3216 lines
93 KiB
C
3216 lines
93 KiB
C
/* BFD back-end for Renesas Super-H COFF binaries.
|
||
Copyright (C) 1993-2017 Free Software Foundation, Inc.
|
||
Contributed by Cygnus Support.
|
||
Written by Steve Chamberlain, <sac@cygnus.com>.
|
||
Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libiberty.h"
|
||
#include "libbfd.h"
|
||
#include "bfdlink.h"
|
||
#include "coff/sh.h"
|
||
#include "coff/internal.h"
|
||
|
||
#undef bfd_pe_print_pdata
|
||
|
||
#ifdef COFF_WITH_PE
|
||
#include "coff/pe.h"
|
||
|
||
#ifndef COFF_IMAGE_WITH_PE
|
||
static bfd_boolean sh_align_load_span
|
||
(bfd *, asection *, bfd_byte *,
|
||
bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
|
||
void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
|
||
|
||
#define _bfd_sh_align_load_span sh_align_load_span
|
||
#endif
|
||
|
||
#define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
|
||
|
||
#else
|
||
|
||
#define bfd_pe_print_pdata NULL
|
||
|
||
#endif /* COFF_WITH_PE. */
|
||
|
||
#include "libcoff.h"
|
||
|
||
/* Internal functions. */
|
||
|
||
#ifdef COFF_WITH_PE
|
||
/* Can't build import tables with 2**4 alignment. */
|
||
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
|
||
#else
|
||
/* Default section alignment to 2**4. */
|
||
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
|
||
#endif
|
||
|
||
#ifdef COFF_IMAGE_WITH_PE
|
||
/* Align PE executables. */
|
||
#define COFF_PAGE_SIZE 0x1000
|
||
#endif
|
||
|
||
/* Generate long file names. */
|
||
#define COFF_LONG_FILENAMES
|
||
|
||
#ifdef COFF_WITH_PE
|
||
/* Return TRUE if this relocation should
|
||
appear in the output .reloc section. */
|
||
|
||
static bfd_boolean
|
||
in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
|
||
reloc_howto_type * howto)
|
||
{
|
||
return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
|
||
}
|
||
#endif
|
||
|
||
static bfd_reloc_status_type
|
||
sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
||
static bfd_boolean
|
||
sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
|
||
bfd_byte *, struct internal_reloc *,
|
||
struct internal_syment *, asection **);
|
||
static bfd_boolean
|
||
sh_align_loads (bfd *, asection *, struct internal_reloc *,
|
||
bfd_byte *, bfd_boolean *);
|
||
|
||
/* The supported relocations. There are a lot of relocations defined
|
||
in coff/internal.h which we do not expect to ever see. */
|
||
static reloc_howto_type sh_coff_howtos[] =
|
||
{
|
||
EMPTY_HOWTO (0),
|
||
EMPTY_HOWTO (1),
|
||
#ifdef COFF_WITH_PE
|
||
/* Windows CE */
|
||
HOWTO (R_SH_IMM32CE, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_imm32ce", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
#else
|
||
EMPTY_HOWTO (2),
|
||
#endif
|
||
EMPTY_HOWTO (3), /* R_SH_PCREL8 */
|
||
EMPTY_HOWTO (4), /* R_SH_PCREL16 */
|
||
EMPTY_HOWTO (5), /* R_SH_HIGH8 */
|
||
EMPTY_HOWTO (6), /* R_SH_IMM24 */
|
||
EMPTY_HOWTO (7), /* R_SH_LOW16 */
|
||
EMPTY_HOWTO (8),
|
||
EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
|
||
|
||
HOWTO (R_SH_PCDISP8BY2, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_pcdisp8by2", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xff, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
|
||
|
||
HOWTO (R_SH_PCDISP, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
12, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_pcdisp12by2", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xfff, /* src_mask */
|
||
0xfff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
EMPTY_HOWTO (13),
|
||
|
||
HOWTO (R_SH_IMM32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_imm32", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
EMPTY_HOWTO (15),
|
||
#ifdef COFF_WITH_PE
|
||
HOWTO (R_SH_IMAGEBASE, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"rva32", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
#else
|
||
EMPTY_HOWTO (16), /* R_SH_IMM8 */
|
||
#endif
|
||
EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
|
||
EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
|
||
EMPTY_HOWTO (19), /* R_SH_IMM4 */
|
||
EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
|
||
EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
|
||
|
||
HOWTO (R_SH_PCRELIMM8BY2, /* type */
|
||
1, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_unsigned, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_pcrelimm8by2", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xff, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_PCRELIMM8BY4, /* type */
|
||
2, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_unsigned, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_pcrelimm8by4", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xff, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_IMM16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_imm16", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_SWITCH16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_switch16", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_SWITCH32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_switch32", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_USES, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_uses", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_COUNT, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_count", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_ALIGN, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_align", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_CODE, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_code", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_DATA, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_data", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_LABEL, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_label", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_SH_SWITCH8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
sh_reloc, /* special_function */
|
||
"r_switch8", /* name */
|
||
TRUE, /* partial_inplace */
|
||
0xff, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
FALSE) /* pcrel_offset */
|
||
};
|
||
|
||
#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
|
||
|
||
/* Check for a bad magic number. */
|
||
#define BADMAG(x) SHBADMAG(x)
|
||
|
||
/* Customize coffcode.h (this is not currently used). */
|
||
#define SH 1
|
||
|
||
/* FIXME: This should not be set here. */
|
||
#define __A_MAGIC_SET__
|
||
|
||
#ifndef COFF_WITH_PE
|
||
/* Swap the r_offset field in and out. */
|
||
#define SWAP_IN_RELOC_OFFSET H_GET_32
|
||
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
|
||
|
||
/* Swap out extra information in the reloc structure. */
|
||
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
|
||
do \
|
||
{ \
|
||
dst->r_stuff[0] = 'S'; \
|
||
dst->r_stuff[1] = 'C'; \
|
||
} \
|
||
while (0)
|
||
#endif
|
||
|
||
/* Get the value of a symbol, when performing a relocation. */
|
||
|
||
static long
|
||
get_symbol_value (asymbol *symbol)
|
||
{
|
||
bfd_vma relocation;
|
||
|
||
if (bfd_is_com_section (symbol->section))
|
||
relocation = 0;
|
||
else
|
||
relocation = (symbol->value +
|
||
symbol->section->output_section->vma +
|
||
symbol->section->output_offset);
|
||
|
||
return relocation;
|
||
}
|
||
|
||
#ifdef COFF_WITH_PE
|
||
/* Convert an rtype to howto for the COFF backend linker.
|
||
Copied from coff-i386. */
|
||
#define coff_rtype_to_howto coff_sh_rtype_to_howto
|
||
|
||
|
||
static reloc_howto_type *
|
||
coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
|
||
asection * sec,
|
||
struct internal_reloc * rel,
|
||
struct coff_link_hash_entry * h,
|
||
struct internal_syment * sym,
|
||
bfd_vma * addendp)
|
||
{
|
||
reloc_howto_type * howto;
|
||
|
||
howto = sh_coff_howtos + rel->r_type;
|
||
|
||
*addendp = 0;
|
||
|
||
if (howto->pc_relative)
|
||
*addendp += sec->vma;
|
||
|
||
if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
|
||
{
|
||
/* This is a common symbol. The section contents include the
|
||
size (sym->n_value) as an addend. The relocate_section
|
||
function will be adding in the final value of the symbol. We
|
||
need to subtract out the current size in order to get the
|
||
correct result. */
|
||
BFD_ASSERT (h != NULL);
|
||
}
|
||
|
||
if (howto->pc_relative)
|
||
{
|
||
*addendp -= 4;
|
||
|
||
/* If the symbol is defined, then the generic code is going to
|
||
add back the symbol value in order to cancel out an
|
||
adjustment it made to the addend. However, we set the addend
|
||
to 0 at the start of this function. We need to adjust here,
|
||
to avoid the adjustment the generic code will make. FIXME:
|
||
This is getting a bit hackish. */
|
||
if (sym != NULL && sym->n_scnum != 0)
|
||
*addendp -= sym->n_value;
|
||
}
|
||
|
||
if (rel->r_type == R_SH_IMAGEBASE)
|
||
*addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
|
||
|
||
return howto;
|
||
}
|
||
|
||
#endif /* COFF_WITH_PE */
|
||
|
||
/* This structure is used to map BFD reloc codes to SH PE relocs. */
|
||
struct shcoff_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
unsigned char shcoff_reloc_val;
|
||
};
|
||
|
||
#ifdef COFF_WITH_PE
|
||
/* An array mapping BFD reloc codes to SH PE relocs. */
|
||
static const struct shcoff_reloc_map sh_reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_32, R_SH_IMM32CE },
|
||
{ BFD_RELOC_RVA, R_SH_IMAGEBASE },
|
||
{ BFD_RELOC_CTOR, R_SH_IMM32CE },
|
||
};
|
||
#else
|
||
/* An array mapping BFD reloc codes to SH PE relocs. */
|
||
static const struct shcoff_reloc_map sh_reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_32, R_SH_IMM32 },
|
||
{ BFD_RELOC_CTOR, R_SH_IMM32 },
|
||
};
|
||
#endif
|
||
|
||
/* Given a BFD reloc code, return the howto structure for the
|
||
corresponding SH PE reloc. */
|
||
#define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
|
||
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
|
||
|
||
static reloc_howto_type *
|
||
sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = ARRAY_SIZE (sh_reloc_map); i--;)
|
||
if (sh_reloc_map[i].bfd_reloc_val == code)
|
||
return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
|
||
|
||
_bfd_error_handler (_("SH Error: unknown reloc type %d"), code);
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
|
||
if (sh_coff_howtos[i].name != NULL
|
||
&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
|
||
return &sh_coff_howtos[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* This macro is used in coffcode.h to get the howto corresponding to
|
||
an internal reloc. */
|
||
|
||
#define RTYPE2HOWTO(relent, internal) \
|
||
((relent)->howto = \
|
||
((internal)->r_type < SH_COFF_HOWTO_COUNT \
|
||
? &sh_coff_howtos[(internal)->r_type] \
|
||
: (reloc_howto_type *) NULL))
|
||
|
||
/* This is the same as the macro in coffcode.h, except that it copies
|
||
r_offset into reloc_entry->addend for some relocs. */
|
||
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
|
||
{ \
|
||
coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
|
||
if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
|
||
coffsym = (obj_symbols (abfd) \
|
||
+ (cache_ptr->sym_ptr_ptr - symbols)); \
|
||
else if (ptr) \
|
||
coffsym = coff_symbol_from (ptr); \
|
||
if (coffsym != (coff_symbol_type *) NULL \
|
||
&& coffsym->native->u.syment.n_scnum == 0) \
|
||
cache_ptr->addend = 0; \
|
||
else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
|
||
&& ptr->section != (asection *) NULL) \
|
||
cache_ptr->addend = - (ptr->section->vma + ptr->value); \
|
||
else \
|
||
cache_ptr->addend = 0; \
|
||
if ((reloc).r_type == R_SH_SWITCH8 \
|
||
|| (reloc).r_type == R_SH_SWITCH16 \
|
||
|| (reloc).r_type == R_SH_SWITCH32 \
|
||
|| (reloc).r_type == R_SH_USES \
|
||
|| (reloc).r_type == R_SH_COUNT \
|
||
|| (reloc).r_type == R_SH_ALIGN) \
|
||
cache_ptr->addend = (reloc).r_offset; \
|
||
}
|
||
|
||
/* This is the howto function for the SH relocations. */
|
||
|
||
static bfd_reloc_status_type
|
||
sh_reloc (bfd * abfd,
|
||
arelent * reloc_entry,
|
||
asymbol * symbol_in,
|
||
void * data,
|
||
asection * input_section,
|
||
bfd * output_bfd,
|
||
char ** error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned long insn;
|
||
bfd_vma sym_value;
|
||
unsigned short r_type;
|
||
bfd_vma addr = reloc_entry->address;
|
||
bfd_byte *hit_data = addr + (bfd_byte *) data;
|
||
|
||
r_type = reloc_entry->howto->type;
|
||
|
||
if (output_bfd != NULL)
|
||
{
|
||
/* Partial linking--do nothing. */
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Almost all relocs have to do with relaxing. If any work must be
|
||
done for them, it has been done in sh_relax_section. */
|
||
if (r_type != R_SH_IMM32
|
||
#ifdef COFF_WITH_PE
|
||
&& r_type != R_SH_IMM32CE
|
||
&& r_type != R_SH_IMAGEBASE
|
||
#endif
|
||
&& (r_type != R_SH_PCDISP
|
||
|| (symbol_in->flags & BSF_LOCAL) != 0))
|
||
return bfd_reloc_ok;
|
||
|
||
if (symbol_in != NULL
|
||
&& bfd_is_und_section (symbol_in->section))
|
||
return bfd_reloc_undefined;
|
||
|
||
if (addr > input_section->size)
|
||
return bfd_reloc_outofrange;
|
||
|
||
sym_value = get_symbol_value (symbol_in);
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_SH_IMM32:
|
||
#ifdef COFF_WITH_PE
|
||
case R_SH_IMM32CE:
|
||
#endif
|
||
insn = bfd_get_32 (abfd, hit_data);
|
||
insn += sym_value + reloc_entry->addend;
|
||
bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
|
||
break;
|
||
#ifdef COFF_WITH_PE
|
||
case R_SH_IMAGEBASE:
|
||
insn = bfd_get_32 (abfd, hit_data);
|
||
insn += sym_value + reloc_entry->addend;
|
||
insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
|
||
bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
|
||
break;
|
||
#endif
|
||
case R_SH_PCDISP:
|
||
insn = bfd_get_16 (abfd, hit_data);
|
||
sym_value += reloc_entry->addend;
|
||
sym_value -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ addr
|
||
+ 4);
|
||
sym_value += (insn & 0xfff) << 1;
|
||
if (insn & 0x800)
|
||
sym_value -= 0x1000;
|
||
insn = (insn & 0xf000) | (sym_value & 0xfff);
|
||
bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
|
||
if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
|
||
return bfd_reloc_overflow;
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
|
||
|
||
/* We can do relaxing. */
|
||
#define coff_bfd_relax_section sh_relax_section
|
||
|
||
/* We use the special COFF backend linker. */
|
||
#define coff_relocate_section sh_relocate_section
|
||
|
||
/* When relaxing, we need to use special code to get the relocated
|
||
section contents. */
|
||
#define coff_bfd_get_relocated_section_contents \
|
||
sh_coff_get_relocated_section_contents
|
||
|
||
#include "coffcode.h"
|
||
|
||
static bfd_boolean
|
||
sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
|
||
|
||
/* This function handles relaxing on the SH.
|
||
|
||
Function calls on the SH look like this:
|
||
|
||
movl L1,r0
|
||
...
|
||
jsr @r0
|
||
...
|
||
L1:
|
||
.long function
|
||
|
||
The compiler and assembler will cooperate to create R_SH_USES
|
||
relocs on the jsr instructions. The r_offset field of the
|
||
R_SH_USES reloc is the PC relative offset to the instruction which
|
||
loads the register (the r_offset field is computed as though it
|
||
were a jump instruction, so the offset value is actually from four
|
||
bytes past the instruction). The linker can use this reloc to
|
||
determine just which function is being called, and thus decide
|
||
whether it is possible to replace the jsr with a bsr.
|
||
|
||
If multiple function calls are all based on a single register load
|
||
(i.e., the same function is called multiple times), the compiler
|
||
guarantees that each function call will have an R_SH_USES reloc.
|
||
Therefore, if the linker is able to convert each R_SH_USES reloc
|
||
which refers to that address, it can safely eliminate the register
|
||
load.
|
||
|
||
When the assembler creates an R_SH_USES reloc, it examines it to
|
||
determine which address is being loaded (L1 in the above example).
|
||
It then counts the number of references to that address, and
|
||
creates an R_SH_COUNT reloc at that address. The r_offset field of
|
||
the R_SH_COUNT reloc will be the number of references. If the
|
||
linker is able to eliminate a register load, it can use the
|
||
R_SH_COUNT reloc to see whether it can also eliminate the function
|
||
address.
|
||
|
||
SH relaxing also handles another, unrelated, matter. On the SH, if
|
||
a load or store instruction is not aligned on a four byte boundary,
|
||
the memory cycle interferes with the 32 bit instruction fetch,
|
||
causing a one cycle bubble in the pipeline. Therefore, we try to
|
||
align load and store instructions on four byte boundaries if we
|
||
can, by swapping them with one of the adjacent instructions. */
|
||
|
||
static bfd_boolean
|
||
sh_relax_section (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
struct internal_reloc *internal_relocs;
|
||
bfd_boolean have_code;
|
||
struct internal_reloc *irel, *irelend;
|
||
bfd_byte *contents = NULL;
|
||
|
||
*again = FALSE;
|
||
|
||
if (bfd_link_relocatable (link_info)
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0)
|
||
return TRUE;
|
||
|
||
if (coff_section_data (abfd, sec) == NULL)
|
||
{
|
||
bfd_size_type amt = sizeof (struct coff_section_tdata);
|
||
sec->used_by_bfd = bfd_zalloc (abfd, amt);
|
||
if (sec->used_by_bfd == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
internal_relocs = (_bfd_coff_read_internal_relocs
|
||
(abfd, sec, link_info->keep_memory,
|
||
(bfd_byte *) NULL, FALSE,
|
||
(struct internal_reloc *) NULL));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
have_code = FALSE;
|
||
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma laddr, paddr, symval;
|
||
unsigned short insn;
|
||
struct internal_reloc *irelfn, *irelscan, *irelcount;
|
||
struct internal_syment sym;
|
||
bfd_signed_vma foff;
|
||
|
||
if (irel->r_type == R_SH_CODE)
|
||
have_code = TRUE;
|
||
|
||
if (irel->r_type != R_SH_USES)
|
||
continue;
|
||
|
||
/* Get the section contents. */
|
||
if (contents == NULL)
|
||
{
|
||
if (coff_section_data (abfd, sec)->contents != NULL)
|
||
contents = coff_section_data (abfd, sec)->contents;
|
||
else
|
||
{
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* The r_offset field of the R_SH_USES reloc will point us to
|
||
the register load. The 4 is because the r_offset field is
|
||
computed as though it were a jump offset, which are based
|
||
from 4 bytes after the jump instruction. */
|
||
laddr = irel->r_vaddr - sec->vma + 4;
|
||
/* Careful to sign extend the 32-bit offset. */
|
||
laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
|
||
if (laddr >= sec->size)
|
||
{
|
||
/* xgettext: c-format */
|
||
_bfd_error_handler (_("%B: %#Lx: warning: bad R_SH_USES offset"),
|
||
abfd, irel->r_vaddr);
|
||
continue;
|
||
}
|
||
insn = bfd_get_16 (abfd, contents + laddr);
|
||
|
||
/* If the instruction is not mov.l NN,rN, we don't know what to do. */
|
||
if ((insn & 0xf000) != 0xd000)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: warning: R_SH_USES points to unrecognized insn %#x"),
|
||
abfd, irel->r_vaddr, insn);
|
||
continue;
|
||
}
|
||
|
||
/* Get the address from which the register is being loaded. The
|
||
displacement in the mov.l instruction is quadrupled. It is a
|
||
displacement from four bytes after the movl instruction, but,
|
||
before adding in the PC address, two least significant bits
|
||
of the PC are cleared. We assume that the section is aligned
|
||
on a four byte boundary. */
|
||
paddr = insn & 0xff;
|
||
paddr *= 4;
|
||
paddr += (laddr + 4) &~ (bfd_vma) 3;
|
||
if (paddr >= sec->size)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: warning: bad R_SH_USES load offset"),
|
||
abfd, irel->r_vaddr);
|
||
continue;
|
||
}
|
||
|
||
/* Get the reloc for the address from which the register is
|
||
being loaded. This reloc will tell us which function is
|
||
actually being called. */
|
||
paddr += sec->vma;
|
||
for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
|
||
if (irelfn->r_vaddr == paddr
|
||
#ifdef COFF_WITH_PE
|
||
&& (irelfn->r_type == R_SH_IMM32
|
||
|| irelfn->r_type == R_SH_IMM32CE
|
||
|| irelfn->r_type == R_SH_IMAGEBASE)
|
||
|
||
#else
|
||
&& irelfn->r_type == R_SH_IMM32
|
||
#endif
|
||
)
|
||
break;
|
||
if (irelfn >= irelend)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: warning: could not find expected reloc"),
|
||
abfd, paddr);
|
||
continue;
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (! _bfd_coff_get_external_symbols (abfd))
|
||
goto error_return;
|
||
bfd_coff_swap_sym_in (abfd,
|
||
((bfd_byte *) obj_coff_external_syms (abfd)
|
||
+ (irelfn->r_symndx
|
||
* bfd_coff_symesz (abfd))),
|
||
&sym);
|
||
if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: warning: symbol in unexpected section"),
|
||
abfd, paddr);
|
||
continue;
|
||
}
|
||
|
||
if (sym.n_sclass != C_EXT)
|
||
{
|
||
symval = (sym.n_value
|
||
- sec->vma
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
}
|
||
else
|
||
{
|
||
struct coff_link_hash_entry *h;
|
||
|
||
h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
{
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it--it will be caught by the
|
||
regular reloc processing. */
|
||
continue;
|
||
}
|
||
|
||
symval = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
|
||
symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
|
||
|
||
/* See if this function call can be shortened. */
|
||
foff = (symval
|
||
- (irel->r_vaddr
|
||
- sec->vma
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ 4));
|
||
if (foff < -0x1000 || foff >= 0x1000)
|
||
{
|
||
/* After all that work, we can't shorten this function call. */
|
||
continue;
|
||
}
|
||
|
||
/* Shorten the function call. */
|
||
|
||
/* For simplicity of coding, we are going to modify the section
|
||
contents, the section relocs, and the BFD symbol table. We
|
||
must tell the rest of the code not to free up this
|
||
information. It would be possible to instead create a table
|
||
of changes which have to be made, as is done in coff-mips.c;
|
||
that would be more work, but would require less memory when
|
||
the linker is run. */
|
||
|
||
coff_section_data (abfd, sec)->relocs = internal_relocs;
|
||
coff_section_data (abfd, sec)->keep_relocs = TRUE;
|
||
|
||
coff_section_data (abfd, sec)->contents = contents;
|
||
coff_section_data (abfd, sec)->keep_contents = TRUE;
|
||
|
||
obj_coff_keep_syms (abfd) = TRUE;
|
||
|
||
/* Replace the jsr with a bsr. */
|
||
|
||
/* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
|
||
replace the jsr with a bsr. */
|
||
irel->r_type = R_SH_PCDISP;
|
||
irel->r_symndx = irelfn->r_symndx;
|
||
if (sym.n_sclass != C_EXT)
|
||
{
|
||
/* If this needs to be changed because of future relaxing,
|
||
it will be handled here like other internal PCDISP
|
||
relocs. */
|
||
bfd_put_16 (abfd,
|
||
(bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
|
||
contents + irel->r_vaddr - sec->vma);
|
||
}
|
||
else
|
||
{
|
||
/* We can't fully resolve this yet, because the external
|
||
symbol value may be changed by future relaxing. We let
|
||
the final link phase handle it. */
|
||
bfd_put_16 (abfd, (bfd_vma) 0xb000,
|
||
contents + irel->r_vaddr - sec->vma);
|
||
}
|
||
|
||
/* See if there is another R_SH_USES reloc referring to the same
|
||
register load. */
|
||
for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
|
||
if (irelscan->r_type == R_SH_USES
|
||
&& laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
|
||
break;
|
||
if (irelscan < irelend)
|
||
{
|
||
/* Some other function call depends upon this register load,
|
||
and we have not yet converted that function call.
|
||
Indeed, we may never be able to convert it. There is
|
||
nothing else we can do at this point. */
|
||
continue;
|
||
}
|
||
|
||
/* Look for a R_SH_COUNT reloc on the location where the
|
||
function address is stored. Do this before deleting any
|
||
bytes, to avoid confusion about the address. */
|
||
for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
|
||
if (irelcount->r_vaddr == paddr
|
||
&& irelcount->r_type == R_SH_COUNT)
|
||
break;
|
||
|
||
/* Delete the register load. */
|
||
if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, just in case it permits some
|
||
other function call to come within range, we should relax
|
||
again. Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
|
||
/* Now check whether we got a COUNT reloc. */
|
||
if (irelcount >= irelend)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: warning: could not find expected COUNT reloc"),
|
||
abfd, paddr);
|
||
continue;
|
||
}
|
||
|
||
/* The number of uses is stored in the r_offset field. We've
|
||
just deleted one. */
|
||
if (irelcount->r_offset == 0)
|
||
{
|
||
/* xgettext: c-format */
|
||
_bfd_error_handler (_("%B: %#Lx: warning: bad count"),
|
||
abfd, paddr);
|
||
continue;
|
||
}
|
||
|
||
--irelcount->r_offset;
|
||
|
||
/* If there are no more uses, we can delete the address. Reload
|
||
the address from irelfn, in case it was changed by the
|
||
previous call to sh_relax_delete_bytes. */
|
||
if (irelcount->r_offset == 0)
|
||
{
|
||
if (! sh_relax_delete_bytes (abfd, sec,
|
||
irelfn->r_vaddr - sec->vma, 4))
|
||
goto error_return;
|
||
}
|
||
|
||
/* We've done all we can with that function call. */
|
||
}
|
||
|
||
/* Look for load and store instructions that we can align on four
|
||
byte boundaries. */
|
||
if (have_code)
|
||
{
|
||
bfd_boolean swapped;
|
||
|
||
/* Get the section contents. */
|
||
if (contents == NULL)
|
||
{
|
||
if (coff_section_data (abfd, sec)->contents != NULL)
|
||
contents = coff_section_data (abfd, sec)->contents;
|
||
else
|
||
{
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
|
||
goto error_return;
|
||
|
||
if (swapped)
|
||
{
|
||
coff_section_data (abfd, sec)->relocs = internal_relocs;
|
||
coff_section_data (abfd, sec)->keep_relocs = TRUE;
|
||
|
||
coff_section_data (abfd, sec)->contents = contents;
|
||
coff_section_data (abfd, sec)->keep_contents = TRUE;
|
||
|
||
obj_coff_keep_syms (abfd) = TRUE;
|
||
}
|
||
}
|
||
|
||
if (internal_relocs != NULL
|
||
&& internal_relocs != coff_section_data (abfd, sec)->relocs)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (internal_relocs);
|
||
else
|
||
coff_section_data (abfd, sec)->relocs = internal_relocs;
|
||
}
|
||
|
||
if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
/* Cache the section contents for coff_link_input_bfd. */
|
||
coff_section_data (abfd, sec)->contents = contents;
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (internal_relocs != NULL
|
||
&& internal_relocs != coff_section_data (abfd, sec)->relocs)
|
||
free (internal_relocs);
|
||
if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
|
||
free (contents);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Delete some bytes from a section while relaxing. */
|
||
|
||
static bfd_boolean
|
||
sh_relax_delete_bytes (bfd *abfd,
|
||
asection *sec,
|
||
bfd_vma addr,
|
||
int count)
|
||
{
|
||
bfd_byte *contents;
|
||
struct internal_reloc *irel, *irelend;
|
||
struct internal_reloc *irelalign;
|
||
bfd_vma toaddr;
|
||
bfd_byte *esym, *esymend;
|
||
bfd_size_type symesz;
|
||
struct coff_link_hash_entry **sym_hash;
|
||
asection *o;
|
||
|
||
contents = coff_section_data (abfd, sec)->contents;
|
||
|
||
/* The deletion must stop at the next ALIGN reloc for an alignment
|
||
power larger than the number of bytes we are deleting. */
|
||
|
||
irelalign = NULL;
|
||
toaddr = sec->size;
|
||
|
||
irel = coff_section_data (abfd, sec)->relocs;
|
||
irelend = irel + sec->reloc_count;
|
||
for (; irel < irelend; irel++)
|
||
{
|
||
if (irel->r_type == R_SH_ALIGN
|
||
&& irel->r_vaddr - sec->vma > addr
|
||
&& count < (1 << irel->r_offset))
|
||
{
|
||
irelalign = irel;
|
||
toaddr = irel->r_vaddr - sec->vma;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Actually delete the bytes. */
|
||
memmove (contents + addr, contents + addr + count,
|
||
(size_t) (toaddr - addr - count));
|
||
if (irelalign == NULL)
|
||
sec->size -= count;
|
||
else
|
||
{
|
||
int i;
|
||
|
||
#define NOP_OPCODE (0x0009)
|
||
|
||
BFD_ASSERT ((count & 1) == 0);
|
||
for (i = 0; i < count; i += 2)
|
||
bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
|
||
}
|
||
|
||
/* Adjust all the relocs. */
|
||
for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma nraddr, stop;
|
||
bfd_vma start = 0;
|
||
int insn = 0;
|
||
struct internal_syment sym;
|
||
int off, adjust, oinsn;
|
||
bfd_signed_vma voff = 0;
|
||
bfd_boolean overflow;
|
||
|
||
/* Get the new reloc address. */
|
||
nraddr = irel->r_vaddr - sec->vma;
|
||
if ((irel->r_vaddr - sec->vma > addr
|
||
&& irel->r_vaddr - sec->vma < toaddr)
|
||
|| (irel->r_type == R_SH_ALIGN
|
||
&& irel->r_vaddr - sec->vma == toaddr))
|
||
nraddr -= count;
|
||
|
||
/* See if this reloc was for the bytes we have deleted, in which
|
||
case we no longer care about it. Don't delete relocs which
|
||
represent addresses, though. */
|
||
if (irel->r_vaddr - sec->vma >= addr
|
||
&& irel->r_vaddr - sec->vma < addr + count
|
||
&& irel->r_type != R_SH_ALIGN
|
||
&& irel->r_type != R_SH_CODE
|
||
&& irel->r_type != R_SH_DATA
|
||
&& irel->r_type != R_SH_LABEL)
|
||
irel->r_type = R_SH_UNUSED;
|
||
|
||
/* If this is a PC relative reloc, see if the range it covers
|
||
includes the bytes we have deleted. */
|
||
switch (irel->r_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case R_SH_PCDISP8BY2:
|
||
case R_SH_PCDISP:
|
||
case R_SH_PCRELIMM8BY2:
|
||
case R_SH_PCRELIMM8BY4:
|
||
start = irel->r_vaddr - sec->vma;
|
||
insn = bfd_get_16 (abfd, contents + nraddr);
|
||
break;
|
||
}
|
||
|
||
switch (irel->r_type)
|
||
{
|
||
default:
|
||
start = stop = addr;
|
||
break;
|
||
|
||
case R_SH_IMM32:
|
||
#ifdef COFF_WITH_PE
|
||
case R_SH_IMM32CE:
|
||
case R_SH_IMAGEBASE:
|
||
#endif
|
||
/* If this reloc is against a symbol defined in this
|
||
section, and the symbol will not be adjusted below, we
|
||
must check the addend to see it will put the value in
|
||
range to be adjusted, and hence must be changed. */
|
||
bfd_coff_swap_sym_in (abfd,
|
||
((bfd_byte *) obj_coff_external_syms (abfd)
|
||
+ (irel->r_symndx
|
||
* bfd_coff_symesz (abfd))),
|
||
&sym);
|
||
if (sym.n_sclass != C_EXT
|
||
&& sym.n_scnum == sec->target_index
|
||
&& ((bfd_vma) sym.n_value <= addr
|
||
|| (bfd_vma) sym.n_value >= toaddr))
|
||
{
|
||
bfd_vma val;
|
||
|
||
val = bfd_get_32 (abfd, contents + nraddr);
|
||
val += sym.n_value;
|
||
if (val > addr && val < toaddr)
|
||
bfd_put_32 (abfd, val - count, contents + nraddr);
|
||
}
|
||
start = stop = addr;
|
||
break;
|
||
|
||
case R_SH_PCDISP8BY2:
|
||
off = insn & 0xff;
|
||
if (off & 0x80)
|
||
off -= 0x100;
|
||
stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
|
||
break;
|
||
|
||
case R_SH_PCDISP:
|
||
bfd_coff_swap_sym_in (abfd,
|
||
((bfd_byte *) obj_coff_external_syms (abfd)
|
||
+ (irel->r_symndx
|
||
* bfd_coff_symesz (abfd))),
|
||
&sym);
|
||
if (sym.n_sclass == C_EXT)
|
||
start = stop = addr;
|
||
else
|
||
{
|
||
off = insn & 0xfff;
|
||
if (off & 0x800)
|
||
off -= 0x1000;
|
||
stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
|
||
}
|
||
break;
|
||
|
||
case R_SH_PCRELIMM8BY2:
|
||
off = insn & 0xff;
|
||
stop = start + 4 + off * 2;
|
||
break;
|
||
|
||
case R_SH_PCRELIMM8BY4:
|
||
off = insn & 0xff;
|
||
stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
|
||
break;
|
||
|
||
case R_SH_SWITCH8:
|
||
case R_SH_SWITCH16:
|
||
case R_SH_SWITCH32:
|
||
/* These relocs types represent
|
||
.word L2-L1
|
||
The r_offset field holds the difference between the reloc
|
||
address and L1. That is the start of the reloc, and
|
||
adding in the contents gives us the top. We must adjust
|
||
both the r_offset field and the section contents. */
|
||
|
||
start = irel->r_vaddr - sec->vma;
|
||
stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
|
||
|
||
if (start > addr
|
||
&& start < toaddr
|
||
&& (stop <= addr || stop >= toaddr))
|
||
irel->r_offset += count;
|
||
else if (stop > addr
|
||
&& stop < toaddr
|
||
&& (start <= addr || start >= toaddr))
|
||
irel->r_offset -= count;
|
||
|
||
start = stop;
|
||
|
||
if (irel->r_type == R_SH_SWITCH16)
|
||
voff = bfd_get_signed_16 (abfd, contents + nraddr);
|
||
else if (irel->r_type == R_SH_SWITCH8)
|
||
voff = bfd_get_8 (abfd, contents + nraddr);
|
||
else
|
||
voff = bfd_get_signed_32 (abfd, contents + nraddr);
|
||
stop = (bfd_vma) ((bfd_signed_vma) start + voff);
|
||
|
||
break;
|
||
|
||
case R_SH_USES:
|
||
start = irel->r_vaddr - sec->vma;
|
||
stop = (bfd_vma) ((bfd_signed_vma) start
|
||
+ (long) irel->r_offset
|
||
+ 4);
|
||
break;
|
||
}
|
||
|
||
if (start > addr
|
||
&& start < toaddr
|
||
&& (stop <= addr || stop >= toaddr))
|
||
adjust = count;
|
||
else if (stop > addr
|
||
&& stop < toaddr
|
||
&& (start <= addr || start >= toaddr))
|
||
adjust = - count;
|
||
else
|
||
adjust = 0;
|
||
|
||
if (adjust != 0)
|
||
{
|
||
oinsn = insn;
|
||
overflow = FALSE;
|
||
switch (irel->r_type)
|
||
{
|
||
default:
|
||
abort ();
|
||
break;
|
||
|
||
case R_SH_PCDISP8BY2:
|
||
case R_SH_PCRELIMM8BY2:
|
||
insn += adjust / 2;
|
||
if ((oinsn & 0xff00) != (insn & 0xff00))
|
||
overflow = TRUE;
|
||
bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
|
||
break;
|
||
|
||
case R_SH_PCDISP:
|
||
insn += adjust / 2;
|
||
if ((oinsn & 0xf000) != (insn & 0xf000))
|
||
overflow = TRUE;
|
||
bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
|
||
break;
|
||
|
||
case R_SH_PCRELIMM8BY4:
|
||
BFD_ASSERT (adjust == count || count >= 4);
|
||
if (count >= 4)
|
||
insn += adjust / 4;
|
||
else
|
||
{
|
||
if ((irel->r_vaddr & 3) == 0)
|
||
++insn;
|
||
}
|
||
if ((oinsn & 0xff00) != (insn & 0xff00))
|
||
overflow = TRUE;
|
||
bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
|
||
break;
|
||
|
||
case R_SH_SWITCH8:
|
||
voff += adjust;
|
||
if (voff < 0 || voff >= 0xff)
|
||
overflow = TRUE;
|
||
bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
|
||
break;
|
||
|
||
case R_SH_SWITCH16:
|
||
voff += adjust;
|
||
if (voff < - 0x8000 || voff >= 0x8000)
|
||
overflow = TRUE;
|
||
bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
|
||
break;
|
||
|
||
case R_SH_SWITCH32:
|
||
voff += adjust;
|
||
bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
|
||
break;
|
||
|
||
case R_SH_USES:
|
||
irel->r_offset += adjust;
|
||
break;
|
||
}
|
||
|
||
if (overflow)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: fatal: reloc overflow while relaxing"),
|
||
abfd, irel->r_vaddr);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
irel->r_vaddr = nraddr + sec->vma;
|
||
}
|
||
|
||
/* Look through all the other sections. If there contain any IMM32
|
||
relocs against internal symbols which we are not going to adjust
|
||
below, we may need to adjust the addends. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
struct internal_reloc *internal_relocs;
|
||
struct internal_reloc *irelscan, *irelscanend;
|
||
bfd_byte *ocontents;
|
||
|
||
if (o == sec
|
||
|| (o->flags & SEC_RELOC) == 0
|
||
|| o->reloc_count == 0)
|
||
continue;
|
||
|
||
/* We always cache the relocs. Perhaps, if info->keep_memory is
|
||
FALSE, we should free them, if we are permitted to, when we
|
||
leave sh_coff_relax_section. */
|
||
internal_relocs = (_bfd_coff_read_internal_relocs
|
||
(abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
|
||
(struct internal_reloc *) NULL));
|
||
if (internal_relocs == NULL)
|
||
return FALSE;
|
||
|
||
ocontents = NULL;
|
||
irelscanend = internal_relocs + o->reloc_count;
|
||
for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
|
||
{
|
||
struct internal_syment sym;
|
||
|
||
#ifdef COFF_WITH_PE
|
||
if (irelscan->r_type != R_SH_IMM32
|
||
&& irelscan->r_type != R_SH_IMAGEBASE
|
||
&& irelscan->r_type != R_SH_IMM32CE)
|
||
#else
|
||
if (irelscan->r_type != R_SH_IMM32)
|
||
#endif
|
||
continue;
|
||
|
||
bfd_coff_swap_sym_in (abfd,
|
||
((bfd_byte *) obj_coff_external_syms (abfd)
|
||
+ (irelscan->r_symndx
|
||
* bfd_coff_symesz (abfd))),
|
||
&sym);
|
||
if (sym.n_sclass != C_EXT
|
||
&& sym.n_scnum == sec->target_index
|
||
&& ((bfd_vma) sym.n_value <= addr
|
||
|| (bfd_vma) sym.n_value >= toaddr))
|
||
{
|
||
bfd_vma val;
|
||
|
||
if (ocontents == NULL)
|
||
{
|
||
if (coff_section_data (abfd, o)->contents != NULL)
|
||
ocontents = coff_section_data (abfd, o)->contents;
|
||
else
|
||
{
|
||
if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
|
||
return FALSE;
|
||
/* We always cache the section contents.
|
||
Perhaps, if info->keep_memory is FALSE, we
|
||
should free them, if we are permitted to,
|
||
when we leave sh_coff_relax_section. */
|
||
coff_section_data (abfd, o)->contents = ocontents;
|
||
}
|
||
}
|
||
|
||
val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
|
||
val += sym.n_value;
|
||
if (val > addr && val < toaddr)
|
||
bfd_put_32 (abfd, val - count,
|
||
ocontents + irelscan->r_vaddr - o->vma);
|
||
|
||
coff_section_data (abfd, o)->keep_contents = TRUE;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Adjusting the internal symbols will not work if something has
|
||
already retrieved the generic symbols. It would be possible to
|
||
make this work by adjusting the generic symbols at the same time.
|
||
However, this case should not arise in normal usage. */
|
||
if (obj_symbols (abfd) != NULL
|
||
|| obj_raw_syments (abfd) != NULL)
|
||
{
|
||
_bfd_error_handler
|
||
(_("%B: fatal: generic symbols retrieved before relaxing"), abfd);
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Adjust all the symbols. */
|
||
sym_hash = obj_coff_sym_hashes (abfd);
|
||
symesz = bfd_coff_symesz (abfd);
|
||
esym = (bfd_byte *) obj_coff_external_syms (abfd);
|
||
esymend = esym + obj_raw_syment_count (abfd) * symesz;
|
||
while (esym < esymend)
|
||
{
|
||
struct internal_syment isym;
|
||
|
||
bfd_coff_swap_sym_in (abfd, esym, &isym);
|
||
|
||
if (isym.n_scnum == sec->target_index
|
||
&& (bfd_vma) isym.n_value > addr
|
||
&& (bfd_vma) isym.n_value < toaddr)
|
||
{
|
||
isym.n_value -= count;
|
||
|
||
bfd_coff_swap_sym_out (abfd, &isym, esym);
|
||
|
||
if (*sym_hash != NULL)
|
||
{
|
||
BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
|
||
|| (*sym_hash)->root.type == bfd_link_hash_defweak);
|
||
BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
|
||
&& (*sym_hash)->root.u.def.value < toaddr);
|
||
(*sym_hash)->root.u.def.value -= count;
|
||
}
|
||
}
|
||
|
||
esym += (isym.n_numaux + 1) * symesz;
|
||
sym_hash += isym.n_numaux + 1;
|
||
}
|
||
|
||
/* See if we can move the ALIGN reloc forward. We have adjusted
|
||
r_vaddr for it already. */
|
||
if (irelalign != NULL)
|
||
{
|
||
bfd_vma alignto, alignaddr;
|
||
|
||
alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
|
||
alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
|
||
1 << irelalign->r_offset);
|
||
if (alignto != alignaddr)
|
||
{
|
||
/* Tail recursion. */
|
||
return sh_relax_delete_bytes (abfd, sec, alignaddr,
|
||
(int) (alignto - alignaddr));
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is yet another version of the SH opcode table, used to rapidly
|
||
get information about a particular instruction. */
|
||
|
||
/* The opcode map is represented by an array of these structures. The
|
||
array is indexed by the high order four bits in the instruction. */
|
||
|
||
struct sh_major_opcode
|
||
{
|
||
/* A pointer to the instruction list. This is an array which
|
||
contains all the instructions with this major opcode. */
|
||
const struct sh_minor_opcode *minor_opcodes;
|
||
/* The number of elements in minor_opcodes. */
|
||
unsigned short count;
|
||
};
|
||
|
||
/* This structure holds information for a set of SH opcodes. The
|
||
instruction code is anded with the mask value, and the resulting
|
||
value is used to search the order opcode list. */
|
||
|
||
struct sh_minor_opcode
|
||
{
|
||
/* The sorted opcode list. */
|
||
const struct sh_opcode *opcodes;
|
||
/* The number of elements in opcodes. */
|
||
unsigned short count;
|
||
/* The mask value to use when searching the opcode list. */
|
||
unsigned short mask;
|
||
};
|
||
|
||
/* This structure holds information for an SH instruction. An array
|
||
of these structures is sorted in order by opcode. */
|
||
|
||
struct sh_opcode
|
||
{
|
||
/* The code for this instruction, after it has been anded with the
|
||
mask value in the sh_major_opcode structure. */
|
||
unsigned short opcode;
|
||
/* Flags for this instruction. */
|
||
unsigned long flags;
|
||
};
|
||
|
||
/* Flag which appear in the sh_opcode structure. */
|
||
|
||
/* This instruction loads a value from memory. */
|
||
#define LOAD (0x1)
|
||
|
||
/* This instruction stores a value to memory. */
|
||
#define STORE (0x2)
|
||
|
||
/* This instruction is a branch. */
|
||
#define BRANCH (0x4)
|
||
|
||
/* This instruction has a delay slot. */
|
||
#define DELAY (0x8)
|
||
|
||
/* This instruction uses the value in the register in the field at
|
||
mask 0x0f00 of the instruction. */
|
||
#define USES1 (0x10)
|
||
#define USES1_REG(x) ((x & 0x0f00) >> 8)
|
||
|
||
/* This instruction uses the value in the register in the field at
|
||
mask 0x00f0 of the instruction. */
|
||
#define USES2 (0x20)
|
||
#define USES2_REG(x) ((x & 0x00f0) >> 4)
|
||
|
||
/* This instruction uses the value in register 0. */
|
||
#define USESR0 (0x40)
|
||
|
||
/* This instruction sets the value in the register in the field at
|
||
mask 0x0f00 of the instruction. */
|
||
#define SETS1 (0x80)
|
||
#define SETS1_REG(x) ((x & 0x0f00) >> 8)
|
||
|
||
/* This instruction sets the value in the register in the field at
|
||
mask 0x00f0 of the instruction. */
|
||
#define SETS2 (0x100)
|
||
#define SETS2_REG(x) ((x & 0x00f0) >> 4)
|
||
|
||
/* This instruction sets register 0. */
|
||
#define SETSR0 (0x200)
|
||
|
||
/* This instruction sets a special register. */
|
||
#define SETSSP (0x400)
|
||
|
||
/* This instruction uses a special register. */
|
||
#define USESSP (0x800)
|
||
|
||
/* This instruction uses the floating point register in the field at
|
||
mask 0x0f00 of the instruction. */
|
||
#define USESF1 (0x1000)
|
||
#define USESF1_REG(x) ((x & 0x0f00) >> 8)
|
||
|
||
/* This instruction uses the floating point register in the field at
|
||
mask 0x00f0 of the instruction. */
|
||
#define USESF2 (0x2000)
|
||
#define USESF2_REG(x) ((x & 0x00f0) >> 4)
|
||
|
||
/* This instruction uses floating point register 0. */
|
||
#define USESF0 (0x4000)
|
||
|
||
/* This instruction sets the floating point register in the field at
|
||
mask 0x0f00 of the instruction. */
|
||
#define SETSF1 (0x8000)
|
||
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
|
||
|
||
#define USESAS (0x10000)
|
||
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
|
||
#define USESR8 (0x20000)
|
||
#define SETSAS (0x40000)
|
||
#define SETSAS_REG(x) USESAS_REG (x)
|
||
|
||
#define MAP(a) a, sizeof a / sizeof a[0]
|
||
|
||
#ifndef COFF_IMAGE_WITH_PE
|
||
|
||
/* The opcode maps. */
|
||
|
||
static const struct sh_opcode sh_opcode00[] =
|
||
{
|
||
{ 0x0008, SETSSP }, /* clrt */
|
||
{ 0x0009, 0 }, /* nop */
|
||
{ 0x000b, BRANCH | DELAY | USESSP }, /* rts */
|
||
{ 0x0018, SETSSP }, /* sett */
|
||
{ 0x0019, SETSSP }, /* div0u */
|
||
{ 0x001b, 0 }, /* sleep */
|
||
{ 0x0028, SETSSP }, /* clrmac */
|
||
{ 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
|
||
{ 0x0038, USESSP | SETSSP }, /* ldtlb */
|
||
{ 0x0048, SETSSP }, /* clrs */
|
||
{ 0x0058, SETSSP } /* sets */
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode01[] =
|
||
{
|
||
{ 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
|
||
{ 0x000a, SETS1 | USESSP }, /* sts mach,rn */
|
||
{ 0x001a, SETS1 | USESSP }, /* sts macl,rn */
|
||
{ 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
|
||
{ 0x0029, SETS1 | USESSP }, /* movt rn */
|
||
{ 0x002a, SETS1 | USESSP }, /* sts pr,rn */
|
||
{ 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
|
||
{ 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
|
||
{ 0x0083, LOAD | USES1 }, /* pref @rn */
|
||
{ 0x007a, SETS1 | USESSP }, /* sts a0,rn */
|
||
{ 0x008a, SETS1 | USESSP }, /* sts x0,rn */
|
||
{ 0x009a, SETS1 | USESSP }, /* sts x1,rn */
|
||
{ 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
|
||
{ 0x00ba, SETS1 | USESSP } /* sts y1,rn */
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode02[] =
|
||
{
|
||
{ 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
|
||
{ 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
|
||
{ 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
|
||
{ 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
|
||
{ 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
|
||
{ 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
|
||
{ 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
|
||
{ 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
|
||
{ 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode0[] =
|
||
{
|
||
{ MAP (sh_opcode00), 0xffff },
|
||
{ MAP (sh_opcode01), 0xf0ff },
|
||
{ MAP (sh_opcode02), 0xf00f }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode10[] =
|
||
{
|
||
{ 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode1[] =
|
||
{
|
||
{ MAP (sh_opcode10), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode20[] =
|
||
{
|
||
{ 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
|
||
{ 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
|
||
{ 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
|
||
{ 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
|
||
{ 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
|
||
{ 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
|
||
{ 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
|
||
{ 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
|
||
{ 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
|
||
{ 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
|
||
{ 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
|
||
{ 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
|
||
{ 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
|
||
{ 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
|
||
{ 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode2[] =
|
||
{
|
||
{ MAP (sh_opcode20), 0xf00f }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode30[] =
|
||
{
|
||
{ 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
|
||
{ 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
|
||
{ 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
|
||
{ 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
|
||
{ 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
|
||
{ 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
|
||
{ 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
|
||
{ 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
|
||
{ 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
|
||
{ 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
|
||
{ 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
|
||
{ 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
|
||
{ 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
|
||
{ 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode3[] =
|
||
{
|
||
{ MAP (sh_opcode30), 0xf00f }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode40[] =
|
||
{
|
||
{ 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
|
||
{ 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
|
||
{ 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
|
||
{ 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
|
||
{ 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
|
||
{ 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
|
||
{ 0x4008, SETS1 | USES1 }, /* shll2 rn */
|
||
{ 0x4009, SETS1 | USES1 }, /* shlr2 rn */
|
||
{ 0x400a, SETSSP | USES1 }, /* lds rm,mach */
|
||
{ 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
|
||
{ 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
|
||
{ 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
|
||
{ 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
|
||
{ 0x4014, SETSSP | USES1 }, /* setrc rm */
|
||
{ 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
|
||
{ 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
|
||
{ 0x4018, SETS1 | USES1 }, /* shll8 rn */
|
||
{ 0x4019, SETS1 | USES1 }, /* shlr8 rn */
|
||
{ 0x401a, SETSSP | USES1 }, /* lds rm,macl */
|
||
{ 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
|
||
{ 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
|
||
{ 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
|
||
{ 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
|
||
{ 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
|
||
{ 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
|
||
{ 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
|
||
{ 0x4028, SETS1 | USES1 }, /* shll16 rn */
|
||
{ 0x4029, SETS1 | USES1 }, /* shlr16 rn */
|
||
{ 0x402a, SETSSP | USES1 }, /* lds rm,pr */
|
||
{ 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
|
||
{ 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
|
||
{ 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
|
||
{ 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
|
||
{ 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
|
||
{ 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
|
||
{ 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
|
||
{ 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
|
||
{ 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
|
||
{ 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
|
||
{ 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
|
||
{ 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
|
||
{ 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
|
||
{ 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
|
||
{ 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
|
||
{ 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
|
||
{ 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
|
||
{ 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
|
||
{ 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
|
||
{ 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
|
||
{ 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
|
||
{ 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode41[] =
|
||
{
|
||
{ 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
|
||
{ 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
|
||
{ 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
|
||
{ 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
|
||
{ 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
|
||
{ 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode4[] =
|
||
{
|
||
{ MAP (sh_opcode40), 0xf0ff },
|
||
{ MAP (sh_opcode41), 0xf00f }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode50[] =
|
||
{
|
||
{ 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode5[] =
|
||
{
|
||
{ MAP (sh_opcode50), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode60[] =
|
||
{
|
||
{ 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
|
||
{ 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
|
||
{ 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
|
||
{ 0x6003, SETS1 | USES2 }, /* mov rm,rn */
|
||
{ 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
|
||
{ 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
|
||
{ 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
|
||
{ 0x6007, SETS1 | USES2 }, /* not rm,rn */
|
||
{ 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
|
||
{ 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
|
||
{ 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
|
||
{ 0x600b, SETS1 | USES2 }, /* neg rm,rn */
|
||
{ 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
|
||
{ 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
|
||
{ 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
|
||
{ 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode6[] =
|
||
{
|
||
{ MAP (sh_opcode60), 0xf00f }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode70[] =
|
||
{
|
||
{ 0x7000, SETS1 | USES1 } /* add #imm,rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode7[] =
|
||
{
|
||
{ MAP (sh_opcode70), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode80[] =
|
||
{
|
||
{ 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
|
||
{ 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
|
||
{ 0x8200, SETSSP }, /* setrc #imm */
|
||
{ 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
|
||
{ 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
|
||
{ 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
|
||
{ 0x8900, BRANCH | USESSP }, /* bt label */
|
||
{ 0x8b00, BRANCH | USESSP }, /* bf label */
|
||
{ 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
|
||
{ 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
|
||
{ 0x8e00, SETSSP }, /* ldre @(disp,pc) */
|
||
{ 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode8[] =
|
||
{
|
||
{ MAP (sh_opcode80), 0xff00 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcode90[] =
|
||
{
|
||
{ 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcode9[] =
|
||
{
|
||
{ MAP (sh_opcode90), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcodea0[] =
|
||
{
|
||
{ 0xa000, BRANCH | DELAY } /* bra label */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcodea[] =
|
||
{
|
||
{ MAP (sh_opcodea0), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcodeb0[] =
|
||
{
|
||
{ 0xb000, BRANCH | DELAY } /* bsr label */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcodeb[] =
|
||
{
|
||
{ MAP (sh_opcodeb0), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcodec0[] =
|
||
{
|
||
{ 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
|
||
{ 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
|
||
{ 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
|
||
{ 0xc300, BRANCH | USESSP }, /* trapa #imm */
|
||
{ 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
|
||
{ 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
|
||
{ 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
|
||
{ 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
|
||
{ 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
|
||
{ 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
|
||
{ 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
|
||
{ 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
|
||
{ 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
|
||
{ 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
|
||
{ 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
|
||
{ 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcodec[] =
|
||
{
|
||
{ MAP (sh_opcodec0), 0xff00 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcoded0[] =
|
||
{
|
||
{ 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcoded[] =
|
||
{
|
||
{ MAP (sh_opcoded0), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcodee0[] =
|
||
{
|
||
{ 0xe000, SETS1 } /* mov #imm,rn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcodee[] =
|
||
{
|
||
{ MAP (sh_opcodee0), 0xf000 }
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcodef0[] =
|
||
{
|
||
{ 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
|
||
{ 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
|
||
{ 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
|
||
{ 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
|
||
{ 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
|
||
{ 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
|
||
{ 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
|
||
{ 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
|
||
{ 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
|
||
{ 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
|
||
{ 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
|
||
{ 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
|
||
{ 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
|
||
{ 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
|
||
};
|
||
|
||
static const struct sh_opcode sh_opcodef1[] =
|
||
{
|
||
{ 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
|
||
{ 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
|
||
{ 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
|
||
{ 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
|
||
{ 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
|
||
{ 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
|
||
{ 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
|
||
{ 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
|
||
{ 0xf08d, SETSF1 }, /* fldi0 fn */
|
||
{ 0xf09d, SETSF1 } /* fldi1 fn */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_opcodef[] =
|
||
{
|
||
{ MAP (sh_opcodef0), 0xf00f },
|
||
{ MAP (sh_opcodef1), 0xf0ff }
|
||
};
|
||
|
||
static struct sh_major_opcode sh_opcodes[] =
|
||
{
|
||
{ MAP (sh_opcode0) },
|
||
{ MAP (sh_opcode1) },
|
||
{ MAP (sh_opcode2) },
|
||
{ MAP (sh_opcode3) },
|
||
{ MAP (sh_opcode4) },
|
||
{ MAP (sh_opcode5) },
|
||
{ MAP (sh_opcode6) },
|
||
{ MAP (sh_opcode7) },
|
||
{ MAP (sh_opcode8) },
|
||
{ MAP (sh_opcode9) },
|
||
{ MAP (sh_opcodea) },
|
||
{ MAP (sh_opcodeb) },
|
||
{ MAP (sh_opcodec) },
|
||
{ MAP (sh_opcoded) },
|
||
{ MAP (sh_opcodee) },
|
||
{ MAP (sh_opcodef) }
|
||
};
|
||
|
||
/* The double data transfer / parallel processing insns are not
|
||
described here. This will cause sh_align_load_span to leave them alone. */
|
||
|
||
static const struct sh_opcode sh_dsp_opcodef0[] =
|
||
{
|
||
{ 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
|
||
{ 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
|
||
{ 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
|
||
{ 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
|
||
{ 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
|
||
{ 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
|
||
{ 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
|
||
{ 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
|
||
};
|
||
|
||
static const struct sh_minor_opcode sh_dsp_opcodef[] =
|
||
{
|
||
{ MAP (sh_dsp_opcodef0), 0xfc0d }
|
||
};
|
||
|
||
/* Given an instruction, return a pointer to the corresponding
|
||
sh_opcode structure. Return NULL if the instruction is not
|
||
recognized. */
|
||
|
||
static const struct sh_opcode *
|
||
sh_insn_info (unsigned int insn)
|
||
{
|
||
const struct sh_major_opcode *maj;
|
||
const struct sh_minor_opcode *min, *minend;
|
||
|
||
maj = &sh_opcodes[(insn & 0xf000) >> 12];
|
||
min = maj->minor_opcodes;
|
||
minend = min + maj->count;
|
||
for (; min < minend; min++)
|
||
{
|
||
unsigned int l;
|
||
const struct sh_opcode *op, *opend;
|
||
|
||
l = insn & min->mask;
|
||
op = min->opcodes;
|
||
opend = op + min->count;
|
||
|
||
/* Since the opcodes tables are sorted, we could use a binary
|
||
search here if the count were above some cutoff value. */
|
||
for (; op < opend; op++)
|
||
if (op->opcode == l)
|
||
return op;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* See whether an instruction uses a general purpose register. */
|
||
|
||
static bfd_boolean
|
||
sh_insn_uses_reg (unsigned int insn,
|
||
const struct sh_opcode *op,
|
||
unsigned int reg)
|
||
{
|
||
unsigned int f;
|
||
|
||
f = op->flags;
|
||
|
||
if ((f & USES1) != 0
|
||
&& USES1_REG (insn) == reg)
|
||
return TRUE;
|
||
if ((f & USES2) != 0
|
||
&& USES2_REG (insn) == reg)
|
||
return TRUE;
|
||
if ((f & USESR0) != 0
|
||
&& reg == 0)
|
||
return TRUE;
|
||
if ((f & USESAS) && reg == USESAS_REG (insn))
|
||
return TRUE;
|
||
if ((f & USESR8) && reg == 8)
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* See whether an instruction sets a general purpose register. */
|
||
|
||
static bfd_boolean
|
||
sh_insn_sets_reg (unsigned int insn,
|
||
const struct sh_opcode *op,
|
||
unsigned int reg)
|
||
{
|
||
unsigned int f;
|
||
|
||
f = op->flags;
|
||
|
||
if ((f & SETS1) != 0
|
||
&& SETS1_REG (insn) == reg)
|
||
return TRUE;
|
||
if ((f & SETS2) != 0
|
||
&& SETS2_REG (insn) == reg)
|
||
return TRUE;
|
||
if ((f & SETSR0) != 0
|
||
&& reg == 0)
|
||
return TRUE;
|
||
if ((f & SETSAS) && reg == SETSAS_REG (insn))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* See whether an instruction uses or sets a general purpose register */
|
||
|
||
static bfd_boolean
|
||
sh_insn_uses_or_sets_reg (unsigned int insn,
|
||
const struct sh_opcode *op,
|
||
unsigned int reg)
|
||
{
|
||
if (sh_insn_uses_reg (insn, op, reg))
|
||
return TRUE;
|
||
|
||
return sh_insn_sets_reg (insn, op, reg);
|
||
}
|
||
|
||
/* See whether an instruction uses a floating point register. */
|
||
|
||
static bfd_boolean
|
||
sh_insn_uses_freg (unsigned int insn,
|
||
const struct sh_opcode *op,
|
||
unsigned int freg)
|
||
{
|
||
unsigned int f;
|
||
|
||
f = op->flags;
|
||
|
||
/* We can't tell if this is a double-precision insn, so just play safe
|
||
and assume that it might be. So not only have we test FREG against
|
||
itself, but also even FREG against FREG+1 - if the using insn uses
|
||
just the low part of a double precision value - but also an odd
|
||
FREG against FREG-1 - if the setting insn sets just the low part
|
||
of a double precision value.
|
||
So what this all boils down to is that we have to ignore the lowest
|
||
bit of the register number. */
|
||
|
||
if ((f & USESF1) != 0
|
||
&& (USESF1_REG (insn) & 0xe) == (freg & 0xe))
|
||
return TRUE;
|
||
if ((f & USESF2) != 0
|
||
&& (USESF2_REG (insn) & 0xe) == (freg & 0xe))
|
||
return TRUE;
|
||
if ((f & USESF0) != 0
|
||
&& freg == 0)
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* See whether an instruction sets a floating point register. */
|
||
|
||
static bfd_boolean
|
||
sh_insn_sets_freg (unsigned int insn,
|
||
const struct sh_opcode *op,
|
||
unsigned int freg)
|
||
{
|
||
unsigned int f;
|
||
|
||
f = op->flags;
|
||
|
||
/* We can't tell if this is a double-precision insn, so just play safe
|
||
and assume that it might be. So not only have we test FREG against
|
||
itself, but also even FREG against FREG+1 - if the using insn uses
|
||
just the low part of a double precision value - but also an odd
|
||
FREG against FREG-1 - if the setting insn sets just the low part
|
||
of a double precision value.
|
||
So what this all boils down to is that we have to ignore the lowest
|
||
bit of the register number. */
|
||
|
||
if ((f & SETSF1) != 0
|
||
&& (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* See whether an instruction uses or sets a floating point register */
|
||
|
||
static bfd_boolean
|
||
sh_insn_uses_or_sets_freg (unsigned int insn,
|
||
const struct sh_opcode *op,
|
||
unsigned int reg)
|
||
{
|
||
if (sh_insn_uses_freg (insn, op, reg))
|
||
return TRUE;
|
||
|
||
return sh_insn_sets_freg (insn, op, reg);
|
||
}
|
||
|
||
/* See whether instructions I1 and I2 conflict, assuming I1 comes
|
||
before I2. OP1 and OP2 are the corresponding sh_opcode structures.
|
||
This should return TRUE if there is a conflict, or FALSE if the
|
||
instructions can be swapped safely. */
|
||
|
||
static bfd_boolean
|
||
sh_insns_conflict (unsigned int i1,
|
||
const struct sh_opcode *op1,
|
||
unsigned int i2,
|
||
const struct sh_opcode *op2)
|
||
{
|
||
unsigned int f1, f2;
|
||
|
||
f1 = op1->flags;
|
||
f2 = op2->flags;
|
||
|
||
/* Load of fpscr conflicts with floating point operations.
|
||
FIXME: shouldn't test raw opcodes here. */
|
||
if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
|
||
|| ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
|
||
return TRUE;
|
||
|
||
if ((f1 & (BRANCH | DELAY)) != 0
|
||
|| (f2 & (BRANCH | DELAY)) != 0)
|
||
return TRUE;
|
||
|
||
if (((f1 | f2) & SETSSP)
|
||
&& (f1 & (SETSSP | USESSP))
|
||
&& (f2 & (SETSSP | USESSP)))
|
||
return TRUE;
|
||
|
||
if ((f1 & SETS1) != 0
|
||
&& sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
|
||
return TRUE;
|
||
if ((f1 & SETS2) != 0
|
||
&& sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
|
||
return TRUE;
|
||
if ((f1 & SETSR0) != 0
|
||
&& sh_insn_uses_or_sets_reg (i2, op2, 0))
|
||
return TRUE;
|
||
if ((f1 & SETSAS)
|
||
&& sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
|
||
return TRUE;
|
||
if ((f1 & SETSF1) != 0
|
||
&& sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
|
||
return TRUE;
|
||
|
||
if ((f2 & SETS1) != 0
|
||
&& sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
|
||
return TRUE;
|
||
if ((f2 & SETS2) != 0
|
||
&& sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
|
||
return TRUE;
|
||
if ((f2 & SETSR0) != 0
|
||
&& sh_insn_uses_or_sets_reg (i1, op1, 0))
|
||
return TRUE;
|
||
if ((f2 & SETSAS)
|
||
&& sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
|
||
return TRUE;
|
||
if ((f2 & SETSF1) != 0
|
||
&& sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
|
||
return TRUE;
|
||
|
||
/* The instructions do not conflict. */
|
||
return FALSE;
|
||
}
|
||
|
||
/* I1 is a load instruction, and I2 is some other instruction. Return
|
||
TRUE if I1 loads a register which I2 uses. */
|
||
|
||
static bfd_boolean
|
||
sh_load_use (unsigned int i1,
|
||
const struct sh_opcode *op1,
|
||
unsigned int i2,
|
||
const struct sh_opcode *op2)
|
||
{
|
||
unsigned int f1;
|
||
|
||
f1 = op1->flags;
|
||
|
||
if ((f1 & LOAD) == 0)
|
||
return FALSE;
|
||
|
||
/* If both SETS1 and SETSSP are set, that means a load to a special
|
||
register using postincrement addressing mode, which we don't care
|
||
about here. */
|
||
if ((f1 & SETS1) != 0
|
||
&& (f1 & SETSSP) == 0
|
||
&& sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
|
||
return TRUE;
|
||
|
||
if ((f1 & SETSR0) != 0
|
||
&& sh_insn_uses_reg (i2, op2, 0))
|
||
return TRUE;
|
||
|
||
if ((f1 & SETSF1) != 0
|
||
&& sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Try to align loads and stores within a span of memory. This is
|
||
called by both the ELF and the COFF sh targets. ABFD and SEC are
|
||
the BFD and section we are examining. CONTENTS is the contents of
|
||
the section. SWAP is the routine to call to swap two instructions.
|
||
RELOCS is a pointer to the internal relocation information, to be
|
||
passed to SWAP. PLABEL is a pointer to the current label in a
|
||
sorted list of labels; LABEL_END is the end of the list. START and
|
||
STOP are the range of memory to examine. If a swap is made,
|
||
*PSWAPPED is set to TRUE. */
|
||
|
||
#ifdef COFF_WITH_PE
|
||
static
|
||
#endif
|
||
bfd_boolean
|
||
_bfd_sh_align_load_span (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
|
||
void * relocs,
|
||
bfd_vma **plabel,
|
||
bfd_vma *label_end,
|
||
bfd_vma start,
|
||
bfd_vma stop,
|
||
bfd_boolean *pswapped)
|
||
{
|
||
int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
|
||
|| abfd->arch_info->mach == bfd_mach_sh3_dsp);
|
||
bfd_vma i;
|
||
|
||
/* The SH4 has a Harvard architecture, hence aligning loads is not
|
||
desirable. In fact, it is counter-productive, since it interferes
|
||
with the schedules generated by the compiler. */
|
||
if (abfd->arch_info->mach == bfd_mach_sh4)
|
||
return TRUE;
|
||
|
||
/* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
|
||
instructions. */
|
||
if (dsp)
|
||
{
|
||
sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
|
||
sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
|
||
}
|
||
|
||
/* Instructions should be aligned on 2 byte boundaries. */
|
||
if ((start & 1) == 1)
|
||
++start;
|
||
|
||
/* Now look through the unaligned addresses. */
|
||
i = start;
|
||
if ((i & 2) == 0)
|
||
i += 2;
|
||
for (; i < stop; i += 4)
|
||
{
|
||
unsigned int insn;
|
||
const struct sh_opcode *op;
|
||
unsigned int prev_insn = 0;
|
||
const struct sh_opcode *prev_op = NULL;
|
||
|
||
insn = bfd_get_16 (abfd, contents + i);
|
||
op = sh_insn_info (insn);
|
||
if (op == NULL
|
||
|| (op->flags & (LOAD | STORE)) == 0)
|
||
continue;
|
||
|
||
/* This is a load or store which is not on a four byte boundary. */
|
||
|
||
while (*plabel < label_end && **plabel < i)
|
||
++*plabel;
|
||
|
||
if (i > start)
|
||
{
|
||
prev_insn = bfd_get_16 (abfd, contents + i - 2);
|
||
/* If INSN is the field b of a parallel processing insn, it is not
|
||
a load / store after all. Note that the test here might mistake
|
||
the field_b of a pcopy insn for the starting code of a parallel
|
||
processing insn; this might miss a swapping opportunity, but at
|
||
least we're on the safe side. */
|
||
if (dsp && (prev_insn & 0xfc00) == 0xf800)
|
||
continue;
|
||
|
||
/* Check if prev_insn is actually the field b of a parallel
|
||
processing insn. Again, this can give a spurious match
|
||
after a pcopy. */
|
||
if (dsp && i - 2 > start)
|
||
{
|
||
unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
|
||
|
||
if ((pprev_insn & 0xfc00) == 0xf800)
|
||
prev_op = NULL;
|
||
else
|
||
prev_op = sh_insn_info (prev_insn);
|
||
}
|
||
else
|
||
prev_op = sh_insn_info (prev_insn);
|
||
|
||
/* If the load/store instruction is in a delay slot, we
|
||
can't swap. */
|
||
if (prev_op == NULL
|
||
|| (prev_op->flags & DELAY) != 0)
|
||
continue;
|
||
}
|
||
if (i > start
|
||
&& (*plabel >= label_end || **plabel != i)
|
||
&& prev_op != NULL
|
||
&& (prev_op->flags & (LOAD | STORE)) == 0
|
||
&& ! sh_insns_conflict (prev_insn, prev_op, insn, op))
|
||
{
|
||
bfd_boolean ok;
|
||
|
||
/* The load/store instruction does not have a label, and
|
||
there is a previous instruction; PREV_INSN is not
|
||
itself a load/store instruction, and PREV_INSN and
|
||
INSN do not conflict. */
|
||
|
||
ok = TRUE;
|
||
|
||
if (i >= start + 4)
|
||
{
|
||
unsigned int prev2_insn;
|
||
const struct sh_opcode *prev2_op;
|
||
|
||
prev2_insn = bfd_get_16 (abfd, contents + i - 4);
|
||
prev2_op = sh_insn_info (prev2_insn);
|
||
|
||
/* If the instruction before PREV_INSN has a delay
|
||
slot--that is, PREV_INSN is in a delay slot--we
|
||
can not swap. */
|
||
if (prev2_op == NULL
|
||
|| (prev2_op->flags & DELAY) != 0)
|
||
ok = FALSE;
|
||
|
||
/* If the instruction before PREV_INSN is a load,
|
||
and it sets a register which INSN uses, then
|
||
putting INSN immediately after PREV_INSN will
|
||
cause a pipeline bubble, so there is no point to
|
||
making the swap. */
|
||
if (ok
|
||
&& (prev2_op->flags & LOAD) != 0
|
||
&& sh_load_use (prev2_insn, prev2_op, insn, op))
|
||
ok = FALSE;
|
||
}
|
||
|
||
if (ok)
|
||
{
|
||
if (! (*swap) (abfd, sec, relocs, contents, i - 2))
|
||
return FALSE;
|
||
*pswapped = TRUE;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
while (*plabel < label_end && **plabel < i + 2)
|
||
++*plabel;
|
||
|
||
if (i + 2 < stop
|
||
&& (*plabel >= label_end || **plabel != i + 2))
|
||
{
|
||
unsigned int next_insn;
|
||
const struct sh_opcode *next_op;
|
||
|
||
/* There is an instruction after the load/store
|
||
instruction, and it does not have a label. */
|
||
next_insn = bfd_get_16 (abfd, contents + i + 2);
|
||
next_op = sh_insn_info (next_insn);
|
||
if (next_op != NULL
|
||
&& (next_op->flags & (LOAD | STORE)) == 0
|
||
&& ! sh_insns_conflict (insn, op, next_insn, next_op))
|
||
{
|
||
bfd_boolean ok;
|
||
|
||
/* NEXT_INSN is not itself a load/store instruction,
|
||
and it does not conflict with INSN. */
|
||
|
||
ok = TRUE;
|
||
|
||
/* If PREV_INSN is a load, and it sets a register
|
||
which NEXT_INSN uses, then putting NEXT_INSN
|
||
immediately after PREV_INSN will cause a pipeline
|
||
bubble, so there is no reason to make this swap. */
|
||
if (prev_op != NULL
|
||
&& (prev_op->flags & LOAD) != 0
|
||
&& sh_load_use (prev_insn, prev_op, next_insn, next_op))
|
||
ok = FALSE;
|
||
|
||
/* If INSN is a load, and it sets a register which
|
||
the insn after NEXT_INSN uses, then doing the
|
||
swap will cause a pipeline bubble, so there is no
|
||
reason to make the swap. However, if the insn
|
||
after NEXT_INSN is itself a load or store
|
||
instruction, then it is misaligned, so
|
||
optimistically hope that it will be swapped
|
||
itself, and just live with the pipeline bubble if
|
||
it isn't. */
|
||
if (ok
|
||
&& i + 4 < stop
|
||
&& (op->flags & LOAD) != 0)
|
||
{
|
||
unsigned int next2_insn;
|
||
const struct sh_opcode *next2_op;
|
||
|
||
next2_insn = bfd_get_16 (abfd, contents + i + 4);
|
||
next2_op = sh_insn_info (next2_insn);
|
||
if (next2_op == NULL
|
||
|| ((next2_op->flags & (LOAD | STORE)) == 0
|
||
&& sh_load_use (insn, op, next2_insn, next2_op)))
|
||
ok = FALSE;
|
||
}
|
||
|
||
if (ok)
|
||
{
|
||
if (! (*swap) (abfd, sec, relocs, contents, i))
|
||
return FALSE;
|
||
*pswapped = TRUE;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
#endif /* not COFF_IMAGE_WITH_PE */
|
||
|
||
/* Swap two SH instructions. */
|
||
|
||
static bfd_boolean
|
||
sh_swap_insns (bfd * abfd,
|
||
asection * sec,
|
||
void * relocs,
|
||
bfd_byte * contents,
|
||
bfd_vma addr)
|
||
{
|
||
struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
|
||
unsigned short i1, i2;
|
||
struct internal_reloc *irel, *irelend;
|
||
|
||
/* Swap the instructions themselves. */
|
||
i1 = bfd_get_16 (abfd, contents + addr);
|
||
i2 = bfd_get_16 (abfd, contents + addr + 2);
|
||
bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
|
||
bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
|
||
|
||
/* Adjust all reloc addresses. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
int type, add;
|
||
|
||
/* There are a few special types of relocs that we don't want to
|
||
adjust. These relocs do not apply to the instruction itself,
|
||
but are only associated with the address. */
|
||
type = irel->r_type;
|
||
if (type == R_SH_ALIGN
|
||
|| type == R_SH_CODE
|
||
|| type == R_SH_DATA
|
||
|| type == R_SH_LABEL)
|
||
continue;
|
||
|
||
/* If an R_SH_USES reloc points to one of the addresses being
|
||
swapped, we must adjust it. It would be incorrect to do this
|
||
for a jump, though, since we want to execute both
|
||
instructions after the jump. (We have avoided swapping
|
||
around a label, so the jump will not wind up executing an
|
||
instruction it shouldn't). */
|
||
if (type == R_SH_USES)
|
||
{
|
||
bfd_vma off;
|
||
|
||
off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
|
||
if (off == addr)
|
||
irel->r_offset += 2;
|
||
else if (off == addr + 2)
|
||
irel->r_offset -= 2;
|
||
}
|
||
|
||
if (irel->r_vaddr - sec->vma == addr)
|
||
{
|
||
irel->r_vaddr += 2;
|
||
add = -2;
|
||
}
|
||
else if (irel->r_vaddr - sec->vma == addr + 2)
|
||
{
|
||
irel->r_vaddr -= 2;
|
||
add = 2;
|
||
}
|
||
else
|
||
add = 0;
|
||
|
||
if (add != 0)
|
||
{
|
||
bfd_byte *loc;
|
||
unsigned short insn, oinsn;
|
||
bfd_boolean overflow;
|
||
|
||
loc = contents + irel->r_vaddr - sec->vma;
|
||
overflow = FALSE;
|
||
switch (type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case R_SH_PCDISP8BY2:
|
||
case R_SH_PCRELIMM8BY2:
|
||
insn = bfd_get_16 (abfd, loc);
|
||
oinsn = insn;
|
||
insn += add / 2;
|
||
if ((oinsn & 0xff00) != (insn & 0xff00))
|
||
overflow = TRUE;
|
||
bfd_put_16 (abfd, (bfd_vma) insn, loc);
|
||
break;
|
||
|
||
case R_SH_PCDISP:
|
||
insn = bfd_get_16 (abfd, loc);
|
||
oinsn = insn;
|
||
insn += add / 2;
|
||
if ((oinsn & 0xf000) != (insn & 0xf000))
|
||
overflow = TRUE;
|
||
bfd_put_16 (abfd, (bfd_vma) insn, loc);
|
||
break;
|
||
|
||
case R_SH_PCRELIMM8BY4:
|
||
/* This reloc ignores the least significant 3 bits of
|
||
the program counter before adding in the offset.
|
||
This means that if ADDR is at an even address, the
|
||
swap will not affect the offset. If ADDR is an at an
|
||
odd address, then the instruction will be crossing a
|
||
four byte boundary, and must be adjusted. */
|
||
if ((addr & 3) != 0)
|
||
{
|
||
insn = bfd_get_16 (abfd, loc);
|
||
oinsn = insn;
|
||
insn += add / 2;
|
||
if ((oinsn & 0xff00) != (insn & 0xff00))
|
||
overflow = TRUE;
|
||
bfd_put_16 (abfd, (bfd_vma) insn, loc);
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
if (overflow)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: %#Lx: fatal: reloc overflow while relaxing"),
|
||
abfd, irel->r_vaddr);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Look for loads and stores which we can align to four byte
|
||
boundaries. See the longer comment above sh_relax_section for why
|
||
this is desirable. This sets *PSWAPPED if some instruction was
|
||
swapped. */
|
||
|
||
static bfd_boolean
|
||
sh_align_loads (bfd *abfd,
|
||
asection *sec,
|
||
struct internal_reloc *internal_relocs,
|
||
bfd_byte *contents,
|
||
bfd_boolean *pswapped)
|
||
{
|
||
struct internal_reloc *irel, *irelend;
|
||
bfd_vma *labels = NULL;
|
||
bfd_vma *label, *label_end;
|
||
bfd_size_type amt;
|
||
|
||
*pswapped = FALSE;
|
||
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
|
||
/* Get all the addresses with labels on them. */
|
||
amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
|
||
labels = (bfd_vma *) bfd_malloc (amt);
|
||
if (labels == NULL)
|
||
goto error_return;
|
||
label_end = labels;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
if (irel->r_type == R_SH_LABEL)
|
||
{
|
||
*label_end = irel->r_vaddr - sec->vma;
|
||
++label_end;
|
||
}
|
||
}
|
||
|
||
/* Note that the assembler currently always outputs relocs in
|
||
address order. If that ever changes, this code will need to sort
|
||
the label values and the relocs. */
|
||
|
||
label = labels;
|
||
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma start, stop;
|
||
|
||
if (irel->r_type != R_SH_CODE)
|
||
continue;
|
||
|
||
start = irel->r_vaddr - sec->vma;
|
||
|
||
for (irel++; irel < irelend; irel++)
|
||
if (irel->r_type == R_SH_DATA)
|
||
break;
|
||
if (irel < irelend)
|
||
stop = irel->r_vaddr - sec->vma;
|
||
else
|
||
stop = sec->size;
|
||
|
||
if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
|
||
internal_relocs, &label,
|
||
label_end, start, stop, pswapped))
|
||
goto error_return;
|
||
}
|
||
|
||
free (labels);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (labels != NULL)
|
||
free (labels);
|
||
return FALSE;
|
||
}
|
||
|
||
/* This is a modification of _bfd_coff_generic_relocate_section, which
|
||
will handle SH relaxing. */
|
||
|
||
static bfd_boolean
|
||
sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
struct internal_reloc *relocs,
|
||
struct internal_syment *syms,
|
||
asection **sections)
|
||
{
|
||
struct internal_reloc *rel;
|
||
struct internal_reloc *relend;
|
||
|
||
rel = relocs;
|
||
relend = rel + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
long symndx;
|
||
struct coff_link_hash_entry *h;
|
||
struct internal_syment *sym;
|
||
bfd_vma addend;
|
||
bfd_vma val;
|
||
reloc_howto_type *howto;
|
||
bfd_reloc_status_type rstat;
|
||
|
||
/* Almost all relocs have to do with relaxing. If any work must
|
||
be done for them, it has been done in sh_relax_section. */
|
||
if (rel->r_type != R_SH_IMM32
|
||
#ifdef COFF_WITH_PE
|
||
&& rel->r_type != R_SH_IMM32CE
|
||
&& rel->r_type != R_SH_IMAGEBASE
|
||
#endif
|
||
&& rel->r_type != R_SH_PCDISP)
|
||
continue;
|
||
|
||
symndx = rel->r_symndx;
|
||
|
||
if (symndx == -1)
|
||
{
|
||
h = NULL;
|
||
sym = NULL;
|
||
}
|
||
else
|
||
{
|
||
if (symndx < 0
|
||
|| (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext: c-format */
|
||
(_("%B: illegal symbol index %ld in relocs"),
|
||
input_bfd, symndx);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
h = obj_coff_sym_hashes (input_bfd)[symndx];
|
||
sym = syms + symndx;
|
||
}
|
||
|
||
if (sym != NULL && sym->n_scnum != 0)
|
||
addend = - sym->n_value;
|
||
else
|
||
addend = 0;
|
||
|
||
if (rel->r_type == R_SH_PCDISP)
|
||
addend -= 4;
|
||
|
||
if (rel->r_type >= SH_COFF_HOWTO_COUNT)
|
||
howto = NULL;
|
||
else
|
||
howto = &sh_coff_howtos[rel->r_type];
|
||
|
||
if (howto == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
#ifdef COFF_WITH_PE
|
||
if (rel->r_type == R_SH_IMAGEBASE)
|
||
addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
|
||
#endif
|
||
|
||
val = 0;
|
||
|
||
if (h == NULL)
|
||
{
|
||
asection *sec;
|
||
|
||
/* There is nothing to do for an internal PCDISP reloc. */
|
||
if (rel->r_type == R_SH_PCDISP)
|
||
continue;
|
||
|
||
if (symndx == -1)
|
||
{
|
||
sec = bfd_abs_section_ptr;
|
||
val = 0;
|
||
}
|
||
else
|
||
{
|
||
sec = sections[symndx];
|
||
val = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->n_value
|
||
- sec->vma);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
{
|
||
asection *sec;
|
||
|
||
sec = h->root.u.def.section;
|
||
val = (h->root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
}
|
||
else if (! bfd_link_relocatable (info))
|
||
(*info->callbacks->undefined_symbol)
|
||
(info, h->root.root.string, input_bfd, input_section,
|
||
rel->r_vaddr - input_section->vma, TRUE);
|
||
}
|
||
|
||
rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents,
|
||
rel->r_vaddr - input_section->vma,
|
||
val, addend);
|
||
|
||
switch (rstat)
|
||
{
|
||
default:
|
||
abort ();
|
||
case bfd_reloc_ok:
|
||
break;
|
||
case bfd_reloc_overflow:
|
||
{
|
||
const char *name;
|
||
char buf[SYMNMLEN + 1];
|
||
|
||
if (symndx == -1)
|
||
name = "*ABS*";
|
||
else if (h != NULL)
|
||
name = NULL;
|
||
else if (sym->_n._n_n._n_zeroes == 0
|
||
&& sym->_n._n_n._n_offset != 0)
|
||
name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
|
||
else
|
||
{
|
||
strncpy (buf, sym->_n._n_name, SYMNMLEN);
|
||
buf[SYMNMLEN] = '\0';
|
||
name = buf;
|
||
}
|
||
|
||
(*info->callbacks->reloc_overflow)
|
||
(info, (h ? &h->root : NULL), name, howto->name,
|
||
(bfd_vma) 0, input_bfd, input_section,
|
||
rel->r_vaddr - input_section->vma);
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a version of bfd_generic_get_relocated_section_contents
|
||
which uses sh_relocate_section. */
|
||
|
||
static bfd_byte *
|
||
sh_coff_get_relocated_section_contents (bfd *output_bfd,
|
||
struct bfd_link_info *link_info,
|
||
struct bfd_link_order *link_order,
|
||
bfd_byte *data,
|
||
bfd_boolean relocatable,
|
||
asymbol **symbols)
|
||
{
|
||
asection *input_section = link_order->u.indirect.section;
|
||
bfd *input_bfd = input_section->owner;
|
||
asection **sections = NULL;
|
||
struct internal_reloc *internal_relocs = NULL;
|
||
struct internal_syment *internal_syms = NULL;
|
||
|
||
/* We only need to handle the case of relaxing, or of having a
|
||
particular set of section contents, specially. */
|
||
if (relocatable
|
||
|| coff_section_data (input_bfd, input_section) == NULL
|
||
|| coff_section_data (input_bfd, input_section)->contents == NULL)
|
||
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
||
link_order, data,
|
||
relocatable,
|
||
symbols);
|
||
|
||
memcpy (data, coff_section_data (input_bfd, input_section)->contents,
|
||
(size_t) input_section->size);
|
||
|
||
if ((input_section->flags & SEC_RELOC) != 0
|
||
&& input_section->reloc_count > 0)
|
||
{
|
||
bfd_size_type symesz = bfd_coff_symesz (input_bfd);
|
||
bfd_byte *esym, *esymend;
|
||
struct internal_syment *isymp;
|
||
asection **secpp;
|
||
bfd_size_type amt;
|
||
|
||
if (! _bfd_coff_get_external_symbols (input_bfd))
|
||
goto error_return;
|
||
|
||
internal_relocs = (_bfd_coff_read_internal_relocs
|
||
(input_bfd, input_section, FALSE, (bfd_byte *) NULL,
|
||
FALSE, (struct internal_reloc *) NULL));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
amt = obj_raw_syment_count (input_bfd);
|
||
amt *= sizeof (struct internal_syment);
|
||
internal_syms = (struct internal_syment *) bfd_malloc (amt);
|
||
if (internal_syms == NULL)
|
||
goto error_return;
|
||
|
||
amt = obj_raw_syment_count (input_bfd);
|
||
amt *= sizeof (asection *);
|
||
sections = (asection **) bfd_malloc (amt);
|
||
if (sections == NULL)
|
||
goto error_return;
|
||
|
||
isymp = internal_syms;
|
||
secpp = sections;
|
||
esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
|
||
esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
|
||
while (esym < esymend)
|
||
{
|
||
bfd_coff_swap_sym_in (input_bfd, esym, isymp);
|
||
|
||
if (isymp->n_scnum != 0)
|
||
*secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
|
||
else
|
||
{
|
||
if (isymp->n_value == 0)
|
||
*secpp = bfd_und_section_ptr;
|
||
else
|
||
*secpp = bfd_com_section_ptr;
|
||
}
|
||
|
||
esym += (isymp->n_numaux + 1) * symesz;
|
||
secpp += isymp->n_numaux + 1;
|
||
isymp += isymp->n_numaux + 1;
|
||
}
|
||
|
||
if (! sh_relocate_section (output_bfd, link_info, input_bfd,
|
||
input_section, data, internal_relocs,
|
||
internal_syms, sections))
|
||
goto error_return;
|
||
|
||
free (sections);
|
||
sections = NULL;
|
||
free (internal_syms);
|
||
internal_syms = NULL;
|
||
free (internal_relocs);
|
||
internal_relocs = NULL;
|
||
}
|
||
|
||
return data;
|
||
|
||
error_return:
|
||
if (internal_relocs != NULL)
|
||
free (internal_relocs);
|
||
if (internal_syms != NULL)
|
||
free (internal_syms);
|
||
if (sections != NULL)
|
||
free (sections);
|
||
return NULL;
|
||
}
|
||
|
||
/* The target vectors. */
|
||
|
||
#ifndef TARGET_SHL_SYM
|
||
CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
|
||
#endif
|
||
|
||
#ifdef TARGET_SHL_SYM
|
||
#define TARGET_SYM TARGET_SHL_SYM
|
||
#else
|
||
#define TARGET_SYM sh_coff_le_vec
|
||
#endif
|
||
|
||
#ifndef TARGET_SHL_NAME
|
||
#define TARGET_SHL_NAME "coff-shl"
|
||
#endif
|
||
|
||
#ifdef COFF_WITH_PE
|
||
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
|
||
SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
|
||
#else
|
||
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
|
||
0, '_', NULL, COFF_SWAP_TABLE)
|
||
#endif
|
||
|
||
#ifndef TARGET_SHL_SYM
|
||
|
||
/* Some people want versions of the SH COFF target which do not align
|
||
to 16 byte boundaries. We implement that by adding a couple of new
|
||
target vectors. These are just like the ones above, but they
|
||
change the default section alignment. To generate them in the
|
||
assembler, use -small. To use them in the linker, use -b
|
||
coff-sh{l}-small and -oformat coff-sh{l}-small.
|
||
|
||
Yes, this is a horrible hack. A general solution for setting
|
||
section alignment in COFF is rather complex. ELF handles this
|
||
correctly. */
|
||
|
||
/* Only recognize the small versions if the target was not defaulted.
|
||
Otherwise we won't recognize the non default endianness. */
|
||
|
||
static const bfd_target *
|
||
coff_small_object_p (bfd *abfd)
|
||
{
|
||
if (abfd->target_defaulted)
|
||
{
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
return coff_object_p (abfd);
|
||
}
|
||
|
||
/* Set the section alignment for the small versions. */
|
||
|
||
static bfd_boolean
|
||
coff_small_new_section_hook (bfd *abfd, asection *section)
|
||
{
|
||
if (! coff_new_section_hook (abfd, section))
|
||
return FALSE;
|
||
|
||
/* We must align to at least a four byte boundary, because longword
|
||
accesses must be on a four byte boundary. */
|
||
if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
|
||
section->alignment_power = 2;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is copied from bfd_coff_std_swap_table so that we can change
|
||
the default section alignment power. */
|
||
|
||
static bfd_coff_backend_data bfd_coff_small_swap_table =
|
||
{
|
||
coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
|
||
coff_swap_aux_out, coff_swap_sym_out,
|
||
coff_swap_lineno_out, coff_swap_reloc_out,
|
||
coff_swap_filehdr_out, coff_swap_aouthdr_out,
|
||
coff_swap_scnhdr_out,
|
||
FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
|
||
#ifdef COFF_LONG_FILENAMES
|
||
TRUE,
|
||
#else
|
||
FALSE,
|
||
#endif
|
||
COFF_DEFAULT_LONG_SECTION_NAMES,
|
||
2,
|
||
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
|
||
TRUE,
|
||
#else
|
||
FALSE,
|
||
#endif
|
||
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
|
||
4,
|
||
#else
|
||
2,
|
||
#endif
|
||
32768,
|
||
coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
|
||
coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
|
||
coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
|
||
coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
|
||
coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
|
||
coff_classify_symbol, coff_compute_section_file_positions,
|
||
coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
|
||
coff_adjust_symndx, coff_link_add_one_symbol,
|
||
coff_link_output_has_begun, coff_final_link_postscript,
|
||
bfd_pe_print_pdata
|
||
};
|
||
|
||
#define coff_small_close_and_cleanup \
|
||
coff_close_and_cleanup
|
||
#define coff_small_bfd_free_cached_info \
|
||
coff_bfd_free_cached_info
|
||
#define coff_small_get_section_contents \
|
||
coff_get_section_contents
|
||
#define coff_small_get_section_contents_in_window \
|
||
coff_get_section_contents_in_window
|
||
|
||
extern const bfd_target sh_coff_small_le_vec;
|
||
|
||
const bfd_target sh_coff_small_vec =
|
||
{
|
||
"coff-sh-small", /* name */
|
||
bfd_target_coff_flavour,
|
||
BFD_ENDIAN_BIG, /* data byte order is big */
|
||
BFD_ENDIAN_BIG, /* header byte order is big */
|
||
|
||
(HAS_RELOC | EXEC_P | /* object flags */
|
||
HAS_LINENO | HAS_DEBUG |
|
||
HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
|
||
|
||
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
|
||
'_', /* leading symbol underscore */
|
||
'/', /* ar_pad_char */
|
||
15, /* ar_max_namelen */
|
||
0, /* match priority. */
|
||
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
||
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
||
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
|
||
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
||
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
||
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
|
||
|
||
{_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
|
||
bfd_generic_archive_p, _bfd_dummy_target},
|
||
{bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
|
||
bfd_false},
|
||
{bfd_false, coff_write_object_contents, /* bfd_write_contents */
|
||
_bfd_write_archive_contents, bfd_false},
|
||
|
||
BFD_JUMP_TABLE_GENERIC (coff_small),
|
||
BFD_JUMP_TABLE_COPY (coff),
|
||
BFD_JUMP_TABLE_CORE (_bfd_nocore),
|
||
BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
|
||
BFD_JUMP_TABLE_SYMBOLS (coff),
|
||
BFD_JUMP_TABLE_RELOCS (coff),
|
||
BFD_JUMP_TABLE_WRITE (coff),
|
||
BFD_JUMP_TABLE_LINK (coff),
|
||
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
|
||
|
||
& sh_coff_small_le_vec,
|
||
|
||
& bfd_coff_small_swap_table
|
||
};
|
||
|
||
const bfd_target sh_coff_small_le_vec =
|
||
{
|
||
"coff-shl-small", /* name */
|
||
bfd_target_coff_flavour,
|
||
BFD_ENDIAN_LITTLE, /* data byte order is little */
|
||
BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
|
||
|
||
(HAS_RELOC | EXEC_P | /* object flags */
|
||
HAS_LINENO | HAS_DEBUG |
|
||
HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
|
||
|
||
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
|
||
'_', /* leading symbol underscore */
|
||
'/', /* ar_pad_char */
|
||
15, /* ar_max_namelen */
|
||
0, /* match priority. */
|
||
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
|
||
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
|
||
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
|
||
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
|
||
bfd_getl32, bfd_getl_signed_32, bfd_putl32,
|
||
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
|
||
|
||
{_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
|
||
bfd_generic_archive_p, _bfd_dummy_target},
|
||
{bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
|
||
bfd_false},
|
||
{bfd_false, coff_write_object_contents, /* bfd_write_contents */
|
||
_bfd_write_archive_contents, bfd_false},
|
||
|
||
BFD_JUMP_TABLE_GENERIC (coff_small),
|
||
BFD_JUMP_TABLE_COPY (coff),
|
||
BFD_JUMP_TABLE_CORE (_bfd_nocore),
|
||
BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
|
||
BFD_JUMP_TABLE_SYMBOLS (coff),
|
||
BFD_JUMP_TABLE_RELOCS (coff),
|
||
BFD_JUMP_TABLE_WRITE (coff),
|
||
BFD_JUMP_TABLE_LINK (coff),
|
||
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
|
||
|
||
& sh_coff_small_vec,
|
||
|
||
& bfd_coff_small_swap_table
|
||
};
|
||
#endif
|