2220 lines
58 KiB
Plaintext
2220 lines
58 KiB
Plaintext
/* YACC parser for C expressions, for GDB.
|
||
Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000, 2003, 2004, 2006, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Parse a C expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result.
|
||
|
||
Note that malloc's and realloc's in this file are transformed to
|
||
xmalloc and xrealloc respectively by the same sed command in the
|
||
makefile that remaps any other malloc/realloc inserted by the parser
|
||
generator. Doing this with #defines and trying to control the interaction
|
||
with include files (<malloc.h> and <stdlib.h> for example) just became
|
||
too messy, particularly when such includes can be inserted at random
|
||
times by the parser generator. */
|
||
|
||
%{
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include <ctype.h>
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "c-lang.h"
|
||
#include "bfd.h" /* Required by objfiles.h. */
|
||
#include "symfile.h" /* Required by objfiles.h. */
|
||
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
|
||
#include "charset.h"
|
||
#include "block.h"
|
||
#include "cp-support.h"
|
||
#include "dfp.h"
|
||
#include "gdb_assert.h"
|
||
#include "macroscope.h"
|
||
|
||
#define parse_type builtin_type (parse_gdbarch)
|
||
|
||
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
|
||
as well as gratuitiously global symbol names, so we can have multiple
|
||
yacc generated parsers in gdb. Note that these are only the variables
|
||
produced by yacc. If other parser generators (bison, byacc, etc) produce
|
||
additional global names that conflict at link time, then those parser
|
||
generators need to be fixed instead of adding those names to this list. */
|
||
|
||
#define yymaxdepth c_maxdepth
|
||
#define yyparse c_parse_internal
|
||
#define yylex c_lex
|
||
#define yyerror c_error
|
||
#define yylval c_lval
|
||
#define yychar c_char
|
||
#define yydebug c_debug
|
||
#define yypact c_pact
|
||
#define yyr1 c_r1
|
||
#define yyr2 c_r2
|
||
#define yydef c_def
|
||
#define yychk c_chk
|
||
#define yypgo c_pgo
|
||
#define yyact c_act
|
||
#define yyexca c_exca
|
||
#define yyerrflag c_errflag
|
||
#define yynerrs c_nerrs
|
||
#define yyps c_ps
|
||
#define yypv c_pv
|
||
#define yys c_s
|
||
#define yy_yys c_yys
|
||
#define yystate c_state
|
||
#define yytmp c_tmp
|
||
#define yyv c_v
|
||
#define yy_yyv c_yyv
|
||
#define yyval c_val
|
||
#define yylloc c_lloc
|
||
#define yyreds c_reds /* With YYDEBUG defined */
|
||
#define yytoks c_toks /* With YYDEBUG defined */
|
||
#define yyname c_name /* With YYDEBUG defined */
|
||
#define yyrule c_rule /* With YYDEBUG defined */
|
||
#define yylhs c_yylhs
|
||
#define yylen c_yylen
|
||
#define yydefred c_yydefred
|
||
#define yydgoto c_yydgoto
|
||
#define yysindex c_yysindex
|
||
#define yyrindex c_yyrindex
|
||
#define yygindex c_yygindex
|
||
#define yytable c_yytable
|
||
#define yycheck c_yycheck
|
||
|
||
#ifndef YYDEBUG
|
||
#define YYDEBUG 1 /* Default to yydebug support */
|
||
#endif
|
||
|
||
#define YYFPRINTF parser_fprintf
|
||
|
||
int yyparse (void);
|
||
|
||
static int yylex (void);
|
||
|
||
void yyerror (char *);
|
||
|
||
%}
|
||
|
||
/* Although the yacc "value" of an expression is not used,
|
||
since the result is stored in the structure being created,
|
||
other node types do have values. */
|
||
|
||
%union
|
||
{
|
||
LONGEST lval;
|
||
struct {
|
||
LONGEST val;
|
||
struct type *type;
|
||
} typed_val_int;
|
||
struct {
|
||
DOUBLEST dval;
|
||
struct type *type;
|
||
} typed_val_float;
|
||
struct {
|
||
gdb_byte val[16];
|
||
struct type *type;
|
||
} typed_val_decfloat;
|
||
struct symbol *sym;
|
||
struct type *tval;
|
||
struct stoken sval;
|
||
struct typed_stoken tsval;
|
||
struct ttype tsym;
|
||
struct symtoken ssym;
|
||
int voidval;
|
||
struct block *bval;
|
||
enum exp_opcode opcode;
|
||
struct internalvar *ivar;
|
||
|
||
struct stoken_vector svec;
|
||
struct type **tvec;
|
||
int *ivec;
|
||
}
|
||
|
||
%{
|
||
/* YYSTYPE gets defined by %union */
|
||
static int parse_number (char *, int, int, YYSTYPE *);
|
||
%}
|
||
|
||
%type <voidval> exp exp1 type_exp start variable qualified_name lcurly
|
||
%type <lval> rcurly
|
||
%type <tval> type typebase qualified_type
|
||
%type <tvec> nonempty_typelist
|
||
/* %type <bval> block */
|
||
|
||
/* Fancy type parsing. */
|
||
%type <voidval> func_mod direct_abs_decl abs_decl
|
||
%type <tval> ptype
|
||
%type <lval> array_mod
|
||
|
||
%token <typed_val_int> INT
|
||
%token <typed_val_float> FLOAT
|
||
%token <typed_val_decfloat> DECFLOAT
|
||
|
||
/* Both NAME and TYPENAME tokens represent symbols in the input,
|
||
and both convey their data as strings.
|
||
But a TYPENAME is a string that happens to be defined as a typedef
|
||
or builtin type name (such as int or char)
|
||
and a NAME is any other symbol.
|
||
Contexts where this distinction is not important can use the
|
||
nonterminal "name", which matches either NAME or TYPENAME. */
|
||
|
||
%token <tsval> STRING
|
||
%token <tsval> CHAR
|
||
%token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
|
||
%token <voidval> COMPLETE
|
||
%token <tsym> TYPENAME
|
||
%type <sval> name
|
||
%type <svec> string_exp
|
||
%type <ssym> name_not_typename
|
||
%type <tsym> typename
|
||
|
||
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
|
||
but which would parse as a valid number in the current input radix.
|
||
E.g. "c" when input_radix==16. Depending on the parse, it will be
|
||
turned into a name or into a number. */
|
||
|
||
%token <ssym> NAME_OR_INT
|
||
|
||
%token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
|
||
%token TEMPLATE
|
||
%token ERROR
|
||
|
||
/* Special type cases, put in to allow the parser to distinguish different
|
||
legal basetypes. */
|
||
%token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
|
||
|
||
%token <voidval> VARIABLE
|
||
|
||
%token <opcode> ASSIGN_MODIFY
|
||
|
||
/* C++ */
|
||
%token TRUEKEYWORD
|
||
%token FALSEKEYWORD
|
||
|
||
|
||
%left ','
|
||
%left ABOVE_COMMA
|
||
%right '=' ASSIGN_MODIFY
|
||
%right '?'
|
||
%left OROR
|
||
%left ANDAND
|
||
%left '|'
|
||
%left '^'
|
||
%left '&'
|
||
%left EQUAL NOTEQUAL
|
||
%left '<' '>' LEQ GEQ
|
||
%left LSH RSH
|
||
%left '@'
|
||
%left '+' '-'
|
||
%left '*' '/' '%'
|
||
%right UNARY INCREMENT DECREMENT
|
||
%right ARROW '.' '[' '('
|
||
%token <ssym> BLOCKNAME
|
||
%token <bval> FILENAME
|
||
%type <bval> block
|
||
%left COLONCOLON
|
||
|
||
|
||
%%
|
||
|
||
start : exp1
|
||
| type_exp
|
||
;
|
||
|
||
type_exp: type
|
||
{ write_exp_elt_opcode(OP_TYPE);
|
||
write_exp_elt_type($1);
|
||
write_exp_elt_opcode(OP_TYPE);}
|
||
;
|
||
|
||
/* Expressions, including the comma operator. */
|
||
exp1 : exp
|
||
| exp1 ',' exp
|
||
{ write_exp_elt_opcode (BINOP_COMMA); }
|
||
;
|
||
|
||
/* Expressions, not including the comma operator. */
|
||
exp : '*' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_IND); }
|
||
;
|
||
|
||
exp : '&' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_ADDR); }
|
||
;
|
||
|
||
exp : '-' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_NEG); }
|
||
;
|
||
|
||
exp : '+' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_PLUS); }
|
||
;
|
||
|
||
exp : '!' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
|
||
;
|
||
|
||
exp : '~' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_COMPLEMENT); }
|
||
;
|
||
|
||
exp : INCREMENT exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_PREINCREMENT); }
|
||
;
|
||
|
||
exp : DECREMENT exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_PREDECREMENT); }
|
||
;
|
||
|
||
exp : exp INCREMENT %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_POSTINCREMENT); }
|
||
;
|
||
|
||
exp : exp DECREMENT %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_POSTDECREMENT); }
|
||
;
|
||
|
||
exp : SIZEOF exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_SIZEOF); }
|
||
;
|
||
|
||
exp : exp ARROW name
|
||
{ write_exp_elt_opcode (STRUCTOP_PTR);
|
||
write_exp_string ($3);
|
||
write_exp_elt_opcode (STRUCTOP_PTR); }
|
||
;
|
||
|
||
exp : exp ARROW name COMPLETE
|
||
{ mark_struct_expression ();
|
||
write_exp_elt_opcode (STRUCTOP_PTR);
|
||
write_exp_string ($3);
|
||
write_exp_elt_opcode (STRUCTOP_PTR); }
|
||
;
|
||
|
||
exp : exp ARROW COMPLETE
|
||
{ struct stoken s;
|
||
mark_struct_expression ();
|
||
write_exp_elt_opcode (STRUCTOP_PTR);
|
||
s.ptr = "";
|
||
s.length = 0;
|
||
write_exp_string (s);
|
||
write_exp_elt_opcode (STRUCTOP_PTR); }
|
||
;
|
||
|
||
exp : exp ARROW qualified_name
|
||
{ /* exp->type::name becomes exp->*(&type::name) */
|
||
/* Note: this doesn't work if name is a
|
||
static member! FIXME */
|
||
write_exp_elt_opcode (UNOP_ADDR);
|
||
write_exp_elt_opcode (STRUCTOP_MPTR); }
|
||
;
|
||
|
||
exp : exp ARROW '*' exp
|
||
{ write_exp_elt_opcode (STRUCTOP_MPTR); }
|
||
;
|
||
|
||
exp : exp '.' name
|
||
{ write_exp_elt_opcode (STRUCTOP_STRUCT);
|
||
write_exp_string ($3);
|
||
write_exp_elt_opcode (STRUCTOP_STRUCT); }
|
||
;
|
||
|
||
exp : exp '.' name COMPLETE
|
||
{ mark_struct_expression ();
|
||
write_exp_elt_opcode (STRUCTOP_STRUCT);
|
||
write_exp_string ($3);
|
||
write_exp_elt_opcode (STRUCTOP_STRUCT); }
|
||
;
|
||
|
||
exp : exp '.' COMPLETE
|
||
{ struct stoken s;
|
||
mark_struct_expression ();
|
||
write_exp_elt_opcode (STRUCTOP_STRUCT);
|
||
s.ptr = "";
|
||
s.length = 0;
|
||
write_exp_string (s);
|
||
write_exp_elt_opcode (STRUCTOP_STRUCT); }
|
||
;
|
||
|
||
exp : exp '.' qualified_name
|
||
{ /* exp.type::name becomes exp.*(&type::name) */
|
||
/* Note: this doesn't work if name is a
|
||
static member! FIXME */
|
||
write_exp_elt_opcode (UNOP_ADDR);
|
||
write_exp_elt_opcode (STRUCTOP_MEMBER); }
|
||
;
|
||
|
||
exp : exp '.' '*' exp
|
||
{ write_exp_elt_opcode (STRUCTOP_MEMBER); }
|
||
;
|
||
|
||
exp : exp '[' exp1 ']'
|
||
{ write_exp_elt_opcode (BINOP_SUBSCRIPT); }
|
||
;
|
||
|
||
exp : exp '('
|
||
/* This is to save the value of arglist_len
|
||
being accumulated by an outer function call. */
|
||
{ start_arglist (); }
|
||
arglist ')' %prec ARROW
|
||
{ write_exp_elt_opcode (OP_FUNCALL);
|
||
write_exp_elt_longcst ((LONGEST) end_arglist ());
|
||
write_exp_elt_opcode (OP_FUNCALL); }
|
||
;
|
||
|
||
lcurly : '{'
|
||
{ start_arglist (); }
|
||
;
|
||
|
||
arglist :
|
||
;
|
||
|
||
arglist : exp
|
||
{ arglist_len = 1; }
|
||
;
|
||
|
||
arglist : arglist ',' exp %prec ABOVE_COMMA
|
||
{ arglist_len++; }
|
||
;
|
||
|
||
rcurly : '}'
|
||
{ $$ = end_arglist () - 1; }
|
||
;
|
||
exp : lcurly arglist rcurly %prec ARROW
|
||
{ write_exp_elt_opcode (OP_ARRAY);
|
||
write_exp_elt_longcst ((LONGEST) 0);
|
||
write_exp_elt_longcst ((LONGEST) $3);
|
||
write_exp_elt_opcode (OP_ARRAY); }
|
||
;
|
||
|
||
exp : lcurly type rcurly exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_MEMVAL);
|
||
write_exp_elt_type ($2);
|
||
write_exp_elt_opcode (UNOP_MEMVAL); }
|
||
;
|
||
|
||
exp : '(' type ')' exp %prec UNARY
|
||
{ write_exp_elt_opcode (UNOP_CAST);
|
||
write_exp_elt_type ($2);
|
||
write_exp_elt_opcode (UNOP_CAST); }
|
||
;
|
||
|
||
exp : '(' exp1 ')'
|
||
{ }
|
||
;
|
||
|
||
/* Binary operators in order of decreasing precedence. */
|
||
|
||
exp : exp '@' exp
|
||
{ write_exp_elt_opcode (BINOP_REPEAT); }
|
||
;
|
||
|
||
exp : exp '*' exp
|
||
{ write_exp_elt_opcode (BINOP_MUL); }
|
||
;
|
||
|
||
exp : exp '/' exp
|
||
{ write_exp_elt_opcode (BINOP_DIV); }
|
||
;
|
||
|
||
exp : exp '%' exp
|
||
{ write_exp_elt_opcode (BINOP_REM); }
|
||
;
|
||
|
||
exp : exp '+' exp
|
||
{ write_exp_elt_opcode (BINOP_ADD); }
|
||
;
|
||
|
||
exp : exp '-' exp
|
||
{ write_exp_elt_opcode (BINOP_SUB); }
|
||
;
|
||
|
||
exp : exp LSH exp
|
||
{ write_exp_elt_opcode (BINOP_LSH); }
|
||
;
|
||
|
||
exp : exp RSH exp
|
||
{ write_exp_elt_opcode (BINOP_RSH); }
|
||
;
|
||
|
||
exp : exp EQUAL exp
|
||
{ write_exp_elt_opcode (BINOP_EQUAL); }
|
||
;
|
||
|
||
exp : exp NOTEQUAL exp
|
||
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
|
||
;
|
||
|
||
exp : exp LEQ exp
|
||
{ write_exp_elt_opcode (BINOP_LEQ); }
|
||
;
|
||
|
||
exp : exp GEQ exp
|
||
{ write_exp_elt_opcode (BINOP_GEQ); }
|
||
;
|
||
|
||
exp : exp '<' exp
|
||
{ write_exp_elt_opcode (BINOP_LESS); }
|
||
;
|
||
|
||
exp : exp '>' exp
|
||
{ write_exp_elt_opcode (BINOP_GTR); }
|
||
;
|
||
|
||
exp : exp '&' exp
|
||
{ write_exp_elt_opcode (BINOP_BITWISE_AND); }
|
||
;
|
||
|
||
exp : exp '^' exp
|
||
{ write_exp_elt_opcode (BINOP_BITWISE_XOR); }
|
||
;
|
||
|
||
exp : exp '|' exp
|
||
{ write_exp_elt_opcode (BINOP_BITWISE_IOR); }
|
||
;
|
||
|
||
exp : exp ANDAND exp
|
||
{ write_exp_elt_opcode (BINOP_LOGICAL_AND); }
|
||
;
|
||
|
||
exp : exp OROR exp
|
||
{ write_exp_elt_opcode (BINOP_LOGICAL_OR); }
|
||
;
|
||
|
||
exp : exp '?' exp ':' exp %prec '?'
|
||
{ write_exp_elt_opcode (TERNOP_COND); }
|
||
;
|
||
|
||
exp : exp '=' exp
|
||
{ write_exp_elt_opcode (BINOP_ASSIGN); }
|
||
;
|
||
|
||
exp : exp ASSIGN_MODIFY exp
|
||
{ write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
|
||
write_exp_elt_opcode ($2);
|
||
write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
|
||
;
|
||
|
||
exp : INT
|
||
{ write_exp_elt_opcode (OP_LONG);
|
||
write_exp_elt_type ($1.type);
|
||
write_exp_elt_longcst ((LONGEST)($1.val));
|
||
write_exp_elt_opcode (OP_LONG); }
|
||
;
|
||
|
||
exp : CHAR
|
||
{
|
||
struct stoken_vector vec;
|
||
vec.len = 1;
|
||
vec.tokens = &$1;
|
||
write_exp_string_vector ($1.type, &vec);
|
||
}
|
||
;
|
||
|
||
exp : NAME_OR_INT
|
||
{ YYSTYPE val;
|
||
parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
|
||
write_exp_elt_opcode (OP_LONG);
|
||
write_exp_elt_type (val.typed_val_int.type);
|
||
write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
|
||
write_exp_elt_opcode (OP_LONG);
|
||
}
|
||
;
|
||
|
||
|
||
exp : FLOAT
|
||
{ write_exp_elt_opcode (OP_DOUBLE);
|
||
write_exp_elt_type ($1.type);
|
||
write_exp_elt_dblcst ($1.dval);
|
||
write_exp_elt_opcode (OP_DOUBLE); }
|
||
;
|
||
|
||
exp : DECFLOAT
|
||
{ write_exp_elt_opcode (OP_DECFLOAT);
|
||
write_exp_elt_type ($1.type);
|
||
write_exp_elt_decfloatcst ($1.val);
|
||
write_exp_elt_opcode (OP_DECFLOAT); }
|
||
;
|
||
|
||
exp : variable
|
||
;
|
||
|
||
exp : VARIABLE
|
||
/* Already written by write_dollar_variable. */
|
||
;
|
||
|
||
exp : SIZEOF '(' type ')' %prec UNARY
|
||
{ write_exp_elt_opcode (OP_LONG);
|
||
write_exp_elt_type (parse_type->builtin_int);
|
||
CHECK_TYPEDEF ($3);
|
||
write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
|
||
write_exp_elt_opcode (OP_LONG); }
|
||
;
|
||
|
||
string_exp:
|
||
STRING
|
||
{
|
||
/* We copy the string here, and not in the
|
||
lexer, to guarantee that we do not leak a
|
||
string. Note that we follow the
|
||
NUL-termination convention of the
|
||
lexer. */
|
||
struct typed_stoken *vec = XNEW (struct typed_stoken);
|
||
$$.len = 1;
|
||
$$.tokens = vec;
|
||
|
||
vec->type = $1.type;
|
||
vec->length = $1.length;
|
||
vec->ptr = malloc ($1.length + 1);
|
||
memcpy (vec->ptr, $1.ptr, $1.length + 1);
|
||
}
|
||
|
||
| string_exp STRING
|
||
{
|
||
/* Note that we NUL-terminate here, but just
|
||
for convenience. */
|
||
char *p;
|
||
++$$.len;
|
||
$$.tokens = realloc ($$.tokens,
|
||
$$.len * sizeof (struct typed_stoken));
|
||
|
||
p = malloc ($2.length + 1);
|
||
memcpy (p, $2.ptr, $2.length + 1);
|
||
|
||
$$.tokens[$$.len - 1].type = $2.type;
|
||
$$.tokens[$$.len - 1].length = $2.length;
|
||
$$.tokens[$$.len - 1].ptr = p;
|
||
}
|
||
;
|
||
|
||
exp : string_exp
|
||
{
|
||
int i;
|
||
enum c_string_type type = C_STRING;
|
||
|
||
for (i = 0; i < $1.len; ++i)
|
||
{
|
||
switch ($1.tokens[i].type)
|
||
{
|
||
case C_STRING:
|
||
break;
|
||
case C_WIDE_STRING:
|
||
case C_STRING_16:
|
||
case C_STRING_32:
|
||
if (type != C_STRING
|
||
&& type != $1.tokens[i].type)
|
||
error ("Undefined string concatenation.");
|
||
type = $1.tokens[i].type;
|
||
break;
|
||
default:
|
||
/* internal error */
|
||
internal_error (__FILE__, __LINE__,
|
||
"unrecognized type in string concatenation");
|
||
}
|
||
}
|
||
|
||
write_exp_string_vector (type, &$1);
|
||
for (i = 0; i < $1.len; ++i)
|
||
free ($1.tokens[i].ptr);
|
||
free ($1.tokens);
|
||
}
|
||
;
|
||
|
||
/* C++. */
|
||
exp : TRUEKEYWORD
|
||
{ write_exp_elt_opcode (OP_LONG);
|
||
write_exp_elt_type (parse_type->builtin_bool);
|
||
write_exp_elt_longcst ((LONGEST) 1);
|
||
write_exp_elt_opcode (OP_LONG); }
|
||
;
|
||
|
||
exp : FALSEKEYWORD
|
||
{ write_exp_elt_opcode (OP_LONG);
|
||
write_exp_elt_type (parse_type->builtin_bool);
|
||
write_exp_elt_longcst ((LONGEST) 0);
|
||
write_exp_elt_opcode (OP_LONG); }
|
||
;
|
||
|
||
/* end of C++. */
|
||
|
||
block : BLOCKNAME
|
||
{
|
||
if ($1.sym)
|
||
$$ = SYMBOL_BLOCK_VALUE ($1.sym);
|
||
else
|
||
error ("No file or function \"%s\".",
|
||
copy_name ($1.stoken));
|
||
}
|
||
| FILENAME
|
||
{
|
||
$$ = $1;
|
||
}
|
||
;
|
||
|
||
block : block COLONCOLON name
|
||
{ struct symbol *tem
|
||
= lookup_symbol (copy_name ($3), $1,
|
||
VAR_DOMAIN, (int *) NULL);
|
||
if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
|
||
error ("No function \"%s\" in specified context.",
|
||
copy_name ($3));
|
||
$$ = SYMBOL_BLOCK_VALUE (tem); }
|
||
;
|
||
|
||
variable: block COLONCOLON name
|
||
{ struct symbol *sym;
|
||
sym = lookup_symbol (copy_name ($3), $1,
|
||
VAR_DOMAIN, (int *) NULL);
|
||
if (sym == 0)
|
||
error ("No symbol \"%s\" in specified context.",
|
||
copy_name ($3));
|
||
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
/* block_found is set by lookup_symbol. */
|
||
write_exp_elt_block (block_found);
|
||
write_exp_elt_sym (sym);
|
||
write_exp_elt_opcode (OP_VAR_VALUE); }
|
||
;
|
||
|
||
qualified_name: typebase COLONCOLON name
|
||
{
|
||
struct type *type = $1;
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_UNION
|
||
&& TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
|
||
error ("`%s' is not defined as an aggregate type.",
|
||
TYPE_NAME (type));
|
||
|
||
write_exp_elt_opcode (OP_SCOPE);
|
||
write_exp_elt_type (type);
|
||
write_exp_string ($3);
|
||
write_exp_elt_opcode (OP_SCOPE);
|
||
}
|
||
| typebase COLONCOLON '~' name
|
||
{
|
||
struct type *type = $1;
|
||
struct stoken tmp_token;
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_UNION
|
||
&& TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
|
||
error ("`%s' is not defined as an aggregate type.",
|
||
TYPE_NAME (type));
|
||
|
||
tmp_token.ptr = (char*) alloca ($4.length + 2);
|
||
tmp_token.length = $4.length + 1;
|
||
tmp_token.ptr[0] = '~';
|
||
memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
|
||
tmp_token.ptr[tmp_token.length] = 0;
|
||
|
||
/* Check for valid destructor name. */
|
||
destructor_name_p (tmp_token.ptr, type);
|
||
write_exp_elt_opcode (OP_SCOPE);
|
||
write_exp_elt_type (type);
|
||
write_exp_string (tmp_token);
|
||
write_exp_elt_opcode (OP_SCOPE);
|
||
}
|
||
;
|
||
|
||
variable: qualified_name
|
||
| COLONCOLON name
|
||
{
|
||
char *name = copy_name ($2);
|
||
struct symbol *sym;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
sym =
|
||
lookup_symbol (name, (const struct block *) NULL,
|
||
VAR_DOMAIN, (int *) NULL);
|
||
if (sym)
|
||
{
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
write_exp_elt_block (NULL);
|
||
write_exp_elt_sym (sym);
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
break;
|
||
}
|
||
|
||
msymbol = lookup_minimal_symbol (name, NULL, NULL);
|
||
if (msymbol != NULL)
|
||
write_exp_msymbol (msymbol);
|
||
else if (!have_full_symbols () && !have_partial_symbols ())
|
||
error ("No symbol table is loaded. Use the \"file\" command.");
|
||
else
|
||
error ("No symbol \"%s\" in current context.", name);
|
||
}
|
||
;
|
||
|
||
variable: name_not_typename
|
||
{ struct symbol *sym = $1.sym;
|
||
|
||
if (sym)
|
||
{
|
||
if (symbol_read_needs_frame (sym))
|
||
{
|
||
if (innermost_block == 0 ||
|
||
contained_in (block_found,
|
||
innermost_block))
|
||
innermost_block = block_found;
|
||
}
|
||
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
/* We want to use the selected frame, not
|
||
another more inner frame which happens to
|
||
be in the same block. */
|
||
write_exp_elt_block (NULL);
|
||
write_exp_elt_sym (sym);
|
||
write_exp_elt_opcode (OP_VAR_VALUE);
|
||
}
|
||
else if ($1.is_a_field_of_this)
|
||
{
|
||
/* C++: it hangs off of `this'. Must
|
||
not inadvertently convert from a method call
|
||
to data ref. */
|
||
if (innermost_block == 0 ||
|
||
contained_in (block_found, innermost_block))
|
||
innermost_block = block_found;
|
||
write_exp_elt_opcode (OP_THIS);
|
||
write_exp_elt_opcode (OP_THIS);
|
||
write_exp_elt_opcode (STRUCTOP_PTR);
|
||
write_exp_string ($1.stoken);
|
||
write_exp_elt_opcode (STRUCTOP_PTR);
|
||
}
|
||
else
|
||
{
|
||
struct minimal_symbol *msymbol;
|
||
char *arg = copy_name ($1.stoken);
|
||
|
||
msymbol =
|
||
lookup_minimal_symbol (arg, NULL, NULL);
|
||
if (msymbol != NULL)
|
||
write_exp_msymbol (msymbol);
|
||
else if (!have_full_symbols () && !have_partial_symbols ())
|
||
error ("No symbol table is loaded. Use the \"file\" command.");
|
||
else
|
||
error ("No symbol \"%s\" in current context.",
|
||
copy_name ($1.stoken));
|
||
}
|
||
}
|
||
;
|
||
|
||
space_identifier : '@' NAME
|
||
{ push_type_address_space (copy_name ($2.stoken));
|
||
push_type (tp_space_identifier);
|
||
}
|
||
;
|
||
|
||
const_or_volatile: const_or_volatile_noopt
|
||
|
|
||
;
|
||
|
||
cv_with_space_id : const_or_volatile space_identifier const_or_volatile
|
||
;
|
||
|
||
const_or_volatile_or_space_identifier_noopt: cv_with_space_id
|
||
| const_or_volatile_noopt
|
||
;
|
||
|
||
const_or_volatile_or_space_identifier:
|
||
const_or_volatile_or_space_identifier_noopt
|
||
|
|
||
;
|
||
|
||
abs_decl: '*'
|
||
{ push_type (tp_pointer); $$ = 0; }
|
||
| '*' abs_decl
|
||
{ push_type (tp_pointer); $$ = $2; }
|
||
| '&'
|
||
{ push_type (tp_reference); $$ = 0; }
|
||
| '&' abs_decl
|
||
{ push_type (tp_reference); $$ = $2; }
|
||
| direct_abs_decl
|
||
;
|
||
|
||
direct_abs_decl: '(' abs_decl ')'
|
||
{ $$ = $2; }
|
||
| direct_abs_decl array_mod
|
||
{
|
||
push_type_int ($2);
|
||
push_type (tp_array);
|
||
}
|
||
| array_mod
|
||
{
|
||
push_type_int ($1);
|
||
push_type (tp_array);
|
||
$$ = 0;
|
||
}
|
||
|
||
| direct_abs_decl func_mod
|
||
{ push_type (tp_function); }
|
||
| func_mod
|
||
{ push_type (tp_function); }
|
||
;
|
||
|
||
array_mod: '[' ']'
|
||
{ $$ = -1; }
|
||
| '[' INT ']'
|
||
{ $$ = $2.val; }
|
||
;
|
||
|
||
func_mod: '(' ')'
|
||
{ $$ = 0; }
|
||
| '(' nonempty_typelist ')'
|
||
{ free ($2); $$ = 0; }
|
||
;
|
||
|
||
/* We used to try to recognize pointer to member types here, but
|
||
that didn't work (shift/reduce conflicts meant that these rules never
|
||
got executed). The problem is that
|
||
int (foo::bar::baz::bizzle)
|
||
is a function type but
|
||
int (foo::bar::baz::bizzle::*)
|
||
is a pointer to member type. Stroustrup loses again! */
|
||
|
||
type : ptype
|
||
;
|
||
|
||
typebase /* Implements (approximately): (type-qualifier)* type-specifier */
|
||
: TYPENAME
|
||
{ $$ = $1.type; }
|
||
| INT_KEYWORD
|
||
{ $$ = parse_type->builtin_int; }
|
||
| LONG
|
||
{ $$ = parse_type->builtin_long; }
|
||
| SHORT
|
||
{ $$ = parse_type->builtin_short; }
|
||
| LONG INT_KEYWORD
|
||
{ $$ = parse_type->builtin_long; }
|
||
| LONG SIGNED_KEYWORD INT_KEYWORD
|
||
{ $$ = parse_type->builtin_long; }
|
||
| LONG SIGNED_KEYWORD
|
||
{ $$ = parse_type->builtin_long; }
|
||
| SIGNED_KEYWORD LONG INT_KEYWORD
|
||
{ $$ = parse_type->builtin_long; }
|
||
| UNSIGNED LONG INT_KEYWORD
|
||
{ $$ = parse_type->builtin_unsigned_long; }
|
||
| LONG UNSIGNED INT_KEYWORD
|
||
{ $$ = parse_type->builtin_unsigned_long; }
|
||
| LONG UNSIGNED
|
||
{ $$ = parse_type->builtin_unsigned_long; }
|
||
| LONG LONG
|
||
{ $$ = parse_type->builtin_long_long; }
|
||
| LONG LONG INT_KEYWORD
|
||
{ $$ = parse_type->builtin_long_long; }
|
||
| LONG LONG SIGNED_KEYWORD INT_KEYWORD
|
||
{ $$ = parse_type->builtin_long_long; }
|
||
| LONG LONG SIGNED_KEYWORD
|
||
{ $$ = parse_type->builtin_long_long; }
|
||
| SIGNED_KEYWORD LONG LONG
|
||
{ $$ = parse_type->builtin_long_long; }
|
||
| SIGNED_KEYWORD LONG LONG INT_KEYWORD
|
||
{ $$ = parse_type->builtin_long_long; }
|
||
| UNSIGNED LONG LONG
|
||
{ $$ = parse_type->builtin_unsigned_long_long; }
|
||
| UNSIGNED LONG LONG INT_KEYWORD
|
||
{ $$ = parse_type->builtin_unsigned_long_long; }
|
||
| LONG LONG UNSIGNED
|
||
{ $$ = parse_type->builtin_unsigned_long_long; }
|
||
| LONG LONG UNSIGNED INT_KEYWORD
|
||
{ $$ = parse_type->builtin_unsigned_long_long; }
|
||
| SHORT INT_KEYWORD
|
||
{ $$ = parse_type->builtin_short; }
|
||
| SHORT SIGNED_KEYWORD INT_KEYWORD
|
||
{ $$ = parse_type->builtin_short; }
|
||
| SHORT SIGNED_KEYWORD
|
||
{ $$ = parse_type->builtin_short; }
|
||
| UNSIGNED SHORT INT_KEYWORD
|
||
{ $$ = parse_type->builtin_unsigned_short; }
|
||
| SHORT UNSIGNED
|
||
{ $$ = parse_type->builtin_unsigned_short; }
|
||
| SHORT UNSIGNED INT_KEYWORD
|
||
{ $$ = parse_type->builtin_unsigned_short; }
|
||
| DOUBLE_KEYWORD
|
||
{ $$ = parse_type->builtin_double; }
|
||
| LONG DOUBLE_KEYWORD
|
||
{ $$ = parse_type->builtin_long_double; }
|
||
| STRUCT name
|
||
{ $$ = lookup_struct (copy_name ($2),
|
||
expression_context_block); }
|
||
| CLASS name
|
||
{ $$ = lookup_struct (copy_name ($2),
|
||
expression_context_block); }
|
||
| UNION name
|
||
{ $$ = lookup_union (copy_name ($2),
|
||
expression_context_block); }
|
||
| ENUM name
|
||
{ $$ = lookup_enum (copy_name ($2),
|
||
expression_context_block); }
|
||
| UNSIGNED typename
|
||
{ $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
|
||
| UNSIGNED
|
||
{ $$ = parse_type->builtin_unsigned_int; }
|
||
| SIGNED_KEYWORD typename
|
||
{ $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
|
||
| SIGNED_KEYWORD
|
||
{ $$ = parse_type->builtin_int; }
|
||
/* It appears that this rule for templates is never
|
||
reduced; template recognition happens by lookahead
|
||
in the token processing code in yylex. */
|
||
| TEMPLATE name '<' type '>'
|
||
{ $$ = lookup_template_type(copy_name($2), $4,
|
||
expression_context_block);
|
||
}
|
||
| const_or_volatile_or_space_identifier_noopt typebase
|
||
{ $$ = follow_types ($2); }
|
||
| typebase const_or_volatile_or_space_identifier_noopt
|
||
{ $$ = follow_types ($1); }
|
||
| qualified_type
|
||
;
|
||
|
||
/* FIXME: carlton/2003-09-25: This next bit leads to lots of
|
||
reduce-reduce conflicts, because the parser doesn't know whether or
|
||
not to use qualified_name or qualified_type: the rules are
|
||
identical. If the parser is parsing 'A::B::x', then, when it sees
|
||
the second '::', it knows that the expression to the left of it has
|
||
to be a type, so it uses qualified_type. But if it is parsing just
|
||
'A::B', then it doesn't have any way of knowing which rule to use,
|
||
so there's a reduce-reduce conflict; it picks qualified_name, since
|
||
that occurs earlier in this file than qualified_type.
|
||
|
||
There's no good way to fix this with the grammar as it stands; as
|
||
far as I can tell, some of the problems arise from ambiguities that
|
||
GDB introduces ('start' can be either an expression or a type), but
|
||
some of it is inherent to the nature of C++ (you want to treat the
|
||
input "(FOO)" fairly differently depending on whether FOO is an
|
||
expression or a type, and if FOO is a complex expression, this can
|
||
be hard to determine at the right time). Fortunately, it works
|
||
pretty well in most cases. For example, if you do 'ptype A::B',
|
||
where A::B is a nested type, then the parser will mistakenly
|
||
misidentify it as an expression; but evaluate_subexp will get
|
||
called with 'noside' set to EVAL_AVOID_SIDE_EFFECTS, and everything
|
||
will work out anyways. But there are situations where the parser
|
||
will get confused: the most common one that I've run into is when
|
||
you want to do
|
||
|
||
print *((A::B *) x)"
|
||
|
||
where the parser doesn't realize that A::B has to be a type until
|
||
it hits the first right paren, at which point it's too late. (The
|
||
workaround is to type "print *(('A::B' *) x)" instead.) (And
|
||
another solution is to fix our symbol-handling code so that the
|
||
user never wants to type something like that in the first place,
|
||
because we get all the types right without the user's help!)
|
||
|
||
Perhaps we could fix this by making the lexer smarter. Some of
|
||
this functionality used to be in the lexer, but in a way that
|
||
worked even less well than the current solution: that attempt
|
||
involved having the parser sometimes handle '::' and having the
|
||
lexer sometimes handle it, and without a clear division of
|
||
responsibility, it quickly degenerated into a big mess. Probably
|
||
the eventual correct solution will give more of a role to the lexer
|
||
(ideally via code that is shared between the lexer and
|
||
decode_line_1), but I'm not holding my breath waiting for somebody
|
||
to get around to cleaning this up... */
|
||
|
||
qualified_type: typebase COLONCOLON name
|
||
{
|
||
struct type *type = $1;
|
||
struct type *new_type;
|
||
char *ncopy = alloca ($3.length + 1);
|
||
|
||
memcpy (ncopy, $3.ptr, $3.length);
|
||
ncopy[$3.length] = '\0';
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_UNION
|
||
&& TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
|
||
error ("`%s' is not defined as an aggregate type.",
|
||
TYPE_NAME (type));
|
||
|
||
new_type = cp_lookup_nested_type (type, ncopy,
|
||
expression_context_block);
|
||
if (new_type == NULL)
|
||
error ("No type \"%s\" within class or namespace \"%s\".",
|
||
ncopy, TYPE_NAME (type));
|
||
|
||
$$ = new_type;
|
||
}
|
||
;
|
||
|
||
typename: TYPENAME
|
||
| INT_KEYWORD
|
||
{
|
||
$$.stoken.ptr = "int";
|
||
$$.stoken.length = 3;
|
||
$$.type = parse_type->builtin_int;
|
||
}
|
||
| LONG
|
||
{
|
||
$$.stoken.ptr = "long";
|
||
$$.stoken.length = 4;
|
||
$$.type = parse_type->builtin_long;
|
||
}
|
||
| SHORT
|
||
{
|
||
$$.stoken.ptr = "short";
|
||
$$.stoken.length = 5;
|
||
$$.type = parse_type->builtin_short;
|
||
}
|
||
;
|
||
|
||
nonempty_typelist
|
||
: type
|
||
{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
|
||
$<ivec>$[0] = 1; /* Number of types in vector */
|
||
$$[1] = $1;
|
||
}
|
||
| nonempty_typelist ',' type
|
||
{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
|
||
$$ = (struct type **) realloc ((char *) $1, len);
|
||
$$[$<ivec>$[0]] = $3;
|
||
}
|
||
;
|
||
|
||
ptype : typebase
|
||
| ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
|
||
{ $$ = follow_types ($1); }
|
||
;
|
||
|
||
const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
|
||
| VOLATILE_KEYWORD CONST_KEYWORD
|
||
;
|
||
|
||
const_or_volatile_noopt: const_and_volatile
|
||
{ push_type (tp_const);
|
||
push_type (tp_volatile);
|
||
}
|
||
| CONST_KEYWORD
|
||
{ push_type (tp_const); }
|
||
| VOLATILE_KEYWORD
|
||
{ push_type (tp_volatile); }
|
||
;
|
||
|
||
name : NAME { $$ = $1.stoken; }
|
||
| BLOCKNAME { $$ = $1.stoken; }
|
||
| TYPENAME { $$ = $1.stoken; }
|
||
| NAME_OR_INT { $$ = $1.stoken; }
|
||
;
|
||
|
||
name_not_typename : NAME
|
||
| BLOCKNAME
|
||
/* These would be useful if name_not_typename was useful, but it is just
|
||
a fake for "variable", so these cause reduce/reduce conflicts because
|
||
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
|
||
=exp) or just an exp. If name_not_typename was ever used in an lvalue
|
||
context where only a name could occur, this might be useful.
|
||
| NAME_OR_INT
|
||
*/
|
||
;
|
||
|
||
%%
|
||
|
||
/* Take care of parsing a number (anything that starts with a digit).
|
||
Set yylval and return the token type; update lexptr.
|
||
LEN is the number of characters in it. */
|
||
|
||
/*** Needs some error checking for the float case ***/
|
||
|
||
static int
|
||
parse_number (p, len, parsed_float, putithere)
|
||
char *p;
|
||
int len;
|
||
int parsed_float;
|
||
YYSTYPE *putithere;
|
||
{
|
||
/* FIXME: Shouldn't these be unsigned? We don't deal with negative values
|
||
here, and we do kind of silly things like cast to unsigned. */
|
||
LONGEST n = 0;
|
||
LONGEST prevn = 0;
|
||
ULONGEST un;
|
||
|
||
int i = 0;
|
||
int c;
|
||
int base = input_radix;
|
||
int unsigned_p = 0;
|
||
|
||
/* Number of "L" suffixes encountered. */
|
||
int long_p = 0;
|
||
|
||
/* We have found a "L" or "U" suffix. */
|
||
int found_suffix = 0;
|
||
|
||
ULONGEST high_bit;
|
||
struct type *signed_type;
|
||
struct type *unsigned_type;
|
||
|
||
if (parsed_float)
|
||
{
|
||
/* It's a float since it contains a point or an exponent. */
|
||
char *s;
|
||
int num; /* number of tokens scanned by scanf */
|
||
char saved_char;
|
||
|
||
/* If it ends at "df", "dd" or "dl", take it as type of decimal floating
|
||
point. Return DECFLOAT. */
|
||
|
||
if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
|
||
{
|
||
p[len - 2] = '\0';
|
||
putithere->typed_val_decfloat.type
|
||
= parse_type->builtin_decfloat;
|
||
decimal_from_string (putithere->typed_val_decfloat.val, 4, p);
|
||
p[len - 2] = 'd';
|
||
return DECFLOAT;
|
||
}
|
||
|
||
if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
|
||
{
|
||
p[len - 2] = '\0';
|
||
putithere->typed_val_decfloat.type
|
||
= parse_type->builtin_decdouble;
|
||
decimal_from_string (putithere->typed_val_decfloat.val, 8, p);
|
||
p[len - 2] = 'd';
|
||
return DECFLOAT;
|
||
}
|
||
|
||
if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
|
||
{
|
||
p[len - 2] = '\0';
|
||
putithere->typed_val_decfloat.type
|
||
= parse_type->builtin_declong;
|
||
decimal_from_string (putithere->typed_val_decfloat.val, 16, p);
|
||
p[len - 2] = 'd';
|
||
return DECFLOAT;
|
||
}
|
||
|
||
s = malloc (len);
|
||
saved_char = p[len];
|
||
p[len] = 0; /* null-terminate the token */
|
||
num = sscanf (p, "%" DOUBLEST_SCAN_FORMAT "%s",
|
||
&putithere->typed_val_float.dval, s);
|
||
p[len] = saved_char; /* restore the input stream */
|
||
|
||
if (num == 1)
|
||
putithere->typed_val_float.type =
|
||
parse_type->builtin_double;
|
||
|
||
if (num == 2 )
|
||
{
|
||
/* See if it has any float suffix: 'f' for float, 'l' for long
|
||
double. */
|
||
if (!strcasecmp (s, "f"))
|
||
putithere->typed_val_float.type =
|
||
parse_type->builtin_float;
|
||
else if (!strcasecmp (s, "l"))
|
||
putithere->typed_val_float.type =
|
||
parse_type->builtin_long_double;
|
||
else
|
||
{
|
||
free (s);
|
||
return ERROR;
|
||
}
|
||
}
|
||
|
||
free (s);
|
||
return FLOAT;
|
||
}
|
||
|
||
/* Handle base-switching prefixes 0x, 0t, 0d, 0 */
|
||
if (p[0] == '0')
|
||
switch (p[1])
|
||
{
|
||
case 'x':
|
||
case 'X':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 16;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
case 't':
|
||
case 'T':
|
||
case 'd':
|
||
case 'D':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 10;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
base = 8;
|
||
break;
|
||
}
|
||
|
||
while (len-- > 0)
|
||
{
|
||
c = *p++;
|
||
if (c >= 'A' && c <= 'Z')
|
||
c += 'a' - 'A';
|
||
if (c != 'l' && c != 'u')
|
||
n *= base;
|
||
if (c >= '0' && c <= '9')
|
||
{
|
||
if (found_suffix)
|
||
return ERROR;
|
||
n += i = c - '0';
|
||
}
|
||
else
|
||
{
|
||
if (base > 10 && c >= 'a' && c <= 'f')
|
||
{
|
||
if (found_suffix)
|
||
return ERROR;
|
||
n += i = c - 'a' + 10;
|
||
}
|
||
else if (c == 'l')
|
||
{
|
||
++long_p;
|
||
found_suffix = 1;
|
||
}
|
||
else if (c == 'u')
|
||
{
|
||
unsigned_p = 1;
|
||
found_suffix = 1;
|
||
}
|
||
else
|
||
return ERROR; /* Char not a digit */
|
||
}
|
||
if (i >= base)
|
||
return ERROR; /* Invalid digit in this base */
|
||
|
||
/* Portably test for overflow (only works for nonzero values, so make
|
||
a second check for zero). FIXME: Can't we just make n and prevn
|
||
unsigned and avoid this? */
|
||
if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
|
||
unsigned_p = 1; /* Try something unsigned */
|
||
|
||
/* Portably test for unsigned overflow.
|
||
FIXME: This check is wrong; for example it doesn't find overflow
|
||
on 0x123456789 when LONGEST is 32 bits. */
|
||
if (c != 'l' && c != 'u' && n != 0)
|
||
{
|
||
if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
|
||
error ("Numeric constant too large.");
|
||
}
|
||
prevn = n;
|
||
}
|
||
|
||
/* An integer constant is an int, a long, or a long long. An L
|
||
suffix forces it to be long; an LL suffix forces it to be long
|
||
long. If not forced to a larger size, it gets the first type of
|
||
the above that it fits in. To figure out whether it fits, we
|
||
shift it right and see whether anything remains. Note that we
|
||
can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
|
||
operation, because many compilers will warn about such a shift
|
||
(which always produces a zero result). Sometimes gdbarch_int_bit
|
||
or gdbarch_long_bit will be that big, sometimes not. To deal with
|
||
the case where it is we just always shift the value more than
|
||
once, with fewer bits each time. */
|
||
|
||
un = (ULONGEST)n >> 2;
|
||
if (long_p == 0
|
||
&& (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
|
||
{
|
||
high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
|
||
|
||
/* A large decimal (not hex or octal) constant (between INT_MAX
|
||
and UINT_MAX) is a long or unsigned long, according to ANSI,
|
||
never an unsigned int, but this code treats it as unsigned
|
||
int. This probably should be fixed. GCC gives a warning on
|
||
such constants. */
|
||
|
||
unsigned_type = parse_type->builtin_unsigned_int;
|
||
signed_type = parse_type->builtin_int;
|
||
}
|
||
else if (long_p <= 1
|
||
&& (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
|
||
{
|
||
high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
|
||
unsigned_type = parse_type->builtin_unsigned_long;
|
||
signed_type = parse_type->builtin_long;
|
||
}
|
||
else
|
||
{
|
||
int shift;
|
||
if (sizeof (ULONGEST) * HOST_CHAR_BIT
|
||
< gdbarch_long_long_bit (parse_gdbarch))
|
||
/* A long long does not fit in a LONGEST. */
|
||
shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
|
||
else
|
||
shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
|
||
high_bit = (ULONGEST) 1 << shift;
|
||
unsigned_type = parse_type->builtin_unsigned_long_long;
|
||
signed_type = parse_type->builtin_long_long;
|
||
}
|
||
|
||
putithere->typed_val_int.val = n;
|
||
|
||
/* If the high bit of the worked out type is set then this number
|
||
has to be unsigned. */
|
||
|
||
if (unsigned_p || (n & high_bit))
|
||
{
|
||
putithere->typed_val_int.type = unsigned_type;
|
||
}
|
||
else
|
||
{
|
||
putithere->typed_val_int.type = signed_type;
|
||
}
|
||
|
||
return INT;
|
||
}
|
||
|
||
/* Temporary obstack used for holding strings. */
|
||
static struct obstack tempbuf;
|
||
static int tempbuf_init;
|
||
|
||
/* Parse a C escape sequence. The initial backslash of the sequence
|
||
is at (*PTR)[-1]. *PTR will be updated to point to just after the
|
||
last character of the sequence. If OUTPUT is not NULL, the
|
||
translated form of the escape sequence will be written there. If
|
||
OUTPUT is NULL, no output is written and the call will only affect
|
||
*PTR. If an escape sequence is expressed in target bytes, then the
|
||
entire sequence will simply be copied to OUTPUT. Return 1 if any
|
||
character was emitted, 0 otherwise. */
|
||
|
||
int
|
||
c_parse_escape (char **ptr, struct obstack *output)
|
||
{
|
||
char *tokptr = *ptr;
|
||
int result = 1;
|
||
|
||
/* Some escape sequences undergo character set conversion. Those we
|
||
translate here. */
|
||
switch (*tokptr)
|
||
{
|
||
/* Hex escapes do not undergo character set conversion, so keep
|
||
the escape sequence for later. */
|
||
case 'x':
|
||
if (output)
|
||
obstack_grow_str (output, "\\x");
|
||
++tokptr;
|
||
if (!isxdigit (*tokptr))
|
||
error (_("\\x escape without a following hex digit"));
|
||
while (isxdigit (*tokptr))
|
||
{
|
||
if (output)
|
||
obstack_1grow (output, *tokptr);
|
||
++tokptr;
|
||
}
|
||
break;
|
||
|
||
/* Octal escapes do not undergo character set conversion, so
|
||
keep the escape sequence for later. */
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
if (output)
|
||
obstack_grow_str (output, "\\");
|
||
while (isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9')
|
||
{
|
||
if (output)
|
||
obstack_1grow (output, *tokptr);
|
||
++tokptr;
|
||
}
|
||
break;
|
||
|
||
/* We handle UCNs later. We could handle them here, but that
|
||
would mean a spurious error in the case where the UCN could
|
||
be converted to the target charset but not the host
|
||
charset. */
|
||
case 'u':
|
||
case 'U':
|
||
{
|
||
char c = *tokptr;
|
||
int i, len = c == 'U' ? 8 : 4;
|
||
if (output)
|
||
{
|
||
obstack_1grow (output, '\\');
|
||
obstack_1grow (output, *tokptr);
|
||
}
|
||
++tokptr;
|
||
if (!isxdigit (*tokptr))
|
||
error (_("\\%c escape without a following hex digit"), c);
|
||
for (i = 0; i < len && isxdigit (*tokptr); ++i)
|
||
{
|
||
if (output)
|
||
obstack_1grow (output, *tokptr);
|
||
++tokptr;
|
||
}
|
||
}
|
||
break;
|
||
|
||
/* We must pass backslash through so that it does not
|
||
cause quoting during the second expansion. */
|
||
case '\\':
|
||
if (output)
|
||
obstack_grow_str (output, "\\\\");
|
||
++tokptr;
|
||
break;
|
||
|
||
/* Escapes which undergo conversion. */
|
||
case 'a':
|
||
if (output)
|
||
obstack_1grow (output, '\a');
|
||
++tokptr;
|
||
break;
|
||
case 'b':
|
||
if (output)
|
||
obstack_1grow (output, '\b');
|
||
++tokptr;
|
||
break;
|
||
case 'f':
|
||
if (output)
|
||
obstack_1grow (output, '\f');
|
||
++tokptr;
|
||
break;
|
||
case 'n':
|
||
if (output)
|
||
obstack_1grow (output, '\n');
|
||
++tokptr;
|
||
break;
|
||
case 'r':
|
||
if (output)
|
||
obstack_1grow (output, '\r');
|
||
++tokptr;
|
||
break;
|
||
case 't':
|
||
if (output)
|
||
obstack_1grow (output, '\t');
|
||
++tokptr;
|
||
break;
|
||
case 'v':
|
||
if (output)
|
||
obstack_1grow (output, '\v');
|
||
++tokptr;
|
||
break;
|
||
|
||
/* GCC extension. */
|
||
case 'e':
|
||
if (output)
|
||
obstack_1grow (output, HOST_ESCAPE_CHAR);
|
||
++tokptr;
|
||
break;
|
||
|
||
/* Backslash-newline expands to nothing at all. */
|
||
case '\n':
|
||
++tokptr;
|
||
result = 0;
|
||
break;
|
||
|
||
/* A few escapes just expand to the character itself. */
|
||
case '\'':
|
||
case '\"':
|
||
case '?':
|
||
/* GCC extensions. */
|
||
case '(':
|
||
case '{':
|
||
case '[':
|
||
case '%':
|
||
/* Unrecognized escapes turn into the character itself. */
|
||
default:
|
||
if (output)
|
||
obstack_1grow (output, *tokptr);
|
||
++tokptr;
|
||
break;
|
||
}
|
||
*ptr = tokptr;
|
||
return result;
|
||
}
|
||
|
||
/* Parse a string or character literal from TOKPTR. The string or
|
||
character may be wide or unicode. *OUTPTR is set to just after the
|
||
end of the literal in the input string. The resulting token is
|
||
stored in VALUE. This returns a token value, either STRING or
|
||
CHAR, depending on what was parsed. *HOST_CHARS is set to the
|
||
number of host characters in the literal. */
|
||
static int
|
||
parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value,
|
||
int *host_chars)
|
||
{
|
||
int quote, i;
|
||
enum c_string_type type;
|
||
|
||
/* Build the gdb internal form of the input string in tempbuf. Note
|
||
that the buffer is null byte terminated *only* for the
|
||
convenience of debugging gdb itself and printing the buffer
|
||
contents when the buffer contains no embedded nulls. Gdb does
|
||
not depend upon the buffer being null byte terminated, it uses
|
||
the length string instead. This allows gdb to handle C strings
|
||
(as well as strings in other languages) with embedded null
|
||
bytes */
|
||
|
||
if (!tempbuf_init)
|
||
tempbuf_init = 1;
|
||
else
|
||
obstack_free (&tempbuf, NULL);
|
||
obstack_init (&tempbuf);
|
||
|
||
/* Record the string type. */
|
||
if (*tokptr == 'L')
|
||
{
|
||
type = C_WIDE_STRING;
|
||
++tokptr;
|
||
}
|
||
else if (*tokptr == 'u')
|
||
{
|
||
type = C_STRING_16;
|
||
++tokptr;
|
||
}
|
||
else if (*tokptr == 'U')
|
||
{
|
||
type = C_STRING_32;
|
||
++tokptr;
|
||
}
|
||
else
|
||
type = C_STRING;
|
||
|
||
/* Skip the quote. */
|
||
quote = *tokptr;
|
||
if (quote == '\'')
|
||
type |= C_CHAR;
|
||
++tokptr;
|
||
|
||
*host_chars = 0;
|
||
|
||
while (*tokptr)
|
||
{
|
||
char c = *tokptr;
|
||
if (c == '\\')
|
||
{
|
||
++tokptr;
|
||
*host_chars += c_parse_escape (&tokptr, &tempbuf);
|
||
}
|
||
else if (c == quote)
|
||
break;
|
||
else
|
||
{
|
||
obstack_1grow (&tempbuf, c);
|
||
++tokptr;
|
||
/* FIXME: this does the wrong thing with multi-byte host
|
||
characters. We could use mbrlen here, but that would
|
||
make "set host-charset" a bit less useful. */
|
||
++*host_chars;
|
||
}
|
||
}
|
||
|
||
if (*tokptr != quote)
|
||
{
|
||
if (quote == '"')
|
||
error ("Unterminated string in expression.");
|
||
else
|
||
error ("Unmatched single quote.");
|
||
}
|
||
++tokptr;
|
||
|
||
value->type = type;
|
||
value->ptr = obstack_base (&tempbuf);
|
||
value->length = obstack_object_size (&tempbuf);
|
||
|
||
*outptr = tokptr;
|
||
|
||
return quote == '"' ? STRING : CHAR;
|
||
}
|
||
|
||
struct token
|
||
{
|
||
char *operator;
|
||
int token;
|
||
enum exp_opcode opcode;
|
||
int cxx_only;
|
||
};
|
||
|
||
static const struct token tokentab3[] =
|
||
{
|
||
{">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
|
||
{"<<=", ASSIGN_MODIFY, BINOP_LSH, 0}
|
||
};
|
||
|
||
static const struct token tokentab2[] =
|
||
{
|
||
{"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
|
||
{"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
|
||
{"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
|
||
{"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
|
||
{"%=", ASSIGN_MODIFY, BINOP_REM, 0},
|
||
{"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
|
||
{"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
|
||
{"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
|
||
{"++", INCREMENT, BINOP_END, 0},
|
||
{"--", DECREMENT, BINOP_END, 0},
|
||
{"->", ARROW, BINOP_END, 0},
|
||
{"&&", ANDAND, BINOP_END, 0},
|
||
{"||", OROR, BINOP_END, 0},
|
||
{"::", COLONCOLON, BINOP_END, 0},
|
||
{"<<", LSH, BINOP_END, 0},
|
||
{">>", RSH, BINOP_END, 0},
|
||
{"==", EQUAL, BINOP_END, 0},
|
||
{"!=", NOTEQUAL, BINOP_END, 0},
|
||
{"<=", LEQ, BINOP_END, 0},
|
||
{">=", GEQ, BINOP_END, 0}
|
||
};
|
||
|
||
/* Identifier-like tokens. */
|
||
static const struct token ident_tokens[] =
|
||
{
|
||
{"unsigned", UNSIGNED, OP_NULL, 0},
|
||
{"template", TEMPLATE, OP_NULL, 1},
|
||
{"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
|
||
{"struct", STRUCT, OP_NULL, 0},
|
||
{"signed", SIGNED_KEYWORD, OP_NULL, 0},
|
||
{"sizeof", SIZEOF, OP_NULL, 0},
|
||
{"double", DOUBLE_KEYWORD, OP_NULL, 0},
|
||
{"false", FALSEKEYWORD, OP_NULL, 1},
|
||
{"class", CLASS, OP_NULL, 1},
|
||
{"union", UNION, OP_NULL, 0},
|
||
{"short", SHORT, OP_NULL, 0},
|
||
{"const", CONST_KEYWORD, OP_NULL, 0},
|
||
{"enum", ENUM, OP_NULL, 0},
|
||
{"long", LONG, OP_NULL, 0},
|
||
{"true", TRUEKEYWORD, OP_NULL, 1},
|
||
{"int", INT_KEYWORD, OP_NULL, 0},
|
||
|
||
{"and", ANDAND, BINOP_END, 1},
|
||
{"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1},
|
||
{"bitand", '&', OP_NULL, 1},
|
||
{"bitor", '|', OP_NULL, 1},
|
||
{"compl", '~', OP_NULL, 1},
|
||
{"not", '!', OP_NULL, 1},
|
||
{"not_eq", NOTEQUAL, BINOP_END, 1},
|
||
{"or", OROR, BINOP_END, 1},
|
||
{"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1},
|
||
{"xor", '^', OP_NULL, 1},
|
||
{"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1}
|
||
};
|
||
|
||
/* When we find that lexptr (the global var defined in parse.c) is
|
||
pointing at a macro invocation, we expand the invocation, and call
|
||
scan_macro_expansion to save the old lexptr here and point lexptr
|
||
into the expanded text. When we reach the end of that, we call
|
||
end_macro_expansion to pop back to the value we saved here. The
|
||
macro expansion code promises to return only fully-expanded text,
|
||
so we don't need to "push" more than one level.
|
||
|
||
This is disgusting, of course. It would be cleaner to do all macro
|
||
expansion beforehand, and then hand that to lexptr. But we don't
|
||
really know where the expression ends. Remember, in a command like
|
||
|
||
(gdb) break *ADDRESS if CONDITION
|
||
|
||
we evaluate ADDRESS in the scope of the current frame, but we
|
||
evaluate CONDITION in the scope of the breakpoint's location. So
|
||
it's simply wrong to try to macro-expand the whole thing at once. */
|
||
static char *macro_original_text;
|
||
|
||
/* We save all intermediate macro expansions on this obstack for the
|
||
duration of a single parse. The expansion text may sometimes have
|
||
to live past the end of the expansion, due to yacc lookahead.
|
||
Rather than try to be clever about saving the data for a single
|
||
token, we simply keep it all and delete it after parsing has
|
||
completed. */
|
||
static struct obstack expansion_obstack;
|
||
|
||
static void
|
||
scan_macro_expansion (char *expansion)
|
||
{
|
||
char *copy;
|
||
|
||
/* We'd better not be trying to push the stack twice. */
|
||
gdb_assert (! macro_original_text);
|
||
|
||
/* Copy to the obstack, and then free the intermediate
|
||
expansion. */
|
||
copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion));
|
||
xfree (expansion);
|
||
|
||
/* Save the old lexptr value, so we can return to it when we're done
|
||
parsing the expanded text. */
|
||
macro_original_text = lexptr;
|
||
lexptr = copy;
|
||
}
|
||
|
||
|
||
static int
|
||
scanning_macro_expansion (void)
|
||
{
|
||
return macro_original_text != 0;
|
||
}
|
||
|
||
|
||
static void
|
||
finished_macro_expansion (void)
|
||
{
|
||
/* There'd better be something to pop back to. */
|
||
gdb_assert (macro_original_text);
|
||
|
||
/* Pop back to the original text. */
|
||
lexptr = macro_original_text;
|
||
macro_original_text = 0;
|
||
}
|
||
|
||
|
||
static void
|
||
scan_macro_cleanup (void *dummy)
|
||
{
|
||
if (macro_original_text)
|
||
finished_macro_expansion ();
|
||
|
||
obstack_free (&expansion_obstack, NULL);
|
||
}
|
||
|
||
|
||
/* The scope used for macro expansion. */
|
||
static struct macro_scope *expression_macro_scope;
|
||
|
||
/* This is set if a NAME token appeared at the very end of the input
|
||
string, with no whitespace separating the name from the EOF. This
|
||
is used only when parsing to do field name completion. */
|
||
static int saw_name_at_eof;
|
||
|
||
/* This is set if the previously-returned token was a structure
|
||
operator -- either '.' or ARROW. This is used only when parsing to
|
||
do field name completion. */
|
||
static int last_was_structop;
|
||
|
||
/* Read one token, getting characters through lexptr. */
|
||
|
||
static int
|
||
yylex ()
|
||
{
|
||
int c;
|
||
int namelen;
|
||
unsigned int i;
|
||
char *tokstart;
|
||
int saw_structop = last_was_structop;
|
||
char *copy;
|
||
|
||
last_was_structop = 0;
|
||
|
||
retry:
|
||
|
||
/* Check if this is a macro invocation that we need to expand. */
|
||
if (! scanning_macro_expansion ())
|
||
{
|
||
char *expanded = macro_expand_next (&lexptr,
|
||
standard_macro_lookup,
|
||
expression_macro_scope);
|
||
|
||
if (expanded)
|
||
scan_macro_expansion (expanded);
|
||
}
|
||
|
||
prev_lexptr = lexptr;
|
||
|
||
tokstart = lexptr;
|
||
/* See if it is a special token of length 3. */
|
||
for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
|
||
if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
|
||
{
|
||
lexptr += 3;
|
||
yylval.opcode = tokentab3[i].opcode;
|
||
return tokentab3[i].token;
|
||
}
|
||
|
||
/* See if it is a special token of length 2. */
|
||
for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
|
||
if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
|
||
{
|
||
lexptr += 2;
|
||
yylval.opcode = tokentab2[i].opcode;
|
||
if (in_parse_field && tokentab2[i].token == ARROW)
|
||
last_was_structop = 1;
|
||
return tokentab2[i].token;
|
||
}
|
||
|
||
switch (c = *tokstart)
|
||
{
|
||
case 0:
|
||
/* If we were just scanning the result of a macro expansion,
|
||
then we need to resume scanning the original text.
|
||
If we're parsing for field name completion, and the previous
|
||
token allows such completion, return a COMPLETE token.
|
||
Otherwise, we were already scanning the original text, and
|
||
we're really done. */
|
||
if (scanning_macro_expansion ())
|
||
{
|
||
finished_macro_expansion ();
|
||
goto retry;
|
||
}
|
||
else if (saw_name_at_eof)
|
||
{
|
||
saw_name_at_eof = 0;
|
||
return COMPLETE;
|
||
}
|
||
else if (saw_structop)
|
||
return COMPLETE;
|
||
else
|
||
return 0;
|
||
|
||
case ' ':
|
||
case '\t':
|
||
case '\n':
|
||
lexptr++;
|
||
goto retry;
|
||
|
||
case '[':
|
||
case '(':
|
||
paren_depth++;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case ']':
|
||
case ')':
|
||
if (paren_depth == 0)
|
||
return 0;
|
||
paren_depth--;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case ',':
|
||
if (comma_terminates
|
||
&& paren_depth == 0
|
||
&& ! scanning_macro_expansion ())
|
||
return 0;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case '.':
|
||
/* Might be a floating point number. */
|
||
if (lexptr[1] < '0' || lexptr[1] > '9')
|
||
{
|
||
if (in_parse_field)
|
||
last_was_structop = 1;
|
||
goto symbol; /* Nope, must be a symbol. */
|
||
}
|
||
/* FALL THRU into number case. */
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
{
|
||
/* It's a number. */
|
||
int got_dot = 0, got_e = 0, toktype;
|
||
char *p = tokstart;
|
||
int hex = input_radix > 10;
|
||
|
||
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
|
||
{
|
||
p += 2;
|
||
hex = 1;
|
||
}
|
||
else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
|
||
{
|
||
p += 2;
|
||
hex = 0;
|
||
}
|
||
|
||
for (;; ++p)
|
||
{
|
||
/* This test includes !hex because 'e' is a valid hex digit
|
||
and thus does not indicate a floating point number when
|
||
the radix is hex. */
|
||
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
|
||
got_dot = got_e = 1;
|
||
/* This test does not include !hex, because a '.' always indicates
|
||
a decimal floating point number regardless of the radix. */
|
||
else if (!got_dot && *p == '.')
|
||
got_dot = 1;
|
||
else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
|
||
&& (*p == '-' || *p == '+'))
|
||
/* This is the sign of the exponent, not the end of the
|
||
number. */
|
||
continue;
|
||
/* We will take any letters or digits. parse_number will
|
||
complain if past the radix, or if L or U are not final. */
|
||
else if ((*p < '0' || *p > '9')
|
||
&& ((*p < 'a' || *p > 'z')
|
||
&& (*p < 'A' || *p > 'Z')))
|
||
break;
|
||
}
|
||
toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
|
||
if (toktype == ERROR)
|
||
{
|
||
char *err_copy = (char *) alloca (p - tokstart + 1);
|
||
|
||
memcpy (err_copy, tokstart, p - tokstart);
|
||
err_copy[p - tokstart] = 0;
|
||
error ("Invalid number \"%s\".", err_copy);
|
||
}
|
||
lexptr = p;
|
||
return toktype;
|
||
}
|
||
|
||
case '+':
|
||
case '-':
|
||
case '*':
|
||
case '/':
|
||
case '%':
|
||
case '|':
|
||
case '&':
|
||
case '^':
|
||
case '~':
|
||
case '!':
|
||
case '@':
|
||
case '<':
|
||
case '>':
|
||
case '?':
|
||
case ':':
|
||
case '=':
|
||
case '{':
|
||
case '}':
|
||
symbol:
|
||
lexptr++;
|
||
return c;
|
||
|
||
case 'L':
|
||
case 'u':
|
||
case 'U':
|
||
if (tokstart[1] != '"' && tokstart[1] != '\'')
|
||
break;
|
||
/* Fall through. */
|
||
case '\'':
|
||
case '"':
|
||
{
|
||
int host_len;
|
||
int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
|
||
&host_len);
|
||
if (result == CHAR)
|
||
{
|
||
if (host_len == 0)
|
||
error ("Empty character constant.");
|
||
else if (host_len > 2 && c == '\'')
|
||
{
|
||
++tokstart;
|
||
namelen = lexptr - tokstart - 1;
|
||
goto tryname;
|
||
}
|
||
else if (host_len > 1)
|
||
error ("Invalid character constant.");
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
|
||
if (!(c == '_' || c == '$'
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
|
||
/* We must have come across a bad character (e.g. ';'). */
|
||
error ("Invalid character '%c' in expression.", c);
|
||
|
||
/* It's a name. See how long it is. */
|
||
namelen = 0;
|
||
for (c = tokstart[namelen];
|
||
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
|
||
{
|
||
/* Template parameter lists are part of the name.
|
||
FIXME: This mishandles `print $a<4&&$a>3'. */
|
||
|
||
if (c == '<')
|
||
{
|
||
/* Scan ahead to get rest of the template specification. Note
|
||
that we look ahead only when the '<' adjoins non-whitespace
|
||
characters; for comparison expressions, e.g. "a < b > c",
|
||
there must be spaces before the '<', etc. */
|
||
|
||
char * p = find_template_name_end (tokstart + namelen);
|
||
if (p)
|
||
namelen = p - tokstart;
|
||
break;
|
||
}
|
||
c = tokstart[++namelen];
|
||
}
|
||
|
||
/* The token "if" terminates the expression and is NOT removed from
|
||
the input stream. It doesn't count if it appears in the
|
||
expansion of a macro. */
|
||
if (namelen == 2
|
||
&& tokstart[0] == 'i'
|
||
&& tokstart[1] == 'f'
|
||
&& ! scanning_macro_expansion ())
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
lexptr += namelen;
|
||
|
||
tryname:
|
||
|
||
yylval.sval.ptr = tokstart;
|
||
yylval.sval.length = namelen;
|
||
|
||
/* Catch specific keywords. */
|
||
copy = copy_name (yylval.sval);
|
||
for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
|
||
if (strcmp (copy, ident_tokens[i].operator) == 0)
|
||
{
|
||
if (ident_tokens[i].cxx_only
|
||
&& parse_language->la_language != language_cplus)
|
||
break;
|
||
|
||
/* It is ok to always set this, even though we don't always
|
||
strictly need to. */
|
||
yylval.opcode = ident_tokens[i].opcode;
|
||
return ident_tokens[i].token;
|
||
}
|
||
|
||
if (*tokstart == '$')
|
||
{
|
||
write_dollar_variable (yylval.sval);
|
||
return VARIABLE;
|
||
}
|
||
|
||
/* Use token-type BLOCKNAME for symbols that happen to be defined as
|
||
functions or symtabs. If this is not so, then ...
|
||
Use token-type TYPENAME for symbols that happen to be defined
|
||
currently as names of types; NAME for other symbols.
|
||
The caller is not constrained to care about the distinction. */
|
||
{
|
||
struct symbol *sym;
|
||
int is_a_field_of_this = 0;
|
||
int hextype;
|
||
|
||
sym = lookup_symbol (copy, expression_context_block,
|
||
VAR_DOMAIN,
|
||
parse_language->la_language == language_cplus
|
||
? &is_a_field_of_this : (int *) NULL);
|
||
/* Call lookup_symtab, not lookup_partial_symtab, in case there are
|
||
no psymtabs (coff, xcoff, or some future change to blow away the
|
||
psymtabs once once symbols are read). */
|
||
if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
|
||
{
|
||
yylval.ssym.sym = sym;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
|
||
return BLOCKNAME;
|
||
}
|
||
else if (!sym)
|
||
{ /* See if it's a file name. */
|
||
struct symtab *symtab;
|
||
|
||
symtab = lookup_symtab (copy);
|
||
|
||
if (symtab)
|
||
{
|
||
yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
|
||
return FILENAME;
|
||
}
|
||
}
|
||
|
||
if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
||
{
|
||
/* NOTE: carlton/2003-09-25: There used to be code here to
|
||
handle nested types. It didn't work very well. See the
|
||
comment before qualified_type for more info. */
|
||
yylval.tsym.type = SYMBOL_TYPE (sym);
|
||
return TYPENAME;
|
||
}
|
||
yylval.tsym.type
|
||
= language_lookup_primitive_type_by_name (parse_language,
|
||
parse_gdbarch, copy);
|
||
if (yylval.tsym.type != NULL)
|
||
return TYPENAME;
|
||
|
||
/* Input names that aren't symbols but ARE valid hex numbers,
|
||
when the input radix permits them, can be names or numbers
|
||
depending on the parse. Note we support radixes > 16 here. */
|
||
if (!sym &&
|
||
((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
|
||
(tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
|
||
{
|
||
YYSTYPE newlval; /* Its value is ignored. */
|
||
hextype = parse_number (tokstart, namelen, 0, &newlval);
|
||
if (hextype == INT)
|
||
{
|
||
yylval.ssym.sym = sym;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
|
||
return NAME_OR_INT;
|
||
}
|
||
}
|
||
|
||
/* Any other kind of symbol */
|
||
yylval.ssym.sym = sym;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
|
||
if (in_parse_field && *lexptr == '\0')
|
||
saw_name_at_eof = 1;
|
||
return NAME;
|
||
}
|
||
}
|
||
|
||
int
|
||
c_parse (void)
|
||
{
|
||
int result;
|
||
struct cleanup *back_to = make_cleanup (free_current_contents,
|
||
&expression_macro_scope);
|
||
|
||
/* Set up the scope for macro expansion. */
|
||
expression_macro_scope = NULL;
|
||
|
||
if (expression_context_block)
|
||
expression_macro_scope
|
||
= sal_macro_scope (find_pc_line (expression_context_pc, 0));
|
||
else
|
||
expression_macro_scope = default_macro_scope ();
|
||
if (! expression_macro_scope)
|
||
expression_macro_scope = user_macro_scope ();
|
||
|
||
/* Initialize macro expansion code. */
|
||
obstack_init (&expansion_obstack);
|
||
gdb_assert (! macro_original_text);
|
||
make_cleanup (scan_macro_cleanup, 0);
|
||
|
||
/* Initialize some state used by the lexer. */
|
||
last_was_structop = 0;
|
||
saw_name_at_eof = 0;
|
||
|
||
result = yyparse ();
|
||
do_cleanups (back_to);
|
||
return result;
|
||
}
|
||
|
||
|
||
void
|
||
yyerror (msg)
|
||
char *msg;
|
||
{
|
||
if (prev_lexptr)
|
||
lexptr = prev_lexptr;
|
||
|
||
error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
|
||
}
|