binutils-gdb/sim/arm/armsupp.c
2000-02-08 20:54:27 +00:00

864 lines
26 KiB
C

/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "armdefs.h"
#include "armemu.h"
#include "ansidecl.h"
/***************************************************************************\
* Definitions for the support routines *
\***************************************************************************/
ARMword ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg);
void ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg,
ARMword value);
ARMword ARMul_GetPC (ARMul_State * state);
ARMword ARMul_GetNextPC (ARMul_State * state);
void ARMul_SetPC (ARMul_State * state, ARMword value);
ARMword ARMul_GetR15 (ARMul_State * state);
void ARMul_SetR15 (ARMul_State * state, ARMword value);
ARMword ARMul_GetCPSR (ARMul_State * state);
void ARMul_SetCPSR (ARMul_State * state, ARMword value);
ARMword ARMul_GetSPSR (ARMul_State * state, ARMword mode);
void ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value);
void ARMul_CPSRAltered (ARMul_State * state);
void ARMul_R15Altered (ARMul_State * state);
ARMword ARMul_SwitchMode (ARMul_State * state, ARMword oldmode,
ARMword newmode);
static ARMword ModeToBank (ARMul_State * state, ARMword mode);
unsigned ARMul_NthReg (ARMword instr, unsigned number);
void ARMul_NegZero (ARMul_State * state, ARMword result);
void ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b,
ARMword result);
void ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address);
void ARMul_STC (ARMul_State * state, ARMword instr, ARMword address);
void ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source);
ARMword ARMul_MRC (ARMul_State * state, ARMword instr);
void ARMul_CDP (ARMul_State * state, ARMword instr);
unsigned IntPending (ARMul_State * state);
ARMword ARMul_Align (ARMul_State * state, ARMword address, ARMword data);
void ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
unsigned (*what) ());
void ARMul_EnvokeEvent (ARMul_State * state);
unsigned long ARMul_Time (ARMul_State * state);
static void EnvokeList (ARMul_State * state, unsigned long from,
unsigned long to);
struct EventNode
{ /* An event list node */
unsigned (*func) (); /* The function to call */
struct EventNode *next;
};
/***************************************************************************\
* This routine returns the value of a register from a mode. *
\***************************************************************************/
ARMword
ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
{
mode &= MODEBITS;
if (mode != state->Mode)
return (state->RegBank[ModeToBank (state, (ARMword) mode)][reg]);
else
return (state->Reg[reg]);
}
/***************************************************************************\
* This routine sets the value of a register for a mode. *
\***************************************************************************/
void
ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
{
mode &= MODEBITS;
if (mode != state->Mode)
state->RegBank[ModeToBank (state, (ARMword) mode)][reg] = value;
else
state->Reg[reg] = value;
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword
ARMul_GetPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15]);
else
return (R15PC);
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword
ARMul_GetNextPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15] + isize);
else
return ((state->Reg[15] + isize) & R15PCBITS);
}
/***************************************************************************\
* This routine sets the value of the PC. *
\***************************************************************************/
void
ARMul_SetPC (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
FLUSHPIPE;
}
/***************************************************************************\
* This routine returns the value of register 15, mode independently. *
\***************************************************************************/
ARMword
ARMul_GetR15 (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15]);
else
return (R15PC | ECC | ER15INT | EMODE);
}
/***************************************************************************\
* This routine sets the value of Register 15. *
\***************************************************************************/
void
ARMul_SetR15 (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
{
state->Reg[15] = value;
ARMul_R15Altered (state);
}
FLUSHPIPE;
}
/***************************************************************************\
* This routine returns the value of the CPSR *
\***************************************************************************/
ARMword
ARMul_GetCPSR (ARMul_State * state)
{
return (CPSR);
}
/***************************************************************************\
* This routine sets the value of the CPSR *
\***************************************************************************/
void
ARMul_SetCPSR (ARMul_State * state, ARMword value)
{
state->Cpsr = CPSR;
SETPSR (state->Cpsr, value);
ARMul_CPSRAltered (state);
}
/***************************************************************************\
* This routine does all the nasty bits involved in a write to the CPSR, *
* including updating the register bank, given a MSR instruction. *
\***************************************************************************/
void
ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
state->Cpsr = CPSR;
if (state->Bank == USERBANK)
{ /* Only write flags in user mode */
if (BIT (19))
{
SETCC (state->Cpsr, rhs);
}
}
else
{ /* Not a user mode */
if (BITS (16, 19) == 9)
SETPSR (state->Cpsr, rhs);
else if (BIT (16))
SETINTMODE (state->Cpsr, rhs);
else if (BIT (19))
SETCC (state->Cpsr, rhs);
}
ARMul_CPSRAltered (state);
}
/***************************************************************************\
* Get an SPSR from the specified mode *
\***************************************************************************/
ARMword
ARMul_GetSPSR (ARMul_State * state, ARMword mode)
{
ARMword bank = ModeToBank (state, mode & MODEBITS);
if (bank == USERBANK || bank == DUMMYBANK)
return (CPSR);
else
return (state->Spsr[bank]);
}
/***************************************************************************\
* This routine does a write to an SPSR *
\***************************************************************************/
void
ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
{
ARMword bank = ModeToBank (state, mode & MODEBITS);
if (bank != USERBANK && bank != DUMMYBANK)
state->Spsr[bank] = value;
}
/***************************************************************************\
* This routine does a write to the current SPSR, given an MSR instruction *
\***************************************************************************/
void
ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
if (state->Bank != USERBANK && state->Bank != DUMMYBANK)
{
if (BITS (16, 19) == 9)
SETPSR (state->Spsr[state->Bank], rhs);
else if (BIT (16))
SETINTMODE (state->Spsr[state->Bank], rhs);
else if (BIT (19))
SETCC (state->Spsr[state->Bank], rhs);
}
}
/***************************************************************************\
* This routine updates the state of the emulator after the Cpsr has been *
* changed. Both the processor flags and register bank are updated. *
\***************************************************************************/
void
ARMul_CPSRAltered (ARMul_State * state)
{
ARMword oldmode;
if (state->prog32Sig == LOW)
state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
oldmode = state->Mode;
if (state->Mode != (state->Cpsr & MODEBITS))
{
state->Mode =
ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
ASSIGNINT (state->Cpsr & INTBITS);
ASSIGNN ((state->Cpsr & NBIT) != 0);
ASSIGNZ ((state->Cpsr & ZBIT) != 0);
ASSIGNC ((state->Cpsr & CBIT) != 0);
ASSIGNV ((state->Cpsr & VBIT) != 0);
#ifdef MODET
ASSIGNT ((state->Cpsr & TBIT) != 0);
#endif
if (oldmode > SVC26MODE)
{
if (state->Mode <= SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
else
{
if (state->Mode > SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = R15PC;
}
else
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
/***************************************************************************\
* This routine updates the state of the emulator after register 15 has *
* been changed. Both the processor flags and register bank are updated. *
* This routine should only be called from a 26 bit mode. *
\***************************************************************************/
void
ARMul_R15Altered (ARMul_State * state)
{
if (state->Mode != R15MODE)
{
state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
if (state->Mode > SVC26MODE)
state->Emulate = CHANGEMODE;
ASSIGNR15INT (R15INT);
ASSIGNN ((state->Reg[15] & NBIT) != 0);
ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
ASSIGNC ((state->Reg[15] & CBIT) != 0);
ASSIGNV ((state->Reg[15] & VBIT) != 0);
}
/***************************************************************************\
* This routine controls the saving and restoring of registers across mode *
* changes. The regbank matrix is largely unused, only rows 13 and 14 are *
* used across all modes, 8 to 14 are used for FIQ, all others use the USER *
* column. It's easier this way. old and new parameter are modes numbers. *
* Notice the side effect of changing the Bank variable. *
\***************************************************************************/
ARMword
ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
{
unsigned i;
oldmode = ModeToBank (state, oldmode);
state->Bank = ModeToBank (state, newmode);
if (oldmode != state->Bank)
{ /* really need to do it */
switch (oldmode)
{ /* save away the old registers */
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
if (state->Bank == FIQBANK)
for (i = 8; i < 13; i++)
state->RegBank[USERBANK][i] = state->Reg[i];
state->RegBank[oldmode][13] = state->Reg[13];
state->RegBank[oldmode][14] = state->Reg[14];
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->RegBank[FIQBANK][i] = state->Reg[i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->RegBank[DUMMYBANK][i] = 0;
break;
}
switch (state->Bank)
{ /* restore the new registers */
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
if (oldmode == FIQBANK)
for (i = 8; i < 13; i++)
state->Reg[i] = state->RegBank[USERBANK][i];
state->Reg[13] = state->RegBank[state->Bank][13];
state->Reg[14] = state->RegBank[state->Bank][14];
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = state->RegBank[FIQBANK][i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = 0;
break;
} /* switch */
} /* if */
return (newmode);
}
/***************************************************************************\
* Given a processor mode, this routine returns the register bank that *
* will be accessed in that mode. *
\***************************************************************************/
static ARMword
ModeToBank (ARMul_State * state ATTRIBUTE_UNUSED, ARMword mode)
{
static ARMword bankofmode[] = { USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK
};
if (mode > UNDEF32MODE)
return (DUMMYBANK);
else
return (bankofmode[mode]);
}
/***************************************************************************\
* Returns the register number of the nth register in a reg list. *
\***************************************************************************/
unsigned
ARMul_NthReg (ARMword instr, unsigned number)
{
unsigned bit, upto;
for (bit = 0, upto = 0; upto <= number; bit++)
if (BIT (bit))
upto++;
return (bit - 1);
}
/***************************************************************************\
* Assigns the N and Z flags depending on the value of result *
\***************************************************************************/
void
ARMul_NegZero (ARMul_State * state, ARMword result)
{
if (NEG (result))
{
SETN;
CLEARZ;
}
else if (result == 0)
{
CLEARN;
SETZ;
}
else
{
CLEARN;
CLEARZ;
};
}
/* Compute whether an addition of A and B, giving RESULT, overflowed. */
int
AddOverflow (ARMword a, ARMword b, ARMword result)
{
return ((NEG (a) && NEG (b) && POS (result))
|| (POS (a) && POS (b) && NEG (result)));
}
/* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
int
SubOverflow (ARMword a, ARMword b, ARMword result)
{
return ((NEG (a) && POS (b) && POS (result))
|| (POS (a) && NEG (b) && NEG (result)));
}
/***************************************************************************\
* Assigns the C flag after an addition of a and b to give result *
\***************************************************************************/
void
ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNC ((NEG (a) && NEG (b)) ||
(NEG (a) && POS (result)) || (NEG (b) && POS (result)));
}
/***************************************************************************\
* Assigns the V flag after an addition of a and b to give result *
\***************************************************************************/
void
ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNV (AddOverflow (a, b, result));
}
/***************************************************************************\
* Assigns the C flag after an subtraction of a and b to give result *
\***************************************************************************/
void
ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNC ((NEG (a) && POS (b)) ||
(NEG (a) && POS (result)) || (POS (b) && POS (result)));
}
/***************************************************************************\
* Assigns the V flag after an subtraction of a and b to give result *
\***************************************************************************/
void
ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNV (SubOverflow (a, b, result));
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* LDC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void
ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
UNDEF_LSCPCBaseWb;
if (ADDREXCEPT (address))
{
INTERNALABORT (address);
}
cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
}
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
data = ARMul_LoadWordN (state, address);
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
while (cpab == ARMul_INC)
{
address += 4;
data = ARMul_LoadWordN (state, address);
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
}
if (state->abortSig || state->Aborted)
{
TAKEABORT;
}
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* STC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void
ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
UNDEF_LSCPCBaseWb;
if (ADDREXCEPT (address) || VECTORACCESS (address))
{
INTERNALABORT (address);
}
cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
}
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
#ifndef MODE32
if (ADDREXCEPT (address) || VECTORACCESS (address))
{
INTERNALABORT (address);
}
#endif
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
while (cpab == ARMul_INC)
{
address += 4;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
}
if (state->abortSig || state->Aborted)
{
TAKEABORT;
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MCR instruction. *
\***************************************************************************/
void
ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
{
unsigned cpab;
cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
}
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MRC instruction. *
\***************************************************************************/
ARMword
ARMul_MRC (ARMul_State * state, ARMword instr)
{
unsigned cpab;
ARMword result = 0;
cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return (0);
}
else
cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
}
if (cpab == ARMul_CANT)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
result = ECC; /* Parent will destroy the flags otherwise */
}
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
ARMul_Icycles (state, 1, 0);
}
return (result);
}
/***************************************************************************\
* This function does the Busy-Waiting for an CDP instruction. *
\***************************************************************************/
void
ARMul_CDP (ARMul_State * state, ARMword instr)
{
unsigned cpab;
cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
return;
}
else
cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
}
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
BUSUSEDN;
}
/***************************************************************************\
* This function handles Undefined instructions, as CP isntruction *
\***************************************************************************/
void
ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
}
/***************************************************************************\
* Return TRUE if an interrupt is pending, FALSE otherwise. *
\***************************************************************************/
unsigned
IntPending (ARMul_State * state)
{
if (state->Exception)
{ /* Any exceptions */
if (state->NresetSig == LOW)
{
ARMul_Abort (state, ARMul_ResetV);
return (TRUE);
}
else if (!state->NfiqSig && !FFLAG)
{
ARMul_Abort (state, ARMul_FIQV);
return (TRUE);
}
else if (!state->NirqSig && !IFLAG)
{
ARMul_Abort (state, ARMul_IRQV);
return (TRUE);
}
}
return (FALSE);
}
/***************************************************************************\
* Align a word access to a non word boundary *
\***************************************************************************/
ARMword
ARMul_Align (state, address, data)
ARMul_State * state ATTRIBUTE_UNUSED;
ARMword address;
ARMword data;
{
/* This code assumes the address is really unaligned,
as a shift by 32 is undefined in C. */
address = (address & 3) << 3; /* get the word address */
return ((data >> address) | (data << (32 - address))); /* rot right */
}
/***************************************************************************\
* This routine is used to call another routine after a certain number of *
* cycles have been executed. The first parameter is the number of cycles *
* delay before the function is called, the second argument is a pointer *
* to the function. A delay of zero doesn't work, just call the function. *
\***************************************************************************/
void
ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
unsigned (*what) ())
{
unsigned long when;
struct EventNode *event;
if (state->EventSet++ == 0)
state->Now = ARMul_Time (state);
when = (state->Now + delay) % EVENTLISTSIZE;
event = (struct EventNode *) malloc (sizeof (struct EventNode));
event->func = what;
event->next = *(state->EventPtr + when);
*(state->EventPtr + when) = event;
}
/***************************************************************************\
* This routine is called at the beginning of every cycle, to envoke *
* scheduled events. *
\***************************************************************************/
void
ARMul_EnvokeEvent (ARMul_State * state)
{
static unsigned long then;
then = state->Now;
state->Now = ARMul_Time (state) % EVENTLISTSIZE;
if (then < state->Now) /* schedule events */
EnvokeList (state, then, state->Now);
else if (then > state->Now)
{ /* need to wrap around the list */
EnvokeList (state, then, EVENTLISTSIZE - 1L);
EnvokeList (state, 0L, state->Now);
}
}
static void
EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
/* envokes all the entries in a range */
{
struct EventNode *anevent;
for (; from <= to; from++)
{
anevent = *(state->EventPtr + from);
while (anevent)
{
(anevent->func) (state);
state->EventSet--;
anevent = anevent->next;
}
*(state->EventPtr + from) = NULL;
}
}
/***************************************************************************\
* This routine is returns the number of clock ticks since the last reset. *
\***************************************************************************/
unsigned long
ARMul_Time (ARMul_State * state)
{
return (state->NumScycles + state->NumNcycles +
state->NumIcycles + state->NumCcycles + state->NumFcycles);
}