->size <= 32768)
{
g_o_t = htab->elf.sgot->size;
if (htab->plt_type == PLT_OLD)
g_o_t += 4;
htab->elf.sgot->size += htab->got_header_size;
}
htab->elf.hgot->root.u.def.value = g_o_t;
}
if (bfd_link_pic (info))
{
struct elf_link_hash_entry *sda = htab->sdata[0].sym;
sda->root.u.def.section = htab->elf.hgot->root.u.def.section;
sda->root.u.def.value = htab->elf.hgot->root.u.def.value;
}
if (info->emitrelocations)
{
struct elf_link_hash_entry *sda = htab->sdata[0].sym;
if (sda != NULL && sda->ref_regular)
sda->root.u.def.section->flags |= SEC_KEEP;
sda = htab->sdata[1].sym;
if (sda != NULL && sda->ref_regular)
sda->root.u.def.section->flags |= SEC_KEEP;
}
if (htab->glink != NULL
&& htab->glink->size != 0
&& htab->elf.dynamic_sections_created)
{
htab->glink_pltresolve = htab->glink->size;
/* Space for the branch table. */
htab->glink->size
+= htab->elf.srelplt->size / (sizeof (Elf32_External_Rela) / 4) - 4;
/* Pad out to align the start of PLTresolve. */
htab->glink->size += -htab->glink->size & (htab->params->ppc476_workaround
? 63 : 15);
htab->glink->size += GLINK_PLTRESOLVE;
if (htab->params->emit_stub_syms)
{
struct elf_link_hash_entry *sh;
sh = elf_link_hash_lookup (&htab->elf, "__glink",
TRUE, FALSE, FALSE);
if (sh == NULL)
return FALSE;
if (sh->root.type == bfd_link_hash_new)
{
sh->root.type = bfd_link_hash_defined;
sh->root.u.def.section = htab->glink;
sh->root.u.def.value = htab->glink_pltresolve;
sh->ref_regular = 1;
sh->def_regular = 1;
sh->ref_regular_nonweak = 1;
sh->forced_local = 1;
sh->non_elf = 0;
sh->root.linker_def = 1;
}
sh = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
TRUE, FALSE, FALSE);
if (sh == NULL)
return FALSE;
if (sh->root.type == bfd_link_hash_new)
{
sh->root.type = bfd_link_hash_defined;
sh->root.u.def.section = htab->glink;
sh->root.u.def.value = htab->glink->size - GLINK_PLTRESOLVE;
sh->ref_regular = 1;
sh->def_regular = 1;
sh->ref_regular_nonweak = 1;
sh->forced_local = 1;
sh->non_elf = 0;
sh->root.linker_def = 1;
}
}
}
if (htab->glink != NULL
&& htab->glink->size != 0
&& htab->glink_eh_frame != NULL
&& !bfd_is_abs_section (htab->glink_eh_frame->output_section)
&& _bfd_elf_eh_frame_present (info))
{
s = htab->glink_eh_frame;
s->size = sizeof (glink_eh_frame_cie) + 20;
if (bfd_link_pic (info))
{
s->size += 4;
if (htab->glink->size - GLINK_PLTRESOLVE + 8 >= 256)
s->size += 4;
}
}
/* We've now determined the sizes of the various dynamic sections.
Allocate memory for them. */
relocs = FALSE;
for (s = htab->elf.dynobj->sections; s != NULL; s = s->next)
{
bfd_boolean strip_section = TRUE;
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->elf.splt
|| s == htab->elf.sgot)
{
/* We'd like to strip these sections if they aren't needed, but if
we've exported dynamic symbols from them we must leave them.
It's too late to tell BFD to get rid of the symbols. */
if (htab->elf.hplt != NULL)
strip_section = FALSE;
/* Strip this section if we don't need it; see the
comment below. */
}
else if (s == htab->elf.iplt
|| s == htab->pltlocal
|| s == htab->glink
|| s == htab->glink_eh_frame
|| s == htab->elf.sgotplt
|| s == htab->sbss
|| s == htab->elf.sdynbss
|| s == htab->elf.sdynrelro
|| s == htab->dynsbss)
{
/* Strip these too. */
}
else if (s == htab->sdata[0].section
|| s == htab->sdata[1].section)
{
strip_section = (s->flags & SEC_KEEP) == 0;
}
else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
{
if (s->size != 0)
{
/* Remember whether there are any relocation sections. */
relocs = TRUE;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (s->size == 0 && strip_section)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. */
s->contents = bfd_zalloc (htab->elf.dynobj, s->size);
if (s->contents == NULL)
return FALSE;
}
if (htab->elf.dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in ppc_elf_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (bfd_link_executable (info))
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
{
if (!add_dynamic_entry (DT_PLTGOT, 0)
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return FALSE;
}
if (htab->plt_type == PLT_NEW
&& htab->glink != NULL
&& htab->glink->size != 0)
{
if (!add_dynamic_entry (DT_PPC_GOT, 0))
return FALSE;
if (!htab->params->no_tls_get_addr_opt
&& htab->tls_get_addr != NULL
&& htab->tls_get_addr->plt.plist != NULL
&& !add_dynamic_entry (DT_PPC_OPT, PPC_OPT_TLS))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
return FALSE;
}
/* If any dynamic relocs apply to a read-only section, then we
need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) == 0)
elf_link_hash_traverse (elf_hash_table (info), maybe_set_textrel,
info);
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
if (htab->is_vxworks
&& !elf_vxworks_add_dynamic_entries (output_bfd, info))
return FALSE;
}
#undef add_dynamic_entry
if (htab->glink_eh_frame != NULL
&& htab->glink_eh_frame->contents != NULL)
{
unsigned char *p = htab->glink_eh_frame->contents;
bfd_vma val;
memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
/* CIE length (rewrite in case little-endian). */
bfd_put_32 (htab->elf.dynobj, sizeof (glink_eh_frame_cie) - 4, p);
p += sizeof (glink_eh_frame_cie);
/* FDE length. */
val = htab->glink_eh_frame->size - 4 - sizeof (glink_eh_frame_cie);
bfd_put_32 (htab->elf.dynobj, val, p);
p += 4;
/* CIE pointer. */
val = p - htab->glink_eh_frame->contents;
bfd_put_32 (htab->elf.dynobj, val, p);
p += 4;
/* Offset to .glink. Set later. */
p += 4;
/* .glink size. */
bfd_put_32 (htab->elf.dynobj, htab->glink->size, p);
p += 4;
/* Augmentation. */
p += 1;
if (bfd_link_pic (info)
&& htab->elf.dynamic_sections_created)
{
bfd_vma adv = (htab->glink->size - GLINK_PLTRESOLVE + 8) >> 2;
if (adv < 64)
*p++ = DW_CFA_advance_loc + adv;
else if (adv < 256)
{
*p++ = DW_CFA_advance_loc1;
*p++ = adv;
}
else if (adv < 65536)
{
*p++ = DW_CFA_advance_loc2;
bfd_put_16 (htab->elf.dynobj, adv, p);
p += 2;
}
else
{
*p++ = DW_CFA_advance_loc4;
bfd_put_32 (htab->elf.dynobj, adv, p);
p += 4;
}
*p++ = DW_CFA_register;
*p++ = 65;
p++;
*p++ = DW_CFA_advance_loc + 4;
*p++ = DW_CFA_restore_extended;
*p++ = 65;
}
BFD_ASSERT ((bfd_vma) ((p + 3 - htab->glink_eh_frame->contents) & -4)
== htab->glink_eh_frame->size);
}
return TRUE;
}
/* Arrange to have _SDA_BASE_ or _SDA2_BASE_ stripped from the output
if it looks like nothing is using them. */
static void
maybe_strip_sdasym (bfd *output_bfd, elf_linker_section_t *lsect)
{
struct elf_link_hash_entry *sda = lsect->sym;
if (sda != NULL && !sda->ref_regular && sda->dynindx == -1)
{
asection *s;
s = bfd_get_section_by_name (output_bfd, lsect->name);
if (s == NULL || bfd_section_removed_from_list (output_bfd, s))
{
s = bfd_get_section_by_name (output_bfd, lsect->bss_name);
if (s == NULL || bfd_section_removed_from_list (output_bfd, s))
{
sda->def_regular = 0;
/* This is somewhat magic. See elf_link_output_extsym. */
sda->ref_dynamic = 1;
sda->forced_local = 0;
}
}
}
}
void
ppc_elf_maybe_strip_sdata_syms (struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
if (htab != NULL)
{
maybe_strip_sdasym (info->output_bfd, &htab->sdata[0]);
maybe_strip_sdasym (info->output_bfd, &htab->sdata[1]);
}
}
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
static bfd_boolean
ppc_elf_hash_symbol (struct elf_link_hash_entry *h)
{
if (h->plt.plist != NULL
&& !h->def_regular
&& (!h->pointer_equality_needed
|| !h->ref_regular_nonweak))
return FALSE;
return _bfd_elf_hash_symbol (h);
}
#define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
/* Relaxation trampolines. r12 is available for clobbering (r11, is
used for some functions that are allowed to break the ABI). */
static const int shared_stub_entry[] =
{
0x7c0802a6, /* mflr 0 */
0x429f0005, /* bcl 20, 31, .Lxxx */
0x7d8802a6, /* mflr 12 */
0x3d8c0000, /* addis 12, 12, (xxx-.Lxxx)@ha */
0x398c0000, /* addi 12, 12, (xxx-.Lxxx)@l */
0x7c0803a6, /* mtlr 0 */
0x7d8903a6, /* mtctr 12 */
0x4e800420, /* bctr */
};
static const int stub_entry[] =
{
0x3d800000, /* lis 12,xxx@ha */
0x398c0000, /* addi 12,12,xxx@l */
0x7d8903a6, /* mtctr 12 */
0x4e800420, /* bctr */
};
struct ppc_elf_relax_info
{
unsigned int workaround_size;
unsigned int picfixup_size;
};
/* This function implements long branch trampolines, and the ppc476
icache bug workaround. Any section needing trampolines or patch
space for the workaround has its size extended so that we can
add trampolines at the end of the section. */
static bfd_boolean
ppc_elf_relax_section (bfd *abfd,
asection *isec,
struct bfd_link_info *link_info,
bfd_boolean *again)
{
struct one_branch_fixup
{
struct one_branch_fixup *next;
asection *tsec;
/* Final link, can use the symbol offset. For a
relocatable link we use the symbol's index. */
bfd_vma toff;
bfd_vma trampoff;
};
Elf_Internal_Shdr *symtab_hdr;
bfd_byte *contents = NULL;
Elf_Internal_Sym *isymbuf = NULL;
Elf_Internal_Rela *internal_relocs = NULL;
Elf_Internal_Rela *irel, *irelend = NULL;
struct one_branch_fixup *branch_fixups = NULL;
struct ppc_elf_relax_info *relax_info = NULL;
unsigned changes = 0;
bfd_boolean workaround_change;
struct ppc_elf_link_hash_table *htab;
bfd_size_type trampbase, trampoff, newsize, picfixup_size;
asection *got2;
bfd_boolean maybe_pasted;
*again = FALSE;
/* No need to do anything with non-alloc or non-code sections. */
if ((isec->flags & SEC_ALLOC) == 0
|| (isec->flags & SEC_CODE) == 0
|| (isec->flags & SEC_LINKER_CREATED) != 0
|| isec->size < 4)
return TRUE;
/* We cannot represent the required PIC relocs in the output, so don't
do anything. The linker doesn't support mixing -shared and -r
anyway. */
if (bfd_link_relocatable (link_info) && bfd_link_pic (link_info))
return TRUE;
htab = ppc_elf_hash_table (link_info);
if (htab == NULL)
return TRUE;
isec->size = (isec->size + 3) & -4;
if (isec->rawsize == 0)
isec->rawsize = isec->size;
trampbase = isec->size;
BFD_ASSERT (isec->sec_info_type == SEC_INFO_TYPE_NONE
|| isec->sec_info_type == SEC_INFO_TYPE_TARGET);
isec->sec_info_type = SEC_INFO_TYPE_TARGET;
if (htab->params->ppc476_workaround
|| htab->params->pic_fixup > 0)
{
if (elf_section_data (isec)->sec_info == NULL)
{
elf_section_data (isec)->sec_info
= bfd_zalloc (abfd, sizeof (struct ppc_elf_relax_info));
if (elf_section_data (isec)->sec_info == NULL)
return FALSE;
}
relax_info = elf_section_data (isec)->sec_info;
trampbase -= relax_info->workaround_size;
}
maybe_pasted = (strcmp (isec->output_section->name, ".init") == 0
|| strcmp (isec->output_section->name, ".fini") == 0);
/* Space for a branch around any trampolines. */
trampoff = trampbase;
if (maybe_pasted && trampbase == isec->rawsize)
trampoff += 4;
symtab_hdr = &elf_symtab_hdr (abfd);
picfixup_size = 0;
if (htab->params->branch_trampolines
|| htab->params->pic_fixup > 0)
{
/* Get a copy of the native relocations. */
if (isec->reloc_count != 0)
{
internal_relocs = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL,
link_info->keep_memory);
if (internal_relocs == NULL)
goto error_return;
}
got2 = bfd_get_section_by_name (abfd, ".got2");
irelend = internal_relocs + isec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++)
{
unsigned long r_type = ELF32_R_TYPE (irel->r_info);
bfd_vma toff, roff;
asection *tsec;
struct one_branch_fixup *f;
size_t insn_offset = 0;
bfd_vma max_branch_offset = 0, val;
bfd_byte *hit_addr;
unsigned long t0;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *isym;
struct plt_entry **plist;
unsigned char sym_type;
switch (r_type)
{
case R_PPC_REL24:
case R_PPC_LOCAL24PC:
case R_PPC_PLTREL24:
case R_PPC_PLTCALL:
max_branch_offset = 1 << 25;
break;
case R_PPC_REL14:
case R_PPC_REL14_BRTAKEN:
case R_PPC_REL14_BRNTAKEN:
max_branch_offset = 1 << 15;
break;
case R_PPC_ADDR16_HA:
if (htab->params->pic_fixup > 0)
break;
continue;
default:
continue;
}
/* Get the value of the symbol referred to by the reloc. */
if (!get_sym_h (&h, &isym, &tsec, NULL, &isymbuf,
ELF32_R_SYM (irel->r_info), abfd))
goto error_return;
if (isym != NULL)
{
if (tsec != NULL)
;
else if (isym->st_shndx == SHN_ABS)
tsec = bfd_abs_section_ptr;
else
continue;
toff = isym->st_value;
sym_type = ELF_ST_TYPE (isym->st_info);
}
else
{
if (tsec != NULL)
toff = h->root.u.def.value;
else if (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
{
unsigned long indx;
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
tsec = bfd_und_section_ptr;
toff = bfd_link_relocatable (link_info) ? indx : 0;
}
else
continue;
/* If this branch is to __tls_get_addr then we may later
optimise away the call. We won't be needing a long-
branch stub in that case. */
if (bfd_link_executable (link_info)
&& h == htab->tls_get_addr
&& irel != internal_relocs)
{
unsigned long t_symndx = ELF32_R_SYM (irel[-1].r_info);
unsigned long t_rtype = ELF32_R_TYPE (irel[-1].r_info);
unsigned int tls_mask = 0;
/* The previous reloc should be one of R_PPC_TLSGD or
R_PPC_TLSLD, or for older object files, a reloc
on the __tls_get_addr arg setup insn. Get tls
mask bits from the symbol on that reloc. */
if (t_symndx < symtab_hdr->sh_info)
{
bfd_vma *local_got_offsets = elf_local_got_offsets (abfd);
if (local_got_offsets != NULL)
{
struct plt_entry **local_plt = (struct plt_entry **)
(local_got_offsets + symtab_hdr->sh_info);
char *lgot_masks = (char *)
(local_plt + symtab_hdr->sh_info);
tls_mask = lgot_masks[t_symndx];
}
}
else
{
struct elf_link_hash_entry *th
= elf_sym_hashes (abfd)[t_symndx - symtab_hdr->sh_info];
while (th->root.type == bfd_link_hash_indirect
|| th->root.type == bfd_link_hash_warning)
th = (struct elf_link_hash_entry *) th->root.u.i.link;
tls_mask
= ((struct ppc_elf_link_hash_entry *) th)->tls_mask;
}
/* The mask bits tell us if the call will be
optimised away. */
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
&& (t_rtype == R_PPC_TLSGD
|| t_rtype == R_PPC_GOT_TLSGD16
|| t_rtype == R_PPC_GOT_TLSGD16_LO))
continue;
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
&& (t_rtype == R_PPC_TLSLD
|| t_rtype == R_PPC_GOT_TLSLD16
|| t_rtype == R_PPC_GOT_TLSLD16_LO))
continue;
}
sym_type = h->type;
}
if (r_type == R_PPC_ADDR16_HA)
{
if (h != NULL
&& !h->def_regular
&& h->protected_def
&& ppc_elf_hash_entry (h)->has_addr16_ha
&& ppc_elf_hash_entry (h)->has_addr16_lo)
picfixup_size += 12;
continue;
}
/* The condition here under which we call find_plt_ent must
match that in relocate_section. If we call find_plt_ent here
but not in relocate_section, or vice versa, then the branch
destination used here may be incorrect. */
plist = NULL;
if (h != NULL)
{
/* We know is_branch_reloc (r_type) is true. */
if (h->type == STT_GNU_IFUNC
|| r_type == R_PPC_PLTREL24)
plist = &h->plt.plist;
}
else if (sym_type == STT_GNU_IFUNC
&& elf_local_got_offsets (abfd) != NULL)
{
bfd_vma *local_got_offsets = elf_local_got_offsets (abfd);
struct plt_entry **local_plt = (struct plt_entry **)
(local_got_offsets + symtab_hdr->sh_info);
plist = local_plt + ELF32_R_SYM (irel->r_info);
}
if (plist != NULL)
{
bfd_vma addend = 0;
struct plt_entry *ent;
if (r_type == R_PPC_PLTREL24 && bfd_link_pic (link_info))
addend = irel->r_addend;
ent = find_plt_ent (plist, got2, addend);
if (ent != NULL)
{
if (htab->plt_type == PLT_NEW
|| h == NULL
|| !htab->elf.dynamic_sections_created
|| h->dynindx == -1)
{
tsec = htab->glink;
toff = ent->glink_offset;
}
else
{
tsec = htab->elf.splt;
toff = ent->plt.offset;
}
}
}
/* If the branch and target are in the same section, you have
no hope of adding stubs. We'll error out later should the
branch overflow. */
if (tsec == isec)
continue;
/* toff is used for the symbol index when the symbol is
undefined and we're doing a relocatable link, so we can't
support addends. It would be possible to do so by
putting the addend in one_branch_fixup but addends on
branches are rare so it hardly seems worth supporting. */
if (bfd_link_relocatable (link_info)
&& tsec == bfd_und_section_ptr
&& r_type != R_PPC_PLTREL24
&& irel->r_addend != 0)
continue;
/* There probably isn't any reason to handle symbols in
SEC_MERGE sections; SEC_MERGE doesn't seem a likely
attribute for a code section, and we are only looking at
branches. However, implement it correctly here as a
reference for other target relax_section functions. */
if (0 && tsec->sec_info_type == SEC_INFO_TYPE_MERGE)
{
/* At this stage in linking, no SEC_MERGE symbol has been
adjusted, so all references to such symbols need to be
passed through _bfd_merged_section_offset. (Later, in
relocate_section, all SEC_MERGE symbols *except* for
section symbols have been adjusted.)
gas may reduce relocations against symbols in SEC_MERGE
sections to a relocation against the section symbol when
the original addend was zero. When the reloc is against
a section symbol we should include the addend in the
offset passed to _bfd_merged_section_offset, since the
location of interest is the original symbol. On the
other hand, an access to "sym+addend" where "sym" is not
a section symbol should not include the addend; Such an
access is presumed to be an offset from "sym"; The
location of interest is just "sym". */
if (sym_type == STT_SECTION
&& r_type != R_PPC_PLTREL24)
toff += irel->r_addend;
toff
= _bfd_merged_section_offset (abfd, &tsec,
elf_section_data (tsec)->sec_info,
toff);
if (sym_type != STT_SECTION
&& r_type != R_PPC_PLTREL24)
toff += irel->r_addend;
}
/* PLTREL24 addends are special. */
else if (r_type != R_PPC_PLTREL24)
toff += irel->r_addend;
/* Attempted -shared link of non-pic code loses. */
if ((!bfd_link_relocatable (link_info)
&& tsec == bfd_und_section_ptr)
|| tsec->output_section == NULL
|| (tsec->owner != NULL
&& (tsec->owner->flags & BFD_PLUGIN) != 0))
continue;
roff = irel->r_offset;
/* Avoid creating a lot of unnecessary fixups when
relocatable if the output section size is such that a
fixup can be created at final link.
The max_branch_offset adjustment allows for some number
of other fixups being needed at final link. */
if (bfd_link_relocatable (link_info)
&& (isec->output_section->rawsize - (isec->output_offset + roff)
< max_branch_offset - (max_branch_offset >> 4)))
continue;
/* If the branch is in range, no need to do anything. */
if (tsec != bfd_und_section_ptr
&& (!bfd_link_relocatable (link_info)
/* A relocatable link may have sections moved during
final link, so do not presume they remain in range. */
|| tsec->output_section == isec->output_section))
{
bfd_vma symaddr, reladdr;
symaddr = tsec->output_section->vma + tsec->output_offset + toff;
reladdr = isec->output_section->vma + isec->output_offset + roff;
if (symaddr - reladdr + max_branch_offset
< 2 * max_branch_offset)
continue;
}
/* Look for an existing fixup to this address. */
for (f = branch_fixups; f ; f = f->next)
if (f->tsec == tsec && f->toff == toff)
break;
if (f == NULL)
{
size_t size;
unsigned long stub_rtype;
val = trampoff - roff;
if (val >= max_branch_offset)
/* Oh dear, we can't reach a trampoline. Don't try to add
one. We'll report an error later. */
continue;
if (bfd_link_pic (link_info))
{
size = 4 * ARRAY_SIZE (shared_stub_entry);
insn_offset = 12;
}
else
{
size = 4 * ARRAY_SIZE (stub_entry);
insn_offset = 0;
}
stub_rtype = R_PPC_RELAX;
if (tsec == htab->elf.splt
|| tsec == htab->glink)
{
stub_rtype = R_PPC_RELAX_PLT;
if (r_type == R_PPC_PLTREL24)
stub_rtype = R_PPC_RELAX_PLTREL24;
}
/* Hijack the old relocation. Since we need two
relocations for this use a "composite" reloc. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
stub_rtype);
irel->r_offset = trampoff + insn_offset;
if (r_type == R_PPC_PLTREL24
&& stub_rtype != R_PPC_RELAX_PLTREL24)
irel->r_addend = 0;
/* Record the fixup so we don't do it again this section. */
f = bfd_malloc (sizeof (*f));
f->next = branch_fixups;
f->tsec = tsec;
f->toff = toff;
f->trampoff = trampoff;
branch_fixups = f;
trampoff += size;
changes++;
}
else
{
val = f->trampoff - roff;
if (val >= max_branch_offset)
continue;
/* Nop out the reloc, since we're finalizing things here. */
irel->r_info = ELF32_R_INFO (0, R_PPC_NONE);
}
/* Get the section contents. */
if (contents == NULL)
{
/* Get cached copy if it exists. */
if (elf_section_data (isec)->this_hdr.contents != NULL)
contents = elf_section_data (isec)->this_hdr.contents;
/* Go get them off disk. */
else if (!bfd_malloc_and_get_section (abfd, isec, &contents))
goto error_return;
}
/* Fix up the existing branch to hit the trampoline. */
hit_addr = contents + roff;
switch (r_type)
{
case R_PPC_REL24:
case R_PPC_LOCAL24PC:
case R_PPC_PLTREL24:
t0 = bfd_get_32 (abfd, hit_addr);
t0 &= ~0x3fffffc;
t0 |= val & 0x3fffffc;
bfd_put_32 (abfd, t0, hit_addr);
break;
case R_PPC_REL14:
case R_PPC_REL14_BRTAKEN:
case R_PPC_REL14_BRNTAKEN:
t0 = bfd_get_32 (abfd, hit_addr);
t0 &= ~0xfffc;
t0 |= val & 0xfffc;
bfd_put_32 (abfd, t0, hit_addr);
break;
}
}
while (branch_fixups != NULL)
{
struct one_branch_fixup *f = branch_fixups;
branch_fixups = branch_fixups->next;
free (f);
}
}
workaround_change = FALSE;
newsize = trampoff;
if (htab->params->ppc476_workaround
&& (!bfd_link_relocatable (link_info)
|| isec->output_section->alignment_power >= htab->params->pagesize_p2))
{
bfd_vma addr, end_addr;
unsigned int crossings;
bfd_vma pagesize = (bfd_vma) 1 << htab->params->pagesize_p2;
addr = isec->output_section->vma + isec->output_offset;
end_addr = addr + trampoff;
addr &= -pagesize;
crossings = ((end_addr & -pagesize) - addr) >> htab->params->pagesize_p2;
if (crossings != 0)
{
/* Keep space aligned, to ensure the patch code itself does
not cross a page. Don't decrease size calculated on a
previous pass as otherwise we might never settle on a layout. */
newsize = 15 - ((end_addr - 1) & 15);
newsize += crossings * 16;
if (relax_info->workaround_size < newsize)
{
relax_info->workaround_size = newsize;
workaround_change = TRUE;
}
/* Ensure relocate_section is called. */
isec->flags |= SEC_RELOC;
}
newsize = trampoff + relax_info->workaround_size;
}
if (htab->params->pic_fixup > 0)
{
picfixup_size -= relax_info->picfixup_size;
if (picfixup_size != 0)
relax_info->picfixup_size += picfixup_size;
newsize += relax_info->picfixup_size;
}
if (changes != 0 || picfixup_size != 0 || workaround_change)
isec->size = newsize;
if (isymbuf != NULL
&& symtab_hdr->contents != (unsigned char *) isymbuf)
{
if (! link_info->keep_memory)
free (isymbuf);
else
{
/* Cache the symbols for elf_link_input_bfd. */
symtab_hdr->contents = (unsigned char *) isymbuf;
}
}
if (contents != NULL
&& elf_section_data (isec)->this_hdr.contents != contents)
{
if (!changes && !link_info->keep_memory)
free (contents);
else
{
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (isec)->this_hdr.contents = contents;
}
}
changes += picfixup_size;
if (changes != 0)
{
/* Append sufficient NOP relocs so we can write out relocation
information for the trampolines. */
Elf_Internal_Shdr *rel_hdr;
Elf_Internal_Rela *new_relocs = bfd_malloc ((changes + isec->reloc_count)
* sizeof (*new_relocs));
unsigned ix;
if (!new_relocs)
goto error_return;
memcpy (new_relocs, internal_relocs,
isec->reloc_count * sizeof (*new_relocs));
for (ix = changes; ix--;)
{
irel = new_relocs + ix + isec->reloc_count;
irel->r_info = ELF32_R_INFO (0, R_PPC_NONE);
}
if (internal_relocs != elf_section_data (isec)->relocs)
free (internal_relocs);
elf_section_data (isec)->relocs = new_relocs;
isec->reloc_count += changes;
rel_hdr = _bfd_elf_single_rel_hdr (isec);
rel_hdr->sh_size += changes * rel_hdr->sh_entsize;
}
else if (internal_relocs != NULL
&& elf_section_data (isec)->relocs != internal_relocs)
free (internal_relocs);
*again = changes != 0 || workaround_change;
return TRUE;
error_return:
while (branch_fixups != NULL)
{
struct one_branch_fixup *f = branch_fixups;
branch_fixups = branch_fixups->next;
free (f);
}
if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
free (isymbuf);
if (contents != NULL
&& elf_section_data (isec)->this_hdr.contents != contents)
free (contents);
if (internal_relocs != NULL
&& elf_section_data (isec)->relocs != internal_relocs)
free (internal_relocs);
return FALSE;
}
/* What to do when ld finds relocations against symbols defined in
discarded sections. */
static unsigned int
ppc_elf_action_discarded (asection *sec)
{
if (strcmp (".fixup", sec->name) == 0)
return 0;
if (strcmp (".got2", sec->name) == 0)
return 0;
return _bfd_elf_default_action_discarded (sec);
}
/* Fill in the address for a pointer generated in a linker section. */
static bfd_vma
elf_finish_pointer_linker_section (bfd *input_bfd,
elf_linker_section_t *lsect,
struct elf_link_hash_entry *h,
bfd_vma relocation,
const Elf_Internal_Rela *rel)
{
elf_linker_section_pointers_t *linker_section_ptr;
BFD_ASSERT (lsect != NULL);
if (h != NULL)
{
/* Handle global symbol. */
struct ppc_elf_link_hash_entry *eh;
eh = (struct ppc_elf_link_hash_entry *) h;
BFD_ASSERT (eh->elf.def_regular);
linker_section_ptr = eh->linker_section_pointer;
}
else
{
/* Handle local symbol. */
unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
BFD_ASSERT (is_ppc_elf (input_bfd));
BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
linker_section_ptr = elf_local_ptr_offsets (input_bfd)[r_symndx];
}
linker_section_ptr = elf_find_pointer_linker_section (linker_section_ptr,
rel->r_addend,
lsect);
BFD_ASSERT (linker_section_ptr != NULL);
/* Offset will always be a multiple of four, so use the bottom bit
as a "written" flag. */
if ((linker_section_ptr->offset & 1) == 0)
{
bfd_put_32 (lsect->section->owner,
relocation + linker_section_ptr->addend,
lsect->section->contents + linker_section_ptr->offset);
linker_section_ptr->offset += 1;
}
relocation = (lsect->section->output_section->vma
+ lsect->section->output_offset
+ linker_section_ptr->offset - 1
- SYM_VAL (lsect->sym));
#ifdef DEBUG
fprintf (stderr,
"Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
lsect->name, (long) relocation, (long) relocation);
#endif
return relocation;
}
#define PPC_LO(v) ((v) & 0xffff)
#define PPC_HI(v) (((v) >> 16) & 0xffff)
#define PPC_HA(v) PPC_HI ((v) + 0x8000)
static void
write_glink_stub (struct elf_link_hash_entry *h, struct plt_entry *ent,
asection *plt_sec, unsigned char *p,
struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
bfd *output_bfd = info->output_bfd;
bfd_vma plt;
unsigned char *end = p + GLINK_ENTRY_SIZE (htab, h);
if (h != NULL
&& h == htab->tls_get_addr
&& !htab->params->no_tls_get_addr_opt)
{
bfd_put_32 (output_bfd, LWZ_11_3, p);
p += 4;
bfd_put_32 (output_bfd, LWZ_12_3 + 4, p);
p += 4;
bfd_put_32 (output_bfd, MR_0_3, p);
p += 4;
bfd_put_32 (output_bfd, CMPWI_11_0, p);
p += 4;
bfd_put_32 (output_bfd, ADD_3_12_2, p);
p += 4;
bfd_put_32 (output_bfd, BEQLR, p);
p += 4;
bfd_put_32 (output_bfd, MR_3_0, p);
p += 4;
bfd_put_32 (output_bfd, NOP, p);
p += 4;
}
plt = ((ent->plt.offset & ~1)
+ plt_sec->output_section->vma
+ plt_sec->output_offset);
if (bfd_link_pic (info))
{
bfd_vma got = 0;
if (ent->addend >= 32768)
got = (ent->addend
+ ent->sec->output_section->vma
+ ent->sec->output_offset);
else if (htab->elf.hgot != NULL)
got = SYM_VAL (htab->elf.hgot);
plt -= got;
if (plt + 0x8000 < 0x10000)
bfd_put_32 (output_bfd, LWZ_11_30 + PPC_LO (plt), p);
else
{
bfd_put_32 (output_bfd, ADDIS_11_30 + PPC_HA (plt), p);
p += 4;
bfd_put_32 (output_bfd, LWZ_11_11 + PPC_LO (plt), p);
}
}
else
{
bfd_put_32 (output_bfd, LIS_11 + PPC_HA (plt), p);
p += 4;
bfd_put_32 (output_bfd, LWZ_11_11 + PPC_LO (plt), p);
}
p += 4;
bfd_put_32 (output_bfd, MTCTR_11, p);
p += 4;
bfd_put_32 (output_bfd, BCTR, p);
p += 4;
while (p < end)
{
bfd_put_32 (output_bfd, htab->params->ppc476_workaround ? BA : NOP, p);
p += 4;
}
}
/* Return true if symbol is defined statically. */
static bfd_boolean
is_static_defined (struct elf_link_hash_entry *h)
{
return ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->root.u.def.section != NULL
&& h->root.u.def.section->output_section != NULL);
}
/* If INSN is an opcode that may be used with an @tls operand, return
the transformed insn for TLS optimisation, otherwise return 0. If
REG is non-zero only match an insn with RB or RA equal to REG. */
unsigned int
_bfd_elf_ppc_at_tls_transform (unsigned int insn, unsigned int reg)
{
unsigned int rtra;
if ((insn & (0x3fu << 26)) != 31 << 26)
return 0;
if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
rtra = insn & ((1 << 26) - (1 << 16));
else if (((insn >> 16) & 0x1f) == reg)
rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
else
return 0;
if ((insn & (0x3ff << 1)) == 266 << 1)
/* add -> addi. */
insn = 14 << 26;
else if ((insn & (0x1f << 1)) == 23 << 1
&& ((insn & (0x1f << 6)) < 14 << 6
|| ((insn & (0x1f << 6)) >= 16 << 6
&& (insn & (0x1f << 6)) < 24 << 6)))
/* load and store indexed -> dform. */
insn = (32u | ((insn >> 6) & 0x1f)) << 26;
else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
/* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
insn = ((58u | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
/* lwax -> lwa. */
insn = (58u << 26) | 2;
else
return 0;
insn |= rtra;
return insn;
}
/* If INSN is an opcode that may be used with an @tprel operand, return
the transformed insn for an undefined weak symbol, ie. with the
thread pointer REG operand removed. Otherwise return 0. */
unsigned int
_bfd_elf_ppc_at_tprel_transform (unsigned int insn, unsigned int reg)
{
if ((insn & (0x1f << 16)) == reg << 16
&& ((insn & (0x3fu << 26)) == 14u << 26 /* addi */
|| (insn & (0x3fu << 26)) == 15u << 26 /* addis */
|| (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
|| (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
|| (insn & (0x3fu << 26)) == 36u << 26 /* stw */
|| (insn & (0x3fu << 26)) == 38u << 26 /* stb */
|| (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
|| (insn & (0x3fu << 26)) == 42u << 26 /* lha */
|| (insn & (0x3fu << 26)) == 44u << 26 /* sth */
|| (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
|| (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
|| (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
|| (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
|| (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
|| (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
|| ((insn & (0x3fu << 26)) == 58u << 26 /* lwa,ld,lmd */
&& (insn & 3) != 1)
|| ((insn & (0x3fu << 26)) == 62u << 26 /* std, stmd */
&& ((insn & 3) == 0 || (insn & 3) == 3))))
{
insn &= ~(0x1f << 16);
}
else if ((insn & (0x1f << 21)) == reg << 21
&& ((insn & (0x3eu << 26)) == 24u << 26 /* ori, oris */
|| (insn & (0x3eu << 26)) == 26u << 26 /* xori,xoris */
|| (insn & (0x3eu << 26)) == 28u << 26 /* andi,andis */))
{
insn &= ~(0x1f << 21);
insn |= (insn & (0x1f << 16)) << 5;
if ((insn & (0x3eu << 26)) == 26u << 26 /* xori,xoris */)
insn -= 2 >> 26; /* convert to ori,oris */
}
else
insn = 0;
return insn;
}
static bfd_boolean
is_insn_ds_form (unsigned int insn)
{
return ((insn & (0x3fu << 26)) == 58u << 26 /* ld,ldu,lwa */
|| (insn & (0x3fu << 26)) == 62u << 26 /* std,stdu,stq */
|| (insn & (0x3fu << 26)) == 57u << 26 /* lfdp */
|| (insn & (0x3fu << 26)) == 61u << 26 /* stfdp */);
}
static bfd_boolean
is_insn_dq_form (unsigned int insn)
{
return ((insn & (0x3fu << 26)) == 56u << 26 /* lq */
|| ((insn & (0x3fu << 26)) == (61u << 26) /* lxv, stxv */
&& (insn & 3) == 1));
}
/* The RELOCATE_SECTION function is called by the ELF backend linker
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjust the section contents as
necessary, and (if using Rela relocs and generating a
relocatable output file) adjusting the reloc addend as
necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocatable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
ppc_elf_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
struct ppc_elf_link_hash_table *htab;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *wrel;
Elf_Internal_Rela *relend;
Elf_Internal_Rela outrel;
asection *got2;
bfd_vma *local_got_offsets;
bfd_boolean ret = TRUE;
bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
bfd_boolean is_vxworks_tls;
unsigned int picfixup_size = 0;
struct ppc_elf_relax_info *relax_info = NULL;
#ifdef DEBUG
_bfd_error_handler ("ppc_elf_relocate_section called for %pB section %pA, "
"%ld relocations%s",
input_bfd, input_section,
(long) input_section->reloc_count,
(bfd_link_relocatable (info)) ? " (relocatable)" : "");
#endif
if (!is_ppc_elf (input_bfd))
{
bfd_set_error (bfd_error_wrong_format);
return FALSE;
}
got2 = bfd_get_section_by_name (input_bfd, ".got2");
/* Initialize howto table if not already done. */
if (!ppc_elf_howto_table[R_PPC_ADDR32])
ppc_elf_howto_init ();
htab = ppc_elf_hash_table (info);
local_got_offsets = elf_local_got_offsets (input_bfd);
symtab_hdr = &elf_symtab_hdr (input_bfd);
sym_hashes = elf_sym_hashes (input_bfd);
/* We have to handle relocations in vxworks .tls_vars sections
specially, because the dynamic loader is 'weird'. */
is_vxworks_tls = (htab->is_vxworks && bfd_link_pic (info)
&& !strcmp (input_section->output_section->name,
".tls_vars"));
if (input_section->sec_info_type == SEC_INFO_TYPE_TARGET)
relax_info = elf_section_data (input_section)->sec_info;
rel = wrel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; wrel++, rel++)
{
enum elf_ppc_reloc_type r_type;
bfd_vma addend;
bfd_reloc_status_type r;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
const char *sym_name;
reloc_howto_type *howto;
unsigned long r_symndx;
bfd_vma relocation;
bfd_vma branch_bit, from;
bfd_boolean unresolved_reloc, save_unresolved_reloc;
bfd_boolean warned;
unsigned int tls_type, tls_mask, tls_gd;
struct plt_entry **ifunc, **plt_list;
struct reloc_howto_struct alt_howto;
again:
r_type = ELF32_R_TYPE (rel->r_info);
sym = NULL;
sec = NULL;
h = NULL;
unresolved_reloc = FALSE;
warned = FALSE;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
}
else
{
bfd_boolean ignored;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
sym_name = h->root.root.string;
}
if (sec != NULL && discarded_section (sec))
{
/* For relocs against symbols from removed linkonce sections,
or sections discarded by a linker script, we just want the
section contents zeroed. Avoid any special processing. */
howto = NULL;
if (r_type < R_PPC_max)
howto = ppc_elf_howto_table[r_type];
_bfd_clear_contents (howto, input_bfd, input_section,
contents, rel->r_offset);
wrel->r_offset = rel->r_offset;
wrel->r_info = 0;
wrel->r_addend = 0;
/* For ld -r, remove relocations in debug sections against
symbols defined in discarded sections. Not done for
non-debug to preserve relocs in .eh_frame which the
eh_frame editing code expects to be present. */
if (bfd_link_relocatable (info)
&& (input_section->flags & SEC_DEBUGGING))
wrel--;
continue;
}
if (bfd_link_relocatable (info))
{
if (got2 != NULL
&& r_type == R_PPC_PLTREL24
&& rel->r_addend != 0)
{
/* R_PPC_PLTREL24 is rather special. If non-zero, the
addend specifies the GOT pointer offset within .got2. */
rel->r_addend += got2->output_offset;
}
if (r_type != R_PPC_RELAX_PLT
&& r_type != R_PPC_RELAX_PLTREL24
&& r_type != R_PPC_RELAX)
goto copy_reloc;
}
/* TLS optimizations. Replace instruction sequences and relocs
based on information we collected in tls_optimize. We edit
RELOCS so that --emit-relocs will output something sensible
for the final instruction stream. */
tls_mask = 0;
tls_gd = 0;
if (h != NULL)
tls_mask = ((struct ppc_elf_link_hash_entry *) h)->tls_mask;
else if (local_got_offsets != NULL)
{
struct plt_entry **local_plt;
char *lgot_masks;
local_plt
= (struct plt_entry **) (local_got_offsets + symtab_hdr->sh_info);
lgot_masks = (char *) (local_plt + symtab_hdr->sh_info);
tls_mask = lgot_masks[r_symndx];
}
/* Ensure reloc mapping code below stays sane. */
if ((R_PPC_GOT_TLSLD16 & 3) != (R_PPC_GOT_TLSGD16 & 3)
|| (R_PPC_GOT_TLSLD16_LO & 3) != (R_PPC_GOT_TLSGD16_LO & 3)
|| (R_PPC_GOT_TLSLD16_HI & 3) != (R_PPC_GOT_TLSGD16_HI & 3)
|| (R_PPC_GOT_TLSLD16_HA & 3) != (R_PPC_GOT_TLSGD16_HA & 3)
|| (R_PPC_GOT_TLSLD16 & 3) != (R_PPC_GOT_TPREL16 & 3)
|| (R_PPC_GOT_TLSLD16_LO & 3) != (R_PPC_GOT_TPREL16_LO & 3)
|| (R_PPC_GOT_TLSLD16_HI & 3) != (R_PPC_GOT_TPREL16_HI & 3)
|| (R_PPC_GOT_TLSLD16_HA & 3) != (R_PPC_GOT_TPREL16_HA & 3))
abort ();
switch (r_type)
{
default:
break;
case R_PPC_GOT_TPREL16:
case R_PPC_GOT_TPREL16_LO:
if ((tls_mask & TLS_TLS) != 0
&& (tls_mask & TLS_TPREL) == 0)
{
bfd_vma insn;
insn = bfd_get_32 (input_bfd,
contents + rel->r_offset - d_offset);
insn &= 31 << 21;
insn |= 0x3c020000; /* addis 0,2,0 */
bfd_put_32 (input_bfd, insn,
contents + rel->r_offset - d_offset);
r_type = R_PPC_TPREL16_HA;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_PPC_TLS:
if ((tls_mask & TLS_TLS) != 0
&& (tls_mask & TLS_TPREL) == 0)
{
bfd_vma insn;
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn = _bfd_elf_ppc_at_tls_transform (insn, 2);
if (insn == 0)
abort ();
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_PPC_TPREL16_LO;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
/* Was PPC_TLS which sits on insn boundary, now
PPC_TPREL16_LO which is at low-order half-word. */
rel->r_offset += d_offset;
}
break;
case R_PPC_GOT_TLSGD16_HI:
case R_PPC_GOT_TLSGD16_HA:
tls_gd = TLS_GDIE;
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
goto tls_gdld_hi;
break;
case R_PPC_GOT_TLSLD16_HI:
case R_PPC_GOT_TLSLD16_HA:
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
{
tls_gdld_hi:
if ((tls_mask & tls_gd) != 0)
r_type = (((r_type - (R_PPC_GOT_TLSGD16 & 3)) & 3)
+ R_PPC_GOT_TPREL16);
else
{
rel->r_offset -= d_offset;
bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
r_type = R_PPC_NONE;
}
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_PPC_GOT_TLSGD16:
case R_PPC_GOT_TLSGD16_LO:
tls_gd = TLS_GDIE;
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
goto tls_ldgd_opt;
break;
case R_PPC_GOT_TLSLD16:
case R_PPC_GOT_TLSLD16_LO:
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
{
unsigned int insn1, insn2;
bfd_vma offset;
tls_ldgd_opt:
offset = (bfd_vma) -1;
/* If not using the newer R_PPC_TLSGD/LD to mark
__tls_get_addr calls, we must trust that the call
stays with its arg setup insns, ie. that the next
reloc is the __tls_get_addr call associated with
the current reloc. Edit both insns. */
if (input_section->nomark_tls_get_addr
&& rel + 1 < relend
&& branch_reloc_hash_match (input_bfd, rel + 1,
htab->tls_get_addr))
offset = rel[1].r_offset;
/* We read the low GOT_TLS insn because we need to keep
the destination reg. It may be something other than
the usual r3, and moved to r3 before the call by
intervening code. */
insn1 = bfd_get_32 (input_bfd,
contents + rel->r_offset - d_offset);
if ((tls_mask & tls_gd) != 0)
{
/* IE */
insn1 &= (0x1f << 21) | (0x1f << 16);
insn1 |= 32u << 26; /* lwz */
if (offset != (bfd_vma) -1)
{
rel[1].r_info = ELF32_R_INFO (STN_UNDEF, R_PPC_NONE);
insn2 = 0x7c631214; /* add 3,3,2 */
bfd_put_32 (input_bfd, insn2, contents + offset);
}
r_type = (((r_type - (R_PPC_GOT_TLSGD16 & 3)) & 3)
+ R_PPC_GOT_TPREL16);
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else
{
/* LE */
insn1 &= 0x1f << 21;
insn1 |= 0x3c020000; /* addis r,2,0 */
if (tls_gd == 0)
{
/* Was an LD reloc. */
for (r_symndx = 0;
r_symndx < symtab_hdr->sh_info;
r_symndx++)
if (local_sections[r_symndx] == sec)
break;
if (r_symndx >= symtab_hdr->sh_info)
r_symndx = STN_UNDEF;
rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
if (r_symndx != STN_UNDEF)
rel->r_addend -= (local_syms[r_symndx].st_value
+ sec->output_offset
+ sec->output_section->vma);
}
r_type = R_PPC_TPREL16_HA;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
if (offset != (bfd_vma) -1)
{
rel[1].r_info = ELF32_R_INFO (r_symndx, R_PPC_TPREL16_LO);
rel[1].r_offset = offset + d_offset;
rel[1].r_addend = rel->r_addend;
insn2 = 0x38630000; /* addi 3,3,0 */
bfd_put_32 (input_bfd, insn2, contents + offset);
}
}
bfd_put_32 (input_bfd, insn1,
contents + rel->r_offset - d_offset);
if (tls_gd == 0)
{
/* We changed the symbol on an LD reloc. Start over
in order to get h, sym, sec etc. right. */
goto again;
}
}
break;
case R_PPC_TLSGD:
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
&& rel + 1 < relend)
{
unsigned int insn2;
bfd_vma offset = rel->r_offset;
if (is_plt_seq_reloc (ELF32_R_TYPE (rel[1].r_info)))
{
bfd_put_32 (input_bfd, NOP, contents + offset);
rel[1].r_info = ELF32_R_INFO (STN_UNDEF, R_PPC_NONE);
break;
}
if ((tls_mask & TLS_GDIE) != 0)
{
/* IE */
r_type = R_PPC_NONE;
insn2 = 0x7c631214; /* add 3,3,2 */
}
else
{
/* LE */
r_type = R_PPC_TPREL16_LO;
rel->r_offset += d_offset;
insn2 = 0x38630000; /* addi 3,3,0 */
}
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
bfd_put_32 (input_bfd, insn2, contents + offset);
/* Zap the reloc on the _tls_get_addr call too. */
BFD_ASSERT (offset == rel[1].r_offset);
rel[1].r_info = ELF32_R_INFO (STN_UNDEF, R_PPC_NONE);
}
break;
case R_PPC_TLSLD:
if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
&& rel + 1 < relend)
{
unsigned int insn2;
if (is_plt_seq_reloc (ELF32_R_TYPE (rel[1].r_info)))
{
bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
rel[1].r_info = ELF32_R_INFO (STN_UNDEF, R_PPC_NONE);
break;
}
for (r_symndx = 0;
r_symndx < symtab_hdr->sh_info;
r_symndx++)
if (local_sections[r_symndx] == sec)
break;
if (r_symndx >= symtab_hdr->sh_info)
r_symndx = STN_UNDEF;
rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
if (r_symndx != STN_UNDEF)
rel->r_addend -= (local_syms[r_symndx].st_value
+ sec->output_offset
+ sec->output_section->vma);
rel->r_info = ELF32_R_INFO (r_symndx, R_PPC_TPREL16_LO);
rel->r_offset += d_offset;
insn2 = 0x38630000; /* addi 3,3,0 */
bfd_put_32 (input_bfd, insn2,
contents + rel->r_offset - d_offset);
/* Zap the reloc on the _tls_get_addr call too. */
BFD_ASSERT (rel->r_offset - d_offset == rel[1].r_offset);
rel[1].r_info = ELF32_R_INFO (STN_UNDEF, R_PPC_NONE);
goto again;
}
break;
}
/* Handle other relocations that tweak non-addend part of insn. */
branch_bit = 0;
switch (r_type)
{
default:
break;
/* Branch taken prediction relocations. */
case R_PPC_ADDR14_BRTAKEN:
case R_PPC_REL14_BRTAKEN:
branch_bit = BRANCH_PREDICT_BIT;
/* Fall through. */
/* Branch not taken prediction relocations. */
case R_PPC_ADDR14_BRNTAKEN:
case R_PPC_REL14_BRNTAKEN:
{
unsigned int insn;
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn &= ~BRANCH_PREDICT_BIT;
insn |= branch_bit;
from = (rel->r_offset
+ input_section->output_offset
+ input_section->output_section->vma);
/* Invert 'y' bit if not the default. */
if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
insn ^= BRANCH_PREDICT_BIT;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
}
break;
case R_PPC_PLT16_HA:
{
unsigned int insn;
insn = bfd_get_32 (input_bfd,
contents + rel->r_offset - d_offset);
if ((insn & (0x3fu << 26)) == 15u << 26
&& (insn & (0x1f << 16)) != 0)
{
if (!bfd_link_pic (info))
{
/* Convert addis to lis. */
insn &= ~(0x1f << 16);
bfd_put_32 (input_bfd, insn,
contents + rel->r_offset - d_offset);
}
}
else if (bfd_link_pic (info))
info->callbacks->einfo
(_("%P: %H: error: %s with unexpected instruction %x\n"),
input_bfd, input_section, rel->r_offset,
"R_PPC_PLT16_HA", insn);
}
break;
}
if (ELIMINATE_COPY_RELOCS
&& h != NULL
&& !h->def_regular
&& h->protected_def
&& ppc_elf_hash_entry (h)->has_addr16_ha
&& ppc_elf_hash_entry (h)->has_addr16_lo
&& htab->params->pic_fixup > 0)
{
/* Convert lis;addi or lis;load/store accessing a protected
variable defined in a shared library to PIC. */
unsigned int insn;
if (r_type == R_PPC_ADDR16_HA)
{
insn = bfd_get_32 (input_bfd,
contents + rel->r_offset - d_offset);
if ((insn & (0x3fu << 26)) == (15u << 26)
&& (insn & (0x1f << 16)) == 0 /* lis */)
{
bfd_byte *p;
bfd_vma off;
bfd_vma got_addr;
p = (contents + input_section->size
- relax_info->workaround_size
- relax_info->picfixup_size
+ picfixup_size);
off = (p - contents) - (rel->r_offset - d_offset);
if (off > 0x1fffffc || (off & 3) != 0)
info->callbacks->einfo
(_("%H: fixup branch overflow\n"),
input_bfd, input_section, rel->r_offset);
bfd_put_32 (input_bfd, B | off,
contents + rel->r_offset - d_offset);
got_addr = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ (h->got.offset & ~1));
wrel->r_offset = (p - contents) + d_offset;
wrel->r_info = ELF32_R_INFO (0, R_PPC_ADDR16_HA);
wrel->r_addend = got_addr;
insn &= ~0xffff;
insn |= ((unsigned int) (got_addr + 0x8000) >> 16) & 0xffff;
bfd_put_32 (input_bfd, insn, p);
/* Convert lis to lwz, loading address from GOT. */
insn &= ~0xffff;
insn ^= (32u ^ 15u) << 26;
insn |= (insn & (0x1f << 21)) >> 5;
insn |= got_addr & 0xffff;
bfd_put_32 (input_bfd, insn, p + 4);
bfd_put_32 (input_bfd, B | ((-4 - off) & 0x3ffffff), p + 8);
picfixup_size += 12;
/* Use one of the spare relocs, so --emit-relocs
output is reasonable. */
memmove (rel + 1, rel, (relend - rel - 1) * sizeof (*rel));
wrel++, rel++;
rel->r_offset = wrel[-1].r_offset + 4;
rel->r_info = ELF32_R_INFO (0, R_PPC_ADDR16_LO);
rel->r_addend = wrel[-1].r_addend;
/* Continue on as if we had a got reloc, to output
dynamic reloc. */
r_type = R_PPC_GOT16_LO;
}
else
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): error: "
"%s with unexpected instruction %#x"),
input_bfd, input_section, (uint64_t) rel->r_offset,
"R_PPC_ADDR16_HA", insn);
}
else if (r_type == R_PPC_ADDR16_LO)
{
insn = bfd_get_32 (input_bfd,
contents + rel->r_offset - d_offset);
if ((insn & (0x3fu << 26)) == 14u << 26 /* addi */
|| (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
|| (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
|| (insn & (0x3fu << 26)) == 36u << 26 /* stw */
|| (insn & (0x3fu << 26)) == 38u << 26 /* stb */
|| (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
|| (insn & (0x3fu << 26)) == 42u << 26 /* lha */
|| (insn & (0x3fu << 26)) == 44u << 26 /* sth */
|| (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
|| (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
|| (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
|| (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
|| (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
|| (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
|| ((insn & (0x3fu << 26)) == 58u << 26 /* lwa,ld,lmd */
&& (insn & 3) != 1)
|| ((insn & (0x3fu << 26)) == 62u << 26 /* std, stmd */
&& ((insn & 3) == 0 || (insn & 3) == 3)))
{
/* Arrange to apply the reloc addend, if any. */
relocation = 0;
unresolved_reloc = FALSE;
rel->r_info = ELF32_R_INFO (0, r_type);
}
else
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): error: "
"%s with unexpected instruction %#x"),
input_bfd, input_section, (uint64_t) rel->r_offset,
"R_PPC_ADDR16_LO", insn);
}
}
ifunc = NULL;
if (!htab->is_vxworks)
{
struct plt_entry *ent;
if (h != NULL)
{
if (h->type == STT_GNU_IFUNC)
ifunc = &h->plt.plist;
}
else if (local_got_offsets != NULL
&& ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
{
struct plt_entry **local_plt;
local_plt = (struct plt_entry **) (local_got_offsets
+ symtab_hdr->sh_info);
ifunc = local_plt + r_symndx;
}
ent = NULL;
if (ifunc != NULL
&& (!bfd_link_pic (info)
|| is_branch_reloc (r_type)
|| r_type == R_PPC_PLT16_LO
|| r_type == R_PPC_PLT16_HI
|| r_type == R_PPC_PLT16_HA))
{
addend = 0;
if (bfd_link_pic (info)
&& (r_type == R_PPC_PLTREL24
|| r_type == R_PPC_PLT16_LO
|| r_type == R_PPC_PLT16_HI
|| r_type == R_PPC_PLT16_HA))
addend = rel->r_addend;
ent = find_plt_ent (ifunc, got2, addend);
}
if (ent != NULL)
{
if (bfd_link_pic (info)
&& ent->sec != got2
&& htab->plt_type != PLT_NEW
&& (!htab->elf.dynamic_sections_created
|| h == NULL
|| h->dynindx == -1))
{
/* Uh oh, we are going to create a pic glink stub
for an ifunc (here for h == NULL and later in
finish_dynamic_symbol for h != NULL), and
apparently are using code compiled with
-mbss-plt. The difficulty is that -mbss-plt code
gives no indication via a magic PLTREL24 addend
whether r30 is equal to _GLOBAL_OFFSET_TABLE_ or
is pointing into a .got2 section (and how far
into .got2). */
info->callbacks->einfo
/* xgettext:c-format */
(_("%X%H: unsupported bss-plt -fPIC ifunc %s\n"),
input_bfd, input_section, rel->r_offset, sym_name);
}
unresolved_reloc = FALSE;
if (htab->plt_type == PLT_NEW
|| !htab->elf.dynamic_sections_created
|| h == NULL
|| h->dynindx == -1)
relocation = (htab->glink->output_section->vma
+ htab->glink->output_offset
+ (ent->glink_offset & ~1));
else
relocation = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ ent->plt.offset);
}
}
addend = rel->r_addend;
save_unresolved_reloc = unresolved_reloc;
howto = NULL;
if (r_type < R_PPC_max)
howto = ppc_elf_howto_table[r_type];
switch (r_type)
{
default:
break;
case R_PPC_TPREL16_HA:
if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
{
bfd_byte *p = contents + (rel->r_offset & ~3);
unsigned int insn = bfd_get_32 (input_bfd, p);
if ((insn & ((0x3fu << 26) | 0x1f << 16))
!= ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
/* xgettext:c-format */
info->callbacks->minfo
(_("%H: warning: %s unexpected insn %#x.\n"),
input_bfd, input_section, rel->r_offset, howto->name, insn);
else
bfd_put_32 (input_bfd, NOP, p);
}
break;
case R_PPC_TPREL16_LO:
if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
{
bfd_byte *p = contents + (rel->r_offset & ~3);
unsigned int insn = bfd_get_32 (input_bfd, p);
insn &= ~(0x1f << 16);
insn |= 2 << 16;
bfd_put_32 (input_bfd, insn, p);
}
break;
}
tls_type = 0;
switch (r_type)
{
default:
/* xgettext:c-format */
_bfd_error_handler (_("%pB: %s unsupported"),
input_bfd, howto->name);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
goto copy_reloc;
case R_PPC_NONE:
case R_PPC_TLS:
case R_PPC_TLSGD:
case R_PPC_TLSLD:
case R_PPC_EMB_MRKREF:
case R_PPC_GNU_VTINHERIT:
case R_PPC_GNU_VTENTRY:
goto copy_reloc;
/* GOT16 relocations. Like an ADDR16 using the symbol's
address in the GOT as relocation value instead of the
symbol's value itself. Also, create a GOT entry for the
symbol and put the symbol value there. */
case R_PPC_GOT_TLSGD16:
case R_PPC_GOT_TLSGD16_LO:
case R_PPC_GOT_TLSGD16_HI:
case R_PPC_GOT_TLSGD16_HA:
tls_type = TLS_TLS | TLS_GD;
goto dogot;
case R_PPC_GOT_TLSLD16:
case R_PPC_GOT_TLSLD16_LO:
case R_PPC_GOT_TLSLD16_HI:
case R_PPC_GOT_TLSLD16_HA:
tls_type = TLS_TLS | TLS_LD;
goto dogot;
case R_PPC_GOT_TPREL16:
case R_PPC_GOT_TPREL16_LO:
case R_PPC_GOT_TPREL16_HI:
case R_PPC_GOT_TPREL16_HA:
tls_type = TLS_TLS | TLS_TPREL;
goto dogot;
case R_PPC_GOT_DTPREL16:
case R_PPC_GOT_DTPREL16_LO:
case R_PPC_GOT_DTPREL16_HI:
case R_PPC_GOT_DTPREL16_HA:
tls_type = TLS_TLS | TLS_DTPREL;
goto dogot;
case R_PPC_GOT16:
case R_PPC_GOT16_LO:
case R_PPC_GOT16_HI:
case R_PPC_GOT16_HA:
tls_mask = 0;
dogot:
{
/* Relocation is to the entry for this symbol in the global
offset table. */
bfd_vma off;
bfd_vma *offp;
unsigned long indx;
if (htab->elf.sgot == NULL)
abort ();
indx = 0;
if (tls_type == (TLS_TLS | TLS_LD)
&& SYMBOL_REFERENCES_LOCAL (info, h))
offp = &htab->tlsld_got.offset;
else if (h != NULL)
{
if (!htab->elf.dynamic_sections_created
|| h->dynindx == -1
|| SYMBOL_REFERENCES_LOCAL (info, h)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file. */
;
else
{
indx = h->dynindx;
unresolved_reloc = FALSE;
}
offp = &h->got.offset;
}
else
{
if (local_got_offsets == NULL)
abort ();
offp = &local_got_offsets[r_symndx];
}
/* The offset must always be a multiple of 4. We use the
least significant bit to record whether we have already
processed this entry. */
off = *offp;
if ((off & 1) != 0)
off &= ~1;
else
{
unsigned int tls_m = ((tls_mask & TLS_TLS) != 0
? tls_mask & (TLS_LD | TLS_GD | TLS_DTPREL
| TLS_TPREL | TLS_GDIE)
: 0);
if (offp == &htab->tlsld_got.offset)
tls_m = TLS_LD;
else if ((tls_m & TLS_LD) != 0
&& SYMBOL_REFERENCES_LOCAL (info, h))
tls_m &= ~TLS_LD;
/* We might have multiple got entries for this sym.
Initialize them all. */
do
{
int tls_ty = 0;
if ((tls_m & TLS_LD) != 0)
{
tls_ty = TLS_TLS | TLS_LD;
tls_m &= ~TLS_LD;
}
else if ((tls_m & TLS_GD) != 0)
{
tls_ty = TLS_TLS | TLS_GD;
tls_m &= ~TLS_GD;
}
else if ((tls_m & TLS_DTPREL) != 0)
{
tls_ty = TLS_TLS | TLS_DTPREL;
tls_m &= ~TLS_DTPREL;
}
else if ((tls_m & (TLS_TPREL | TLS_GDIE)) != 0)
{
tls_ty = TLS_TLS | TLS_TPREL;
tls_m = 0;
}
/* Generate relocs for the dynamic linker. */
if (indx != 0
|| (bfd_link_pic (info)
&& (h == NULL
|| !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
&& !(tls_ty != 0
&& bfd_link_executable (info)
&& SYMBOL_REFERENCES_LOCAL (info, h))))
{
asection *rsec = htab->elf.srelgot;
bfd_byte * loc;
if (ifunc != NULL)
{
rsec = htab->elf.irelplt;
if (indx == 0)
htab->local_ifunc_resolver = 1;
else if (is_static_defined (h))
htab->maybe_local_ifunc_resolver = 1;
}
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ off);
outrel.r_addend = 0;
if (tls_ty & (TLS_LD | TLS_GD))
{
outrel.r_info = ELF32_R_INFO (indx, R_PPC_DTPMOD32);
if (tls_ty == (TLS_TLS | TLS_GD))
{
loc = rsec->contents;
loc += (rsec->reloc_count++
* sizeof (Elf32_External_Rela));
bfd_elf32_swap_reloca_out (output_bfd,
&outrel, loc);
outrel.r_offset += 4;
outrel.r_info
= ELF32_R_INFO (indx, R_PPC_DTPREL32);
}
}
else if (tls_ty == (TLS_TLS | TLS_DTPREL))
outrel.r_info = ELF32_R_INFO (indx, R_PPC_DTPREL32);
else if (tls_ty == (TLS_TLS | TLS_TPREL))
outrel.r_info = ELF32_R_INFO (indx, R_PPC_TPREL32);
else if (indx != 0)
outrel.r_info = ELF32_R_INFO (indx, R_PPC_GLOB_DAT);
else if (ifunc != NULL)
outrel.r_info = ELF32_R_INFO (0, R_PPC_IRELATIVE);
else
outrel.r_info = ELF32_R_INFO (0, R_PPC_RELATIVE);
if (indx == 0 && tls_ty != (TLS_TLS | TLS_LD))
{
outrel.r_addend += relocation;
if (tls_ty & (TLS_GD | TLS_DTPREL | TLS_TPREL))
{
if (htab->elf.tls_sec == NULL)
outrel.r_addend = 0;
else
outrel.r_addend -= htab->elf.tls_sec->vma;
}
}
loc = rsec->contents;
loc += (rsec->reloc_count++
* sizeof (Elf32_External_Rela));
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
}
/* Init the .got section contents if we're not
emitting a reloc. */
else
{
bfd_vma value = relocation;
if (tls_ty != 0)
{
if (htab->elf.tls_sec == NULL)
value = 0;
else
{
if (tls_ty & TLS_LD)
value = 0;
else
value -= htab->elf.tls_sec->vma + DTP_OFFSET;
if (tls_ty & TLS_TPREL)
value += DTP_OFFSET - TP_OFFSET;
}
if (tls_ty & (TLS_LD | TLS_GD))
{
bfd_put_32 (input_bfd, value,
htab->elf.sgot->contents + off + 4);
value = 1;
}
}
bfd_put_32 (input_bfd, value,
htab->elf.sgot->contents + off);
}
off += 4;
if (tls_ty & (TLS_LD | TLS_GD))
off += 4;
}
while (tls_m != 0);
off = *offp;
*offp = off | 1;
}
if (off >= (bfd_vma) -2)
abort ();
if ((tls_type & TLS_TLS) != 0)
{
if (tls_type != (TLS_TLS | TLS_LD))
{
if ((tls_mask & TLS_LD) != 0
&& !SYMBOL_REFERENCES_LOCAL (info, h))
off += 8;
if (tls_type != (TLS_TLS | TLS_GD))
{
if ((tls_mask & TLS_GD) != 0)
off += 8;
if (tls_type != (TLS_TLS | TLS_DTPREL))
{
if ((tls_mask & TLS_DTPREL) != 0)
off += 4;
}
}
}
}
/* If here for a picfixup, we're done. */
if (r_type != ELF32_R_TYPE (rel->r_info))
goto copy_reloc;
relocation = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ off
- SYM_VAL (htab->elf.hgot));
/* Addends on got relocations don't make much sense.
x+off@got is actually x@got+off, and since the got is
generated by a hash table traversal, the value in the
got at entry m+n bears little relation to the entry m. */
if (addend != 0)
info->callbacks->einfo
/* xgettext:c-format */
(_("%H: non-zero addend on %s reloc against `%s'\n"),
input_bfd, input_section, rel->r_offset,
howto->name,
sym_name);
}
break;
/* Relocations that need no special processing. */
case R_PPC_LOCAL24PC:
/* It makes no sense to point a local relocation
at a symbol not in this object. */
if (unresolved_reloc)
{
(*info->callbacks->undefined_symbol) (info,
h->root.root.string,
input_bfd,
input_section,
rel->r_offset,
TRUE);
goto copy_reloc;
}
if (h != NULL && h->type == STT_GNU_IFUNC && bfd_link_pic (info))
{
/* @local on an ifunc does not really make sense since
the ifunc resolver can take you anywhere. More
seriously, calls to ifuncs must go through a plt call
stub, and for pic the plt call stubs uses r30 to
access the PLT. The problem is that a call that is
local won't have the +32k reloc addend trick marking
-fPIC code, so the linker won't know whether r30 is
_GLOBAL_OFFSET_TABLE_ or pointing into a .got2 section. */
/* xgettext:c-format */
info->callbacks->einfo (_("%X%H: @local call to ifunc %s\n"),
input_bfd, input_section, rel->r_offset,
h->root.root.string);
}
break;
case R_PPC_DTPREL16:
case R_PPC_DTPREL16_LO:
case R_PPC_DTPREL16_HI:
case R_PPC_DTPREL16_HA:
if (htab->elf.tls_sec != NULL)
addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
break;
/* Relocations that may need to be propagated if this is a shared
object. */
case R_PPC_TPREL16:
case R_PPC_TPREL16_LO:
case R_PPC_TPREL16_HI:
case R_PPC_TPREL16_HA:
if (h != NULL
&& h->root.type == bfd_link_hash_undefweak
&& h->dynindx == -1)
{
/* Make this relocation against an undefined weak symbol
resolve to zero. This is really just a tweak, since
code using weak externs ought to check that they are
defined before using them. */
bfd_byte *p = contents + rel->r_offset - d_offset;
unsigned int insn = bfd_get_32 (input_bfd, p);
insn = _bfd_elf_ppc_at_tprel_transform (insn, 2);
if (insn != 0)
bfd_put_32 (input_bfd, insn, p);
break;
}
if (htab->elf.tls_sec != NULL)
addend -= htab->elf.tls_sec->vma + TP_OFFSET;
/* The TPREL16 relocs shouldn't really be used in shared
libs or with non-local symbols as that will result in
DT_TEXTREL being set, but support them anyway. */
goto dodyn;
case R_PPC_TPREL32:
if (htab->elf.tls_sec != NULL)
addend -= htab->elf.tls_sec->vma + TP_OFFSET;
goto dodyn;
case R_PPC_DTPREL32:
if (htab->elf.tls_sec != NULL)
addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
goto dodyn;
case R_PPC_DTPMOD32:
relocation = 1;
addend = 0;
goto dodyn;
case R_PPC_REL16:
case R_PPC_REL16_LO:
case R_PPC_REL16_HI:
case R_PPC_REL16_HA:
case R_PPC_REL16DX_HA:
break;
case R_PPC_REL32:
if (h == NULL || h == htab->elf.hgot)
break;
/* fall through */
case R_PPC_ADDR32:
case R_PPC_ADDR16:
case R_PPC_ADDR16_LO:
case R_PPC_ADDR16_HI:
case R_PPC_ADDR16_HA:
case R_PPC_UADDR32:
case R_PPC_UADDR16:
goto dodyn;
case R_PPC_VLE_REL8:
case R_PPC_VLE_REL15:
case R_PPC_VLE_REL24:
case R_PPC_REL24:
case R_PPC_REL14:
case R_PPC_REL14_BRTAKEN:
case R_PPC_REL14_BRNTAKEN:
/* If these relocations are not to a named symbol, they can be
handled right here, no need to bother the dynamic linker. */
if (SYMBOL_CALLS_LOCAL (info, h)
|| h == htab->elf.hgot)
break;
/* fall through */
case R_PPC_ADDR24:
case R_PPC_ADDR14:
case R_PPC_ADDR14_BRTAKEN:
case R_PPC_ADDR14_BRNTAKEN:
if (h != NULL && !bfd_link_pic (info))
break;
/* fall through */
dodyn:
if ((input_section->flags & SEC_ALLOC) == 0
|| is_vxworks_tls)
break;
if (bfd_link_pic (info)
? ((h == NULL
|| ppc_elf_hash_entry (h)->dyn_relocs != NULL)
&& ((h != NULL && pc_dynrelocs (h))
|| must_be_dyn_reloc (info, r_type)))
: (h != NULL
&& ppc_elf_hash_entry (h)->dyn_relocs != NULL))
{
int skip;
bfd_byte *loc;
asection *sreloc;
long indx = 0;
#ifdef DEBUG
fprintf (stderr, "ppc_elf_relocate_section needs to "
"create relocation for %s\n",
(h && h->root.root.string
? h->root.root.string : "<unknown>"));
#endif
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
skip = 0;
outrel.r_offset = _bfd_elf_section_offset (output_bfd, info,
input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1
|| outrel.r_offset == (bfd_vma) -2)
skip = (int) outrel.r_offset;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
/* Optimize unaligned reloc use. */
if ((r_type == R_PPC_ADDR32 && (outrel.r_offset & 3) != 0)
|| (r_type == R_PPC_UADDR32 && (outrel.r_offset & 3) == 0))
r_type ^= R_PPC_ADDR32 ^ R_PPC_UADDR32;
if ((r_type == R_PPC_ADDR16 && (outrel.r_offset & 1) != 0)
|| (r_type == R_PPC_UADDR16 && (outrel.r_offset & 1) == 0))
r_type ^= R_PPC_ADDR16 ^ R_PPC_UADDR16;
if (skip)
memset (&outrel, 0, sizeof outrel);
else if (!SYMBOL_REFERENCES_LOCAL (info, h))
{
indx = h->dynindx;
BFD_ASSERT (indx != -1);
unresolved_reloc = FALSE;
outrel.r_info = ELF32_R_INFO (indx, r_type);
outrel.r_addend = rel->r_addend;
}
else
{
outrel.r_addend = relocation + rel->r_addend;
if (r_type != R_PPC_ADDR32)
{
if (ifunc != NULL)
{
/* If we get here when building a static
executable, then the libc startup function
responsible for applying indirect function
relocations is going to complain about
the reloc type.
If we get here when building a dynamic
executable, it will be because we have
a text relocation. The dynamic loader
will set the text segment writable and
non-executable to apply text relocations.
So we'll segfault when trying to run the
indirection function to resolve the reloc. */
info->callbacks->einfo
/* xgettext:c-format */
(_("%H: relocation %s for indirect "
"function %s unsupported\n"),
input_bfd, input_section, rel->r_offset,
howto->name,
sym_name);
ret = FALSE;
}
else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
}
else
{
asection *osec;
/* We are turning this relocation into one
against a section symbol. It would be
proper to subtract the symbol's value,
osec->vma, from the emitted reloc addend,
but ld.so expects buggy relocs.
FIXME: Why not always use a zero index? */
osec = sec->output_section;
if ((osec->flags & SEC_THREAD_LOCAL) != 0)
{
osec = htab->elf.tls_sec;
indx = 0;
}
else
{
indx = elf_section_data (osec)->dynindx;
if (indx == 0)
{
osec = htab->elf.text_index_section;
indx = elf_section_data (osec)->dynindx;
}
BFD_ASSERT (indx != 0);
}
/* ld.so doesn't expect buggy TLS relocs.
Don't leave the symbol value in the
addend for them. */
if (IS_PPC_TLS_RELOC (r_type))
outrel.r_addend -= osec->vma;
}
outrel.r_info = ELF32_R_INFO (indx, r_type);
}
else if (ifunc != NULL)
outrel.r_info = ELF32_R_INFO (0, R_PPC_IRELATIVE);
else
outrel.r_info = ELF32_R_INFO (0, R_PPC_RELATIVE);
}
sreloc = elf_section_data (input_section)->sreloc;
if (ifunc)
{
sreloc = htab->elf.irelplt;
if (indx == 0)
htab->local_ifunc_resolver = 1;
else if (is_static_defined (h))
htab->maybe_local_ifunc_resolver = 1;
}
if (sreloc == NULL)
return FALSE;
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
if (skip == -1)
goto copy_reloc;
/* This reloc will be computed at runtime. Clear the memory
so that it contains a predictable value for prelink. */
if (!skip)
{
relocation = howto->pc_relative ? outrel.r_offset : 0;
addend = 0;
break;
}
}
break;
case R_PPC_RELAX_PLT:
case R_PPC_RELAX_PLTREL24:
if (h != NULL)
{
struct plt_entry *ent;
bfd_vma got2_addend = 0;
if (r_type == R_PPC_RELAX_PLTREL24)
{
if (bfd_link_pic (info))
got2_addend = addend;
addend = 0;
}
ent = find_plt_ent (&h->plt.plist, got2, got2_addend);
if (htab->plt_type == PLT_NEW)
relocation = (htab->glink->output_section->vma
+ htab->glink->output_offset
+ ent->glink_offset);
else
relocation = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ ent->plt.offset);
}
/* Fall through. */
case R_PPC_RELAX:
{
const int *stub;
size_t size;
size_t insn_offset = rel->r_offset;
unsigned int insn;
if (bfd_link_pic (info))
{
relocation -= (input_section->output_section->vma
+ input_section->output_offset
+ rel->r_offset - 4);
stub = shared_stub_entry;
bfd_put_32 (input_bfd, stub[0], contents + insn_offset - 12);
bfd_put_32 (input_bfd, stub[1], contents + insn_offset - 8);
bfd_put_32 (input_bfd, stub[2], contents + insn_offset - 4);
stub += 3;
size = ARRAY_SIZE (shared_stub_entry) - 3;
}
else
{
stub = stub_entry;
size = ARRAY_SIZE (stub_entry);
}
relocation += addend;
if (bfd_link_relocatable (info))
relocation = 0;
/* First insn is HA, second is LO. */
insn = *stub++;
insn |= ((relocation + 0x8000) >> 16) & 0xffff;
bfd_put_32 (input_bfd, insn, contents + insn_offset);
insn_offset += 4;
insn = *stub++;
insn |= relocation & 0xffff;
bfd_put_32 (input_bfd, insn, contents + insn_offset);
insn_offset += 4;
size -= 2;
while (size != 0)
{
insn = *stub++;
--size;
bfd_put_32 (input_bfd, insn, contents + insn_offset);
insn_offset += 4;
}
/* Rewrite the reloc and convert one of the trailing nop
relocs to describe this relocation. */
BFD_ASSERT (ELF32_R_TYPE (relend[-1].r_info) == R_PPC_NONE);
/* The relocs are at the bottom 2 bytes */
wrel->r_offset = rel->r_offset + d_offset;
wrel->r_info = ELF32_R_INFO (r_symndx, R_PPC_ADDR16_HA);
wrel->r_addend = rel->r_addend;
memmove (wrel + 1, wrel, (relend - wrel - 1) * sizeof (*wrel));
wrel++, rel++;
wrel->r_offset += 4;
wrel->r_info = ELF32_R_INFO (r_symndx, R_PPC_ADDR16_LO);
}
continue;
/* Indirect .sdata relocation. */
case R_PPC_EMB_SDAI16:
BFD_ASSERT (htab->sdata[0].section != NULL);
if (!is_static_defined (htab->sdata[0].sym))
{
unresolved_reloc = TRUE;
break;
}
relocation
= elf_finish_pointer_linker_section (input_bfd, &htab->sdata[0],
h, relocation, rel);
addend = 0;
break;
/* Indirect .sdata2 relocation. */
case R_PPC_EMB_SDA2I16:
BFD_ASSERT (htab->sdata[1].section != NULL);
if (!is_static_defined (htab->sdata[1].sym))
{
unresolved_reloc = TRUE;
break;
}
relocation
= elf_finish_pointer_linker_section (input_bfd, &htab->sdata[1],
h, relocation, rel);
addend = 0;
break;
/* Handle the TOC16 reloc. We want to use the offset within the .got
section, not the actual VMA. This is appropriate when generating
an embedded ELF object, for which the .got section acts like the
AIX .toc section. */
case R_PPC_TOC16: /* phony GOT16 relocations */
if (sec == NULL || sec->output_section == NULL)
{
unresolved_reloc = TRUE;
break;
}
BFD_ASSERT (strcmp (bfd_section_name (sec), ".got") == 0
|| strcmp (bfd_section_name (sec), ".cgot") == 0);
addend -= sec->output_section->vma + sec->output_offset + 0x8000;
break;
case R_PPC_PLTREL24:
if (h != NULL && ifunc == NULL)
{
struct plt_entry *ent;
ent = find_plt_ent (&h->plt.plist, got2,
bfd_link_pic (info) ? addend : 0);
if (ent == NULL
|| htab->elf.splt == NULL)
{
/* We didn't make a PLT entry for this symbol. This
happens when statically linking PIC code, or when
using -Bsymbolic. */
}
else
{
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
unresolved_reloc = FALSE;
if (htab->plt_type == PLT_NEW)
relocation = (htab->glink->output_section->vma
+ htab->glink->output_offset
+ ent->glink_offset);
else
relocation = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ ent->plt.offset);
}
}
/* R_PPC_PLTREL24 is rather special. If non-zero, the
addend specifies the GOT pointer offset within .got2.
Don't apply it to the relocation field. */
addend = 0;
break;
case R_PPC_PLTSEQ:
case R_PPC_PLTCALL:
case R_PPC_PLT16_LO:
case R_PPC_PLT16_HI:
case R_PPC_PLT16_HA:
plt_list = NULL;
if (h != NULL)
plt_list = &h->plt.plist;
else if (ifunc != NULL)
plt_list = ifunc;
else if (local_got_offsets != NULL)
{
struct plt_entry **local_plt;
local_plt = (struct plt_entry **) (local_got_offsets
+ symtab_hdr->sh_info);
plt_list = local_plt + r_symndx;
}
unresolved_reloc = TRUE;
if (plt_list != NULL)
{
struct plt_entry *ent;
ent = find_plt_ent (plt_list, got2,
bfd_link_pic (info) ? addend : 0);
if (ent != NULL && ent->plt.offset != (bfd_vma) -1)
{
asection *plt;
unresolved_reloc = FALSE;
plt = htab->elf.splt;
if (!htab->elf.dynamic_sections_created
|| h == NULL
|| h->dynindx == -1)
{
if (ifunc != NULL)
plt = htab->elf.iplt;
else
plt = htab->pltlocal;
}
relocation = (plt->output_section->vma
+ plt->output_offset
+ ent->plt.offset);
if (bfd_link_pic (info))
{
bfd_vma got = 0;
if (ent->addend >= 32768)
got = (ent->addend
+ ent->sec->output_section->vma
+ ent->sec->output_offset);
else
got = SYM_VAL (htab->elf.hgot);
relocation -= got;
}
}
}
addend = 0;
break;
/* Relocate against _SDA_BASE_. */
case R_PPC_SDAREL16:
{
const char *name;
struct elf_link_hash_entry *sda = htab->sdata[0].sym;
if (sec == NULL
|| sec->output_section == NULL
|| !is_static_defined (sda))
{
unresolved_reloc = TRUE;
break;
}
addend -= SYM_VAL (sda);
name = bfd_section_name (sec->output_section);
if (!(strcmp (name, ".sdata") == 0
|| strcmp (name, ".sbss") == 0))
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: the target (%s) of a %s relocation is "
"in the wrong output section (%s)"),
input_bfd,
sym_name,
howto->name,
name);
}
}
break;
/* Relocate against _SDA2_BASE_. */
case R_PPC_EMB_SDA2REL:
{
const char *name;
struct elf_link_hash_entry *sda = htab->sdata[1].sym;
if (sec == NULL
|| sec->output_section == NULL
|| !is_static_defined (sda))
{
unresolved_reloc = TRUE;
break;
}
addend -= SYM_VAL (sda);
name = bfd_section_name (sec->output_section);
if (!(strcmp (name, ".sdata2") == 0
|| strcmp (name, ".sbss2") == 0))
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: the target (%s) of a %s relocation is "
"in the wrong output section (%s)"),
input_bfd,
sym_name,
howto->name,
name);
}
}
break;
case R_PPC_VLE_LO16A:
relocation = relocation + addend;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, relocation,
split16a_type, htab->params->vle_reloc_fixup);
goto copy_reloc;
case R_PPC_VLE_LO16D:
relocation = relocation + addend;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, relocation,
split16d_type, htab->params->vle_reloc_fixup);
goto copy_reloc;
case R_PPC_VLE_HI16A:
relocation = (relocation + addend) >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, relocation,
split16a_type, htab->params->vle_reloc_fixup);
goto copy_reloc;
case R_PPC_VLE_HI16D:
relocation = (relocation + addend) >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, relocation,
split16d_type, htab->params->vle_reloc_fixup);
goto copy_reloc;
case R_PPC_VLE_HA16A:
relocation = (relocation + addend + 0x8000) >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, relocation,
split16a_type, htab->params->vle_reloc_fixup);
goto copy_reloc;
case R_PPC_VLE_HA16D:
relocation = (relocation + addend + 0x8000) >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, relocation,
split16d_type, htab->params->vle_reloc_fixup);
goto copy_reloc;
/* Relocate against either _SDA_BASE_, _SDA2_BASE_, or 0. */
case R_PPC_EMB_SDA21:
case R_PPC_VLE_SDA21:
case R_PPC_EMB_RELSDA:
case R_PPC_VLE_SDA21_LO:
{
const char *name;
int reg;
unsigned int insn;
struct elf_link_hash_entry *sda = NULL;
if (sec == NULL || sec->output_section == NULL)
{
unresolved_reloc = TRUE;
break;
}
name = bfd_section_name (sec->output_section);
if (strcmp (name, ".sdata") == 0
|| strcmp (name, ".sbss") == 0)
{
reg = 13;
sda = htab->sdata[0].sym;
}
else if (strcmp (name, ".sdata2") == 0
|| strcmp (name, ".sbss2") == 0)
{
reg = 2;
sda = htab->sdata[1].sym;
}
else if (strcmp (name, ".PPC.EMB.sdata0") == 0
|| strcmp (name, ".PPC.EMB.sbss0") == 0)
{
reg = 0;
}
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: the target (%s) of a %s relocation is "
"in the wrong output section (%s)"),
input_bfd,
sym_name,
howto->name,
name);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
goto copy_reloc;
}
if (sda != NULL)
{
if (!is_static_defined (sda))
{
unresolved_reloc = TRUE;
break;
}
addend -= SYM_VAL (sda);
}
if (r_type == R_PPC_EMB_RELSDA)
break;
/* The PowerPC Embedded Application Binary Interface
version 1.0 insanely chose to specify R_PPC_EMB_SDA21
operating on a 24-bit field at r_offset. GNU as and
GNU ld have always assumed R_PPC_EMB_SDA21 operates on
a 32-bit bit insn at r_offset. Cope with object file
producers that possibly comply with the EABI in
generating an odd r_offset for big-endian objects. */
if (r_type == R_PPC_EMB_SDA21)
rel->r_offset &= ~1;
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
if (reg == 0
&& (r_type == R_PPC_VLE_SDA21
|| r_type == R_PPC_VLE_SDA21_LO))
{
relocation = relocation + addend;
addend = 0;
/* Force e_li insn, keeping RT from original insn. */
insn &= 0x1f << 21;
insn |= 28u << 26;
/* We have an li20 field, bits 17..20, 11..15, 21..31. */
/* Top 4 bits of value to 17..20. */
insn |= (relocation & 0xf0000) >> 5;
/* Next 5 bits of the value to 11..15. */
insn |= (relocation & 0xf800) << 5;
/* And the final 11 bits of the value to bits 21 to 31. */
insn |= relocation & 0x7ff;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
if (r_type == R_PPC_VLE_SDA21
&& ((relocation + 0x80000) & 0xffffffff) > 0x100000)
goto overflow;
goto copy_reloc;
}
/* Fill in register field. */
insn = (insn & ~RA_REGISTER_MASK) | (reg << RA_REGISTER_SHIFT);
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
}
break;
case R_PPC_VLE_SDAREL_LO16A:
case R_PPC_VLE_SDAREL_LO16D:
case R_PPC_VLE_SDAREL_HI16A:
case R_PPC_VLE_SDAREL_HI16D:
case R_PPC_VLE_SDAREL_HA16A:
case R_PPC_VLE_SDAREL_HA16D:
{
bfd_vma value;
const char *name;
struct elf_link_hash_entry *sda = NULL;
if (sec == NULL || sec->output_section == NULL)
{
unresolved_reloc = TRUE;
break;
}
name = bfd_section_name (sec->output_section);
if (strcmp (name, ".sdata") == 0
|| strcmp (name, ".sbss") == 0)
sda = htab->sdata[0].sym;
else if (strcmp (name, ".sdata2") == 0
|| strcmp (name, ".sbss2") == 0)
sda = htab->sdata[1].sym;
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: the target (%s) of a %s relocation is "
"in the wrong output section (%s)"),
input_bfd,
sym_name,
howto->name,
name);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
goto copy_reloc;
}
if (sda == NULL || !is_static_defined (sda))
{
unresolved_reloc = TRUE;
break;
}
value = relocation + addend - SYM_VAL (sda);
if (r_type == R_PPC_VLE_SDAREL_LO16A)
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, value,
split16a_type,
htab->params->vle_reloc_fixup);
else if (r_type == R_PPC_VLE_SDAREL_LO16D)
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, value,
split16d_type,
htab->params->vle_reloc_fixup);
else if (r_type == R_PPC_VLE_SDAREL_HI16A)
{
value = value >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, value,
split16a_type,
htab->params->vle_reloc_fixup);
}
else if (r_type == R_PPC_VLE_SDAREL_HI16D)
{
value = value >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, value,
split16d_type,
htab->params->vle_reloc_fixup);
}
else if (r_type == R_PPC_VLE_SDAREL_HA16A)
{
value = (value + 0x8000) >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, value,
split16a_type,
htab->params->vle_reloc_fixup);
}
else if (r_type == R_PPC_VLE_SDAREL_HA16D)
{
value = (value + 0x8000) >> 16;
ppc_elf_vle_split16 (input_bfd, input_section, rel->r_offset,
contents + rel->r_offset, value,
split16d_type,
htab->params->vle_reloc_fixup);
}
}
goto copy_reloc;
case R_PPC_VLE_ADDR20:
ppc_elf_vle_split20 (output_bfd, contents + rel->r_offset, relocation);
goto copy_reloc;
/* Relocate against the beginning of the section. */
case R_PPC_SECTOFF:
case R_PPC_SECTOFF_LO:
case R_PPC_SECTOFF_HI:
case R_PPC_SECTOFF_HA:
if (sec == NULL || sec->output_section == NULL)
{
unresolved_reloc = TRUE;
break;
}
addend -= sec->output_section->vma;
break;
/* Negative relocations. */
case R_PPC_EMB_NADDR32:
case R_PPC_EMB_NADDR16:
case R_PPC_EMB_NADDR16_LO:
case R_PPC_EMB_NADDR16_HI:
case R_PPC_EMB_NADDR16_HA:
addend -= 2 * relocation;
break;
case R_PPC_COPY:
case R_PPC_GLOB_DAT:
case R_PPC_JMP_SLOT:
case R_PPC_RELATIVE:
case R_PPC_IRELATIVE:
case R_PPC_PLT32:
case R_PPC_PLTREL32:
case R_PPC_ADDR30:
case R_PPC_EMB_RELSEC16:
case R_PPC_EMB_RELST_LO:
case R_PPC_EMB_RELST_HI:
case R_PPC_EMB_RELST_HA:
case R_PPC_EMB_BIT_FLD:
/* xgettext:c-format */
_bfd_error_handler (_("%pB: %s unsupported"),
input_bfd, howto->name);
bfd_set_error (bfd_error_invalid_operation);
ret = FALSE;
goto copy_reloc;
}
switch (r_type)
{
default:
break;
case R_PPC_PLTCALL:
if (unresolved_reloc)
{
bfd_byte *p = contents + rel->r_offset;
unsigned int insn = bfd_get_32 (input_bfd, p);
insn &= 1;
bfd_put_32 (input_bfd, B | insn, p);
unresolved_reloc = save_unresolved_reloc;
r_type = R_PPC_REL24;
howto = ppc_elf_howto_table[r_type];
}
else if (htab->plt_type != PLT_NEW)
info->callbacks->einfo
(_("%X%P: %H: %s relocation unsupported for bss-plt\n"),
input_bfd, input_section, rel->r_offset,
howto->name);
break;
case R_PPC_PLTSEQ:
case R_PPC_PLT16_HA:
case R_PPC_PLT16_LO:
if (unresolved_reloc)
{
bfd_byte *p = contents + (rel->r_offset & ~3);
bfd_put_32 (input_bfd, NOP, p);
unresolved_reloc = FALSE;
r_type = R_PPC_NONE;
howto = ppc_elf_howto_table[r_type];
}
else if (htab->plt_type != PLT_NEW)
info->callbacks->einfo
(_("%X%P: %H: %s relocation unsupported for bss-plt\n"),
input_bfd, input_section, rel->r_offset,
howto->name);
break;
}
/* Do any further special processing. */
switch (r_type)
{
default:
break;
case R_PPC_ADDR16_HA:
case R_PPC_REL16_HA:
case R_PPC_REL16DX_HA:
case R_PPC_SECTOFF_HA:
case R_PPC_TPREL16_HA:
case R_PPC_DTPREL16_HA:
case R_PPC_EMB_NADDR16_HA:
case R_PPC_EMB_RELST_HA:
/* It's just possible that this symbol is a weak symbol
that's not actually defined anywhere. In that case,
'sec' would be NULL, and we should leave the symbol
alone (it will be set to zero elsewhere in the link). */
if (sec == NULL)
break;
/* Fall through. */
case R_PPC_PLT16_HA:
case R_PPC_GOT16_HA:
case R_PPC_GOT_TLSGD16_HA:
case R_PPC_GOT_TLSLD16_HA:
case R_PPC_GOT_TPREL16_HA:
case R_PPC_GOT_DTPREL16_HA:
/* Add 0x10000 if sign bit in 0:15 is set.
Bits 0:15 are not used. */
addend += 0x8000;
break;
case R_PPC_ADDR16:
case R_PPC_ADDR16_LO:
case R_PPC_GOT16:
case R_PPC_GOT16_LO:
case R_PPC_SDAREL16:
case R_PPC_SECTOFF:
case R_PPC_SECTOFF_LO:
case R_PPC_DTPREL16:
case R_PPC_DTPREL16_LO:
case R_PPC_TPREL16:
case R_PPC_TPREL16_LO:
case R_PPC_GOT_TLSGD16:
case R_PPC_GOT_TLSGD16_LO:
case R_PPC_GOT_TLSLD16:
case R_PPC_GOT_TLSLD16_LO:
case R_PPC_GOT_DTPREL16:
case R_PPC_GOT_DTPREL16_LO:
case R_PPC_GOT_TPREL16:
case R_PPC_GOT_TPREL16_LO:
{
/* The 32-bit ABI lacks proper relocations to deal with
certain 64-bit instructions. Prevent damage to bits
that make up part of the insn opcode. */
unsigned int insn, mask, lobit;
insn = bfd_get_32 (input_bfd,
contents + rel->r_offset - d_offset);
mask = 0;
if (is_insn_ds_form (insn))
mask = 3;
else if (is_insn_dq_form (insn))
mask = 15;
else
break;
relocation += addend;
addend = insn & mask;
lobit = mask & relocation;
if (lobit != 0)
{
relocation ^= lobit;
info->callbacks->einfo
/* xgettext:c-format */
(_("%H: error: %s against `%s' not a multiple of %u\n"),
input_bfd, input_section, rel->r_offset,
howto->name, sym_name, mask + 1);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
}
}
break;
}
#ifdef DEBUG
fprintf (stderr, "\ttype = %s (%d), name = %s, symbol index = %ld, "
"offset = %ld, addend = %ld\n",
howto->name,
(int) r_type,
sym_name,
r_symndx,
(long) rel->r_offset,
(long) addend);
#endif
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0
&& h->def_dynamic)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
{
info->callbacks->einfo
/* xgettext:c-format */
(_("%H: unresolvable %s relocation against symbol `%s'\n"),
input_bfd, input_section, rel->r_offset,
howto->name,
sym_name);
ret = FALSE;
}
/* 16-bit fields in insns mostly have signed values, but a
few insns have 16-bit unsigned values. Really, we should
have different reloc types. */
if (howto->complain_on_overflow != complain_overflow_dont
&& howto->dst_mask == 0xffff
&& (input_section->flags & SEC_CODE) != 0)
{
enum complain_overflow complain = complain_overflow_signed;
if ((elf_section_flags (input_section) & SHF_PPC_VLE) == 0)
{
unsigned int insn;
insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
complain = complain_overflow_bitfield;
else if ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
|| (insn & (0x3fu << 26)) == 24u << 26 /* ori */
|| (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
complain = complain_overflow_unsigned;
}
if (howto->complain_on_overflow != complain)
{
alt_howto = *howto;
alt_howto.complain_on_overflow = complain;
howto = &alt_howto;
}
}
if (r_type == R_PPC_REL16DX_HA)
{
/* Split field reloc isn't handled by _bfd_final_link_relocate. */
if (rel->r_offset + 4 > input_section->size)
r = bfd_reloc_outofrange;
else
{
unsigned int insn;
relocation += addend;
relocation -= (rel->r_offset
+ input_section->output_offset
+ input_section->output_section->vma);
relocation >>= 16;
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn &= ~0x1fffc1;
insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r = bfd_reloc_ok;
}
}
else
r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
rel->r_offset, relocation, addend);
if (r != bfd_reloc_ok)
{
if (r == bfd_reloc_overflow)
{
overflow:
/* On code like "if (foo) foo();" don't report overflow
on a branch to zero when foo is undefined. */
if (!warned
&& !(h != NULL
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined)
&& is_branch_reloc (r_type)))
info->callbacks->reloc_overflow
(info, (h ? &h->root : NULL), sym_name, howto->name,
rel->r_addend, input_bfd, input_section, rel->r_offset);
}
else
{
info->callbacks->einfo
/* xgettext:c-format */
(_("%H: %s reloc against `%s': error %d\n"),
input_bfd, input_section, rel->r_offset,
howto->name, sym_name, (int) r);
ret = FALSE;
}
}
copy_reloc:
if (wrel != rel)
*wrel = *rel;
}
if (wrel != rel)
{
Elf_Internal_Shdr *rel_hdr;
size_t deleted = rel - wrel;
rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
if (rel_hdr->sh_size == 0)
{
/* It is too late to remove an empty reloc section. Leave
one NONE reloc.
??? What is wrong with an empty section??? */
rel_hdr->sh_size = rel_hdr->sh_entsize;
deleted -= 1;
wrel++;
}
relend = wrel;
rel_hdr = _bfd_elf_single_rel_hdr (input_section);
rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
input_section->reloc_count -= deleted;
}
#ifdef DEBUG
fprintf (stderr, "\n");
#endif
if (input_section->sec_info_type == SEC_INFO_TYPE_TARGET
&& input_section->size != input_section->rawsize
&& (strcmp (input_section->output_section->name, ".init") == 0
|| strcmp (input_section->output_section->name, ".fini") == 0))
{
/* Branch around the trampolines. */
unsigned int insn = B + input_section->size - input_section->rawsize;
bfd_put_32 (input_bfd, insn, contents + input_section->rawsize);
}
if (htab->params->ppc476_workaround
&& input_section->sec_info_type == SEC_INFO_TYPE_TARGET
&& (!bfd_link_relocatable (info)
|| (input_section->output_section->alignment_power
>= htab->params->pagesize_p2)))
{
bfd_vma start_addr, end_addr, addr;
bfd_vma pagesize = (bfd_vma) 1 << htab->params->pagesize_p2;
if (relax_info->workaround_size != 0)
{
bfd_byte *p;
unsigned int n;
bfd_byte fill[4];
bfd_put_32 (input_bfd, BA, fill);
p = contents + input_section->size - relax_info->workaround_size;
n = relax_info->workaround_size >> 2;
while (n--)
{
memcpy (p, fill, 4);
p += 4;
}
}
/* The idea is: Replace the last instruction on a page with a
branch to a patch area. Put the insn there followed by a
branch back to the next page. Complicated a little by
needing to handle moved conditional branches, and by not
wanting to touch data-in-text. */
start_addr = (input_section->output_section->vma
+ input_section->output_offset);
end_addr = (start_addr + input_section->size
- relax_info->workaround_size);
for (addr = ((start_addr & -pagesize) + pagesize - 4);
addr < end_addr;
addr += pagesize)
{
bfd_vma offset = addr - start_addr;
Elf_Internal_Rela *lo, *hi;
bfd_boolean is_data;
bfd_vma patch_off, patch_addr;
unsigned int insn;
/* Do we have a data reloc at this offset? If so, leave
the word alone. */
is_data = FALSE;
lo = relocs;
hi = relend;
rel = NULL;
while (lo < hi)
{
rel = lo + (hi - lo) / 2;
if (rel->r_offset < offset)
lo = rel + 1;
else if (rel->r_offset > offset + 3)
hi = rel;
else
{
switch (ELF32_R_TYPE (rel->r_info))
{
case R_PPC_ADDR32:
case R_PPC_UADDR32:
case R_PPC_REL32:
case R_PPC_ADDR30:
is_data = TRUE;
break;
default:
break;
}
break;
}
}
if (is_data)
continue;
/* Some instructions can be left alone too. Unconditional
branches, except for bcctr with BO=0x14 (bctr, bctrl),
avoid the icache failure.
The problem occurs due to prefetch across a page boundary
where stale instructions can be fetched from the next
page, and the mechanism for flushing these bad
instructions fails under certain circumstances. The
unconditional branches:
1) Branch: b, bl, ba, bla,
2) Branch Conditional: bc, bca, bcl, bcla,
3) Branch Conditional to Link Register: bclr, bclrl,
where (2) and (3) have BO=0x14 making them unconditional,
prevent the bad prefetch because the prefetch itself is
affected by these instructions. This happens even if the
instruction is not executed.
A bctr example:
.
. lis 9,new_page@ha
. addi 9,9,new_page@l
. mtctr 9
. bctr
. nop
. nop
. new_page:
.
The bctr is not predicted taken due to ctr not being
ready, so prefetch continues on past the bctr into the
new page which might have stale instructions. If they
fail to be flushed, then they will be executed after the
bctr executes. Either of the following modifications
prevent the bad prefetch from happening in the first
place:
.
. lis 9,new_page@ha lis 9,new_page@ha
. addi 9,9,new_page@l addi 9,9,new_page@l
. mtctr 9 mtctr 9
. bctr bctr
. nop b somewhere_else
. b somewhere_else nop
. new_page: new_page:
. */
insn = bfd_get_32 (input_bfd, contents + offset);
if ((insn & (0x3fu << 26)) == (18u << 26) /* b,bl,ba,bla */
|| ((insn & (0x3fu << 26)) == (16u << 26) /* bc,bcl,bca,bcla*/
&& (insn & (0x14 << 21)) == (0x14 << 21)) /* with BO=0x14 */
|| ((insn & (0x3fu << 26)) == (19u << 26)
&& (insn & (0x3ff << 1)) == (16u << 1) /* bclr,bclrl */
&& (insn & (0x14 << 21)) == (0x14 << 21)))/* with BO=0x14 */
continue;
patch_addr = (start_addr + input_section->size
- relax_info->workaround_size);
patch_addr = (patch_addr + 15) & -16;
patch_off = patch_addr - start_addr;
bfd_put_32 (input_bfd, B + patch_off - offset, contents + offset);
if (rel != NULL
&& rel->r_offset >= offset
&& rel->r_offset < offset + 4)
{
asection *sreloc;
/* If the insn we are patching had a reloc, adjust the
reloc r_offset so that the reloc applies to the moved
location. This matters for -r and --emit-relocs. */
if (rel + 1 != relend)
{
Elf_Internal_Rela tmp = *rel;
/* Keep the relocs sorted by r_offset. */
memmove (rel, rel + 1, (relend - (rel + 1)) * sizeof (*rel));
relend[-1] = tmp;
}
relend[-1].r_offset += patch_off - offset;
/* Adjust REL16 addends too. */
switch (ELF32_R_TYPE (relend[-1].r_info))
{
case R_PPC_REL16:
case R_PPC_REL16_LO:
case R_PPC_REL16_HI:
case R_PPC_REL16_HA:
relend[-1].r_addend += patch_off - offset;
break;
default:
break;
}
/* If we are building a PIE or shared library with
non-PIC objects, perhaps we had a dynamic reloc too?
If so, the dynamic reloc must move with the insn. */
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc != NULL)
{
Elf32_External_Rela *slo, *shi, *srelend;
bfd_vma soffset;
slo = (Elf32_External_Rela *) sreloc->contents;
shi = srelend = slo + sreloc->reloc_count;
soffset = (offset + input_section->output_section->vma
+ input_section->output_offset);
while (slo < shi)
{
Elf32_External_Rela *srel = slo + (shi - slo) / 2;
bfd_elf32_swap_reloca_in (output_bfd, (bfd_byte *) srel,
&outrel);
if (outrel.r_offset < soffset)
slo = srel + 1;
else if (outrel.r_offset > soffset + 3)
shi = srel;
else
{
if (srel + 1 != srelend)
{
memmove (srel, srel + 1,
(srelend - (srel + 1)) * sizeof (*srel));
srel = srelend - 1;
}
outrel.r_offset += patch_off - offset;
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
(bfd_byte *) srel);
break;
}
}
}
}
else
rel = NULL;
if ((insn & (0x3fu << 26)) == (16u << 26) /* bc */
&& (insn & 2) == 0 /* relative */)
{
bfd_vma delta = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
delta += offset - patch_off;
if (bfd_link_relocatable (info) && rel != NULL)
delta = 0;
if (!bfd_link_relocatable (info) && rel != NULL)
{
enum elf_ppc_reloc_type r_type;
r_type = ELF32_R_TYPE (relend[-1].r_info);
if (r_type == R_PPC_REL14_BRTAKEN)
insn |= BRANCH_PREDICT_BIT;
else if (r_type == R_PPC_REL14_BRNTAKEN)
insn &= ~BRANCH_PREDICT_BIT;
else
BFD_ASSERT (r_type == R_PPC_REL14);
if ((r_type == R_PPC_REL14_BRTAKEN
|| r_type == R_PPC_REL14_BRNTAKEN)
&& delta + 0x8000 < 0x10000
&& (bfd_signed_vma) delta < 0)
insn ^= BRANCH_PREDICT_BIT;
}
if (delta + 0x8000 < 0x10000)
{
bfd_put_32 (input_bfd,
(insn & ~0xfffc) | (delta & 0xfffc),
contents + patch_off);
patch_off += 4;
bfd_put_32 (input_bfd,
B | ((offset + 4 - patch_off) & 0x3fffffc),
contents + patch_off);
patch_off += 4;
}
else
{
if (rel != NULL)
{
unsigned int r_sym = ELF32_R_SYM (relend[-1].r_info);
relend[-1].r_offset += 8;
relend[-1].r_info = ELF32_R_INFO (r_sym, R_PPC_REL24);
}
bfd_put_32 (input_bfd,
(insn & ~0xfffc) | 8,
contents + patch_off);
patch_off += 4;
bfd_put_32 (input_bfd,
B | ((offset + 4 - patch_off) & 0x3fffffc),
contents + patch_off);
patch_off += 4;
bfd_put_32 (input_bfd,
B | ((delta - 8) & 0x3fffffc),
contents + patch_off);
patch_off += 4;
}
}
else
{
bfd_put_32 (input_bfd, insn, contents + patch_off);
patch_off += 4;
bfd_put_32 (input_bfd,
B | ((offset + 4 - patch_off) & 0x3fffffc),
contents + patch_off);
patch_off += 4;
}
BFD_ASSERT (patch_off <= input_section->size);
relax_info->workaround_size = input_section->size - patch_off;
}
}
return ret;
}
/* Write out the PLT relocs and entries for H. */
static bfd_boolean
write_global_sym_plt (struct elf_link_hash_entry *h, void *inf)
{
struct bfd_link_info *info = (struct bfd_link_info *) inf;
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
struct plt_entry *ent;
bfd_boolean doneone;
doneone = FALSE;
for (ent = h->plt.plist; ent != NULL; ent = ent->next)
if (ent->plt.offset != (bfd_vma) -1)
{
if (!doneone)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
bfd_vma reloc_index;
asection *plt = htab->elf.splt;
asection *relplt = htab->elf.srelplt;
if (htab->plt_type == PLT_NEW
|| !htab->elf.dynamic_sections_created
|| h->dynindx == -1)
reloc_index = ent->plt.offset / 4;
else
{
reloc_index = ((ent->plt.offset - htab->plt_initial_entry_size)
/ htab->plt_slot_size);
if (reloc_index > PLT_NUM_SINGLE_ENTRIES
&& htab->plt_type == PLT_OLD)
reloc_index -= (reloc_index - PLT_NUM_SINGLE_ENTRIES) / 2;
}
/* This symbol has an entry in the procedure linkage table.
Set it up. */
if (htab->plt_type == PLT_VXWORKS
&& htab->elf.dynamic_sections_created
&& h->dynindx != -1)
{
bfd_vma got_offset;
const bfd_vma *plt_entry;
/* The first three entries in .got.plt are reserved. */
got_offset = (reloc_index + 3) * 4;
/* Use the right PLT. */
plt_entry = bfd_link_pic (info) ? ppc_elf_vxworks_pic_plt_entry
: ppc_elf_vxworks_plt_entry;
/* Fill in the .plt on VxWorks. */
if (bfd_link_pic (info))
{
bfd_put_32 (info->output_bfd,
plt_entry[0] | PPC_HA (got_offset),
plt->contents + ent->plt.offset + 0);
bfd_put_32 (info->output_bfd,
plt_entry[1] | PPC_LO (got_offset),
plt->contents + ent->plt.offset + 4);
}
else
{
bfd_vma got_loc = got_offset + SYM_VAL (htab->elf.hgot);
bfd_put_32 (info->output_bfd,
plt_entry[0] | PPC_HA (got_loc),
plt->contents + ent->plt.offset + 0);
bfd_put_32 (info->output_bfd,
plt_entry[1] | PPC_LO (got_loc),
plt->contents + ent->plt.offset + 4);
}
bfd_put_32 (info->output_bfd, plt_entry[2],
plt->contents + ent->plt.offset + 8);
bfd_put_32 (info->output_bfd, plt_entry[3],
plt->contents + ent->plt.offset + 12);
/* This instruction is an immediate load. The value loaded is
the byte offset of the R_PPC_JMP_SLOT relocation from the
start of the .rela.plt section. The value is stored in the
low-order 16 bits of the load instruction. */
/* NOTE: It appears that this is now an index rather than a
prescaled offset. */
bfd_put_32 (info->output_bfd,
plt_entry[4] | reloc_index,
plt->contents + ent->plt.offset + 16);
/* This instruction is a PC-relative branch whose target is
the start of the PLT section. The address of this branch
instruction is 20 bytes beyond the start of this PLT entry.
The address is encoded in bits 6-29, inclusive. The value
stored is right-shifted by two bits, permitting a 26-bit
offset. */
bfd_put_32 (info->output_bfd,
(plt_entry[5]
| (-(ent->plt.offset + 20) & 0x03fffffc)),
plt->contents + ent->plt.offset + 20);
bfd_put_32 (info->output_bfd, plt_entry[6],
plt->contents + ent->plt.offset + 24);
bfd_put_32 (info->output_bfd, plt_entry[7],
plt->contents + ent->plt.offset + 28);
/* Fill in the GOT entry corresponding to this PLT slot with
the address immediately after the "bctr" instruction
in this PLT entry. */
bfd_put_32 (info->output_bfd, (plt->output_section->vma
+ plt->output_offset
+ ent->plt.offset + 16),
htab->elf.sgotplt->contents + got_offset);
if (!bfd_link_pic (info))
{
/* Fill in a couple of entries in .rela.plt.unloaded. */
loc = htab->srelplt2->contents
+ ((VXWORKS_PLTRESOLVE_RELOCS + reloc_index
* VXWORKS_PLT_NON_JMP_SLOT_RELOCS)
* sizeof (Elf32_External_Rela));
/* Provide the @ha relocation for the first instruction. */
rela.r_offset = (plt->output_section->vma
+ plt->output_offset
+ ent->plt.offset + 2);
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx,
R_PPC_ADDR16_HA);
rela.r_addend = got_offset;
bfd_elf32_swap_reloca_out (info->output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Provide the @l relocation for the second instruction. */
rela.r_offset = (plt->output_section->vma
+ plt->output_offset
+ ent->plt.offset + 6);
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx,
R_PPC_ADDR16_LO);
rela.r_addend = got_offset;
bfd_elf32_swap_reloca_out (info->output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Provide a relocation for the GOT entry corresponding to this
PLT slot. Point it at the middle of the .plt entry. */
rela.r_offset = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ got_offset);
rela.r_info = ELF32_R_INFO (htab->elf.hplt->indx,
R_PPC_ADDR32);
rela.r_addend = ent->plt.offset + 16;
bfd_elf32_swap_reloca_out (info->output_bfd, &rela, loc);
}
/* VxWorks uses non-standard semantics for R_PPC_JMP_SLOT.
In particular, the offset for the relocation is not the
address of the PLT entry for this function, as specified
by the ABI. Instead, the offset is set to the address of
the GOT slot for this function. See EABI 4.4.4.1. */
rela.r_offset = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ got_offset);
rela.r_addend = 0;
}
else
{
rela.r_addend = 0;
if (!htab->elf.dynamic_sections_created
|| h->dynindx == -1)
{
if (h->type == STT_GNU_IFUNC)
{
plt = htab->elf.iplt;
relplt = htab->elf.irelplt;
}
else
{
plt = htab->pltlocal;
relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
}
if (h->def_regular
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak))
rela.r_addend = SYM_VAL (h);
}
if (relplt == NULL)
{
loc = plt->contents + ent->plt.offset;
bfd_put_32 (info->output_bfd, rela.r_addend, loc);
}
else
{
rela.r_offset = (plt->output_section->vma
+ plt->output_offset
+ ent->plt.offset);
if (htab->plt_type == PLT_OLD
|| !htab->elf.dynamic_sections_created
|| h->dynindx == -1)
{
/* We don't need to fill in the .plt. The ppc dynamic
linker will fill it in. */
}
else
{
bfd_vma val = (htab->glink_pltresolve + ent->plt.offset
+ htab->glink->output_section->vma
+ htab->glink->output_offset);
bfd_put_32 (info->output_bfd, val,
plt->contents + ent->plt.offset);
}
}
}
if (relplt != NULL)
{
/* Fill in the entry in the .rela.plt section. */
if (!htab->elf.dynamic_sections_created
|| h->dynindx == -1)
{
if (h->type == STT_GNU_IFUNC)
rela.r_info = ELF32_R_INFO (0, R_PPC_IRELATIVE);
else
rela.r_info = ELF32_R_INFO (0, R_PPC_RELATIVE);
loc = relplt->contents + (relplt->reloc_count++
* sizeof (Elf32_External_Rela));
htab->local_ifunc_resolver = 1;
}
else
{
rela.r_info = ELF32_R_INFO (h->dynindx, R_PPC_JMP_SLOT);
loc = relplt->contents + (reloc_index
* sizeof (Elf32_External_Rela));
if (h->type == STT_GNU_IFUNC && is_static_defined (h))
htab->maybe_local_ifunc_resolver = 1;
}
bfd_elf32_swap_reloca_out (info->output_bfd, &rela, loc);
}
doneone = TRUE;
}
if (htab->plt_type == PLT_NEW
|| !htab->elf.dynamic_sections_created
|| h->dynindx == -1)
{
unsigned char *p;
asection *plt = htab->elf.splt;
if (!htab->elf.dynamic_sections_created
|| h->dynindx == -1)
{
if (h->type == STT_GNU_IFUNC)
plt = htab->elf.iplt;
else
break;
}
p = (unsigned char *) htab->glink->contents + ent->glink_offset;
write_glink_stub (h, ent, plt, p, info);
if (!bfd_link_pic (info))
/* We only need one non-PIC glink stub. */
break;
}
else
break;
}
return TRUE;
}
/* Finish up PLT handling. */
bfd_boolean
ppc_finish_symbols (struct bfd_link_info *info)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
bfd *ibfd;
if (!htab)
return TRUE;
elf_link_hash_traverse (&htab->elf, write_global_sym_plt, info);
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
bfd_vma *local_got, *end_local_got;
struct plt_entry **local_plt, **lplt, **end_local_plt;
Elf_Internal_Shdr *symtab_hdr;
bfd_size_type locsymcount;
Elf_Internal_Sym *local_syms = NULL;
struct plt_entry *ent;
if (!is_ppc_elf (ibfd))
continue;
local_got = elf_local_got_offsets (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_symtab_hdr (ibfd);
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_plt = (struct plt_entry **) end_local_got;
end_local_plt = local_plt + locsymcount;
for (lplt = local_plt; lplt < end_local_plt; ++lplt)
for (ent = *lplt; ent != NULL; ent = ent->next)
{
if (ent->plt.offset != (bfd_vma) -1)
{
Elf_Internal_Sym *sym;
asection *sym_sec;
asection *plt, *relplt;
bfd_byte *loc;
bfd_vma val;
Elf_Internal_Rela rela;
unsigned char *p;
if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
lplt - local_plt, ibfd))
{
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
free (local_syms);
return FALSE;
}
val = sym->st_value;
if (sym_sec != NULL && sym_sec->output_section != NULL)
val += sym_sec->output_offset + sym_sec->output_section->vma;
if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
{
htab->local_ifunc_resolver = 1;
plt = htab->elf.iplt;
relplt = htab->elf.irelplt;
rela.r_info = ELF32_R_INFO (0, R_PPC_IRELATIVE);
}
else
{
plt = htab->pltlocal;
if (bfd_link_pic (info))
{
relplt = htab->relpltlocal;
rela.r_info = ELF32_R_INFO (0, R_PPC_RELATIVE);
}
else
{
loc = plt->contents + ent->plt.offset;
bfd_put_32 (info->output_bfd, val, loc);
continue;
}
}
rela.r_offset = (ent->plt.offset
+ plt->output_offset
+ plt->output_section->vma);
rela.r_addend = val;
loc = relplt->contents + (relplt->reloc_count++
* sizeof (Elf32_External_Rela));
bfd_elf32_swap_reloca_out (info->output_bfd, &rela, loc);
p = (unsigned char *) htab->glink->contents + ent->glink_offset;
write_glink_stub (NULL, ent, htab->elf.iplt, p, info);
}
}
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
{
if (!info->keep_memory)
free (local_syms);
else
symtab_hdr->contents = (unsigned char *) local_syms;
}
}
return TRUE;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bfd_boolean
ppc_elf_finish_dynamic_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
struct plt_entry *ent;
#ifdef DEBUG
fprintf (stderr, "ppc_elf_finish_dynamic_symbol called for %s",
h->root.root.string);
#endif
if (!h->def_regular
|| (h->type == STT_GNU_IFUNC && !bfd_link_pic (info)))
for (ent = h->plt.plist; ent != NULL; ent = ent->next)
if (ent->plt.offset != (bfd_vma) -1)
{
if (!h->def_regular)
{
/* Mark the symbol as undefined, rather than as
defined in the .plt section. Leave the value if
there were any relocations where pointer equality
matters (this is a clue for the dynamic linker, to
make function pointer comparisons work between an
application and shared library), otherwise set it
to zero. */
sym->st_shndx = SHN_UNDEF;
if (!h->pointer_equality_needed)
sym->st_value = 0;
else if (!h->ref_regular_nonweak)
{
/* This breaks function pointer comparisons, but
that is better than breaking tests for a NULL
function pointer. */
sym->st_value = 0;
}
}
else
{
/* Set the value of ifunc symbols in a non-pie
executable to the glink entry. This is to avoid
text relocations. We can't do this for ifunc in
allocate_dynrelocs, as we do for normal dynamic
function symbols with plt entries, because we need
to keep the original value around for the ifunc
relocation. */
sym->st_shndx
= (_bfd_elf_section_from_bfd_section
(info->output_bfd, htab->glink->output_section));
sym->st_value = (ent->glink_offset
+ htab->glink->output_offset
+ htab->glink->output_section->vma);
}
break;
}
if (h->needs_copy)
{
asection *s;
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbols needs a copy reloc. Set it up. */
#ifdef DEBUG
fprintf (stderr, ", copy");
#endif
BFD_ASSERT (h->dynindx != -1);
if (ppc_elf_hash_entry (h)->has_sda_refs)
s = htab->relsbss;
else if (h->root.u.def.section == htab->elf.sdynrelro)
s = htab->elf.sreldynrelro;
else
s = htab->elf.srelbss;
BFD_ASSERT (s != NULL);
rela.r_offset = SYM_VAL (h);
rela.r_info = ELF32_R_INFO (h->dynindx, R_PPC_COPY);
rela.r_addend = 0;
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
}
#ifdef DEBUG
fprintf (stderr, "\n");
#endif
return TRUE;
}
static enum elf_reloc_type_class
ppc_elf_reloc_type_class (const struct bfd_link_info *info,
const asection *rel_sec,
const Elf_Internal_Rela *rela)
{
struct ppc_elf_link_hash_table *htab = ppc_elf_hash_table (info);
if (rel_sec == htab->elf.irelplt)
return reloc_class_ifunc;
switch (ELF32_R_TYPE (rela->r_info))
{
case R_PPC_RELATIVE:
return reloc_class_relative;
case R_PPC_JMP_SLOT:
return reloc_class_plt;
case R_PPC_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
/* Finish up the dynamic sections. */
static bfd_boolean
ppc_elf_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
asection *sdyn;
struct ppc_elf_link_hash_table *htab;
bfd_vma got;
bfd *dynobj;
bfd_boolean ret = TRUE;
#ifdef DEBUG
fprintf (stderr, "ppc_elf_finish_dynamic_sections called\n");
#endif
htab = ppc_elf_hash_table (info);
dynobj = htab->elf.dynobj;
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
got = 0;
if (htab->elf.hgot != NULL)
got = SYM_VAL (htab->elf.hgot);
if (htab->elf.dynamic_sections_created)
{
Elf32_External_Dyn *dyncon, *dynconend;
BFD_ASSERT (htab->elf.splt != NULL && sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
case DT_PLTGOT:
if (htab->is_vxworks)
s = htab->elf.sgotplt;
else
s = htab->elf.splt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
break;
case DT_PLTRELSZ:
dyn.d_un.d_val = htab->elf.srelplt->size;
break;
case DT_JMPREL:
s = htab->elf.srelplt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
break;
case DT_PPC_GOT:
dyn.d_un.d_ptr = got;
break;
case DT_TEXTREL:
if (htab->local_ifunc_resolver)
info->callbacks->einfo
(_("%X%P: text relocations and GNU indirect "
"functions will result in a segfault at runtime\n"));
else if (htab->maybe_local_ifunc_resolver)
info->callbacks->einfo
(_("%P: warning: text relocations and GNU indirect "
"functions may result in a segfault at runtime\n"));
continue;
default:
if (htab->is_vxworks
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
break;
continue;
}
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
if (htab->elf.sgot != NULL
&& htab->elf.sgot->output_section != bfd_abs_section_ptr)
{
if (htab->elf.hgot->root.u.def.section == htab->elf.sgot
|| htab->elf.hgot->root.u.def.section == htab->elf.sgotplt)
{
unsigned char *p = htab->elf.hgot->root.u.def.section->contents;
p += htab->elf.hgot->root.u.def.value;
if (htab->plt_type == PLT_OLD)
{
/* Add a blrl instruction at _GLOBAL_OFFSET_TABLE_-4
so that a function can easily find the address of
_GLOBAL_OFFSET_TABLE_. */
BFD_ASSERT (htab->elf.hgot->root.u.def.value - 4
< htab->elf.hgot->root.u.def.section->size);
bfd_put_32 (output_bfd, 0x4e800021, p - 4);
}
if (sdyn != NULL)
{
bfd_vma val = sdyn->output_section->vma + sdyn->output_offset;
BFD_ASSERT (htab->elf.hgot->root.u.def.value
< htab->elf.hgot->root.u.def.section->size);
bfd_put_32 (output_bfd, val, p);
}
}
else
{
/* xgettext:c-format */
_bfd_error_handler (_("%s not defined in linker created %pA"),
htab->elf.hgot->root.root.string,
(htab->elf.sgotplt != NULL
? htab->elf.sgotplt : htab->elf.sgot));
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
}
elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 4;
}
/* Fill in the first entry in the VxWorks procedure linkage table. */
if (htab->is_vxworks
&& htab->elf.splt != NULL
&& htab->elf.splt->size != 0
&& htab->elf.splt->output_section != bfd_abs_section_ptr)
{
asection *splt = htab->elf.splt;
/* Use the right PLT. */
const bfd_vma *plt_entry = (bfd_link_pic (info)
? ppc_elf_vxworks_pic_plt0_entry
: ppc_elf_vxworks_plt0_entry);
if (!bfd_link_pic (info))
{
bfd_vma got_value = SYM_VAL (htab->elf.hgot);
bfd_put_32 (output_bfd, plt_entry[0] | PPC_HA (got_value),
splt->contents + 0);
bfd_put_32 (output_bfd, plt_entry[1] | PPC_LO (got_value),
splt->contents + 4);
}
else
{
bfd_put_32 (output_bfd, plt_entry[0], splt->contents + 0);
bfd_put_32 (output_bfd, plt_entry[1], splt->contents + 4);
}
bfd_put_32 (output_bfd, plt_entry[2], splt->contents + 8);
bfd_put_32 (output_bfd, plt_entry[3], splt->contents + 12);
bfd_put_32 (output_bfd, plt_entry[4], splt->contents + 16);
bfd_put_32 (output_bfd, plt_entry[5], splt->contents + 20);
bfd_put_32 (output_bfd, plt_entry[6], splt->contents + 24);
bfd_put_32 (output_bfd, plt_entry[7], splt->contents + 28);
if (! bfd_link_pic (info))
{
Elf_Internal_Rela rela;
bfd_byte *loc;
loc = htab->srelplt2->contents;
/* Output the @ha relocation for the first instruction. */
rela.r_offset = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ 2);
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_HA);
rela.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Output the @l relocation for the second instruction. */
rela.r_offset = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ 6);
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_LO);
rela.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Fix up the remaining relocations. They may have the wrong
symbol index for _G_O_T_ or _P_L_T_ depending on the order
in which symbols were output. */
while (loc < htab->srelplt2->contents + htab->srelplt2->size)
{
Elf_Internal_Rela rel;
bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_HA);
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
loc += sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_PPC_ADDR16_LO);
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
loc += sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_PPC_ADDR32);
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
loc += sizeof (Elf32_External_Rela);
}
}
}
if (htab->glink != NULL
&& htab->glink->contents != NULL
&& htab->elf.dynamic_sections_created)
{
unsigned char *p;
unsigned char *endp;
bfd_vma res0;
/*
* PIC glink code is the following:
*
* # ith PLT code stub.
* addis 11,30,(plt+(i-1)*4-got)@ha
* lwz 11,(plt+(i-1)*4-got)@l(11)
* mtctr 11
* bctr
*
* # A table of branches, one for each plt entry.
* # The idea is that the plt call stub loads ctr and r11 with these
* # addresses, so (r11 - res_0) gives the plt index * 4.
* res_0: b PLTresolve
* res_1: b PLTresolve
* .
* # Some number of entries towards the end can be nops
* res_n_m3: nop
* res_n_m2: nop
* res_n_m1:
*
* PLTresolve:
* addis 11,11,(1f-res_0)@ha
* mflr 0
* bcl 20,31,1f
* 1: addi 11,11,(1b-res_0)@l
* mflr 12
* mtlr 0
* sub 11,11,12 # r11 = index * 4
* addis 12,12,(got+4-1b)@ha
* lwz 0,(got+4-1b)@l(12) # got[1] address of dl_runtime_resolve
* lwz 12,(got+8-1b)@l(12) # got[2] contains the map address
* mtctr 0
* add 0,11,11
* add 11,0,11 # r11 = index * 12 = reloc offset.
* bctr
*
* Non-PIC glink code is a little simpler.
*
* # ith PLT code stub.
* lis 11,(plt+(i-1)*4)@ha
* lwz 11,(plt+(i-1)*4)@l(11)
* mtctr 11
* bctr
*
* The branch table is the same, then comes
*
* PLTresolve:
* lis 12,(got+4)@ha
* addis 11,11,(-res_0)@ha
* lwz 0,(got+4)@l(12) # got[1] address of dl_runtime_resolve
* addi 11,11,(-res_0)@l # r11 = index * 4
* mtctr 0
* add 0,11,11
* lwz 12,(got+8)@l(12) # got[2] contains the map address
* add 11,0,11 # r11 = index * 12 = reloc offset.
* bctr
*/
/* Build the branch table, one for each plt entry (less one),
and perhaps some padding. */
p = htab->glink->contents;
p += htab->glink_pltresolve;
endp = htab->glink->contents;
endp += htab->glink->size - GLINK_PLTRESOLVE;
while (p < endp - (htab->params->ppc476_workaround ? 0 : 8 * 4))
{
bfd_put_32 (output_bfd, B + endp - p, p);
p += 4;
}
while (p < endp)
{
bfd_put_32 (output_bfd, NOP, p);
p += 4;
}
res0 = (htab->glink_pltresolve
+ htab->glink->output_section->vma
+ htab->glink->output_offset);
if (htab->params->ppc476_workaround)
{
/* Ensure that a call stub at the end of a page doesn't
result in prefetch over the end of the page into the
glink branch table. */
bfd_vma pagesize = (bfd_vma) 1 << htab->params->pagesize_p2;
bfd_vma page_addr;
bfd_vma glink_start = (htab->glink->output_section->vma
+ htab->glink->output_offset);
for (page_addr = res0 & -pagesize;
page_addr > glink_start;
page_addr -= pagesize)
{
/* We have a plt call stub that may need fixing. */
bfd_byte *loc;
unsigned int insn;
loc = htab->glink->contents + page_addr - 4 - glink_start;
insn = bfd_get_32 (output_bfd, loc);
if (insn == BCTR)
{
/* By alignment, we know that there must be at least
one other call stub before this one. */
insn = bfd_get_32 (output_bfd, loc - 16);
if (insn == BCTR)
bfd_put_32 (output_bfd, B | (-16 & 0x3fffffc), loc);
else
bfd_put_32 (output_bfd, B | (-20 & 0x3fffffc), loc);
}
}
}
/* Last comes the PLTresolve stub. */
endp = p + GLINK_PLTRESOLVE;
if (bfd_link_pic (info))
{
bfd_vma bcl;
bcl = (htab->glink->size - GLINK_PLTRESOLVE + 3*4
+ htab->glink->output_section->vma
+ htab->glink->output_offset);
bfd_put_32 (output_bfd, ADDIS_11_11 + PPC_HA (bcl - res0), p);
p += 4;
bfd_put_32 (output_bfd, MFLR_0, p);
p += 4;
bfd_put_32 (output_bfd, BCL_20_31, p);
p += 4;
bfd_put_32 (output_bfd, ADDI_11_11 + PPC_LO (bcl - res0), p);
p += 4;
bfd_put_32 (output_bfd, MFLR_12, p);
p += 4;
bfd_put_32 (output_bfd, MTLR_0, p);
p += 4;
bfd_put_32 (output_bfd, SUB_11_11_12, p);
p += 4;
bfd_put_32 (output_bfd, ADDIS_12_12 + PPC_HA (got + 4 - bcl), p);
p += 4;
if (PPC_HA (got + 4 - bcl) == PPC_HA (got + 8 - bcl))
{
bfd_put_32 (output_bfd, LWZ_0_12 + PPC_LO (got + 4 - bcl), p);
p += 4;
bfd_put_32 (output_bfd, LWZ_12_12 + PPC_LO (got + 8 - bcl), p);
p += 4;
}
else
{
bfd_put_32 (output_bfd, LWZU_0_12 + PPC_LO (got + 4 - bcl), p);
p += 4;
bfd_put_32 (output_bfd, LWZ_12_12 + 4, p);
p += 4;
}
bfd_put_32 (output_bfd, MTCTR_0, p);
p += 4;
bfd_put_32 (output_bfd, ADD_0_11_11, p);
}
else
{
bfd_put_32 (output_bfd, LIS_12 + PPC_HA (got + 4), p);
p += 4;
bfd_put_32 (output_bfd, ADDIS_11_11 + PPC_HA (-res0), p);
p += 4;
if (PPC_HA (got + 4) == PPC_HA (got + 8))
bfd_put_32 (output_bfd, LWZ_0_12 + PPC_LO (got + 4), p);
else
bfd_put_32 (output_bfd, LWZU_0_12 + PPC_LO (got + 4), p);
p += 4;
bfd_put_32 (output_bfd, ADDI_11_11 + PPC_LO (-res0), p);
p += 4;
bfd_put_32 (output_bfd, MTCTR_0, p);
p += 4;
bfd_put_32 (output_bfd, ADD_0_11_11, p);
p += 4;
if (PPC_HA (got + 4) == PPC_HA (got + 8))
bfd_put_32 (output_bfd, LWZ_12_12 + PPC_LO (got + 8), p);
else
bfd_put_32 (output_bfd, LWZ_12_12 + 4, p);
}
p += 4;
bfd_put_32 (output_bfd, ADD_11_0_11, p);
p += 4;
bfd_put_32 (output_bfd, BCTR, p);
p += 4;
while (p < endp)
{
bfd_put_32 (output_bfd,
htab->params->ppc476_workaround ? BA : NOP, p);
p += 4;
}
BFD_ASSERT (p == endp);
}
if (htab->glink_eh_frame != NULL
&& htab->glink_eh_frame->contents != NULL)
{
unsigned char *p = htab->glink_eh_frame->contents;
bfd_vma val;
p += sizeof (glink_eh_frame_cie);
/* FDE length. */
p += 4;
/* CIE pointer. */
p += 4;
/* Offset to .glink. */
val = (htab->glink->output_section->vma
+ htab->glink->output_offset);
val -= (htab->glink_eh_frame->output_section->vma
+ htab->glink_eh_frame->output_offset);
val -= p - htab->glink_eh_frame->contents;
bfd_put_32 (htab->elf.dynobj, val, p);
if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
&& !_bfd_elf_write_section_eh_frame (output_bfd, info,
htab->glink_eh_frame,
htab->glink_eh_frame->contents))
return FALSE;
}
return ret;
}
#define TARGET_LITTLE_SYM powerpc_elf32_le_vec
#define TARGET_LITTLE_NAME "elf32-powerpcle"
#define TARGET_BIG_SYM powerpc_elf32_vec
#define TARGET_BIG_NAME "elf32-powerpc"
#define ELF_ARCH bfd_arch_powerpc
#define ELF_TARGET_ID PPC32_ELF_DATA
#define ELF_MACHINE_CODE EM_PPC
#define ELF_MAXPAGESIZE 0x10000
#define ELF_COMMONPAGESIZE 0x1000
#define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
#define elf_info_to_howto ppc_elf_info_to_howto
#ifdef EM_CYGNUS_POWERPC
#define ELF_MACHINE_ALT1 EM_CYGNUS_POWERPC
#endif
#ifdef EM_PPC_OLD
#define ELF_MACHINE_ALT2 EM_PPC_OLD
#endif
#define elf_backend_plt_not_loaded 1
#define elf_backend_want_dynrelro 1
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_rela_normal 1
#define elf_backend_caches_rawsize 1
#define bfd_elf32_mkobject ppc_elf_mkobject
#define bfd_elf32_bfd_merge_private_bfd_data ppc_elf_merge_private_bfd_data
#define bfd_elf32_bfd_relax_section ppc_elf_relax_section
#define bfd_elf32_bfd_reloc_type_lookup ppc_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup ppc_elf_reloc_name_lookup
#define bfd_elf32_bfd_set_private_flags ppc_elf_set_private_flags
#define bfd_elf32_bfd_link_hash_table_create ppc_elf_link_hash_table_create
#define bfd_elf32_get_synthetic_symtab ppc_elf_get_synthetic_symtab
#define elf_backend_object_p ppc_elf_object_p
#define elf_backend_gc_mark_hook ppc_elf_gc_mark_hook
#define elf_backend_section_from_shdr ppc_elf_section_from_shdr
#define elf_backend_relocate_section ppc_elf_relocate_section
#define elf_backend_create_dynamic_sections ppc_elf_create_dynamic_sections
#define elf_backend_check_relocs ppc_elf_check_relocs
#define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
#define elf_backend_copy_indirect_symbol ppc_elf_copy_indirect_symbol
#define elf_backend_adjust_dynamic_symbol ppc_elf_adjust_dynamic_symbol
#define elf_backend_add_symbol_hook ppc_elf_add_symbol_hook
#define elf_backend_size_dynamic_sections ppc_elf_size_dynamic_sections
#define elf_backend_hash_symbol ppc_elf_hash_symbol
#define elf_backend_finish_dynamic_symbol ppc_elf_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections ppc_elf_finish_dynamic_sections
#define elf_backend_fake_sections ppc_elf_fake_sections
#define elf_backend_additional_program_headers ppc_elf_additional_program_headers
#define elf_backend_modify_segment_map ppc_elf_modify_segment_map
#define elf_backend_grok_prstatus ppc_elf_grok_prstatus
#define elf_backend_grok_psinfo ppc_elf_grok_psinfo
#define elf_backend_write_core_note ppc_elf_write_core_note
#define elf_backend_reloc_type_class ppc_elf_reloc_type_class
#define elf_backend_begin_write_processing ppc_elf_begin_write_processing
#define elf_backend_final_write_processing ppc_elf_final_write_processing
#define elf_backend_write_section ppc_elf_write_section
#define elf_backend_get_sec_type_attr ppc_elf_get_sec_type_attr
#define elf_backend_plt_sym_val ppc_elf_plt_sym_val
#define elf_backend_action_discarded ppc_elf_action_discarded
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
#define elf_backend_lookup_section_flags_hook ppc_elf_lookup_section_flags
#include "elf32-target.h"
/* FreeBSD Target */
#undef TARGET_LITTLE_SYM
#undef TARGET_LITTLE_NAME
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM powerpc_elf32_fbsd_vec
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf32-powerpc-freebsd"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_FREEBSD
#undef elf32_bed
#define elf32_bed elf32_powerpc_fbsd_bed
#include "elf32-target.h"
/* VxWorks Target */
#undef TARGET_LITTLE_SYM
#undef TARGET_LITTLE_NAME
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM powerpc_elf32_vxworks_vec
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf32-powerpc-vxworks"
#undef ELF_OSABI
/* VxWorks uses the elf default section flags for .plt. */
static const struct bfd_elf_special_section *
ppc_elf_vxworks_get_sec_type_attr (bfd *abfd, asection *sec)
{
if (sec->name == NULL)
return NULL;
if (strcmp (sec->name, ".plt") == 0)
return _bfd_elf_get_sec_type_attr (abfd, sec);
return ppc_elf_get_sec_type_attr (abfd, sec);
}
/* Like ppc_elf_link_hash_table_create, but overrides
appropriately for VxWorks. */
static struct bfd_link_hash_table *
ppc_elf_vxworks_link_hash_table_create (bfd *abfd)
{
struct bfd_link_hash_table *ret;
ret = ppc_elf_link_hash_table_create (abfd);
if (ret)
{
struct ppc_elf_link_hash_table *htab
= (struct ppc_elf_link_hash_table *)ret;
htab->is_vxworks = 1;
htab->plt_type = PLT_VXWORKS;
htab->plt_entry_size = VXWORKS_PLT_ENTRY_SIZE;
htab->plt_slot_size = VXWORKS_PLT_ENTRY_SIZE;
htab->plt_initial_entry_size = VXWORKS_PLT_INITIAL_ENTRY_SIZE;
}
return ret;
}
/* Tweak magic VxWorks symbols as they are loaded. */
static bfd_boolean
ppc_elf_vxworks_add_symbol_hook (bfd *abfd,
struct bfd_link_info *info,
Elf_Internal_Sym *sym,
const char **namep,
flagword *flagsp,
asection **secp,
bfd_vma *valp)
{
if (!elf_vxworks_add_symbol_hook (abfd, info, sym, namep, flagsp, secp,
valp))
return FALSE;
return ppc_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp);
}
static bfd_boolean
ppc_elf_vxworks_final_write_processing (bfd *abfd)
{
ppc_final_write_processing (abfd);
return elf_vxworks_final_write_processing (abfd);
}
/* On VxWorks, we emit relocations against _PROCEDURE_LINKAGE_TABLE_, so
define it. */
#undef elf_backend_want_plt_sym
#define elf_backend_want_plt_sym 1
#undef elf_backend_want_got_plt
#define elf_backend_want_got_plt 1
#undef elf_backend_got_symbol_offset
#define elf_backend_got_symbol_offset 0
#undef elf_backend_plt_not_loaded
#define elf_backend_plt_not_loaded 0
#undef elf_backend_plt_readonly
#define elf_backend_plt_readonly 1
#undef elf_backend_got_header_size
#define elf_backend_got_header_size 12
#undef elf_backend_dtrel_excludes_plt
#define elf_backend_dtrel_excludes_plt 1
#undef bfd_elf32_get_synthetic_symtab
#undef bfd_elf32_bfd_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create \
ppc_elf_vxworks_link_hash_table_create
#undef elf_backend_add_symbol_hook
#define elf_backend_add_symbol_hook \
ppc_elf_vxworks_add_symbol_hook
#undef elf_backend_link_output_symbol_hook
#define elf_backend_link_output_symbol_hook \
elf_vxworks_link_output_symbol_hook
#undef elf_backend_final_write_processing
#define elf_backend_final_write_processing \
ppc_elf_vxworks_final_write_processing
#undef elf_backend_get_sec_type_attr
#define elf_backend_get_sec_type_attr \
ppc_elf_vxworks_get_sec_type_attr
#undef elf_backend_emit_relocs
#define elf_backend_emit_relocs \
elf_vxworks_emit_relocs
#undef elf32_bed
#define elf32_bed ppc_elf_vxworks_bed
#include "elf32-target.h"