380b774b2d
* rs6000-nat.c (xcoff_relocate_symtam): Recover from the wrong patch being applied `Fri Apr 7 13:44:38 2000'.
854 lines
24 KiB
C
854 lines
24 KiB
C
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1994, 1995, 1996, 1997, 1998
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "xcoffsolib.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
|
||
#include "bfd.h"
|
||
#include "gdb-stabs.h"
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <sys/reg.h>
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/user.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
#include <fcntl.h>
|
||
|
||
#include <a.out.h>
|
||
#include <sys/file.h>
|
||
#include "gdb_stat.h"
|
||
#include <sys/core.h>
|
||
#include <sys/ldr.h>
|
||
|
||
extern int errno;
|
||
|
||
extern struct vmap *map_vmap PARAMS ((bfd * bf, bfd * arch));
|
||
|
||
extern struct target_ops exec_ops;
|
||
|
||
static void
|
||
vmap_exec PARAMS ((void));
|
||
|
||
static void
|
||
vmap_ldinfo PARAMS ((struct ld_info *));
|
||
|
||
static struct vmap *
|
||
add_vmap PARAMS ((struct ld_info *));
|
||
|
||
static int
|
||
objfile_symbol_add PARAMS ((char *));
|
||
|
||
static void
|
||
vmap_symtab PARAMS ((struct vmap *));
|
||
|
||
static void
|
||
fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
|
||
|
||
static void
|
||
exec_one_dummy_insn PARAMS ((void));
|
||
|
||
extern void
|
||
fixup_breakpoints PARAMS ((CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta));
|
||
|
||
/* Conversion from gdb-to-system special purpose register numbers.. */
|
||
|
||
static int special_regs[] =
|
||
{
|
||
IAR, /* PC_REGNUM */
|
||
MSR, /* PS_REGNUM */
|
||
CR, /* CR_REGNUM */
|
||
LR, /* LR_REGNUM */
|
||
CTR, /* CTR_REGNUM */
|
||
XER, /* XER_REGNUM */
|
||
MQ /* MQ_REGNUM */
|
||
};
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
int ii;
|
||
|
||
if (regno < 0)
|
||
{ /* for all registers */
|
||
|
||
/* read 32 general purpose registers. */
|
||
|
||
for (ii = 0; ii < 32; ++ii)
|
||
*(int *) ®isters[REGISTER_BYTE (ii)] =
|
||
ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, 0, 0);
|
||
|
||
/* read general purpose floating point registers. */
|
||
|
||
for (ii = 0; ii < 32; ++ii)
|
||
ptrace (PT_READ_FPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (FP0_REGNUM + ii)],
|
||
FPR0 + ii, 0);
|
||
|
||
/* read special registers. */
|
||
for (ii = 0; ii <= LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM; ++ii)
|
||
*(int *) ®isters[REGISTER_BYTE (FIRST_UISA_SP_REGNUM + ii)] =
|
||
ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) special_regs[ii],
|
||
0, 0);
|
||
|
||
registers_fetched ();
|
||
return;
|
||
}
|
||
|
||
/* else an individual register is addressed. */
|
||
|
||
else if (regno < FP0_REGNUM)
|
||
{ /* a GPR */
|
||
*(int *) ®isters[REGISTER_BYTE (regno)] =
|
||
ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, 0, 0);
|
||
}
|
||
else if (regno <= FPLAST_REGNUM)
|
||
{ /* a FPR */
|
||
ptrace (PT_READ_FPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (regno)],
|
||
(regno - FP0_REGNUM + FPR0), 0);
|
||
}
|
||
else if (regno <= LAST_UISA_SP_REGNUM)
|
||
{ /* a special register */
|
||
*(int *) ®isters[REGISTER_BYTE (regno)] =
|
||
ptrace (PT_READ_GPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) special_regs[regno - FIRST_UISA_SP_REGNUM],
|
||
0, 0);
|
||
}
|
||
else
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"gdb error: register no %d not implemented.\n",
|
||
regno);
|
||
|
||
register_valid[regno] = 1;
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
|
||
errno = 0;
|
||
|
||
if (regno == -1)
|
||
{ /* for all registers.. */
|
||
int ii;
|
||
|
||
/* execute one dummy instruction (which is a breakpoint) in inferior
|
||
process. So give kernel a chance to do internal house keeping.
|
||
Otherwise the following ptrace(2) calls will mess up user stack
|
||
since kernel will get confused about the bottom of the stack (%sp) */
|
||
|
||
exec_one_dummy_insn ();
|
||
|
||
/* write general purpose registers first! */
|
||
for (ii = GPR0; ii <= GPR31; ++ii)
|
||
{
|
||
ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii,
|
||
*(int *) ®isters[REGISTER_BYTE (ii)], 0);
|
||
if (errno)
|
||
{
|
||
perror ("ptrace write_gpr");
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* write floating point registers now. */
|
||
for (ii = 0; ii < 32; ++ii)
|
||
{
|
||
ptrace (PT_WRITE_FPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (FP0_REGNUM + ii)],
|
||
FPR0 + ii, 0);
|
||
if (errno)
|
||
{
|
||
perror ("ptrace write_fpr");
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* write special registers. */
|
||
for (ii = 0; ii <= LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM; ++ii)
|
||
{
|
||
ptrace (PT_WRITE_GPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) special_regs[ii],
|
||
*(int *) ®isters[REGISTER_BYTE (FIRST_UISA_SP_REGNUM + ii)],
|
||
0);
|
||
if (errno)
|
||
{
|
||
perror ("ptrace write_gpr");
|
||
errno = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* else, a specific register number is given... */
|
||
|
||
else if (regno < FP0_REGNUM) /* a GPR */
|
||
{
|
||
if (regno == SP_REGNUM)
|
||
exec_one_dummy_insn ();
|
||
ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno,
|
||
*(int *) ®isters[REGISTER_BYTE (regno)], 0);
|
||
}
|
||
|
||
else if (regno <= FPLAST_REGNUM) /* a FPR */
|
||
{
|
||
ptrace (PT_WRITE_FPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (regno)],
|
||
regno - FP0_REGNUM + FPR0, 0);
|
||
}
|
||
|
||
else if (regno <= LAST_UISA_SP_REGNUM) /* a special register */
|
||
{
|
||
ptrace (PT_WRITE_GPR, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) special_regs[regno - FIRST_UISA_SP_REGNUM],
|
||
*(int *) ®isters[REGISTER_BYTE (regno)], 0);
|
||
}
|
||
|
||
else if (regno < NUM_REGS)
|
||
{
|
||
/* Ignore it. */
|
||
}
|
||
|
||
else
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Gdb error: register no %d not implemented.\n",
|
||
regno);
|
||
|
||
if (errno)
|
||
{
|
||
perror ("ptrace write");
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* Execute one dummy breakpoint instruction. This way we give the kernel
|
||
a chance to do some housekeeping and update inferior's internal data,
|
||
including u_area. */
|
||
|
||
static void
|
||
exec_one_dummy_insn ()
|
||
{
|
||
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
|
||
|
||
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
|
||
int status, pid;
|
||
CORE_ADDR prev_pc;
|
||
|
||
/* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
|
||
assume that this address will never be executed again by the real
|
||
code. */
|
||
|
||
target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
|
||
|
||
errno = 0;
|
||
|
||
/* You might think this could be done with a single ptrace call, and
|
||
you'd be correct for just about every platform I've ever worked
|
||
on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
|
||
the inferior never hits the breakpoint (it's also worth noting
|
||
powerpc-ibm-aix4.1.3 works correctly). */
|
||
prev_pc = read_pc ();
|
||
write_pc (DUMMY_INSN_ADDR);
|
||
ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, 0, 0);
|
||
|
||
if (errno)
|
||
perror ("pt_continue");
|
||
|
||
do
|
||
{
|
||
pid = wait (&status);
|
||
}
|
||
while (pid != inferior_pid);
|
||
|
||
write_pc (prev_pc);
|
||
target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
|
||
}
|
||
|
||
static void
|
||
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
||
char *core_reg_sect;
|
||
unsigned core_reg_size;
|
||
int which;
|
||
CORE_ADDR reg_addr; /* Unused in this version */
|
||
{
|
||
/* fetch GPRs and special registers from the first register section
|
||
in core bfd. */
|
||
if (which == 0)
|
||
{
|
||
/* copy GPRs first. */
|
||
memcpy (registers, core_reg_sect, 32 * 4);
|
||
|
||
/* gdb's internal register template and bfd's register section layout
|
||
should share a common include file. FIXMEmgo */
|
||
/* then comes special registes. They are supposed to be in the same
|
||
order in gdb template and bfd `.reg' section. */
|
||
core_reg_sect += (32 * 4);
|
||
memcpy (®isters[REGISTER_BYTE (FIRST_UISA_SP_REGNUM)],
|
||
core_reg_sect,
|
||
(LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1) * 4);
|
||
}
|
||
|
||
/* fetch floating point registers from register section 2 in core bfd. */
|
||
else if (which == 2)
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 32 * 8);
|
||
|
||
else
|
||
fprintf_unfiltered
|
||
(gdb_stderr,
|
||
"Gdb error: unknown parameter to fetch_core_registers().\n");
|
||
}
|
||
|
||
/* handle symbol translation on vmapping */
|
||
|
||
static void
|
||
vmap_symtab (vp)
|
||
register struct vmap *vp;
|
||
{
|
||
register struct objfile *objfile;
|
||
struct section_offsets *new_offsets;
|
||
int i;
|
||
|
||
objfile = vp->objfile;
|
||
if (objfile == NULL)
|
||
{
|
||
/* OK, it's not an objfile we opened ourselves.
|
||
Currently, that can only happen with the exec file, so
|
||
relocate the symbols for the symfile. */
|
||
if (symfile_objfile == NULL)
|
||
return;
|
||
objfile = symfile_objfile;
|
||
}
|
||
|
||
new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
|
||
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
ANOFFSET (new_offsets, i) = ANOFFSET (objfile->section_offsets, i);
|
||
|
||
/* The symbols in the object file are linked to the VMA of the section,
|
||
relocate them VMA relative. */
|
||
ANOFFSET (new_offsets, SECT_OFF_TEXT) = vp->tstart - vp->tvma;
|
||
ANOFFSET (new_offsets, SECT_OFF_DATA) = vp->dstart - vp->dvma;
|
||
ANOFFSET (new_offsets, SECT_OFF_BSS) = vp->dstart - vp->dvma;
|
||
|
||
objfile_relocate (objfile, new_offsets);
|
||
}
|
||
|
||
/* Add symbols for an objfile. */
|
||
|
||
static int
|
||
objfile_symbol_add (arg)
|
||
char *arg;
|
||
{
|
||
struct objfile *obj = (struct objfile *) arg;
|
||
|
||
syms_from_objfile (obj, NULL, 0, 0);
|
||
new_symfile_objfile (obj, 0, 0);
|
||
return 1;
|
||
}
|
||
|
||
/* Add a new vmap entry based on ldinfo() information.
|
||
|
||
If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
|
||
core file), the caller should set it to -1, and we will open the file.
|
||
|
||
Return the vmap new entry. */
|
||
|
||
static struct vmap *
|
||
add_vmap (ldi)
|
||
register struct ld_info *ldi;
|
||
{
|
||
bfd *abfd, *last;
|
||
register char *mem, *objname;
|
||
struct objfile *obj;
|
||
struct vmap *vp;
|
||
|
||
/* This ldi structure was allocated using alloca() in
|
||
xcoff_relocate_symtab(). Now we need to have persistent object
|
||
and member names, so we should save them. */
|
||
|
||
mem = ldi->ldinfo_filename + strlen (ldi->ldinfo_filename) + 1;
|
||
mem = savestring (mem, strlen (mem));
|
||
objname = savestring (ldi->ldinfo_filename, strlen (ldi->ldinfo_filename));
|
||
|
||
if (ldi->ldinfo_fd < 0)
|
||
/* Note that this opens it once for every member; a possible
|
||
enhancement would be to only open it once for every object. */
|
||
abfd = bfd_openr (objname, gnutarget);
|
||
else
|
||
abfd = bfd_fdopenr (objname, gnutarget, ldi->ldinfo_fd);
|
||
if (!abfd)
|
||
error ("Could not open `%s' as an executable file: %s",
|
||
objname, bfd_errmsg (bfd_get_error ()));
|
||
|
||
/* make sure we have an object file */
|
||
|
||
if (bfd_check_format (abfd, bfd_object))
|
||
vp = map_vmap (abfd, 0);
|
||
|
||
else if (bfd_check_format (abfd, bfd_archive))
|
||
{
|
||
last = 0;
|
||
/* FIXME??? am I tossing BFDs? bfd? */
|
||
while ((last = bfd_openr_next_archived_file (abfd, last)))
|
||
if (STREQ (mem, last->filename))
|
||
break;
|
||
|
||
if (!last)
|
||
{
|
||
bfd_close (abfd);
|
||
/* FIXME -- should be error */
|
||
warning ("\"%s\": member \"%s\" missing.", abfd->filename, mem);
|
||
return 0;
|
||
}
|
||
|
||
if (!bfd_check_format (last, bfd_object))
|
||
{
|
||
bfd_close (last); /* XXX??? */
|
||
goto obj_err;
|
||
}
|
||
|
||
vp = map_vmap (last, abfd);
|
||
}
|
||
else
|
||
{
|
||
obj_err:
|
||
bfd_close (abfd);
|
||
error ("\"%s\": not in executable format: %s.",
|
||
objname, bfd_errmsg (bfd_get_error ()));
|
||
/*NOTREACHED */
|
||
}
|
||
obj = allocate_objfile (vp->bfd, 0);
|
||
vp->objfile = obj;
|
||
|
||
#ifndef SOLIB_SYMBOLS_MANUAL
|
||
if (catch_errors (objfile_symbol_add, (char *) obj,
|
||
"Error while reading shared library symbols:\n",
|
||
RETURN_MASK_ALL))
|
||
{
|
||
/* Note this is only done if symbol reading was successful. */
|
||
vmap_symtab (vp);
|
||
vp->loaded = 1;
|
||
}
|
||
#endif
|
||
return vp;
|
||
}
|
||
|
||
/* update VMAP info with ldinfo() information
|
||
Input is ptr to ldinfo() results. */
|
||
|
||
static void
|
||
vmap_ldinfo (ldi)
|
||
register struct ld_info *ldi;
|
||
{
|
||
struct stat ii, vi;
|
||
register struct vmap *vp;
|
||
int got_one, retried;
|
||
int got_exec_file = 0;
|
||
|
||
/* For each *ldi, see if we have a corresponding *vp.
|
||
If so, update the mapping, and symbol table.
|
||
If not, add an entry and symbol table. */
|
||
|
||
do
|
||
{
|
||
char *name = ldi->ldinfo_filename;
|
||
char *memb = name + strlen (name) + 1;
|
||
|
||
retried = 0;
|
||
|
||
if (fstat (ldi->ldinfo_fd, &ii) < 0)
|
||
{
|
||
/* The kernel sets ld_info to -1, if the process is still using the
|
||
object, and the object is removed. Keep the symbol info for the
|
||
removed object and issue a warning. */
|
||
warning ("%s (fd=%d) has disappeared, keeping its symbols",
|
||
name, ldi->ldinfo_fd);
|
||
continue;
|
||
}
|
||
retry:
|
||
for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
/* First try to find a `vp', which is the same as in ldinfo.
|
||
If not the same, just continue and grep the next `vp'. If same,
|
||
relocate its tstart, tend, dstart, dend values. If no such `vp'
|
||
found, get out of this for loop, add this ldi entry as a new vmap
|
||
(add_vmap) and come back, find its `vp' and so on... */
|
||
|
||
/* The filenames are not always sufficient to match on. */
|
||
|
||
if ((name[0] == '/' && !STREQ (name, vp->name))
|
||
|| (memb[0] && !STREQ (memb, vp->member)))
|
||
continue;
|
||
|
||
/* See if we are referring to the same file.
|
||
We have to check objfile->obfd, symfile.c:reread_symbols might
|
||
have updated the obfd after a change. */
|
||
objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
|
||
if (objfile == NULL
|
||
|| objfile->obfd == NULL
|
||
|| bfd_stat (objfile->obfd, &vi) < 0)
|
||
{
|
||
warning ("Unable to stat %s, keeping its symbols", name);
|
||
continue;
|
||
}
|
||
|
||
if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
|
||
continue;
|
||
|
||
if (!retried)
|
||
close (ldi->ldinfo_fd);
|
||
|
||
++got_one;
|
||
|
||
/* Found a corresponding VMAP. Remap! */
|
||
|
||
/* We can assume pointer == CORE_ADDR, this code is native only. */
|
||
vp->tstart = (CORE_ADDR) ldi->ldinfo_textorg;
|
||
vp->tend = vp->tstart + ldi->ldinfo_textsize;
|
||
vp->dstart = (CORE_ADDR) ldi->ldinfo_dataorg;
|
||
vp->dend = vp->dstart + ldi->ldinfo_datasize;
|
||
|
||
/* The run time loader maps the file header in addition to the text
|
||
section and returns a pointer to the header in ldinfo_textorg.
|
||
Adjust the text start address to point to the real start address
|
||
of the text section. */
|
||
vp->tstart += vp->toffs;
|
||
|
||
/* The objfile is only NULL for the exec file. */
|
||
if (vp->objfile == NULL)
|
||
got_exec_file = 1;
|
||
|
||
/* relocate symbol table(s). */
|
||
vmap_symtab (vp);
|
||
|
||
/* There may be more, so we don't break out of the loop. */
|
||
}
|
||
|
||
/* if there was no matching *vp, we must perforce create the sucker(s) */
|
||
if (!got_one && !retried)
|
||
{
|
||
add_vmap (ldi);
|
||
++retried;
|
||
goto retry;
|
||
}
|
||
}
|
||
while (ldi->ldinfo_next
|
||
&& (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
|
||
|
||
/* If we don't find the symfile_objfile anywhere in the ldinfo, it
|
||
is unlikely that the symbol file is relocated to the proper
|
||
address. And we might have attached to a process which is
|
||
running a different copy of the same executable. */
|
||
if (symfile_objfile != NULL && !got_exec_file)
|
||
{
|
||
warning_begin ();
|
||
fputs_unfiltered ("Symbol file ", gdb_stderr);
|
||
fputs_unfiltered (symfile_objfile->name, gdb_stderr);
|
||
fputs_unfiltered ("\nis not mapped; discarding it.\n\
|
||
If in fact that file has symbols which the mapped files listed by\n\
|
||
\"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
|
||
\"add-symbol-file\" commands (note that you must take care of relocating\n\
|
||
symbols to the proper address).\n", gdb_stderr);
|
||
free_objfile (symfile_objfile);
|
||
symfile_objfile = NULL;
|
||
}
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* As well as symbol tables, exec_sections need relocation. After
|
||
the inferior process' termination, there will be a relocated symbol
|
||
table exist with no corresponding inferior process. At that time, we
|
||
need to use `exec' bfd, rather than the inferior process's memory space
|
||
to look up symbols.
|
||
|
||
`exec_sections' need to be relocated only once, as long as the exec
|
||
file remains unchanged.
|
||
*/
|
||
|
||
static void
|
||
vmap_exec ()
|
||
{
|
||
static bfd *execbfd;
|
||
int i;
|
||
|
||
if (execbfd == exec_bfd)
|
||
return;
|
||
|
||
execbfd = exec_bfd;
|
||
|
||
if (!vmap || !exec_ops.to_sections)
|
||
error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
|
||
|
||
for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
|
||
{
|
||
if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
|
||
{
|
||
exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
|
||
exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
|
||
}
|
||
else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
|
||
{
|
||
exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
|
||
exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
|
||
}
|
||
else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
|
||
{
|
||
exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
|
||
exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* xcoff_relocate_symtab - hook for symbol table relocation.
|
||
also reads shared libraries.. */
|
||
|
||
void
|
||
xcoff_relocate_symtab (pid)
|
||
unsigned int pid;
|
||
{
|
||
int load_segs = 64; /* number of load segments */
|
||
int rc;
|
||
struct ld_info *ldi = NULL;
|
||
|
||
do
|
||
{
|
||
ldi = (void *) xrealloc (ldi, load_segs * sizeof (*ldi));
|
||
|
||
/* According to my humble theory, AIX has some timing problems and
|
||
when the user stack grows, kernel doesn't update stack info in time
|
||
and ptrace calls step on user stack. That is why we sleep here a
|
||
little, and give kernel to update its internals. */
|
||
|
||
usleep (36000);
|
||
|
||
errno = 0;
|
||
rc = ptrace (PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
|
||
load_segs * sizeof (*ldi), (int *) ldi);
|
||
if (rc == -1)
|
||
{
|
||
if (errno == ENOMEM)
|
||
load_segs *= 2;
|
||
else
|
||
perror_with_name ("ptrace ldinfo");
|
||
}
|
||
else
|
||
{
|
||
vmap_ldinfo (ldi);
|
||
vmap_exec (); /* relocate the exec and core sections as well. */
|
||
}
|
||
} while (rc == -1);
|
||
if (ldi)
|
||
free (ldi);
|
||
}
|
||
|
||
/* Core file stuff. */
|
||
|
||
/* Relocate symtabs and read in shared library info, based on symbols
|
||
from the core file. */
|
||
|
||
void
|
||
xcoff_relocate_core (target)
|
||
struct target_ops *target;
|
||
{
|
||
/* Offset of member MEMBER in a struct of type TYPE. */
|
||
#ifndef offsetof
|
||
#define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER)
|
||
#endif
|
||
|
||
/* Size of a struct ld_info except for the variable-length filename. */
|
||
#define LDINFO_SIZE (offsetof (struct ld_info, ldinfo_filename))
|
||
|
||
sec_ptr ldinfo_sec;
|
||
int offset = 0;
|
||
struct ld_info *ldip;
|
||
struct vmap *vp;
|
||
|
||
/* Allocated size of buffer. */
|
||
int buffer_size = LDINFO_SIZE;
|
||
char *buffer = xmalloc (buffer_size);
|
||
struct cleanup *old = make_cleanup (free_current_contents, &buffer);
|
||
|
||
/* FIXME, this restriction should not exist. For now, though I'll
|
||
avoid coredumps with error() pending a real fix. */
|
||
if (vmap == NULL)
|
||
error
|
||
("Can't debug a core file without an executable file (on the RS/6000)");
|
||
|
||
ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
|
||
if (ldinfo_sec == NULL)
|
||
{
|
||
bfd_err:
|
||
fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
|
||
bfd_errmsg (bfd_get_error ()));
|
||
do_cleanups (old);
|
||
return;
|
||
}
|
||
do
|
||
{
|
||
int i;
|
||
int names_found = 0;
|
||
|
||
/* Read in everything but the name. */
|
||
if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
|
||
offset, LDINFO_SIZE) == 0)
|
||
goto bfd_err;
|
||
|
||
/* Now the name. */
|
||
i = LDINFO_SIZE;
|
||
do
|
||
{
|
||
if (i == buffer_size)
|
||
{
|
||
buffer_size *= 2;
|
||
buffer = xrealloc (buffer, buffer_size);
|
||
}
|
||
if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
|
||
offset + i, 1) == 0)
|
||
goto bfd_err;
|
||
if (buffer[i++] == '\0')
|
||
++names_found;
|
||
}
|
||
while (names_found < 2);
|
||
|
||
ldip = (struct ld_info *) buffer;
|
||
|
||
/* Can't use a file descriptor from the core file; need to open it. */
|
||
ldip->ldinfo_fd = -1;
|
||
|
||
/* The first ldinfo is for the exec file, allocated elsewhere. */
|
||
if (offset == 0)
|
||
vp = vmap;
|
||
else
|
||
vp = add_vmap (ldip);
|
||
|
||
offset += ldip->ldinfo_next;
|
||
|
||
/* We can assume pointer == CORE_ADDR, this code is native only. */
|
||
vp->tstart = (CORE_ADDR) ldip->ldinfo_textorg;
|
||
vp->tend = vp->tstart + ldip->ldinfo_textsize;
|
||
vp->dstart = (CORE_ADDR) ldip->ldinfo_dataorg;
|
||
vp->dend = vp->dstart + ldip->ldinfo_datasize;
|
||
|
||
/* The run time loader maps the file header in addition to the text
|
||
section and returns a pointer to the header in ldinfo_textorg.
|
||
Adjust the text start address to point to the real start address
|
||
of the text section. */
|
||
vp->tstart += vp->toffs;
|
||
|
||
/* Unless this is the exec file,
|
||
add our sections to the section table for the core target. */
|
||
if (vp != vmap)
|
||
{
|
||
struct section_table *stp;
|
||
|
||
target_resize_to_sections (target, 2);
|
||
stp = target->to_sections_end - 2;
|
||
|
||
stp->bfd = vp->bfd;
|
||
stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
|
||
stp->addr = vp->tstart;
|
||
stp->endaddr = vp->tend;
|
||
stp++;
|
||
|
||
stp->bfd = vp->bfd;
|
||
stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
|
||
stp->addr = vp->dstart;
|
||
stp->endaddr = vp->dend;
|
||
}
|
||
|
||
vmap_symtab (vp);
|
||
}
|
||
while (ldip->ldinfo_next != 0);
|
||
vmap_exec ();
|
||
breakpoint_re_set ();
|
||
do_cleanups (old);
|
||
}
|
||
|
||
int
|
||
kernel_u_size ()
|
||
{
|
||
return (sizeof (struct user));
|
||
}
|
||
|
||
/* Under AIX, we have to pass the correct TOC pointer to a function
|
||
when calling functions in the inferior.
|
||
We try to find the relative toc offset of the objfile containing PC
|
||
and add the current load address of the data segment from the vmap. */
|
||
|
||
static CORE_ADDR
|
||
find_toc_address (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
struct vmap *vp;
|
||
|
||
for (vp = vmap; vp; vp = vp->nxt)
|
||
{
|
||
if (pc >= vp->tstart && pc < vp->tend)
|
||
{
|
||
/* vp->objfile is only NULL for the exec file. */
|
||
return vp->dstart + get_toc_offset (vp->objfile == NULL
|
||
? symfile_objfile
|
||
: vp->objfile);
|
||
}
|
||
}
|
||
error ("Unable to find TOC entry for pc 0x%x\n", pc);
|
||
}
|
||
|
||
/* Register that we are able to handle rs6000 core file formats. */
|
||
|
||
static struct core_fns rs6000_core_fns =
|
||
{
|
||
bfd_target_coff_flavour, /* core_flavour */
|
||
default_check_format, /* check_format */
|
||
default_core_sniffer, /* core_sniffer */
|
||
fetch_core_registers, /* core_read_registers */
|
||
NULL /* next */
|
||
};
|
||
|
||
void
|
||
_initialize_core_rs6000 ()
|
||
{
|
||
/* Initialize hook in rs6000-tdep.c for determining the TOC address when
|
||
calling functions in the inferior. */
|
||
find_toc_address_hook = &find_toc_address;
|
||
|
||
/* For native configurations, where this module is included, inform
|
||
the xcoffsolib module where it can find the function for symbol table
|
||
relocation at runtime. */
|
||
xcoff_relocate_symtab_hook = &xcoff_relocate_symtab;
|
||
add_core_fns (&rs6000_core_fns);
|
||
}
|